
UNIX/LINUX Lab

MCA- 208

SELF LEARNING MATERIAL

DIRECTORATE

OF DISTANCE EDUCATION

SWAMI VIVEKANAND SUBHARTI UNIVERSITY

MEERUT ς 250 005,

UTTAR PRADESH (INDIA)

2

SLM Module Developed By :

Author:

Reviewed by :

Assessed by:

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2)

Copyright © Gayatri Sales

DISCLAIMER

No part of this publication which is material protected by this copyright notice may be reproduced

or transmitted or utilized or stored in any form or by any means now known or hereinafter invented,

electronic, digital or mechanical, including photocopying, scanning, recording or by any information

storage or retrieval system, without prior permission from the publisher.

Information contained in this book has been published by Directorate of Distance Education and has

been obtained by its authors from sources be lived to be reliable and are correct to the best of their

knowledge. However, the publisher and its author shall in no event be liable for any errors,

omissions or damages arising out of use of this information and specially disclaim and implied

warranties or merchantability or fitness for any particular use.

Published by: Gayatri Sales

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut.

3

UNIX / LINUX LAB

ω ²ǊƛǘŜ {ƘŜƭƭ {ŎǊƛǇǘ ŦƻǊ ¦bL· ŜƴǾƛǊƻƴƳŜƴǘΦ

ω ¦ƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ōŀǎƛŎ ŎƻƳƳŀƴŘǎ ƻŦ ¦bL· ŀŘƳƛƴƛǎǘǊŀǘƛƻƴΣ ǳǎŜǊ ŀǳǘƘƻǊƛȊŀǘƛƻƴΣ ƎǊŀƴǘ ƻŦ ǳǎŜǊǎ

right and privileges, backup and recovery.

ω Source Code Control System understanding Lex and Yacc, debugger tools (Lint, make etc.)

ω ²ǊƛǘŜ ǇǊƻƎǊŀƳ ƛƴ / ŦƻǊ tǊƻŎŜǎǎ /ǊŜŀǘƛƻƴΣ tŀǊŜƴǘκ/ƘƛƭŘ ǇǊƻŎŜǎǎ ǊŜƭŀǘƛƻƴǎƘƛǇΣ ŦƻǊƪƛƴƎ ƻŦ ǇǊƻŎŜǎǎΦ

Inter Process Communication and socket programming implementation of exec system call,

pipe, semaphore and message queue.

4

Unit-1

Introduction

Introduction to Unix

UNIX is an operating system which was first developed in the 1960s, and has been

under constant development ever since. By operating system, we mean the suite of

programs which make the computer work. It is a stable, multi-user, multi-tasking system

for servers, desktops and laptops.

UNIX systems also have a graphical user interface (GUI) similar to Microsoft Windows

which provides an easy to use environment. However, knowledge of UNIX is required

for operations which aren't covered by a graphical program, or for when there is no

windows interface available, for example, in a telnet session.

Types of UNIX

There are many different versions of UNIX, although they share common similarities.

The most popular varieties of UNIX are Sun Solaris, GNU/Linux, and MacOS X.

Here in the School, we use Solaris on our servers and workstations, and Fedora Linux

on the servers and desktop PCs.

The UNIX operating system

The UNIX operating system is made up of three parts; the kernel, the shell and the

programs.

The kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to

programs and handles the filestore and communications in response to system calls.

As an illustration of the way that the shell and the kernel work together, suppose a user

types rm myfile (which has the effect of removing the file myfile). The shell searches the

filestore for the file containing the program rm, and then requests the kernel, through

system calls, to execute the program rm on myfile. When the process rm myfile has

finished running, the shell then returns the UNIX prompt % to the user, indicating that it

is waiting for further commands.

5

The shell

The shell acts as an interface between the user and the kernel. When a user logs in, the

login program checks the username and password, and then starts another program

called the shell. The shell is a command line interpreter (CLI). It interprets the

commands the user types in and arranges for them to be carried out. The commands

are themselves programs: when they terminate, the shell gives the user another prompt

(% on our systems).

The adept user can customise his/her own shell, and users can use different shells on

the same machine. Staff and students in the school have the tcsh shell by default.

The tcsh shell has certain features to help the user inputting commands.

Filename Completion - By typing part of the name of a command, filename or directory

and pressing the [Tab] key, the tcsh shell will complete the rest of the name

automatically. If the shell finds more than one name beginning with those letters you

have typed, it will beep, prompting you to type a few more letters before pressing the

tab key again.

History - The shell keeps a list of the commands you have typed in. If you need to

repeat a command, use the cursor keys to scroll up and down the list or type history for

a list of previous commands.

Files and processes

Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).

A file is a collection of data. They are created by users using text editors, running

compilers etc.

Examples of files:

a document (report, essay etc.)

the text of a program written in some high-level programming language

instructions comprehensible directly to the machine and incomprehensible to a casual

user, for example, a collection of binary digits (an executable or binary file);

a directory, containing information about its contents, which may be a mixture of other

directories (subdirectories) and ordinary files.

The Directory Structure

6

All the files are grouped together in the directory structure. The file-system is arranged

in a hierarchical structure, like an inverted tree. The top of the hierarchy is traditionally

called root (written as a slash /)

In the diagram above, we see that the home directory of the undergraduate

student "ee51vn" contains two sub-directories (docs and pics) and a file

called report.doc.

The full path to the file report.doc is "/home/its/ug1/ee51vn/report.doc"

Starting an UNIX terminal

To open an UNIX terminal window, click on the "Terminal" icon from

Applications/Accessories menus.

7

8

Unix system organization (the kernel and the shell)

Both the Shell and the Kernel are the Parts of this Operating System. These Both Parts
are used for performing any Operation on the System. When a user gives his
Command for Performing Any Operation, then the Request Will goes to the Shell Parts,
The Shell Parts is also called as the Interpreter which translate the Human Program
into the Machine Language and then the Request will be transferred to the Kernel. So
that Shell is just called as the interpreter of the Commands which Converts the
Request of the User into the Machine Language.

Kernel is also called as the heart of the Operating System and the Every Operation is
performed by using the Kernel , When the Kernel Receives the Request from the Shell
then this will Process the Request and Display the Results on the Screen. The various
Types of Operations those are Performed by the Kernel are as followings:-

1) It Controls the State the Process Means it checks whether the Process is running or
Process is Waiting for the Request of the user.

2) Provides the Memory for the Processes those are Running on theSystem Means
Kernel Runs the Allocation and De-allocation Process , First When we Request for the
service then the Kernel will Provides the Memory to the Process and after that he also
Release the Memory which is Given to a Process.

3) The Kernel also Maintains a Time table for all the Processes those are Running
Means the Kernel also Prepare the Schedule Time means this will Provide the Time to
various Process of the CPU and the Kernel also Puts the Waiting and Suspended Jobs
into the different Memory Area.

4) When a Kernel determines that the Logical Memory doesnôt fit to Store the
Programs. Then he uses the Concept of the Physical Memory which Will Stores the
Programs into Temporary Manner. Means the Physical Memory of the System can be
used as Temporary Memory.

5) Kernel also maintains all the files those are Stored into the Computer System and
the Kernel Also Stores all the Files into the System as no one can read or Write the
Files without any Permissions. So that the Kernel System also Provides us the Facility
to use the Passwords and also all the Files are Stored into the Particular Manner.

As we have learned there are Many Programs or Functions those are Performed by the

Kernel But the Functions those are Performed by the Kernel will never be Shown to the

user. And the Functions of the Kernel are Transparent to the user.

https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

9

Files and directories

At this point in the course, you have created lots of files, primarily Maple worksheets.
Some of them you have created yourself as homework assignments, and others you
have copied and used as parts of lab assignments. You may have created other kinds
of files as well, perhaps with the Emacs text editor.

In this tutorial we will study the Unix file system and discuss how to manipulate files and
navigate directories. This will come in handy as you begin writing, compiling, and
running C programs.

The Unix File System

We are now going to look at basic Unix commands for manipulating files and
directories. In Unix, a file can be one of three types: a text file (such as a letter or a C
program), an executable file (such as a compiled C program), or a directory (a file
``containing'' other files).

When you consider that there are thousands of users of the local workstation network,
you will realize that the computers must keep track of tens or hundreds of thousands of
files. Unix uses directories to organize these files, much like a filing cabinet uses
drawers and folders to keep track of documents.

The Unix file system is organized around a single structure of directories, where each
directory can contain more directories (often called subdirectories) and/or files. The
entire file system, often spanning many machines and disks, can be visualized as a
tree. Picture this tree as growing upside down, with the root at the top and the leaves
toward the bottom. The leaves are all text and executable files, while the root, trunk,
limbs, branches, and twigs are all directories.

The file system is called the directory tree, and the directory at the base of the tree is
called the root directory. Every file and directory in the file system has a unique name,
called its pathname. The pathname of the root directory is /.

As a Unix user, you are given control over one directory. This directory is called your
home directory, and it was created when your account was established. This directory is
your personal domain, over which you have complete control. You are free to create
your own subtree of files and directories within your home directory. To determine the
pathname of your home directory, enter the following command into a Unix shell
window.

cd; pwd

10

Everyone has a different home directory, but two things are certain. The pathname of
your home directory will start with a slash (everything is rooted in the root directory) and
it will end with your user name. For example, suppose that a user jones has a home
directory /home/cs/class/jones. From this, we can tell that the root directory / contains a
subdirectory called home, which contains a subdirectory called cs, which contains a
subdirectory called class, which contains a subdirectory called jones. Every directory
has a pathname that shows the sequence of directories that lead from it back to the
root.

Working Directory

At any given time when interacting with Unix, you are ``working in'' or ``connected to''
some directory. This is called your working directory. When a Unix Shell window running
Unix is first created, you will be connected to your home directory. You will typically
change your working directory (with the cd command, as discussed later) several times
during a single session.

There is a command that prints the current working directory:

pwd

(You should try this out in a Unix Shell window, as you should all of the commands that
we introduce.) Notice that part of the name of the current directory (the part following
the last slash) appears as part of the command line prompt. For example, if your
working directory is /home/cs/class/jones, your prompt might look like

Examining Directories

What files and directories are contained in the working directory? You can find out with
the

ls

command, which lists the contents of the working directory. When you enter this
command, you will see a list of all of the Maple worksheets and other files that you have
copied or created in your home directory. Notice that only the names of the files are
displayed, not their full pathnames. But if you know the name of the working directory,
and you know the name of a file within it, you can easily figure out that file's full
pathname. What would be the full pathname of a file named ``file'' in your home
directory?

Click here for answer

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer17.html

11

Moving Around the Directory Tree

To this point we have never moved away from your home directory. Let's learn how to
navigate the directory tree. Before we do this, let's add to your home directory so that
we will have some files to experiment with. Type the following command into a Unix
Shell window.

mkdir testdir

(This command will create a directory called testdir in your home directory. Use
the ls command to verify that it really is there.)

The command cd takes a directory as an argument and makes that directory your
working directory. There are two ways to specify the name of a directory or file. One
way is to give the full pathname, and the other way is to give enough of the pathname to
let Unix know how to get to the desired directory from the working directory. We'll look at
these two methods in turn.

Absolute Pathnames

You can give the full pathname of the desired directory or file. For example, if jones
wanted to go to her home directory, she could use the command

cd /home/cs/class/jones

Or, if she wanted to connect to the testdir directory within her home directory, she could
issue the command

cd /home/cs/class/jones/testdir

Use cd now to connect to your testdir directory. Remember--if you've forgotten the
pathname of your home directory, you can find it out with the pwd command.

Look at the prompt to verify that you have succeeded in connecting to
the testdir directory. And use the ls command to see what is in the testdir directory.
What do you find?

Click here for the answer

As you experiment with moving around the directory tree, be sure and get used to
looking at the prompt to verify that things are working as you expect. If you get
completely confused, you can use pwd to find out exactly where you are.

Typing a full pathname can be a real pain, especially when it is a long one. Fortunately,
there are several convenient abbreviations. Unix will treat a tilde followed immediately
by a user name as an abbreviation for the full pathname of that user's home directory.

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer34.html

12

For example, if you wanted to connect to a user jones' home directory, you could do so
with

cd ~jones

Use this form of abbreviation (with your user name, of course) right now to reconnect to
your home directory.

This abbreviated form can be quite useful. Can you figure out how to use it to reconnect
to your testdir directory?

Click here for the answer

If it is your home directory in which you're interested, and not someone else's, there's a
second abbreviation. A tilde all by itself stands for your home directory. So, you can
connect back to your home directory with

cd ~

and to your testdir subdirectory with

cd ~/testdir

Finally, here's the ultimate shortcut. If issue the

cd

command with no argument, you will connect to your home directory.

Relative Pathnames

Be sure that you are connected to your home directory. You should know how to do that
without any help.

You can also specify a directory or file by describing to Unix how to get to the desired
directory or file from the working directory. For example, suppose that you want to
connect to your testdir directory from your home directory. You can do this by simply
issuing the command

cd testdir

Unix knows that the pathname argument to cd is a relative pathname because it does
not begin with a slash or a tilde, as all absolute pathnames do. When Unix encounters a
relative pathname, it glues the relative pathname onto the end of the full pathname of
the working directory to obtain an absolute pathname.

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer40.html

13

You should now be connected to your testdir subdirectory. You can connect back to
your home directory by issuing the command

cd ..

When ``..'' appears in a pathname, it refers to the parent of the current directory. So the
net result of issuing the cd command above is to move one step closer to the root of the
tree. You should now be connected to your home directory.

Using Absolute and Relative Pathnames

You might be wondering when you should use absolute pathnames and when you
should use relative pathnames. It is entirely a question of convenience. If you need to
name a directory that is ``close to'' your working directory, then relative pathnames are
quite convenient. This will usually be the case, since you'll do most of your work in or
near your home directory.

On the other hand, if you need to name a directory that is ``far away from'' your working
directory, then you should use an absolute pathname.

Creating Files and Directories

Connect to your home directory.

You can create a new (empty) directory using the mkdir command:

mkdir newdir

You can verify that the directory has actually been created by listing the contents of your
home directory.

When you need to create a file, you will generally do it by using Emacs. Suppose that
you'd like to create a file called newfile.txt in your newdir directory. You should select
the ``Open File...'' option from the ``File'' menu.

Emacs will then prompt you for the name of a file to read. What do you make of the
prompt that Emacs gives you?

Click here for the answer

You need to supply the rest of the pathname, in this case newdir/newfile.txt, and then
type the Enter key. You can then use Emacs to create the text and, finally, save your
edits with the ``Save Buffer'' option from the ``File'' menu.

Deleting Files and Directories

https://www.cs.utah.edu/~zachary/isp/tutorials/files/answer55.html

14

By now you know how to create and examine files and directories. It is almost as
important to know how to get rid of unwanted files and directories.

To delete a file we use the rm command. (It helps to know that ``rm'' stands for
``remove''.) Connect to your newdir directory, which should contain a file newfile.txt.
Verify this by listing the directory.

To delete newfile.txt, issue the command

rm newfile.txt

Depending upon how your defaults are set up, Unix may ask you to confirm that you
really mean to delete the file. Just enter a ``y'' or a ``yes'' to confirm.

Now connect back to your home directory.

The command for deleting an empty directory is rmdir. For example,
your testdir directory should be empty. You can delete it with

rmdir testdir

Copying Files

Often you will want to copy a file from one place to another. For example, an instructor
in a class might place a file into a central location and ask everyone in the class to make
a private copy. Or you might decide to make a backup copy of some file before
modifying it.

To copy a file we use the cp command. For example, perhaps you have a file
called solution1.mws or something similar in your home directory. You can copy it into a
file called sol1-backup.mws by issuing the command

cp solution1.mws sol1-backup.mws

Either argument to cp can be an absolute or relative pathname. For example, to
copy solution1.mws to a file called sol1-backup.mws in the newdir directory, issue the
command

cp solution1.mws newdir/sol1-backup.mws

You should now use ls to verify that both copies were made.

File and Directory Summary

Here is a summary of the commands that we covered in this section.

15

SUMMARY OF UNIX FILE SYSTEM

Directory abbreviations

 . Current directory

 .. Parent of current directory

 ~<user> Home directory of user <user>

 ~ Your home directory

Exploring the file system

 pwd Print name of working directory

 cd <pathname> Connect to directory <pathname> (. by default)

 ls <pathname> List contents of directory <pathname> (. by default)

Manipulating directories and files

 mkdir <pathname> Create a directory <pathname>

 rm <pathname> Delete file <pathname>

 cp <pathname><pathname> Copy one file into another

 rmdir <pathname> Delete empty directory <pathname>

Library functions and system calls

Computer software are developed to either automate some tasks or solve some
problems. Either way, a software achieves the goal with the help of the logic that the
developer of that software writes. Every logic requires some services like computing the
length of a string, opening a file etc. Standard services are catered by some functions or
calls that are provided for this purpose only.

Like for calculating string length, there exists a standard function like strlen(), for
opening a file, there exists functions like open() and fopen(). We call these functions as
standard functions as any application can use them.

16

These standard functions can be classified into two major categories :

1. Library function calls.
2. System function calls.

In this article, we will try to discuss the concept behind the system and library calls in
form of various points and wherever required, I will provide the difference between the
two.

1. Library functions Vs System calls

The functions which are a part of standard C library are known as Library functions. For
example the standard string manipulation functions like strcmp(), strlen() etc are all
library functions.

The functions which change the execution mode of the program from user mode to
kernel mode are known as system calls. These calls are required in case some services
are required by the program from kernel. For example, if we want to change the date
and time of the system or if we want to create a network socket then these services can
only be provided by kernel and hence these cases require system calls. For example,
socket() is a system call.

2. Why do we need system calls?

System calls acts as entry point to OS kernel. There are certain tasks that can only be
done if a process is running in kernel mode. Examples of these tasks can be interacting
with hardware etc. So if a process wants to do such kind of task then it would require
itself to be running in kernel mode which is made possible by system calls.

3. Types of library functions

Library functions can be of two types :

Á Functions which do not call any system call.
Á Functions that make a system call.

There are library functions that do not make any system call. For example, the string
manipulation functions like strlen() etc fall under this category. Also, there are library
functions that further make system calls, for example the fopen() function which a
standard library function but internally uses the open() sytem call.

17

4. Interaction between components

The following diagram to depict how Library functions, system calls, application code
interact with each other.

18

The diagram above makes it clear that the application code can interact with Library
functions or system calls. Also, a library function can also call system function from
within. But only system calls have access to kernel which further can access computer
hardware.

5. fopen() vs open()

Some of us may argue that why do we have two functions for the same operation ie
opening a file?

Well, the answer to this is the fact that fopen() is a library function which provides
buffered I/O services for opening a file while open() is a system call that provides non-
buffered I/O services. Though open() function is also available for applications to use
but application should avoid using it directly.

In general, if a library function corresponding to a system call exists, then applications
should use the library function because :

Á Library functions are portable which means an application using standard library
functions will run on all systems. While on the other hand an application relying on
the corresponding system call may not run on every system as system call interface
may vary from system to system.

Á Sometimes the corresponding library function makes the load to system call lesser
resulting in non-frequent switches from user mode to kernel mode. For example if
there is an application that reads data from file very frequently, then using fread()
instead of read() would provide buffered I/O which means that not every call to
fread() would result in a call to system call read(). The fread() may read larger chunk
of data(than required by the user) in one go and hence subsequent fread() will not
require a call to system function read().

6. Is malloc() a system call?

This is one of the very popular misconception that people have. Lets make it clear that
malloc() is not a system call. The function call malloc() is a library function call that
further uses the brk() or sbrk() system call for memory allocation.

7. System calls : Switching execution modes

Traditionally, the mechanism of raising an interrupt of óint $0x80ô to kernel was used.
After trapping the interrupt, kernel processes it and changes the execution mode from
user to kernel mode. Today, the systenter/sysexit instructions are used for switching the
execution mode.

19

8. Some other differences

Besides all the above, here are a few more differences between a system and library
call :

Á A library function is linked to the user program and executes in user space while a
system call is not linked to a user program and executes in kernel space.

Á A library function execution time is counted in user level time while a system call
execution time is counted as a part of system time.

Á Library functions can be debugged easily using a debugger while System calls
cannot be debugged as they are executed by the kernel.

Editors (vi and ed)

Text editing is an important part of all operating systems, including Linux. In Linux, you
need to create and edit a variety of text files, as the following list describes:

¶ System configuration files,
including /etc/fstab, /etc/hosts, /etc/inittab, /etc/X11/XF86Config, and many more

¶ User files, such as .newsrc and .bash_profile

¶ Mail messages and news articles

¶ Shell script files

¶ Perl, Python, and Tcl/Tk scripts

¶ C or C++ programs

All Unix systems, including Linux, come with the following two text editors:

¶ edðA line-oriented text editor

¶ viðA full-screen text editor that supports the command set of an earlier editor by
the name of ex

In Red Hat Linux, another text editor, vim, emulates vi and ex, but you can invoke the
editor by using the vi command.

 Insider Insight Although ed and vi may seem more cryptic than other, more graphical
text editors, you should learn the basic editing commands of these
two editors, because at times, these editors may be the only ones
available. If you run into a system problem and Linux refuses to boot
from the hard disk, for example, you may need to boot from a floppy.
In this case, you must edit system files by using the ed editor,

20

because that editor is small enough to fit on the floppy.

As I show in the following sections, learning the basic text-editing commands of ed and
vi is easy.

Using ed

The ed text editor works by using a bufferðan in-memory storage area where the actual
text resides until you explicitly store the text in a file. You must use ed only if you boot a
minimal version of Linux (for example, from a boot floppy), and the system doesnôt
support full-screen mode.

Starting ed

To start ed, use the following command syntax:

ed [-] [-G] [-s] [-pprompt-string] [filename]

The arguments in brackets are optional. The following list explains these arguments:

¶ - suppresses the printing of character counts and diagnostic messages.

¶ -G forces backward compatibility with older versions of ed.

¶ -s is the same as the single hyphen.

¶ -p prompt-string sets the text that the editor displays when waiting for a
command. (The default is a null prompt string.)

¶ filename is the name of the file to be edited.

Learning ed

If you use the ed editor, you work in either command mode or text-input mode, as the
following list explains:

¶ Command mode is what you get by default. In this mode, ed interprets anything
that you type as a command. As you see in the section ñSummarizing ed
Commands,ò later in this chapter, ed uses a simple command set, wherein each
command consists of a single character.

¶ Text-input mode enables you to enter text into the buffer. You can enter input
mode by using the commands a (append), c (change), or i (insert). After entering
lines of text, you can leave text-input mode by entering a period (.) on a line by
itself.

Secret

The ed editor embodies the concept of the current lineðthe line to which ed applies the
commands that you type. Each line has an address: the line number. You can apply a
command to a range of lines by prefixing the command with an address range.

21

The p command, for example, prints (displays) the current line. To see the first 10 lines,
use the following command:

1,10p

In a command, the period (.) refers to the current line, and the dollar sign ($) refers to
the last line in the file. Thus, the following command deletes all the lines from the
current line to the last one:

.,$d

Examining a Sample Session with ed

The following example shows how to begin editing a file in ed:

ed -p: /etc/fstab

621

:

This example uses the -p option to set the prompt to the colon character (:) and opens
the file /etc/fstab for editing. Turning on a prompt character is helpful, because without
the prompt, determining whether ed is in input mode or command mode is difficult.

The ed editor opens the file, reports the number of characters in the file (621), displays
the prompt (:), and waits for a command.

After ed opens a file for editing, the current line is the last line of the file. To see the
current line number, use the .= command, as follows:

:.=

8

The output tells you that the /etc/fstab file contains eight lines. (Your
systemôs /etc/fstab file, of course, may contain a different number of lines.) The
following example shows how you can see all these lines:

:1,$p

LABEL=/ / ext3 defaults 1 1

LABEL=/boot /boot ext3 defaults 1 2

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

22

/dev/hda6 swap swap defaults 0 0

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0

/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0

:

To go to a specific line, type the line number and the editor then displays that line. Here
is an example that takes you to the first line in the file:

:1

LABEL=/ / ext3 defaults 1 1

Suppose that you want to delete the line that contains cdrom. To search for a string,
type a slash (/) and follow it with the string that you want to locate, as follows:

:/cdrom

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0

That line becomes the current line. To delete the line, use the d command, as follows:

:d

:

To replace a string with another, use the s command. To replace cdrom with the
string cd, for example, use the following command:

:s/cdrom/cd/

:

To insert a line in front of the current line, use the i command, as follows:

:i

 (type the line you want to insert)

. (type a single period)

:

You can enter as many lines as you want. After the last line, enter a period (.) on a line
by itself. That period marks the end of text-input mode, and the editor switches to
command mode. In this case, you can tell that ed has switched to command mode,
because you see the prompt (:).

23

If youôre happy with the changes, you can write them to the file by using
the w command. If you want to save the changes and exit, type wq to perform both
steps at the same time, as follows:

:wq

645

The ed editor saves the changes in the file, displays the number of characters that it
saved, and exits.

If you want to quit the editor without saving any changes, use the Q command.

Summarizing ed Commands

The preceding sample session should give you an idea of how to use ed commands to
perform the basic tasks of editing a text file. Table 11-1 lists all commonly used ed
commands.

Table 11-1: Commonly Used ed Commands

Command Meaning

!command Execute a shell command

$ Go to the last line in the buffer

% Apply the command that follows to all lines in the buffer (for example,
%p prints all lines)

+ Go to the next line

+n Go to nth next line (n is a number)

, Apply the command that follows to all lines in the buffer (for example, ,p
prints all lines); similar to %

- Go to the preceding line

-n Go to nth previous line (n is a number)

. Refer to the current line in the buffer

24

Table 11-1: Commonly Used ed Commands

Command Meaning

/regex/ Search forward for the specified regular expression (see Chapter 24 for
an introduction to regular expressions)

; Refer to a range of line (if you specify no line numbers, the editor
assumes current through last line in the buffer)

= Print the line number

?regex? Search backward for the specified regular expression (see Chapter 24
for an introduction to regular expressions)

^ Go to the preceding line; also see the - command

^n Go to the nth previous line (where n is a number); see also the -
n command

a Append after the current line

c Change the specified lines

d Delete the specified lines

e file Edit the file

f file Change the default filename

h Display an explanation of the last error

H Turn on verbose-mode error reporting

i Insert text before the current line

j Join contiguous lines

25

Table 11-1: Commonly Used ed Commands

Command Meaning

kx Mark the line with letter x (later, you can refer to the line as óx)

l Print (display) lines

m Move lines

n Go to line number n

newline Display the next line and make that line current

P Toggle prompt mode on or off

q Quit the editor

Q Quit the editor without saving changes

r file Read and insert the contents of the file after the current line

s/old/new/ Replace old string with new

Space n A space, followed by n; nth next line (n is a number)

u Undo the last command

W file Append the contents of the buffer to the end of the specified file

w file Save the buffer in the specified file (if you name no file, ed saves it in the
default fileðthe file whose contents ed is currently editing)

You can prefix most editing commands with a line number or an address range, which
you express in terms of two line numbers that you separate with a comma; the
command then applies to the specified lines. To append text after the second line in the
buffer, for example, use the following command:

26

2a

(Type lines of text. End with single period on a line.)

To print lines 3 through 15, use the following command:

3,15p

Although you may not use ed often, much of the command syntax carries over to the vi
editor. As the following section on vi shows, vi accepts ed commands if itôs in its
command mode.

Using vi

The vi editor is a full-screen text editor that enables you to view a file several lines at a
time. Most UNIX systems, including Linux, come with vi. If you learn the basic features
of vi, therefore, you can edit text files on almost any UNIX system.

As does the ed editor, vi works with a buffer. As vi edits a file, it reads the file into a
bufferða block of memoryðand enables you to change the text in the buffer. The vi
editor also uses temporary files during editing, but it doesnôt alter the original file until
you save the changes by using the :w command.

Setting the Terminal Type

Before you start a full-screen text editor such as vi, you must set the TERM environment
variable to the terminal type (such as vt100 or xterm). The vi editor uses the terminal
type to look up the terminalôs characteristics in the /etc/termcap file and then control the
terminal in full-screen mode.

If you run the X Window System and a GUI, such as GNOME or KDE, you can use vi in
a terminal window. The terminal windowôs terminal type is xterm. (To verify, type echo
$TERM at the command prompt.) After you start the terminal window, it automatically
sets the TERM environment variable to xterm. You can normally, therefore, use vi in a
terminal window without explicitly setting the TERM variable.

Starting vi

If you want to consult the online manual pages for vi, type the following command:

man vi

To start the editor, use the vi name and run it with the following command syntax:

vi [flags] [+cmd] [filename]

27

The arguments shown in brackets are optional. The following list explains these
arguments:

¶ flags are single-character flags that control the way that vi runs.

¶ +cmd causes vi to run the specified command after it starts. (You learn more
about these commands in the section ñSummarizing the vi Commands,ò later in
this chapter.)

¶ filename is the name of the file to be edited.

The flags arguments can include one or more of the following:

¶ -c cmd executes the specified command before editing begins.

¶ -e starts in colon command mode (which I describe in the following section).

¶ -i starts in input mode (which I also describe in the following section).

¶ -m causes the editor to search through the file for something that looks like an
error message from a compiler.

¶ -R makes the file read-only so that you canôt accidentally overwrite the file. (You
can also type view filename to start the editor in this mode to simply view a file.)

¶ -s runs in safe mode, which turns off many potentially harmful commands.

¶ -v starts in visual command mode (which I describe in the following section).

Most of the time, however, vi starts with a filename as the only argument, as follows:

vi /etc/hosts

Another common way to start vi is to jump to a specific line number right at startup. To
begin editing at line 107 of the file /etc/X11/XF86Config, for example, use the following
command:

vi +107 /etc/X11/XF86Config

This way of starting vi is useful if you edit a source file after the compiler reports an error
at a specific line number.

Learning vi Concepts

If you edit a file by using vi, the editor loads the file into a buffer, displays the first few
lines of the file in a full-screen window, and positions the cursor on the first line. If you
type the command vi /etc/fstab in a terminal window, for example, you get a full-screen
text window, as shown in Figure 11-1.

28

Figure 11-1: A File Displayed in a Full-Screen Text Window by the vi Editor.

The last line shows information about the file, including the number of lines and the
number of characters in the file. Later, vi uses this area as a command-entry area. It
uses the rest of the lines to display the file. If the file contains fewer lines than the
window, vi displays the empty lines with a tilde (~) in the first column.

The cursor marks the current line, appearing there as a small black rectangle. The
cursor appears on top of a character. In Figure 11-1, the cursor is on the first character
of the first line.

In vi, you work in one of the following three modes:

¶ Visual-command mode is what you get by default. In this mode, vi interprets
anything that you type as a command that applies to the line containing the
cursor. The vi commands are similar to those of ed, and I list the in the section
ñSummarizing the vi Commands,ò later in this chapter.

¶ Colon-command mode enables you to read or write files, set vi options, and quit.
All colon commands start with a colon (:). After you enter the colon, vi positions
the cursor at the last line and enables you to type a command. The command
takes effect after you press Enter. Notice that viôs colon-command mode relies on
the ed editor. When editing a file using vi, you can press Escape at any time to
enter the command mode. In fact, if you are not sure what mode vi is in, press
Escape a few times to get vi into command mode.

¶ Text-input mode enables you to enter text into the buffer. You can enter text-
input mode by using the command a (insert after cursor), A (append at end of
line), or i (insert after cursor). After entering lines of text, you must press Esc to
leave text-input mode and reenter visual-command mode.

29

One problem with all these modes is that you canôt easily determine viôs current mode.
Typing text, only to realize that vi isnôt in text-input mode, can be frustrating. The
converse situation also is commonðyou may end up typing text when you want to enter
a command. To ensure that vi is in command mode, just press Esc a few times.
(Pressing Esc more than once doesnôt hurt.)

 Tip To view online Help in vi, type :help while in command mode.

Examining a Sample Session with vi

To begin editing the file /etc/fstab, enter the following command (before you edit the file,
please make a backup copy by typing the command cp /etc/fstab /etc/fstab-saved):

vi /etc/fstab

Figure 11-1, earlier in this chapter, shows you the resulting display, with the first few
lines of the file appearing in a full-screen text window. The last line shows the fileôs
name and statistics: the number of lines and characters.

The vi editor initially positions the cursor on the first character. One of the first things
that you need to learn is how to move the cursor around. Try the following commands
(each command being a single letter; just type the letter, and vi responds):

¶ j moves the cursor one line down.

¶ k moves the cursor one line up.

¶ h moves the cursor one character to the left.

¶ l moves the cursor one character to the right.

You can also move the cursor by using the arrow keys.

Instead of moving one line or one character at a time, you can move one word at a time.
Try the following single-character commands for word-size cursor movement:

¶ w moves the cursor one word forward.

¶ b moves the cursor one word backward.

The last type of cursor movement affects several lines at a time. Try the following
commands and see what happens:

¶ Ctrl-D scrolls down half a screen.

¶ Ctrl-U scrolls up half a screen.

The last two commands, of course, arenôt necessary if the file contains only a few lines.
If youôre editing large files, however, the capability to move several lines at a time is
handy.

You can move to a specific line number at any time by using a colon command. To go
to line 1, for example, type the following and then press Enter:

30

:1

After you type the colon, vi displays the colon on the last line of the screen. From then
on, vi uses the text that you type as a command. You must press Enter to submit the
command to vi. In colon-command mode, vi accepts all the commands that the ed editor
acceptsðand then some.

To search for a string, first type a slash (/). The vi editor displays the slash on the last
line of the screen. Type the search string, and then press Enter. The vi editor locates
the string and positions the cursor at the beginning of that string. Thus, to locate the
string cdrom in the file /etc/fstab, type the following:

/cdrom

To delete the line that contains the cursor, type dd. The vi editor deletes that line of text
and makes the next line the current one.

 Tip To begin entering text in front of the cursor, type i. The vi editor switches to text-
input mode. Now you can enter text. After you finish entering text, press Esc to
return to visual-command mode.

After you finish editing the file, you can save the changes in the file by using
the :w command. If you want to save the changes and exit, you can type :wq to perform
both steps at the same time. The vi editor saves the changes in the file and exits. You
can also save the changes and exit the editor by pressing Shift-zz (press and hold the
Shift key and press z twice).

To quit the editor without saving any changes, type the :q! command.

Summarizing the vi Commands

The sample editing session should give you a feel for the vi commands, especially its
three modes:

¶ Visual-command mode (the default)

¶ Colon-command mode, in which you enter commands, following them with a
colon (:)

¶ Text-input mode, which you enter by typing a, A, or i

In addition to the few commands that the sample session illustrates, vi accepts many
other commands. Table 11-2 lists the basic vi commands, organized by task.

31

Table 11-2: Basic vi Commands

Command Meaning

Insert Text

a Insert text after the cursor

A Insert text at the end of the current line

I Insert text at the beginning of the current line

i Insert text before the cursor

o Open a line below the current line

O Open a line above the current line

Ctrl-v Insert any special character in input mode

Delete Text

D Delete up to the end of the current line

dd Delete the current line

dw Delete from the cursor to the end of the following word

x Delete the character on which the cursor rests

Change Text

C Change up to the end of the current line

cc Change the current line

32

Table 11-2: Basic vi Commands

Command Meaning

cw Change the word

J Join the current line with the next one

rx Replace the character under the cursor with x (x is any
character)

~ Change the character under the cursor to the opposite case

Move Cursor

$ Move to the end of the current line

; Repeat the last f or F command

^ Move to the beginning of the current line

e Move to the end of the current word

fx Move the cursor to the first occurrence of character x on the
current line

Fx Move the cursor to the last occurrence of character x on the
current line

H Move the cursor to the top of the screen

h Move one character to the left

j Move one line down

k Move one line up

33

Table 11-2: Basic vi Commands

Command Meaning

L Move the cursor to the end of the screen

l Move one character to the right

M Move the cursor to the middle of the screen

n| Move the cursor to column n on current line

nG Place cursor on line n

w Move to the beginning of the following word

Mark a Location

'x Move the cursor to the beginning of the line that contains
mark x

`x Move the cursor to mark x

mx Mark the current location with the letter x

Scroll Text

Ctrl-b Scroll backward by a full screen

Ctrl-d Scroll forward by half a screen

Ctrl-f Scroll forward by a full screen

Ctrl-u Scroll backward by half a screen

34

Table 11-2: Basic vi Commands

Command Meaning

Refresh Screen

Ctrl-L Redraw the screen

Cut and Paste Text

"xndd Delete n lines and move them to buffer x (x is any single
lowercase character)

"Xnyy Yank n (a number) lines and append them to buffer x

"xnyy Yank n (a number) lines into buffer x (x is any single
uppercase character)

"xp Put the yanked lines from buffer x after the current line

P Put the yanked line above the current line

p Put the yanked line below the current line

yy Yank (copy) the current line into an unnamed buffer

Colon Commands

:!command Execute the shell command

:e filename Edit the file

:f Display the filename and current line number

:N Move to line n (n is a number)

35

Table 11-2: Basic vi Commands

Command Meaning

:q Quit the editor

:q! Quit without saving changes

:r filename Read the file and insert after the current line

:w filename Write the buffer to the file

:wq Save the changes and exit

Search Text

/string Search forward for string

?string Search backward for string

n Find the next string

View File Information

Ctrl-g Show the filename, size, and current line number

Miscellaneous

u Undo the last command

Esc End text-input mode and enter visual-command mode

U Undo recent changes to the current line

36

Unit-2

Unix Shell programming

Types of Shells

The shell provides you with an interface to the UNIX system. It gathers input from you
and executes programs based on that input. When a program finishes executing, it
displays that program's output.

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of
operating systems. Each flavor of shell has its own set of recognized commands and
functions.

Shell Prompt:

The prompt, $, which is called command prompt, is issued by the shell. While the
prompt is displayed, you can type a command.

The shell reads your input after you press Enter. It determines the command you want
executed by looking at the first word of your input. A word is an unbroken set of
characters. Spaces and tabs separate words.

Following is a simple example of date command which displays current date and time:

$date
ThuJun2508:30:19 MST 2009

You can customize your command prompt using environment variable PS1 explained
in Environment tutorial.

Shell Types:

In UNIX there are two major types of shells:

1. The Bourne shell. If you are using a Bourne-type shell, the default prompt is the
$ character.

2. The C shell. If you are using a C-type shell, the default prompt is the %
character.

There are again various subcategories for Bourne Shell which are listed as follows:

¶ Bourne shell (sh)

¶ Korn shell (ksh)

¶ Bourne Again shell (bash)

37

¶ POSIX shell (sh)

The different C-type shells follow:

¶ C shell (csh)

¶ TENEX/TOPS C shell (tcsh)

The original UNIX shell was written in the mid-1970s by Stephen R. Bourne while he
was at AT&T Bell Labs in New Jersey.

The Bourne shell was the first shell to appear on UNIX systems, thus it is referred to as
"the shell".

The Bourne shell is usually installed as /bin/sh on most versions of UNIX. For this
reason, it is the shell of choice for writing scripts to use on several different versions of
UNIX.

In this tutorial, we are going to cover most of the Shell concepts based on Borne Shell.

Shell Scripts:

The basic concept of a shell script is a list of commands, which are listed in the order of
execution. A good shell script will have comments, preceded by a pound sign, #,
describing the steps.

There are conditional tests, such as value A is greater than value B, loops allowing us
to go through massive amounts of data, files to read and store data, and variables to
read and store data, and the script may include functions.

Shell scripts and functions are both interpreted. This means they are not compiled.

We are going to write a many scripts in the next several tutorials. This would be a
simple text file in which we would put our all the commands and several other required
constructs that tell the shell environment what to do and when to do it.

Example Script:

Assume we create a test.sh script. Note all the scripts would have .sh extension.
Before you add anything else to your script, you need to alert the system that a shell
script is being started. This is done using the shebang construct. For example:

#!/bin/sh

This tells the system that the commands that follow are to be executed by the Bourne
shell. It's called a shebang because the # symbol is called a hash, and the ! symbol is
called a bang.

To create a script containing these commands, you put the shebang line first and then
add the commands:

#!/bin/bash
pwd

38

ls

Shell Comments:

You can put your comments in your script as follows:

#!/bin/bash

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:
pwd
ls

Now you save the above content and make this script executable as follows:

$chmod +x test.sh

Now you have your shell script ready to be executed as follows:

$./test.sh

This would produce following result:

/home/amrood
index.htm unix-basic_utilities.htm unix-directories.htm
test.sh unix-communication.htm unix-environment.htm

Note: To execute your any program available in current directory you would execute
using ./program_name

Extended Shell Scripts:

Shell scripts have several required constructs that tell the shell environment what to do
and when to do it. Of course, most scripts are more complex than above one.

The shell is, after all, a real programming language, complete with variables, control
structures, and so forth. No matter how complicated a script gets, however, it is still just
a list of commands executed sequentially.

Following script use the read command which takes the input from the keyboard and
assigns it as the value of the variable PERSON and finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:

echo "What is your name?"

39

read PERSON
echo "Hello, $PERSON"

Here is sample run of the script:

$./test.sh
Whatis your name?
ZaraAli
Hello,ZaraAli
$

Shell Metacharacters

Linux for Programmers and Users, Section 5.5.

As was discussed in Structure of a Command, the command options, option arguments

and command arguments are separated by the space character. However, we can also

use special characters called metacharacters in a Unix command that the shell

interprets rather than passing to the command.

The Shell Metacharacters are listed here for reference. Many of the metacharacters are

described elsewhere in the study guide.

Symbol Meaning

> Output redirection, (see File Redirection)

>> Output redirection (append)

< Input redirection

* File substitution wildcard; zero or more characters

? File substitution wildcard; one character

[] File substitution wildcard; any character between brackets

`cmd` Command Substitution

$(cmd) Command Substitution

| The Pipe (|)

; Command sequence, Sequences of Commands

|| OR conditional execution

&& AND conditional execution

() Group commands, Sequences of Commands

& Run command in the background, Background Processes

Comment

$ Expand the value of a variable

\ Prevent or escape interpretation of the next character

<< Input redirection (see Here Documents)

http://faculty.salina.k-state.edu/tim/unix_sg/nonprogrammers/commands.html#cmd-struct
http://faculty.salina.k-state.edu/tim/unix_sg/shell/metachar.html#metachar
http://faculty.salina.k-state.edu/tim/unix_sg/shell/redirect.html#redirect
http://faculty.salina.k-state.edu/tim/unix_sg/shell/command_sub.html#command-sub
http://faculty.salina.k-state.edu/tim/unix_sg/shell/command_sub.html#command-sub
http://faculty.salina.k-state.edu/tim/unix_sg/shell/pipe_shell.html#pipe
http://faculty.salina.k-state.edu/tim/unix_sg/shell/sequence.html#sequence
http://faculty.salina.k-state.edu/tim/unix_sg/shell/sequence.html#sequence
http://faculty.salina.k-state.edu/tim/unix_sg/shell/jobs.html#background
http://faculty.salina.k-state.edu/tim/unix_sg/shell/here.html#here

40

4.3.1. How to Avoid Shell Interpretation

Linux for Programmers and Users, Section 5.16.

Sometimes we need to pass metacharacters to the command being run and do not

want the shell to interpret them. There are three options to avoid shell interpretation of

metacharacters.

1. Escape the metacharacter with a backslash (\). (See also Escaped Characters)

Escaping characters can be inconvenient to use when the command line

contains several metacharacters that need to be escaped.

2. Use single quotes (' ') around a string. Single quotes protect all characters except

the backslash (\).

3. Use double quotes (" "). Double quotes protect all characters except the

backslash (\), dollar sign ($) and grave accent (`).

Double quotes is often the easiest to use because we often want environment

variables to be expanded.

Note

Single and double quotes protect each other. For example:

$ echo 'Hi "Intro to Unix" Class'

Hi "Intro to Unix" Class

$ echo "Hi 'Intro to Unix' Class"

Hi 'Intro to Unix' Class

Shell variables

In this chapter, we will learn how to use Shell variables in Unix. A variable is a
character string to which we assign a value. The value assigned could be a number,
text, filename, device, or any other type of data.

A variable is nothing more than a pointer to the actual data. The shell enables you to
create, assign, and delete variables.

Variable Names

http://faculty.salina.k-state.edu/tim/unix_sg/shell/echo.html#escaped

41

The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or
the underscore character (_).

By convention, Unix shell variables will have their names in UPPERCASE.

The following examples are valid variable names ī

_ALI
TOKEN_A
VAR_1
VAR_2

Following are the examples of invalid variable names ī

2_VAR
-VARIABLE
VAR1-VAR2
VAR_A!

The reason you cannot use other characters such as !, *, or - is that these characters
have a special meaning for the shell.

Defining Variables

Variables are defined as follows ī

variable_name=variable_value

For example ī

NAME="Zara Ali"

The above example defines the variable NAME and assigns the value "Zara Ali" to it.
Variables of this type are called scalar variables. A scalar variable can hold only one
value at a time.

Shell enables you to store any value you want in a variable. For example ī

VAR1="Zara Ali"
VAR2=100

Accessing Values

To access the value stored in a variable, prefix its name with the dollar sign ($) ī

For example, the following script will access the value of defined variable NAME and
print it on STDOUT ī

Live Demo

#!/bin/sh

NAME="Zara Ali"

http://tpcg.io/AP7zgT

42

echo $NAME

The above script will produce the following value ī

Zara Ali

Read-only Variables

Shell provides a way to mark variables as read-only by using the read-only command.
After a variable is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of
NAME ī

Live Demo

#!/bin/sh

NAME="Zara Ali"
readonly NAME
NAME="Qadiri"

The above script will generate the following result ī

/bin/sh: NAME: This variable is read only.

Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the variable from the list of
variables that it tracks. Once you unset a variable, you cannot access the stored value
in the variable.

Following is the syntax to unset a defined variable using the unset command ī

unset variable_name

The above command unsets the value of a defined variable. Here is a simple example
that demonstrates how the command works ī

#!/bin/sh

NAME="Zara Ali"
unset NAME
echo $NAME

The above example does not print anything. You cannot use the unset command
to unset variables that are marked readonly.

Variable Types

When a shell is running, three main types of variables are present ī

http://tpcg.io/tawT1C

43

¶ Local Variables ī A local variable is a variable that is present within the current
instance of the shell. It is not available to programs that are started by the shell.
They are set at the command prompt.

¶ Environment Variables ī An environment variable is available to any child
process of the shell. Some programs need environment variables in order to
function correctly. Usually, a shell script defines only those environment
variables that are needed by the programs that it runs.

¶ Shell Variables ī A shell variable is a special variable that is set by the shell
and is required by the shell in order to function correctly. Some of these
variables are environment variables whereas others are local variables.

Shell scripts

A shell script is a computer program designed to be run by the Unix/Linux shell which
could be one of the following:

¶ The Bourne Shell

¶ The C Shell

¶ The Korn Shell

¶ The GNU Bourne-Again Shell

A shell is a command-line interpreter and typical operations performed by shell scripts
include file manipulation, program execution, and printing text.

Extended Shell Scripts

Shell scripts have several required constructs that tell the shell environment what to do
and when to do it. Of course, most scripts are more complex than the above one.

The shell is, after all, a real programming language, complete with variables, control
structures, and so forth. No matter how complicated a script gets, it is still just a list of
commands executed sequentially.

The following script uses the read command which takes the input from the keyboard
and assigns it as the value of the variable PERSON and finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:

44

echo "What is your name?"
read PERSON
echo "Hello, $PERSON"

Here is a sample run of the script ī

$./test.sh
What is your name?
Zara Ali
Hello, Zara Ali
$

Subsequent part of this tutorial will cover Unix/Linux Shell Scripting in detail.

Shell commands

This quick guide lists commands, including a syntax and a brief description. For more
detail, use ī

$man command

Files and Directories

These commands allow you to create directories and handle files.

Given below is the list of commands in Files and Directories.

Sr.No. Command & Description

1
cat

Displays File Contents

2
cd

Changes Directory to dirname

3
chgrp

Changes file group

4
chmod

Changes permissions

45

5
cp

Copies source file into destination

6
file

Determines file type

7
find

Finds files

8
grep

Searches files for regular expressions

9
head

Displays first few lines of a file

10
ln

Creates softlink on oldname

11
ls

Displays information about file type

12
mkdir

Creates a new directory dirname

13
more

Displays data in paginated form

14
mv

Moves (Renames) an oldname to newname

15
pwd

46

Prints current working directory

16
rm

Removes (Deletes) filename

17
rmdir

Deletes an existing directory provided it is empty

18
tail

Prints last few lines in a file

19
touch

Updates access and modification time of a file

Manipulating data

The contents of files can be compared and altered with the following commands.

Given below is the list of commands in Manipulating data.

Sr.No. Command & Description

1
awk

Pattern scanning and processing language

2
cmp

Compares the contents of two files

3
comm

Compares sorted data

4
cut

Cuts out selected fields of each line of a file

47

5
diff

Differential file comparator

6
expand

Expands tabs to spaces

7
join

Joins files on some common field

8
perl

Data manipulation language

9
sed

Stream text editor

10
sort

Sorts file data

11
split

Splits file into smaller files

12
tr

Translates characters

13
uniq

Reports repeated lines in a file

14
wc

Counts words, lines, and characters

15
vi

48

Opens vi text editor

16
vim

Opens vim text editor

17
fmt

Simple text formatter

18
spell

Checks text for spelling error

19
ispell

Checks text for spelling error

20
emacs

GNU project Emacs

21
ex, edit

Line editor

22
emacs

GNU project Emacs

Compressed Files

Files may be compressed to save space. Compressed files can be created and
examined.

Sr.No. Command & Description

1
compress

49

Compresses files

2
gunzip

Helps uncompress gzipped files

3
gzip

GNU alternative compression method

4
uncompress

Helps uncompress files

5
unzip

List, test and extract compressed files in a ZIP archive

6
zcat

Cat a compressed file

7
zcmp

Compares compressed files

8
zdiff

Compares compressed files

9
zmore

File perusal filter for crt viewing of compressed text

Getting Information

Various Unix manuals and documentation are available on-line. The following Shell
commands give information ī

50

Sr.No. Command & Description

1
apropos

Locates commands by keyword lookup

2
info

Displays command information pages online

2
man

Displays manual pages online

3
whatis

Searches the whatis database for complete words

4
yelp

GNOME help viewer

Network Communication

These following commands are used to send and receive files from a local Unix hosts
to the remote host around the world.

Sr.No. Command & Description

1
ftp

File transfer program

2
rcp

Remote file copy

3
rlogin

51

Remote login to a Unix host

4
rsh

Remote shell

5
tftp

Trivial file transfer program

6
telnet

Makes terminal connection to another host

7
ssh

Secures shell terminal or command connection

8
scp

Secures shell remote file copy

9
sftp

Secures shell file transfer program

Some of these commands may be restricted at your computer for security reasons.

Messages between Users

The Unix systems support on-screen messages to other users and world-wide
electronic mail ï

Sr.No. Command & Description

1
evolution

GUI mail handling tool on Linux

52

2
mail

Simple send or read mail program

3
mesg

Permits or denies messages

4
parcel

Sends files to another user

5
pine

Vdu-based mail utility

6
talk

Talks to another user

7
write

Writes message to another user

Programming Utilities

The following programming tools and languages are available based on what you have
installed on your Unix.

Given below is the list of tools and languages in Programming Utilities.

Sr.No. Command & Description

1
dbx

Sun debugger

2
gdb

GNU debugger

53

3
make

Maintains program groups and compile programs

4
nm

Prints program's name list

5
size

Prints program's sizes

6
strip

Removes symbol table and relocation bits

7
cb

C program beautifier

8
cc

ANSI C compiler for Suns SPARC systems

9
ctrace

C program debugger

10
gcc

GNU ANSI C Compiler

11
indent

Indent and format C program source

12
bc

Interactive arithmetic language processor

13
gcl

54

GNU Common Lisp

14
perl

General purpose language

15
php

Web page embedded language

16
py

Python language interpreter

17
asp

Web page embedded language

18
CC

C++ compiler for Suns SPARC systems

19
g++

GNU C++ Compiler

20
javac

JAVA compiler

21
appletvieweir

JAVA applet viewer

22
netbeans

Java integrated development environment on Linux

23
sqlplus

Runs the Oracle SQL interpreter

55

24
sqlldr

Runs the Oracle SQL data loader

25
mysql

Runs the mysql SQL interpreter

Misc Commands

These commands list or alter information about the system ī

Given below is the list of Misc Commands in Unix.

Sr.No. Command & Description

1
chfn

Changes your finger information

2
chgrp

Changes the group ownership of a file

3
chown

Changes owner

4
date

Prints the date

5
determin

Automatically finds terminal type

6
du

Prints amount of disk usage

56

7
echo

Echo arguments to the standard options

8
exit

Quits the system

9
finger

Prints information about logged-in users

10
groupadd

Creates a user group

11
groups

Show group memberships

12
homequota

Shows quota and file usage

13
iostat

Reports I/O statistics

14
kill

Sends a signal to a process

15
last

Shows last logins of users

16
logout

Logs off Unix

17
lun

57

Lists user names or login ID

18
netstat

Shows network status

19
passwd

Changes user password

20
passwd

Changes your login password

21
printenv

Displays value of a shell variable

22
ps

Displays the status of current processes

23
ps

Prints process status statistics

24
quota -v

Displays disk usage and limits

25
reset

Resets terminal mode

26
script

Keeps script of terminal session

27
script

Saves the output of a command or process

58

28
setenv

Sets environment variables

30
stty

Sets terminal options

31
time

Helps time a command

32
top

Displays all system processes

33
tset

Sets terminal mode

34
tty

Prints current terminal name

35
umask

Show the permissions that are given to view files by default

36
uname

Displays name of the current system

37
uptime

Gets the system up time

38
useradd

Creates a user account

39
users

59

Prints names of logged in users

40
vmstat

Reports virtual memory statistics

41
w

Shows what logged in users are doing

42
who

Lists logged in users

The environment

In this chapter, we will discuss in detail about the Unix environment. An important Unix
concept is the environment, which is defined by environment variables. Some are set
by the system, others by you, yet others by the shell, or any program that loads
another program.

A variable is a character string to which we assign a value. The value assigned could
be a number, text, filename, device, or any other type of data.

For example, first we set a variable TEST and then we access its value using
the echo command ī

$TEST="Unix Programming"
$echo $TEST

It produces the following result.

Unix Programming

Note that the environment variables are set without using the $ sign but while
accessing them we use the $ sign as prefix. These variables retain their values until we
come out of the shell.

When you log in to the system, the shell undergoes a phase called initialization to set
up the environment. This is usually a two-step process that involves the shell reading
the following files ī

¶ /etc/profile

¶ profile

60

The process is as follows ī

¶ The shell checks to see whether the file /etc/profile exists.

¶ If it exists, the shell reads it. Otherwise, this file is skipped. No error message is
displayed.

¶ The shell checks to see whether the file .profile exists in your home directory.
Your home directory is the directory that you start out in after you log in.

¶ If it exists, the shell reads it; otherwise, the shell skips it. No error message is
displayed.

As soon as both of these files have been read, the shell displays a prompt ī

$

This is the prompt where you can enter commands in order to have them executed.

Note ī The shell initialization process detailed here applies to all Bourne type shells,
but some additional files are used by bash and ksh.

The .profile File

The file /etc/profile is maintained by the system administrator of your Unix machine
and contains shell initialization information required by all users on a system.

The file .profile is under your control. You can add as much shell customization
information as you want to this file. The minimum set of information that you need to
configure includes ī

¶ The type of terminal you are using.

¶ A list of directories in which to locate the commands.

¶ A list of variables affecting the look and feel of your terminal.

You can check your .profile available in your home directory. Open it using the vi
editor and check all the variables set for your environment.

Setting the Terminal Type

Usually, the type of terminal you are using is automatically configured by either
the login or getty programs. Sometimes, the auto configuration process guesses your
terminal incorrectly.

If your terminal is set incorrectly, the output of the commands might look strange, or
you might not be able to interact with the shell properly.

To make sure that this is not the case, most users set their terminal to the lowest
common denominator in the following way ī

$TERM=vt100
$

61

Setting the PATH

When you type any command on the command prompt, the shell has to locate the
command before it can be executed.

The PATH variable specifies the locations in which the shell should look for
commands. Usually the Path variable is set as follows ī

$PATH=/bin:/usr/bin
$

Here, each of the individual entries separated by the colon character (:) are directories.
If you request the shell to execute a command and it cannot find it in any of the
directories given in the PATH variable, a message similar to the following appears ī

$hello
hello: not found
$

There are variables like PS1 and PS2 which are discussed in the next section.

PS1 and PS2 Variables

The characters that the shell displays as your command prompt are stored in the
variable PS1. You can change this variable to be anything you want. As soon as you
change it, it'll be used by the shell from that point on.

For example, if you issued the command ī

$PS1='=>'
=>
=>
=>

Your prompt will become =>. To set the value of PS1 so that it shows the working
directory, issue the command ī

=>PS1="[\u@\h \w]\$"
[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$
[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$

The result of this command is that the prompt displays the user's username, the
machine's name (hostname), and the working directory.

There are quite a few escape sequences that can be used as value arguments for
PS1; try to limit yourself to the most critical so that the prompt does not overwhelm you
with information.

Sr.No. Escape Sequence & Description

62

1
\t

Current time, expressed as HH:MM:SS

2
\d

Current date, expressed as Weekday Month Date

3
\n

Newline

4
\s

Current shell environment

5
\W

Working directory

6
\w

Full path of the working directory

7
\u

Current userôs username

8
\h

Hostname of the current machine

9
\#

Command number of the current command. Increases when a new command is
entered

10
\$

If the effective UID is 0 (that is, if you are logged in as root), end the prompt with
the # character; otherwise, use the $ sign

63

You can make the change yourself every time you log in, or you can have the change
made automatically in PS1 by adding it to your .profile file.

When you issue a command that is incomplete, the shell will display a secondary
prompt and wait for you to complete the command and hit Enter again.

The default secondary prompt is > (the greater than sign), but can be changed by re-
defining the PS2 shell variable ī

Following is the example which uses the default secondary prompt ī

$ echo "this is a
> test"
this is a
test
$

The example given below re-defines PS2 with a customized prompt ī

$ PS2="secondary prompt->"
$ echo "this is a
secondary prompt->test"
this is a
test
$

Environment Variables

Following is the partial list of important environment variables. These variables are set
and accessed as mentioned below ī

Sr.No. Variable & Description

1
DISPLAY

Contains the identifier for the display that X11 programs should use by default.

2
HOME

Indicates the home directory of the current user: the default argument for the
cd built-in command.

3
IFS

Indicates the Internal Field Separator that is used by the parser for word
splitting after expansion.

64

4
LANG

LANG expands to the default system locale; LC_ALL can be used to override
this. For example, if its value is pt_BR, then the language is set to (Brazilian)
Portuguese and the locale to Brazil.

5
LD_LIBRARY_PATH

A Unix system with a dynamic linker, contains a colonseparated list of directories
that the dynamic linker should search for shared objects when building a process
image after exec, before searching in any other directories.

6
PATH

Indicates the search path for commands. It is a colon-separated list of directories
in which the shell looks for commands.

7
PWD

Indicates the current working directory as set by the cd command.

8
RANDOM

Generates a random integer between 0 and 32,767 each time it is referenced.

9
SHLVL

Increments by one each time an instance of bash is started. This variable is
useful for determining whether the built-in exit command ends the current
session.

10
TERM

Refers to the display type.

11
TZ

Refers to Time zone. It can take values like GMT, AST, etc.

12
UID

Expands to the numeric user ID of the current user, initialized at the shell startup.

65

Following is the sample example showing few environment variables ī

$ echo $HOME
/root
]$ echo $DISPLAY

$ echo $TERM
xterm
$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin
$

Integer arithmetic and string Manipulation

The expression $(($OPTIND - 1)) in the last example gives a clue as to how the shell
can do integer arithmetic. As you might guess, the shell interprets words surrounded
by $((and)) as arithmetic expressions. Variables in arithmetic expressions do not need
to be preceded by dollar signs, though it is not wrong to do so.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and
command substitutions. We're finally in a position to state the definitive rule about
quoting strings: When in doubt, enclose a string in single quotes, unless it contains
tildes or any expression involving a dollar sign, in which case you should use double
quotes.

For example, the date(1) command on System V-derived versions of UNIX accepts
arguments that tell it how to format its output. The argument +%j tells it to print the day
of the year, i.e., the number of days since December 31st of the previous year.

We can use +%j to print a little holiday anticipation message:

print "Only $(((365-$(date +%j)) / 7)) weeks until the New Year!"

We'll show where this fits in the overall scheme of command-line processing in Chapter
7, Input/Output and Command-line Processing.

The arithmetic expression feature is built in to the Korn shell's syntax, and was available
in the Bourne shell (most versions) only through the external command expr(1). Thus it
is yet another example of a desirable feature provided by an external command (i.e., a
syntactic kludge) being better integrated into the shell. [[/]] and getopts are also
examples of this design trend.

Korn shell arithmetic expressions are equivalent to their counterparts in the C language.
[5] Precedence and associativity are the same as in C. Table 6.2 shows the arithmetic
operators that are supported. Although some of these are (or contain) special

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch07_01.htm
http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch07_01.htm
http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-1

66

characters, there is no need to backslash-escape them, because they are within
the $((...)) syntax.

[5] The assignment forms of these operators are also permitted. For example, $((x +=
2)) adds 2 to x and stores the result back in x.

Table 6.2: Arithmetic Operators

Operator Meaning

+ Plus

- Minus

* Times

/ Division (with truncation)

% Remainder

<< Bit-shift left

>> Bit-shift right

& Bitwise and

| Bitwise or

~ Bitwise not

^ Bitwise exclusive or

Parentheses can be used to group subexpressions. The arithmetic expression syntax
also (like C) supports relational operators as "truth values" of 1 for true and 0 for
false. Table 6.3 shows the relational operators and the logical operators that can be
used to combine relational expressions.

Table 6.3: Relational Operators

Operator Meaning

< Less than

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-2

67

Table 6.3: Relational Operators

Operator Meaning

> Greater than

<= Less than or equal

>= Greater than or equal

== Equal

!= Not equal

&& Logical and

|| Logical or

For example, $((3 > 2)) has the value 1; $(((3 > 2) || (4 <= 1))) also has the value 1,
since at least one of the two subexpressions is true.

The shell also supports base N numbers, where N can be up to 36. The
notation B#N means "N base B". Of course, if you omit the B#, the base defaults to 10.

6.2.1 Arithmetic Conditionals

Another construct, closely related to $((...)), is ((...)) (without the leading dollar sign). We
use this for evaluating arithmetic condition tests, just as [[...]] is used for string, file
attribute, and other types of tests.

((...)) evaluates relational operators differently from $((...)) so that you can use it
in if and while constructs. Instead of producing a textual result, it just sets its exit status
according to the truth of the expression: 0 if true, 1 otherwise. So, for example, ((3 >
2)) produces exit status 0, as does (((3 > 2) || (4 <= 1))), but (((3 > 2) && (4 <= 1)
)) has exit status 1 since the second subexpression isn't true.

You can also use numerical values for truth values within this construct. It's like the
analogous concept in C, which means that it's somewhat counterintuitive to non-C
programmers: a value of 0 means false (i.e., returns exit status 1), and a non-0 value
means true (returns exit status 0), e.g., ((14)) is true. See the code for
the kshdb debugger in Chapter 9 for two more examples of this.

6.2.2 Arithmetic Variables and Assignment

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch09_01.htm

68

The ((...)) construct can also be used to define integer variables and assign values to
them. The statement:

((intvar=expression))

creates the integer variable intvar (if it doesn't already exist) and assigns to it the result
of expression.

That syntax isn't intuitive, so the shell provides a better equivalent: the built-in
command let. The syntax is:

let intvar=expression

It is not necessary (because it's actually redundant) to surround the expression
with $((and)) in a let statement. As with any variable assignment, there must not be
any space on either side of the equal sign (=). It is good practice to surround
expressions with quotes, since many characters are treated as special by the shell
(e.g., *, #, and parentheses); furthermore, you must quote expressions that include
whitespace (spaces or TABs). See Table 6.4 for examples.

Table 6.4: Sample Integer Expression Assignments

Assignment Value

let x= $x

1+4 5

'1 + 4' 5

'(2+3) * 5' 25

'2 + 3 * 5' 17

'17 / 3' 5

'17 % 3' 2

'1<<4' 16

'48>>3' 6

'17 & 3' 1

http://www.cs.ait.ac.th/~on/O/oreilly/unix/ksh/ch06_02.htm#KSH-CH-6-TAB-3

69

Table 6.4: Sample Integer Expression Assignments

Assignment Value

let x= $x

'17 | 3' 19

'17 ^ 3' 18

Here is a small task that makes use of integer arithmetic.

Task 6.1

Write a script called pages that, given the name of a text file, tells how many pages of
output it contains. Assume that there are 66 lines to a page but provide an option
allowing the user to override that.

We'll make our option -N, a la head. The syntax for this single option is so simple that
we need not bother with getopts. Here is the code:

if [[$1 = -+([0-9])]]; then
 let page_lines=${1#-}
 shift
else
 let page_lines=66
fi
let file_lines="$(wc -l < $1)"

let pages=file_lines/page_lines
if ((file_lines % page_lines > 0)); then
 let pages=pages+1
fi

print "$1 has $pages pages of text."

Notice that we use the integer conditional ((file_lines % page_lines > 0)) rather than
the [[...]] form.

At the heart of this code is the UNIX utility wc(1), which counts the number of lines,
words, and characters (bytes) in its input. By default, its output looks something like this:

8 34 161 bob

70

wc's output means that the file bob has 8 lines, 34 words, and 161
characters. wc recognizes the options -l, -w, and -c, which tell it to print only the number
of lines, words, or characters, respectively.

wc normally prints the name of its input file (given as argument). Since we want only the
number of lines, we have to do two things. First, we give it input from file redirection
instead, as in wc -l < bob instead of wc -l bob. This produces the number of lines
preceded by a single space (which would normally separate the filename from the
number).

Unfortunately, that space complicates matters: the statement let file_lines=$(wc -l <
$1) becomes "let file_lines= N" after command substitution; the space after the equal
sign is an error. That leads to the second modification, the quotes around the command
substitution expression. The statement let file_lines=" N" is perfectly legal,
and let knows how to remove the leading space.

The first if clause in the pages script checks for an option and, if it was given, strips the
dash (-) off and assigns it to the variable page_lines. wc in the command substitution
expression returns the number of lines in the file whose name is given as argument.

The next group of lines calculates the number of pages and, if there is a remainder after
the division, adds 1. Finally, the appropriate message is printed.

As a bigger example of integer arithmetic, we will complete our emulation of the C
shell's pushd and popd functions (Task 4-8). Remember that these functions operate
on DIRSTACK, a stack of directories represented as a string with the directory names
separated by spaces. The C shell's pushd and popd take additional types of arguments,
which are:

¶ pushd +n takes the nth directory in the stack (starting with 0), rotates it to the
top, and cds to it.

¶ pushd without arguments, instead of complaining, swaps the two top directories
on the stack and cds to the new top.

¶ popd +n takes the nth directory in the stack and just deletes it.

The most useful of these features is the ability to get at the nth directory in the stack.
Here are the latest versions of both functions:

function pushd { # push current directory onto stack
 dirname=$1
 if [[-d $dirname && -x $dirname]]; then
 cd $dirname
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
 else
 print "still in $PWD."

71

 fi
}

function popd { # pop directory off the stack, cd to new top
 if [[-n $DIRSTACK]]; then
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
 else
 print "stack empty, still in $PWD."
 fi
}

To get at the nth directory, we use a while loop that transfers the top directory to a
temporary copy of the stack n times. We'll put the loop into a function
called getNdirs that looks like this:

function getNdirs{
 stackfront=''
 let count=0
 while ((count < $1)); do
 stackfront="$stackfront ${DIRSTACK%% *}"
 DIRSTACK=${DIRSTACK#* }
 let count=count+1
 done
}

The argument passed to getNdirs is the n in question. The variable stackfront is the
temporary copy that will contain the first n directories when the loop is
done. stackfront starts as null; count, which counts the number of loop iterations,
starts as 0.

The first line of the loop body appends the top of the stack (${DIRSTACK%% *})
to stackfront; the second line deletes the top from the stack. The last line increments
the counter for the next iteration. The entire loop executes N times, for values
of count from 0 to N-1.

When the loop finishes, the last directory in $stackfront is the Nth directory. The
expression ${stackfront##* } extracts this directory. Furthermore, DIRSTACK now
contains the "back" of the stack, i.e., the stack without the first n directories. With this in
mind, we can now write the code for the improved versions of pushd and popd:

function pushd {
 if [[$1 = ++([0-9])]]; then
 # case of pushd +n: rotate n-th directory to top
 let num=${1#+}

72

 getNdirs $num

 newtop=${stackfront##* }
 stackfront=${stackfront%$newtop}

 DIRSTACK="$newtop $stackfront $DIRSTACK"
 cd $newtop

 elif [[-z $1]]; then
 # case of pushd without args; swap top two directories
 firstdir=${DIRSTACK%% *}
 DIRSTACK=${DIRSTACK#* }
 seconddir=${DIRSTACK%% *}
 DIRSTACK=${DIRSTACK#* }
 DIRSTACK="$seconddir $firstdir $DIRSTACK"
 cd $seconddir

 else
 cd $dirname
 # normal case of pushd dirname
 dirname=$1
 if [[-d $dirname && -x $dirname]]; then
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
 else
 print still in "$PWD."
 fi
 fi
}

function popd { # pop directory off the stack, cd to new top
 if [[$1 = ++([0-9])]]; then
 # case of popd +n: delete n-th directory from stack
 let num={$1#+}
 getNdirs $num
 stackfront=${stackfront% *}
 DIRSTACK="$stackfront $DIRSTACK"

 else
 # normal case of popd without argument
 if [[-n $DIRSTACK]]; then
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
 else
 print "stack empty, still in $PWD."

73

 fi
 fi
}

These functions have grown rather large; let's look at them in turn. The if at the
beginning of pushd checks if the first argument is an option of the form +N. If so, the first
body of code is run. The first let simply strips the plus sign (+) from the argument and
assigns the result - as an integer - to the variable num. This, in turn, is passed to
the getNdirs function.

The next two assignment statements set newtop to the Nth directory - i.e., the last
directory in $stackfront - and delete that directory from stackfront. The final two lines
in this part of pushd put the stack back together again in the appropriate order and cd to
the new top directory.

The elif clause tests for no argument, in which case pushd should swap the top two
directories on the stack. The first four lines of this clause assign the top two directories
to firstdir and seconddir, and delete these from the stack. Then, as above, the code
puts the stack back together in the new order and cds to the new top directory.

The else clause corresponds to the usual case, where the user supplies a directory
name as argument.

popd works similarly. The if clause checks for the +N option, which in this case means
delete the Nth directory. A let extracts the N as an integer; the getNdirs function puts
the first n directories into stackfront. Then the
line stackfront=${stackfront% *} deletes the last directory (the Nth directory)
from stackfront. Finally, the stack is put back together with the Nth directory missing.

The else clause covers the usual case, where the user doesn't supply an argument.

Before we leave this subject, here are a few exercises that should test your
understanding of this code:

1. Add code to pushd that exits with an error message if the user supplies no
argument and the stack contains fewer than two directories.

2. Verify that when the user specifies +N and N exceeds the number of directories
in the stack, both pushd and popd use the last directory as the Nth directory.

3. Modify the getNdirs function so that it checks for the above condition and exits
with an appropriate error message if true.

4. Change getNdirs so that it uses cut (with command substitution), instead of
the while loop, to extract the first N directories. This uses less code but runs
more slowly because of the extra processes generated.

74

Special command line characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-
meaning, then we refer to it as a special character. Along with commands
and keywords, special characters are building blocks of Bash scripts.

Special Characters Found In Scripts and Elsewhere

Comments. Lines beginning with a # (with the exception of #!) are comments
and will not be executed.

This line is a comment.

Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
^ Note whitespace before #

Comments may also follow whitespace at the beginning of a line.

 # A tab precedes this comment.

Comments may even be embedded within a pipe.

initial=(`cat "$startfile" | sed -e '/#/d' | tr -d '\n' |\
Delete lines containing '#' comment character.
 sed -e 's/\./\. /g' -e 's/_/_ /g'`)
Excerpted from life.sh script

A command may not follow a comment on the same line. There is no
method of terminating the comment, in order for "live code" to begin on
the same line. Use a new line for the next command.

Of course, a quoted or an escaped # in an echo statement does not begin
a comment. Likewise, a # appears in certain parameter-substitution
constructs and in numerical constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

https://tldp.org/LDP/abs/html/x17129.html#METAMEANINGREF
https://tldp.org/LDP/abs/html/x17129.html#METAMEANINGREF
https://tldp.org/LDP/abs/html/internal.html#KEYWORDREF
https://tldp.org/LDP/abs/html/sha-bang.html#MAGNUMREF
https://tldp.org/LDP/abs/html/special-chars.html#WHITESPACEREF
https://tldp.org/LDP/abs/html/special-chars.html#PIPEREF
https://tldp.org/LDP/abs/html/quoting.html#QUOTINGREF
https://tldp.org/LDP/abs/html/escapingsection.html#ESCP
https://tldp.org/LDP/abs/html/internal.html#ECHOREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tldp.org/LDP/abs/html/numerical-constants.html#NUMCONSTANTS

75

echo ${PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.

The standard quoting and escape characters (" ' \) escape the #.

Certain pattern matching operations also use the #.

;

Command separator [semicolon]. Permits putting two or more commands on
the same line.

echo hello; echo there

if [-x "$filename"]; then # Note the space after the semicolon.
#+ ^^
 echo "File $filename exists."; cp $filename $filename.bak
else # ^^
 echo "File $filename not found."; touch $filename
fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.

;;

Terminator in a case option [double semicolon].

case "$variable" in
 abc) echo "\$variable = abc" ;;
 xyz) echo "\$variable = xyz" ;;
esac

;;&, ;&

Terminators in a case option (version 4+ of Bash).

.

"dot" command [period]. Equivalent to source (see Example 15-22). This is a
bash builtin.

.

https://tldp.org/LDP/abs/html/quoting.html#QUOTINGREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSOREX1
https://tldp.org/LDP/abs/html/moreadv.html#FINDREF0
https://tldp.org/LDP/abs/html/testbranch.html#CASEESAC1
https://tldp.org/LDP/abs/html/bashver4.html#NCTERM
https://tldp.org/LDP/abs/html/bashver4.html#BASH4REF
https://tldp.org/LDP/abs/html/internal.html#SOURCEREF
https://tldp.org/LDP/abs/html/internal.html#EX38
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF

76

"dot", as a component of a filename. When working with filenames, a leading
dot is the prefix of a "hidden" file, a file that an ls will not normally show.

bash$ touch .hidden-file
bash$ ls -l
total 10
 -rw-r--r-- 1 bozo 4034 Jul 18 22:04 data1.addressbook
 -rw-r--r-- 1 bozo 4602 May 25 13:58 data1.addressbook.bak
 -rw-r--r-- 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ ls -al
total 14
 drwxrwxr-x 2 bozo bozo 1024 Aug 29 20:54 ./
 drwx------ 52 bozo bozo 3072 Aug 29 20:51 ../
 -rw-r--r-- 1 bozo bozo 4034 Jul 18 22:04 data1.addressbook
 -rw-r--r-- 1 bozo bozo 4602 May 25 13:58 data1.addressbook.bak
 -rw-r--r-- 1 bozo bozo 877 Dec 17 2000 employment.addressbook
 -rw-rw-r-- 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working
directory, and two dots denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ cd .
bash$ pwd
/home/bozo/projects

bash$ cd ..
bash$ pwd
/home/bozo/

The dot often appears as the destination (directory) of a file movement
command, in this context meaning current directory.

bash$ cp /home/bozo/current_work/junk/* .

Copy all the "junk" files to $PWD.

.

https://tldp.org/LDP/abs/html/basic.html#LSREF
https://tldp.org/LDP/abs/html/internalvariables.html#PWDREF

77

"dot" character match. When matching characters, as part of a regular
expression, a "dot" matches a single character.

"

partial quoting [double quote]. "STRING" preserves (from interpretation) most
of the special characters within STRING. See Chapter 5.

'

full quoting [single quote]. 'STRING' preserves all special characters
within STRING. This is a stronger form of quoting than "STRING". See Chapter
5.

,

comma operator. The comma operator [1] links together a series of arithmetic
operations. All are evaluated, but only the last one is returned.

let "t2 = ((a = 9, 15 / 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc
^ Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do
 if [-x "$file"]
 then
 echo $file
 fi
done

/bin/ipcalc
/usr/bin/kcalc
/usr/bin/oidcalc
/usr/bin/oocalc

Thank you, Rory Winston, for pointing this out.

,, ,

Lowercase conversion in parameter substitution (added in version 4 of
Bash).

https://tldp.org/LDP/abs/html/x17129.html#REGEXDOT
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#REGEXDOT
https://tldp.org/LDP/abs/html/varsubn.html#DBLQUO
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/varsubn.html#SNGLQUO
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/ops.html#COMMAOP
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN612
https://tldp.org/LDP/abs/html/bashver4.html#CASEMODPARAMSUB
https://tldp.org/LDP/abs/html/bashver4.html#BASH4REF

78

\

escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'.
The \ may be used to quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.

/

Filename path separator [forward slash]. Separates the components of a
filename (as in /home/bozo/projects/Makefile).

This is also the division arithmetic operator.

`

command substitution. The `command` construct makes available the output
of command for assignment to a variable. This is also known as backquotes or
backticks.

:

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-
nothing operation). It may be considered a synonym for the shell builtin true.
The ":" command is itself a Bash builtin, and its exit status is true (0).

:
echo $? # 0

Endless loop:

while :
do
 operation-1
 operation-2
 ...
 operation-n
done

Same as:
while true
do
...
done

https://tldp.org/LDP/abs/html/escapingsection.html#ESCP
https://tldp.org/LDP/abs/html/quoting.html
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/commandsub.html#COMMANDSUBREF
https://tldp.org/LDP/abs/html/commandsub.html#BACKQUOTESREF
https://tldp.org/LDP/abs/html/internal.html#TRUEREF
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/exit-status.html#EXITSTATUSREF

79

Placeholder in if/then test:

if condition
then : # Do nothing and branch ahead
else # Or else ...
 take-some-action
fi

Provide a placeholder where a binary operation is expected, see Example 8-
2 and default parameters.

: ${username=`whoami`}
${username=`whoami`} Gives an error without the leading :
unless "username" is a command or builtin...

: ${1?"Usage: $0 ARGUMENT"} # From "usage-message.sh example script.

Provide a placeholder where a command is expected in a here document.
See Example 19-10.

Evaluate string of variables using parameter substitution (as in Example 10-7).

: ${HOSTNAME?} ${USER?} ${MAIL?}
Prints error message
#+ if one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length,
without changing its permissions. If the file did not previously exist, creates it.

: > data.xxx # File "data.xxx" now empty.

Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

In combination with the >> redirection operator, has no effect on a pre-existing
target file (: >> target_file). If the file did not previously exist, creates it.

This applies to regular files, not pipes, symlinks, and certain special files.

https://tldp.org/LDP/abs/html/ops.html#ARITHOPS
https://tldp.org/LDP/abs/html/ops.html#ARITHOPS
https://tldp.org/LDP/abs/html/parameter-substitution.html#DEFPARAM
https://tldp.org/LDP/abs/html/here-docs.html#HEREDOCREF
https://tldp.org/LDP/abs/html/here-docs.html#ANONHEREDOC
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#EX6
https://tldp.org/LDP/abs/html/parameter-substitution.html#EXPREPL1
https://tldp.org/LDP/abs/html/io-redirection.html#IOREDIRREF
https://tldp.org/LDP/abs/html/textproc.html#EX12

80

May be used to begin a comment line, although this is not recommended.
Using # for a comment turns off error checking for the remainder of that line, so
almost anything may appear in a comment. However, this is not the case with :.

: This is a comment that generates an error, (if [$x -eq 3]).

The ":" serves as a field separator, in /etc/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

A colon is acceptable as a function name.

:()
{
 echo "The name of this function is "$FUNCNAME" "
 # Why use a colon as a function name?
 # It's a way of obfuscating your code.
}

:

The name of this function is :

This is not portable behavior, and therefore not a recommended practice. In fact,
more recent releases of Bash do not permit this usage. An underscore _ works,
though.

A colon can serve as a placeholder in an otherwise empty function.

not_empty ()
{
 :
} # Contains a : (null command), and so is not empty.

!

reverse (or negate) the sense of a test or exit status [bang]. The ! operator
inverts the exit status of the command to which it is applied (see Example 6-2). It
also inverts the meaning of a test operator. This can, for example, change the
sense of equal (=) to not-equal (!=). The ! operator is a Bash keyword.

In a different context, the ! also appears in indirect variable references.

https://tldp.org/LDP/abs/html/special-chars.html#FIELDREF
https://tldp.org/LDP/abs/html/files.html#DATAFILESREF1
https://tldp.org/LDP/abs/html/internalvariables.html#PATHREF
https://tldp.org/LDP/abs/html/functions.html#FSTRANGEREF
https://tldp.org/LDP/abs/html/portabilityissues.html
https://tldp.org/LDP/abs/html/exit-status.html#EXITSTATUSREF
https://tldp.org/LDP/abs/html/exit-status.html#NEGCOND
https://tldp.org/LDP/abs/html/comparison-ops.html#EQUALSIGNREF
https://tldp.org/LDP/abs/html/internal.html#KEYWORDREF
https://tldp.org/LDP/abs/html/ivr.html#IVRREF

81

In yet another context, from the command line, the ! invokes the Bash history
mechanism (see Appendix L). Note that within a script, the history mechanism is
disabled.

*

wild card [asterisk]. The * character serves as a "wild card" for filename
expansion in globbing. By itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

The * also represents any number (or zero) characters in a regular expression.

*

arithmetic operator. In the context of arithmetic operations, the * denotes
multiplication.

** A double asterisk can represent the exponentiation operator or extended file-
match globbing.

?

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double-parentheses construct, the ? can serve as an element of a C-
style trinary operator. [2]

condition?result-if-true:result-if-false

((var0 = var1<98?9:21))
^ ^

if ["$var1" -lt 98]
then
var0=9
else
var0=21
fi

In a parameter substitution expression, the ? tests whether a variable has been
set.

https://tldp.org/LDP/abs/html/histcommands.html
https://tldp.org/LDP/abs/html/globbingref.html
https://tldp.org/LDP/abs/html/x17129.html#ASTERISKREG
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/ops.html#EXPONENTIATIONREF
https://tldp.org/LDP/abs/html/bashver4.html#GLOBSTARREF
https://tldp.org/LDP/abs/html/bashver4.html#GLOBSTARREF
https://tldp.org/LDP/abs/html/dblparens.html
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN888
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#QERRMSG
https://tldp.org/LDP/abs/html/parameter-substitution.html#QERRMSG

82

?

wild card. The ? character serves as a single-character "wild card" for filename
expansion in globbing, as well as representing one character in an extended
regular expression.

$

Variable substitution (contents of a variable).

var1=5
var2=23skidoo

echo $var1 # 5
echo $var2 # 23skidoo

A $ prefixing a variable name indicates the value the variable holds.

$

end-of-line. In a regular expression, a "$" addresses the end of a line of text.

${}

Parameter substitution.

$' ... '

Quoted string expansion. This construct expands single or multiple escaped
octal or hex values into ASCII [3] or Unicode characters.

$*, $@

positional parameters.

$?

exit status variable. The $? variable holds the exit status of a command,
a function, or of the script itself.

$$

process ID variable. The $$ variable holds the process ID [4] of the script in
which it appears.

()

https://tldp.org/LDP/abs/html/globbingref.html
https://tldp.org/LDP/abs/html/x17129.html#QUEXREGEX
https://tldp.org/LDP/abs/html/x17129.html#EXTREGEX
https://tldp.org/LDP/abs/html/x17129.html#EXTREGEX
https://tldp.org/LDP/abs/html/varsubn.html
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#DOLLARSIGNREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/escapingsection.html#STRQ
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1001
https://tldp.org/LDP/abs/html/bashver4.html#UNICODEREF
https://tldp.org/LDP/abs/html/internalvariables.html#APPREF
https://tldp.org/LDP/abs/html/exit-status.html#EXSREF
https://tldp.org/LDP/abs/html/exit-status.html#EXITSTATUSREF
https://tldp.org/LDP/abs/html/functions.html#FUNCTIONREF
https://tldp.org/LDP/abs/html/internalvariables.html#PROCCID
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1071

83

command group.

(a=hello; echo $a)

A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the
rest of the script. The parent process, the script, cannot read variables
created in the child process, the subshell.

a=123
(a=321;)

echo "a = $a" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(element1 element2 element3)

{xxx,yyy,zzz,...}

Brace expansion.

echo \"{These,words,are,quoted}\" # " prefix and suffix
"These" "words" "are" "quoted"

cat {file1,file2,file3} > combined_file
Concatenates the files file1, file2, and file3 into combined_file.

cp file22.{txt,backup}
Copies "file22.txt" to "file22.backup"

A command may act upon a comma-separated list of file specs
within braces. [5] Filename expansion (globbing) applies to the file specs
between the braces.

No spaces allowed within the braces unless the spaces are quoted or
escaped.

echo {file1,file2}\ :{\ A," B",' C'}

file1 : A file1 : B file1 : C file2 : A file2 : B file2 : C

{a..z}

https://tldp.org/LDP/abs/html/subshells.html#SUBSHELLSREF
https://tldp.org/LDP/abs/html/subshells.html#PARVIS
https://tldp.org/LDP/abs/html/subshells.html#PARVIS
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1124
https://tldp.org/LDP/abs/html/globbingref.html

84

Extended Brace expansion.

echo {a..z} # a b c d e f g h i j k l m n o p q r s t u v w x y z
Echoes characters between a and z.

echo {0..3} # 0 1 2 3
Echoes characters between 0 and 3.

base64_charset=({A..Z} {a..z} {0..9} + / =)
Initializing an array, using extended brace expansion.
From vladz's "base64.sh" example script.

The {a..z} extended brace expansion construction is a feature introduced
in version 3 of Bash.

{}

Block of code [curly brackets]. Also referred to as an inline group, this
construct, in effect, creates an anonymous function (a function without a name).
However, unlike in a "standard" function, the variables inside a code block
remain visible to the remainder of the script.

bash$ { local a;
 a=123; }
bash: local: can only be used in a
function

a=123
{ a=321; }
echo "a = $a" # a = 321 (value inside code block)

Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and I/O redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{
read line1

https://tldp.org/LDP/abs/html/bashver3.html#BRACEEXPREF3
https://tldp.org/LDP/abs/html/bashver3.html#BASH3REF
https://tldp.org/LDP/abs/html/functions.html#FUNCTIONREF
https://tldp.org/LDP/abs/html/io-redirection.html#IOREDIRREF

85

read line2
} < $File

echo "First line in $File is:"
echo "$line1"
echo
echo "Second line in $File is:"
echo "$line2"

exit 0

Now, how do you parse the separate fields of each line?
Hint: use awk, or . . .
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

#!/bin/bash
rpm-check.sh

Queries an rpm file for description, listing,
#+ and whether it can be installed.
Saves output to a file.

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [-z "$1"]
then
 echo "Usage: `basename $0` rpm-file"
 exit $E_NOARGS
fi

{ # Begin code block.
 echo
 echo "Archive Description:"
 rpm -qpi $1 # Query description.
 echo
 echo "Archive Listing:"
 rpm -qpl $1 # Query listing.
 echo
 rpm -i --test $1 # Query whether rpm file can be installed.
 if ["$?" -eq $SUCCESS]
 then

86

 echo "$1 can be installed."
 else
 echo "$1 cannot be installed."
 fi
 echo # End code block.
} > "$1.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1.test"

See rpm man page for explanation of options.

exit 0

Unlike a command group within (parentheses), as above, a code block
enclosed by {braces} will not normally launch a subshell. [6]

It is possible to iterate a code block using a non-standard for-loop.

{}

placeholder for text. Used after xargs -i (replace strings option). The {} double
curly brackets are a placeholder for output text.

ls . | xargs -i -t cp ./{} $1
^^ ^^

From "ex42.sh" (copydir.sh) example.

{} \;

pathname. Mostly used in find constructs. This is not a shell builtin.

Definition: A pathname is a filename that includes the complete path. As an
example, /home/bozo/Notes/Thursday/schedule.txt. This is sometimes referred to
as the absolute path.

The ";" ends the -exec option of a find command sequence. It needs to be
escaped to protect it from interpretation by the shell.

[]

test.

Test expression between []. Note that [is part of the shell builtin test (and a
synonym for it), not a link to the external command /usr/bin/test.

[[]]

test.

https://tldp.org/LDP/abs/html/subshells.html#SUBSHELLSREF
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1199
https://tldp.org/LDP/abs/html/loops1.html#ITERATIONREF
https://tldp.org/LDP/abs/html/loops1.html#NODODONE
https://tldp.org/LDP/abs/html/moreadv.html#XARGSCURLYREF
https://tldp.org/LDP/abs/html/moreadv.html#FINDREF
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/internalvariables.html#PATHREF
https://tldp.org/LDP/abs/html/tests.html#IFTHEN
https://tldp.org/LDP/abs/html/testconstructs.html#TTESTREF

87

Test expression between [[]]. More flexible than the single-bracket [] test, this is
a shell keyword.

See the discussion on the [[...]] construct.

[]

array element.

In the context of an array, brackets set off the numbering of each element of that
array.

Array[1]=slot_1
echo ${Array[1]}

[]

range of characters.

As part of a regular expression, brackets delineate a range of characters to
match.

$[...]

integer expansion.

Evaluate integer expression between $[].

a=3
b=7

echo $[$a+$b] # 10
echo $[$a*$b] # 21

Note that this usage is deprecated, and has been replaced by the ((...
)) construct.

(())

integer expansion.

Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.

> &> >& >> < <>

https://tldp.org/LDP/abs/html/internal.html#KEYWORDREF
https://tldp.org/LDP/abs/html/testconstructs.html#DBLBRACKETS
https://tldp.org/LDP/abs/html/arrays.html#ARRAYREF
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#BRACKETSREF
https://tldp.org/LDP/abs/html/dblparens.html
https://tldp.org/LDP/abs/html/dblparens.html
https://tldp.org/LDP/abs/html/dblparens.html

88

redirection.

scriptname >filename redirects the output of scriptname to file filename.
Overwrite filename if it already exists.

command &>filename redirects both the stdout and
the stderr of command to filename.

This is useful for suppressing output when testing for a condition. For
example, let us test whether a certain command exists.

bash$ type bogus_command &>/dev/null

bash$ echo $?
1

Or in a script:

command_test () { type "$1" &>/dev/null; }
^

cmd=rmdir # Legitimate command.
command_test $cmd; echo $? # 0

cmd=bogus_command # Illegitimate command
command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.

scriptname >>filename appends the output of scriptname to file filename.
If filename does not already exist, it is created.

[i]<>filename opens file filename for reading and writing, and assigns file
descriptor i to it. If filename does not exist, it is created.

process substitution.

(command)>

<(command)

https://tldp.org/LDP/abs/html/io-redirection.html#IOREDIRREF
https://tldp.org/LDP/abs/html/ioredirintro.html#STDINOUTDEF
https://tldp.org/LDP/abs/html/io-redirection.html#FDREF
https://tldp.org/LDP/abs/html/io-redirection.html#FDREF
https://tldp.org/LDP/abs/html/process-sub.html#PROCESSSUBREF

89

In a different context, the "<" and ">" characters act as string comparison
operators.

In yet another context, the "<" and ">" characters act as integer comparison
operators. See also Example 16-9.

<<

redirection used in a here document.

<<<

redirection used in a here string.

<, >

ASCII comparison.

veg1=carrots
veg2=tomatoes

if [["$veg1" < "$veg2"]]
then
 echo "Although $veg1 precede $veg2 in the dictionary,"
 echo -n "this does not necessarily imply anything "
 echo "about my culinary preferences."
else
 echo "What kind of dictionary are you using, anyhow?"
fi

\<, \>

word boundary in a regular expression.

bash$ grep '\<the\>' textfile

|

pipe. Passes the output (stdout) of a previous command to the input (stdin) of
the next one, or to the shell. This is a method of chaining commands together.

echo ls -l | sh
Passes the output of "echo ls -l" to the shell,
#+ with the same result as a simple "ls -l".

cat *.lst | sort | uniq

https://tldp.org/LDP/abs/html/comparison-ops.html#LTREF
https://tldp.org/LDP/abs/html/comparison-ops.html#SCOMPARISON1
https://tldp.org/LDP/abs/html/comparison-ops.html#SCOMPARISON1
https://tldp.org/LDP/abs/html/comparison-ops.html#INTLT
https://tldp.org/LDP/abs/html/comparison-ops.html#ICOMPARISON1
https://tldp.org/LDP/abs/html/comparison-ops.html#ICOMPARISON1
https://tldp.org/LDP/abs/html/moreadv.html#EX45
https://tldp.org/LDP/abs/html/here-docs.html#HEREDOCREF
https://tldp.org/LDP/abs/html/x17837.html#HERESTRINGSREF
https://tldp.org/LDP/abs/html/comparison-ops.html#LTREF
https://tldp.org/LDP/abs/html/x17129.html#ANGLEBRAC
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF

90

Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the stdout of
one process to the stdin of another. In a typical case, a command, such
as cat or echo, pipes a stream of data to a filter, a command that transforms its
input for processing. [7]

cat $filename1 $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX
FAQ, Part 3.

The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a-z' 'A-Z'
Letter ranges must be quoted
#+ to prevent filename generation from single-letter filenames.

exit 0

Now, let us pipe the output of ls -l to this script.

bash$ ls -l | ./uppercase.sh
-RW-RW-R-- 1 BOZO BOZO 109 APR 7 19:49 1.TXT
 -RW-RW-R-- 1 BOZO BOZO 109 APR 14 16:48 2.TXT
 -RW-R--R-- 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

The stdout of each process in a pipe must be read as the stdin of the
next. If this is not the case, the data stream will block, and the pipe will not
behave as expected.

cat file1 file2 | ls -l | sort
The output from "cat file1 file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_value"
echo "new_value" | read variable
echo "variable = $variable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates

https://tldp.org/LDP/abs/html/special-chars.html#PROCESSREF
https://tldp.org/LDP/abs/html/basic.html#CATREF
https://tldp.org/LDP/abs/html/internal.html#ECHOREF
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN1564
http://www.faqs.org/faqs/unix-faq/faq/part3/
http://www.faqs.org/faqs/unix-faq/faq/part3/
https://tldp.org/LDP/abs/html/othertypesv.html#CHILDREF

91

execution of the pipe. Called a broken pipe, this condition sends
a SIGPIPE signal.

>|

force redirection (even if the noclobber option is set). This will forcibly
overwrite an existing file.

||

OR logical operator. In a test construct, the || operator causes a return
of 0 (success) if either of the linked test conditions is true.

&

Run job in background. A command followed by an & will run in the
background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

#!/bin/bash
background-loop.sh

for i in 1 2 3 4 5 6 7 8 9 10 # First loop.
do
 echo -n "$i "
done & # Run this loop in background.
 # Will sometimes execute after second loop.

echo # This 'echo' sometimes will not display.

for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.
do
 echo -n "$i "
done

echo # This 'echo' sometimes will not display.

==

https://tldp.org/LDP/abs/html/debugging.html#SIGNALD
https://tldp.org/LDP/abs/html/options.html#NOCLOBBERREF
https://tldp.org/LDP/abs/html/ops.html#ORREF
https://tldp.org/LDP/abs/html/testconstructs.html#TESTCONSTRUCTS1
https://tldp.org/LDP/abs/html/loops1.html#FORLOOPREF1

92

The expected output from the script:
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

Sometimes, though, you get:
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10 bozo $
(The second 'echo' doesn't execute. Why?)

Occasionally also:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Why?)

Very rarely something like:
11 12 13 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20
The foreground loop preempts the background one.

exit 0

Nasimuddin Ansari suggests adding sleep 1
#+ after the echo -n "$i" in lines 6 and 14,
#+ for some real fun.

A command run in the background within a script may cause the script to
hang, waiting for a keystroke. Fortunately, there is a remedy for this.

&&

AND logical operator. In a test construct, the && operator causes a return
of 0 (success) only if both the linked test conditions are true.

-

option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix
for a default parameter in parameter substitution.

COMMAND -[Option1][Option2][...]

ls -al

sort -dfu $filename

if [$file1 -ot $file2]
then # ^
 echo "File $file1 is older than $file2."
fi

https://tldp.org/LDP/abs/html/x9644.html#WAITHANG
https://tldp.org/LDP/abs/html/ops.html#LOGOPS1
https://tldp.org/LDP/abs/html/testconstructs.html#TESTCONSTRUCTS1
https://tldp.org/LDP/abs/html/parameter-substitution.html#DEFPARAM1
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF

93

if ["$a" -eq "$b"]
then # ^
 echo "$a is equal to $b."
fi

if ["$c" -eq 24 -a "$d" -eq 47]
then # ^ ^
 echo "$c equals 24 and $d equals 47."
fi

param2=${param1:-$DEFAULTVAL}
^

--

The double-dash -- prefixes long (verbatim) options to commands.

sort --ignore-leading-blanks

Used with a Bash builtin, it means the end of options to that particular command.

This provides a handy means of removing files whose names begin with a
dash.

bash$ ls -l
-rw-r--r-- 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm -- -badname

bash$ ls -l
total 0

The double-dash is also used in conjunction with set.

set -- $variable (as in Example 15-18)

-

redirection from/to stdin or stdout [dash].

bash$ cat -
abc

https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/internal.html#SETREF
https://tldp.org/LDP/abs/html/internal.html#SETPOS

94

abc

...

Ctl-D

As expected, cat - echoes stdin, in this case keyboarded user input, to stdout.
But, does I/O redirection using - have real-world applications?

(cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)
Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory
Source directory, where the files to be moved are.
2) &&
"And-list": if the 'cd' operation successful,
then execute the next command.
3) tar cf - .
The 'c' option 'tar' archiving command creates a new archive,
the 'f' (file) option, followed by '-' designates the target file
as stdout, and do it in current directory tree ('.').
4) |
Piped to ...
5) (...)
a subshell
6) cd /dest/directory
Change to the destination directory.
7) &&
"And-list", as above
8) tar xpvf -
Unarchive ('x'), preserve ownership and file permissions ('p'),
and send verbose messages to stdout ('v'),
reading data from stdin ('f' followed by '-').

Note that 'x' is a command, and 'p', 'v', 'f' are options.

Whew!

More elegant than, but equivalent to:
cd source/directory
tar cf - . | (cd ../dest/directory; tar xpvf -)

Also having same effect:

95

cp -a /source/directory/* /dest/directory
Or:
cp -a /source/directory/* /source/directory/.[^.]* /dest/directory
If there are hidden files in /source/directory.

bunzip2 -c linux-2.6.16.tar.bz2 | tar xvf -
--uncompress tar file-- | --then pass it to "tar"--
If "tar" has not been patched to handle "bunzip2",
#+ this needs to be done in two discrete steps, using a pipe.
The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "-" is not itself a Bash operator, but rather an option
recognized by certain UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, - redirects output to stdout (sometimes seen
with tar cf), or accepts input from stdin, rather than from a file. This is a method
of using a file-oriented utility as a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bash$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts
as prepending lines to a file.

https://tldp.org/LDP/abs/html/filearchiv.html#FILEREF
https://tldp.org/LDP/abs/html/assortedtips.html#PREPENDREF

96

Using diff to compare a file with a section of another:

grep Linux file1 | diff file2 -

Finally, a real-world example using - with tar.

Example 3-4. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory modified within last 24 hours
#+ in a "tarball" (tarred and gzipped file).

BACKUPFILE=backup-$(date +%m-%d-%Y)
Embeds date in backup filename.
Thanks, Joshua Tschida, for the idea.
archive=${1:-$BACKUPFILE}
If no backup-archive filename specified on command-line,
#+ it will default to "backup-MM-DD-YYYY.tar.gz."

tar cvf - `find . -mtime -1 -type f -print` > $archive.tar
gzip $archive.tar
echo "Directory $PWD backed up in archive file \"$archive.tar.gz\"."

Stephane Chazelas points out that the above code will fail
#+ if there are too many files found
#+ or if any filenames contain blank characters.

He suggests the following alternatives:

find . -mtime -1 -type f -print0 | xargs -0 tar rvf "$archive.tar"
using the GNU version of "find".

find . -mtime -1 -type f -exec tar rvf "$archive.tar" '{}' \;
portable to other UNIX flavors, but much slower.

exit 0

Filenames beginning with "-" may cause problems when coupled with
the "-" redirection operator. A script should check for this and add an
appropriate prefix to such filenames, for example ./-FILENAME, $PWD/-
FILENAME, or $PATHNAME/-FILENAME.

https://tldp.org/LDP/abs/html/filearchiv.html#DIFFREF
https://tldp.org/LDP/abs/html/filearchiv.html#TARREF

97

If the value of a variable begins with a -, this may likewise create
problems.

var="-n"
echo $var
Has the effect of "echo -n", and outputs nothing.

-

previous working directory. A cd - command changes to the previous working
directory. This uses the $OLDPWD environmental variable.

Do not confuse the "-" used in this sense with the "-" redirection operator
just discussed. The interpretation of the "-" depends on the context in
which it appears.

-

Minus. Minus sign in an arithmetic operation.

=

Equals. Assignment operator

a=28
echo $a # 28

In a different context, the "=" is a string comparison operator.

+

Plus. Addition arithmetic operator.

In a different context, the + is a Regular Expression operator.

+

Option. Option flag for a command or filter.

Certain commands and builtins use the + to enable certain options and the - to
disable them. In parameter substitution, the + prefixes an alternate value that a
variable expands to.

%

modulo. Modulo (remainder of a division) arithmetic operation.

https://tldp.org/LDP/abs/html/internalvariables.html#OLDPWD
https://tldp.org/LDP/abs/html/othertypesv.html#ENVREF
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/varassignment.html#EQREF
https://tldp.org/LDP/abs/html/comparison-ops.html#EQUALSIGNREF
https://tldp.org/LDP/abs/html/comparison-ops.html#SCOMPARISON1
https://tldp.org/LDP/abs/html/ops.html#AROPS1
https://tldp.org/LDP/abs/html/x17129.html#PLUSREF
https://tldp.org/LDP/abs/html/regexp.html
https://tldp.org/LDP/abs/html/internal.html#BUILTINREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMSUBREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PARAMALTV
https://tldp.org/LDP/abs/html/ops.html#MODULOREF
https://tldp.org/LDP/abs/html/ops.html#AROPS1

98

let "z = 5 % 3"
echo $z # 2

In a different context, the % is a pattern matching operator.

~

home directory [tilde]. This corresponds to the $HOME internal
variable. ~bozo is bozo's home directory, and ls ~bozo lists the contents of
it. ~/ is the current user's home directory, and ls ~/ lists the contents of it.

bash$ echo ~bozo
/home/bozo

bash$ echo ~
/home/bozo

bash$ echo ~/
/home/bozo/

bash$ echo ~:
/home/bozo:

bash$ echo ~nonexistent-user
~nonexistent-user

~+

current working directory. This corresponds to the $PWD internal variable.

~-

previous working directory. This corresponds to the $OLDPWD internal
variable.

=~

regular expression match. This operator was introduced with version 3 of Bash.

^

beginning-of-line. In a regular expression, a "^" addresses the beginning of a
line of text.

^, ^^

https://tldp.org/LDP/abs/html/parameter-substitution.html#PCTPATREF
https://tldp.org/LDP/abs/html/parameter-substitution.html#PSUB2
https://tldp.org/LDP/abs/html/internalvariables.html#HOMEDIRREF
https://tldp.org/LDP/abs/html/internalvariables.html#PWDREF
https://tldp.org/LDP/abs/html/internalvariables.html#OLDPWD
https://tldp.org/LDP/abs/html/bashver3.html#REGEXMATCHREF
https://tldp.org/LDP/abs/html/bashver3.html#BASH3REF
https://tldp.org/LDP/abs/html/regexp.html#REGEXREF
https://tldp.org/LDP/abs/html/x17129.html#CARETREF
https://tldp.org/LDP/abs/html/x17129.html#CARETREF

99

Uppercase conversion in parameter substitution (added in version 4 of
Bash).

Control Characters

change the behavior of the terminal or text display. A control character is
a CONTROL + key combination (pressed simultaneously). A control character
may also be written in octal or hexadecimal notation, following an escape.

Control characters are not normally useful inside a script.

¶ Ctl-A

Moves cursor to beginning of line of text (on the command-line).

¶ Ctl-B

Backspace (nondestructive).

¶ Ctl-C

Break. Terminate a foreground job.

¶ Ctl-D

Log out from a shell (similar to exit).

EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ctl-D erases the
character under the cursor. When there are no characters present, Ctl-
D logs out of the session, as expected. In an xterm window, this has the
effect of closing the window.

¶ Ctl-E

Moves cursor to end of line of text (on the command-line).

¶ Ctl-F

Moves cursor forward one character position (on the command-line).

¶ Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell.
In an xterm it might beep.

https://tldp.org/LDP/abs/html/bashver4.html#CASEMODPARAMSUB
https://tldp.org/LDP/abs/html/bashver4.html#BASH4REF
https://tldp.org/LDP/abs/html/exit-status.html#EXITCOMMANDREF

100

¶ Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over
while backspacing.

#!/bin/bash
Embedding Ctl-H in a string.

a="^H^H" # Two Ctl-H's -- backspaces
 # ctl-V ctl-H, using vi/vim
echo "abcdef" # abcdef
echo
echo -n "abcdef$a " # abcd f
Space at end ^ ^ Backspaces twice.
echo
echo -n "abcdef$a" # abcdef
No space at end ^ Doesn't backspace (why?).
 # Results may not be quite as expected.
echo; echo

Constantin Hagemeier suggests trying:
a=$'\010\010'
a=$'\b\b'
a=$'\x08\x08'
But, this does not change the results.

Now, try this.

rubout="^H^H^H^H^H" # 5 x Ctl-H.

echo -n "12345678"
sleep 2
echo -n "$rubout"
sleep 2

¶ Ctl-I

Horizontal tab.

¶ Ctl-J

Newline (line feed). In a script, may also be expressed in octal notation --
'\012' or in hexadecimal -- '\x0a'.

101

¶ Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ctl-K erases from
the character under the cursor to end of line. Within a script, Ctl-K may
behave differently, as in Lee Lee Maschmeyer's example, below.

¶ Ctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same
effect as the clear command. When sent to a printer, a Ctl-L causes an
advance to end of the paper sheet.

¶ Ctl-M

Carriage return.

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s -p \
$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
 # Of course, '0d' is the hex equivalent of Control-M.
echo >&2 # The '-s' makes anything typed silent,
 #+ so it is necessary to go to new line explicitly.

read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
 # '0a' is the hex equivalent of Control-J, linefeed.
echo >&2

read -n 1 -s -p $'And Control-K\x0bgoes straight down.'
echo >&2 # Control-K is vertical tab.

A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'
echo "$var"
This works the same way as the above example. However:
echo "$var" | col
This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed --
#+ to avoid a garbled screen.

https://tldp.org/LDP/abs/html/terminalccmds.html#CLEARREF

102

As Lee Maschmeyer explains:

In the [first vertical tab example] . . . the vertical tab
#+ makes the printing go straight down without a carriage return.
This is true only on devices, such as the Linux console,
#+ that can't go "backward."
The real purpose of VT is to go straight UP, not down.
It can be used to print superscripts on a printer.
The col utility can be used to emulate the proper behavior of VT.

exit 0

¶ Ctl-N

Erases a line of text recalled from history buffer [8] (on the command-line).

¶ Ctl-O

Issues a newline (on the command-line).

¶ Ctl-P

Recalls last command from history buffer (on the command-line).

¶ Ctl-Q

Resume (XON).

This resumes stdin in a terminal.

¶ Ctl-R

Backwards search for text in history buffer (on the command-line).

¶ Ctl-S

Suspend (XOFF).

This freezes stdin in a terminal. (Use Ctl-Q to restore input.)

¶ Ctl-T

Reverses the position of the character the cursor is on with the previous
character (on the command-line).

¶ Ctl-U

https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN2107

103

Erase a line of input, from the cursor backward to beginning of line. In
some settings, Ctl-U erases the entire line of input, regardless of cursor
position.

¶ Ctl-V

When inputting text, Ctl-V permits inserting control characters. For
example, the following two are equivalent:

echo -e '\x0a'
echo <Ctl-V><Ctl-J>

Ctl-V is primarily useful from within a text editor.

¶ Ctl-W

When typing text on the console or in an xterm window, Ctl-W erases from
the character under the cursor backwards to the first instance
of whitespace. In some settings, Ctl-W erases backwards to first non-
alphanumeric character.

¶ Ctl-X

In certain word processing programs, Cuts highlighted text and copies
to clipboard.

¶ Ctl-Y

Pastes back text previously erased (with Ctl-U or Ctl-W).

¶ Ctl-Z

Pauses a foreground job.

Substitute operation in certain word processing applications.

EOF (end-of-file) character in the MSDOS filesystem.

Whitespace

functions as a separator between commands and/or variables. Whitespace
consists of either spaces, tabs, blank lines, or any combination thereof. [9] In
some contexts, such as variable assignment, whitespace is not permitted, and
results in a syntax error.

https://tldp.org/LDP/abs/html/special-chars.html#WHITESPACEREF
https://tldp.org/LDP/abs/html/special-chars.html#FTN.AEN2198
https://tldp.org/LDP/abs/html/gotchas.html#WSBAD

104

Blank lines have no effect on the action of a script, and are therefore useful for
visually separating functional sections.

$IFS, the special variable separating fields of input to certain commands. It
defaults to whitespace.

Definition: A field is a discrete chunk of data expressed as a string of
consecutive characters. Separating each field from adjacent fields is
either whitespace or some other designated character (often determined by
the $IFS). In some contexts, a field may be called a record.

To preserve whitespace within a string or in a variable, use quoting.

UNIX filters can target and operate on whitespace using the POSIX character
class [:space:].

Decision making and Loop control

Decision making

In this chapter, we will understand shell decision-making in Unix. While writing a shell
script, there may be a situation when you need to adopt one path out of the given two
paths. So you need to make use of conditional statements that allow your program to
make correct decisions and perform the right actions.

Unix Shell supports conditional statements which are used to perform different actions
based on different conditions. We will now understand two decision-making statements
here ī

¶ The if...else statement

¶ The case...esac statement

The if...else statements

If else statements are useful decision-making statements which can be used to select
an option from a given set of options.

Unix Shell supports following forms of iféelse statement ī

¶ if...fi statement

¶ if...else...fi statement

¶ if...elif...else...fi statement

Most of the if statements check relations using relational operators discussed in the
previous chapter.

https://tldp.org/LDP/abs/html/internalvariables.html#IFSREF
https://tldp.org/LDP/abs/html/quoting.html#QUOTINGREF
https://tldp.org/LDP/abs/html/special-chars.html#FILTERDEF
https://tldp.org/LDP/abs/html/x17129.html#POSIXREF
https://tldp.org/LDP/abs/html/x17129.html#WSPOSIX
https://www.tutorialspoint.com/unix/if-fi-statement.htm
https://www.tutorialspoint.com/unix/if-else-statement.htm
https://www.tutorialspoint.com/unix/if-elif-statement.htm

105

The case...esac Statement

You can use multiple if...elif statements to perform a multiway branch. However, this is
not always the best solution, especially when all of the branches depend on the value
of a single variable.

Unix Shell supports case...esac statement which handles exactly this situation, and it
does so more efficiently than repeated if...elif statements.

There is only one form of case...esac statement which has been described in detail
here ī

¶ case...esac statement

The case...esac statement in the Unix shell is very similar to
the switch...case statement we have in other programming languages
like C or C++ and PERL, etc.

Loop Control

In this chapter, we will discuss shell loops in Unix. A loop is a powerful programming
tool that enables you to execute a set of commands repeatedly. In this chapter, we will
examine the following types of loops available to shell programmers ī

¶ The while loop

¶ The for loop

¶ The until loop

¶ The select loop

You will use different loops based on the situation. For example, the while loop
executes the given commands until the given condition remains true; the until loop
executes until a given condition becomes true.

Once you have good programming practice you will gain the expertise and thereby,
start using appropriate loop based on the situation. Here, while and for loops are
available in most of the other programming languages like C, C++ and PERL, etc.

Nesting Loops

All the loops support nesting concept which means you can put one loop inside another
similar one or different loops. This nesting can go up to unlimited number of times
based on your requirement.

Here is an example of nesting while loop. The other loops can be nested based on the
programming requirement in a similar way ī

Nesting while Loops

https://www.tutorialspoint.com/unix/case-esac-statement.htm
https://www.tutorialspoint.com/unix/while-loop.htm
https://www.tutorialspoint.com/unix/for-loop.htm
https://www.tutorialspoint.com/unix/until-loop.htm
https://www.tutorialspoint.com/unix/select-loop.htm

106

It is possible to use a while loop as part of the body of another while loop.

Syntax

while command1 ; # this is loop1, the outer loop
do
 Statement(s) to be executed if command1 is true

 while command2 ; # this is loop2, the inner loop
 do
 Statement(s) to be executed if command2 is true
 done

 Statement(s) to be executed if command1 is true
done

Example

Here is a simple example of loop nesting. Let's add another countdown loop inside the
loop that you used to count to nine ī

#!/bin/sh

a=0
while ["$a" -lt 10] # this is loop1
do
 b="$a"
 while ["$b" -ge 0] # this is loop2
 do
 echo -n "$b "
 b=`expr $b - 1`
 done
 echo
 a=`expr $a + 1`
done

This will produce the following result. It is important to note how echo -n works here.
Here -n option lets echo avoid printing a new line character.

0
1 0
2 1 0
3 2 1 0
4 3 2 1 0
5 4 3 2 1 0
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
8 7 6 5 4 3 2 1 0

107

9 8 7 6 5 4 3 2 1 0

Controlling terminal input

Sessions and process groups have a few other characteristics.

¶ A session can have a single controlling terminal. This is usually the terminal
device (in the case of a terminal login) or pseudo-terminal device (in the case of
a network login) on which we log in.

¶ The session leader that establishes the connection to the controlling terminal is
called the controlling process.

¶ The process groups within a session can be divided into a single foreground
process group and one or more background process groups.

¶ If a session has a controlling terminal, it has a single foreground process group,
and all other process groups in the session are background process groups.

¶ Whenever we type the terminal's interrupt key (often DELETE or Control-C), this
causes the interrupt signal be sent to all processes in the foreground process
group.

¶ Whenever we type the terminal's quit key (often Control-backslash), this causes
the quit signal to be sent to all processes in the foreground process group.

¶ If a modem (or network) disconnect is detected by the terminal interface, the
hang-up signal is sent to the controlling process (the session leader).

These characteristics are shown in Figure 9.7.

Figure 9.7. Process groups and sessions showing controlling terminal

[View full size image]

http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch09lev1sec6.html#ch09fig07
http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/images/0201433079/graphics/09fig07_alt.gif;423615

108

Usually, we don't have to worry about the controlling terminal; it is established
automatically when we log in.

POSIX.1 leaves the choice of the mechanism used to allocate a controlling terminal up
to each individual implementation. We'll show the actual steps in Section 19.4.

Systems derived from UNIX System V allocate the controlling terminal for a session
when the session leader opens the first terminal device that is not already associated
with a session. This assumes that the call to open by the session leader does not
specify the O_NOCTTY flag (Section 3.3).

BSD-based systems allocate the controlling terminal for a session when the session
leader calls ioctl with a request argument of TIOCSCTTY (the third argument is a null
pointer). The session cannot already have a controlling terminal for this call to succeed.
(Normally, this call to ioctl follows a call to setsid, which guarantees that the process is a
session leader without a controlling terminal.) The POSIX.1 O_NOCTTY flag to open is
not used by BSD-based systems, except in compatibility-mode support for other
systems.

There are times when a program wants to talk to the controlling terminal, regardless of
whether the standard input or standard output is redirected. The way a program
guarantees that it is talking to the controlling terminal is to open the file /dev/tty. This
special file is a synonym within the kernel for the controlling terminal. Naturally, if the
program doesn't have a controlling terminal, the open of this device will fail.

http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch19lev1sec4.html#ch19lev1sec4
http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch03lev1sec3.html#ch03lev1sec3

109

The classic example is the getpass(3) function, which reads a password (with terminal
echoing turned off, of course). This function is called by the crypt(1) program and can
be used in a pipeline. For example,

 crypt < salaries | lpr

decrypts the file salaries and pipes the output to the print spooler. Because crypt reads
its input file on its standard input, the standard input can't be used to enter the
password. Also, crypt is designed so that we have to enter the encryption password
each time we run the program, to prevent us from saving the password in a file (which
could be a security hole).

trapping signals

In this chapter, we will discuss in detail about Signals and Traps in Unix.

Signals are software interrupts sent to a program to indicate that an important event
has occurred. The events can vary from user requests to illegal memory access errors.
Some signals, such as the interrupt signal, indicate that a user has asked the program
to do something that is not in the usual flow of control.

The following table lists out common signals you might encounter and want to use in
your programs ī

Signal
Name

Signal
Number

Description

SIGHUP 1
Hang up detected on controlling terminal or death of controlling
process

SIGINT 2 Issued if the user sends an interrupt signal (Ctrl + C)

SIGQUIT 3 Issued if the user sends a quit signal (Ctrl + D)

SIGFPE 8 Issued if an illegal mathematical operation is attempted

SIGKILL 9 If a process gets this signal it must quit immediately and will not

110

perform any clean-up operations

SIGALRM 14 Alarm clock signal (used for timers)

SIGTERM 15 Software termination signal (sent by kill by default)

List of Signals

There is an easy way to list down all the signals supported by your system. Just issue
the kill -l command and it would display all the supported signals ī

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

The actual list of signals varies between Solaris, HP-UX, and Linux.

Default Actions

Every signal has a default action associated with it. The default action for a signal is
the action that a script or program performs when it receives a signal.

Some of the possible default actions are ī

¶ Terminate the process.

¶ Ignore the signal.

¶ Dump core. This creates a file called core containing the memory image of the
process when it received the signal.

¶ Stop the process.

111

¶ Continue a stopped process.

Sending Signals

There are several methods of delivering signals to a program or script. One of the most
common is for a user to type CONTROL-C or the INTERRUPT key while a script is
executing.

When you press the Ctrl+C key, a SIGINT is sent to the script and as per defined
default action script terminates.

The other common method for delivering signals is to use the kill command, the
syntax of which is as follows ī

$ kill -signal pid

Here signal is either the number or name of the signal to deliver and pid is the process
ID that the signal should be sent to. For Example ī

$ kill -1 1001

The above command sends the HUP or hang-up signal to the program that is running
with process ID 1001. To send a kill signal to the same process, use the following
command ī

$ kill -9 1001

This kills the process running with process ID 1001.

Trapping Signals

When you press the Ctrl+C or Break key at your terminal during execution of a shell
program, normally that program is immediately terminated, and your command prompt
returns. This may not always be desirable. For instance, you may end up leaving a
bunch of temporary files that won't get cleaned up.

Trapping these signals is quite easy, and the trap command has the following syntax ī

$ trap commands signals

Here command can be any valid Unix command, or even a user-defined function, and
signal can be a list of any number of signals you want to trap.

There are two common uses for trap in shell scripts ī

¶ Clean up temporary files

¶ Ignore signals

Cleaning Up Temporary Files

As an example of the trap command, the following shows how you can remove some
files and then exit if someone tries to abort the program from the terminal ī

112

$ trap "rm -f $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 2

From the point in the shell program that this trap is executed, the two
files work1$$ and dataout$$ will be automatically removed if signal number 2 is
received by the program.

Hence, if the user interrupts the execution of the program after this trap is executed,
you can be assured that these two files will be cleaned up. The exit command that
follows the rm is necessary because without it, the execution would continue in the
program at the point that it left off when the signal was received.

Signal number 1 is generated for hangup. Either someone intentionally hangs up the
line or the line gets accidentally disconnected.

You can modify the preceding trap to also remove the two specified files in this case by
adding signal number 1 to the list of signals ī

$ trap "rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 1 2

Now these files will be removed if the line gets hung up or if the Ctrl+C key gets
pressed.

The commands specified to trap must be enclosed in quotes, if they contain more than
one command. Also note that the shell scans the command line at the time that the
trap command gets executed and also when one of the listed signals is received.

Thus, in the preceding example, the value of WORKDIR and $$ will be substituted at
the time that the trap command is executed. If you wanted this substitution to occur at
the time that either signal 1 or 2 was received, you can put the commands inside single
quotes ī

$ trap 'rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit' 1 2

Ignoring Signals

If the command listed for trap is null, the specified signal will be ignored when received.
For example, the command ī

$ trap '' 2

This specifies that the interrupt signal is to be ignored. You might want to ignore certain
signals when performing an operation that you don't want to be interrupted. You can
specify multiple signals to be ignored as follows ī

$ trap '' 1 2 3 15

Note that the first argument must be specified for a signal to be ignored and is not
equivalent to writing the following, which has a separate meaning of its own ī

$ trap 2

If you ignore a signal, all subshells also ignore that signal. However, if you specify an
action to be taken on the receipt of a signal, all subshells will still take the default action
on receipt of that signal.

113

Resetting Traps

After you've changed the default action to be taken on receipt of a signal, you can
change it back again with the trap if you simply omit the first argument; so ī

$ trap 1 2

Arrays

Arrays are used to store a series of values in an indexed list. Items in an array are
stored and retrieved using an index. Note that Arrays are not supported by the original
Bourne Shell, but are supported by bash and other newer shells.

File Test Operators

Shell scripts often need to check various properties of files as a part of the control flow.
Unix provides a number of options for this purpose.

¶ File existence checks:

¶ -f file True if the file exists and is an ordinary file.

¶ -d file True if the file exists and is a directory.

¶ -s file True if the file exists and is not empty.

¶ -c file True if the file exists and is a character device file.

¶ -b file True if the file exists and is a block devise file.

¶ File access checks:

¶ -r file True if the file exists and has read permission to it.

¶ -w file True if the file exists and has a write permission to it.

¶ -x file True if the file exists and has a execute permission to it.

String Test Operators

Unix commands often need to test the various properties of string variables as a part of
the control flow.

Unix provides a number of options for this:

114

¶ [string1=string2] True if string1 and string2 are same.

¶ [string1!=string2] True if string1 is not equal to string2.

¶ [-n string] True if the string is not zero.

¶ [-z string] True if the string is zero.

¶ [string] True if the string is not empty.

Special Variables

While running scripts, Unix provides a number of predefined variables that can be used
to get information from the environment.

Unix also provides a number of special symbols with additional information:

¶ $# Total number of positional parameters.

¶ $@ Represents all the parameters i.e. $1 to the end.

¶ $? Pass or fail status of the last command executed.

¶ $$ Process id of the currently running shell.

¶ $! Process id of the last run background process.

Unit-3

Portability With C

Command line Argument

115

I'm trying to write a program that can compare two files line by line, word by word, or
character by character in C. It has to be able to read in command line options -l -w -i or -
-...

¶ if the option is -l it compares the files line by line.

¶ if the option is -w it compares the files word by word.

¶ if the options is -- it automatically assumes that the next arg is the first filename.

¶ if the option is -i it compares them in a case insensitive manner.

¶ defaults to comparing the files character by character.

It's not supposed to matter how many time the options are input as long as -w and -l
aren't inputted at the same time and there are no more or less than 2 files.

I don't even know where to begin with parsing the command line arguments. PLEASE
HELP :(

So this is the code that I came up with for everything. I haven't error checked it quite yet,
but I was wondering if I'm writing things in an overcomplicated manner?

/*
 * Functions to compare files.
 */
int compare_line();
int compare_word();
int compare_char();
int case_insens();

/*
 * Program to compare the information in two files and print message saying
 * whether or not this was successful.
 */
int main(int argc, char* argv[])
{
/*Loop counter*/
 size_t i = 0;

 /*Variables for functions*/
 int caseIns = 0;
 int line = 0;
 int word = 0;

 /*File pointers*/

116

 FILE *fp1, *fp2;

 /*
 * Read through command-line arguments for options.
 */
 for (i = 1; i < argc; i++) {
 printf("argv[%u] = %s\n", i, argv[i]);
 if (argv[i][0] == '-') {
 if (argv[i][1] == 'i')
 {
 caseIns = 1;
 }
 if (argv[i][1] == 'l')
 {
 line = 1;
 }
 if (argv[i][1] == 'w')
 {
 word = 1;
 }
 if (argv[i][1] == '-')
 {
 fp1 = argv[i][2];
 fp2 = argv[i][3];
 }
 else
 {
 printf("Invalid option.");
 return 2;
 }
 } else {
 fp1(argv[i]);
 fp2(argv[i][1]);
 }
 }

 /*
 * Check that files can be opened.
 */
 if(((fp1 = fopen(fp1, "rb")) == NULL) || ((fp2 = fopen(fp2, "rb")) == NULL))
 {
 perror("fopen()");
 return 3;
 }
 else{
 if (caseIns == 1)

117

 {
 if(line == 1 && word == 1)
 {
 printf("That is invalid.");
 return 2;
 }
 if(line == 1 && word == 0)
 {
 if(compare_line(case_insens(fp1, fp2)) == 0)
 return 0;
 }
 if(line == 0 && word == 1)
 {
 if(compare_word(case_insens(fp1, fp2)) == 0)
 return 0;
 }
 else
 {
 if(compare_char(case_insens(fp1,fp2)) == 0)
 return 0;
 }
 }
 else
 {
 if(line == 1 && word == 1)
 {
 printf("That is invalid.");
 return 2;
 }
 if(line == 1 && word == 0)
 {
 if(compare_line(fp1, fp2) == 0)
 return 0;
 }
 if(line == 0 && word == 1)
 {
 if(compare_word(fp1, fp2) == 0)
 return 0;
 }
 else
 {
 if(compare_char(fp1, fp2) == 0)
 return 0;
 }
 }

118

 }
 return 1;
 if(((fp1 = fclose(fp1)) == NULL) || (((fp2 = fclose(fp2)) == NULL)))
 {
 perror("fclose()");
 return 3;
 }
 else
 {
 fp1 = fclose(fp1);
 fp2 = fclose(fp2);
 }
}

/*
 * Function to compare two files line-by-line.
 */
int compare_line(FILE *fp1, FILE *fp2)
{
 /*Buffer variables to store the lines in the file*/
 char buff1 [LINESIZE];
 char buff2 [LINESIZE];

 /*Check that neither is the end of file*/
 while((!feof(fp1)) && (!feof(fp2)))
 {
 /*Go through files line by line*/
 fgets(buff1, LINESIZE, fp1);
 fgets(buff2, LINESIZE, fp2);
 }
 /*Compare files line by line*/
 if(strcmp(buff1, buff2) == 0)
 {
 printf("Files are equal.\n");
 return 0;
 }
 printf("Files are not equal.\n");
 return 1;
}

/*
 * Function to compare two files word-by-word.
 */
int compare_word(FILE *fp1, FILE *fp2)
{
 /*File pointers*/

119

 FILE *fp1, *fp2;

 /*Arrays to store words*/
 char fp1words[LINESIZE];
 char fp2words[LINESIZE];

 if(strtok(fp1, " ") == NULL || strtok(fp2, " ") == NULL)
 {
 printf("File is empty. Cannot compare.\n");
 return 0;
 }
 else
 {
 fp1words = strtok(fp1, " ");
 fp2words = strtok(fp2, " ");

 if(fp1words == fp2words)
 {
 fputs(fp1words);
 fputs(fp2words);
 printf("Files are equal.\n");
 return 0;
 }
 }
 return 1;
}

/*
 * Function to compare two files character by character.
 */
int compare_char(FILE *fp1,FILE *fp2)
{
 /*Variables to store the characters from both files*/
 int c;
 int d;

 /*Buffer variables to store chars*/
 char buff1 [LINESIZE];
 char buff2 [LINESIZE];

 while(((c = fgetc(fp1))!= EOF) && (((d = fgetc(fp2))!=EOF)))
 {
 if(c == d)
 {
 if((fscanf(fp1, "%c", buff1)) == (fscanf(fp2, "%c", buff2)))
 {

120

Background processes

A background process is a computer process that runs behind the scenes (i.e., in the

background) and without user intervention.[1] Typical tasks for these processes include

logging, system monitoring, scheduling,[2] and user notification.[3] The background

process usually is a child process created by a control process for processing a

computing task. After creation, the child process will run on its own, performing the task

independent of the control process, freeing the control process of performing that

task.[citation needed]

On a Windows system, a background process is either a computer program that does

not create a user interface, or a Windows service. The former are started just as any

other program is started, e.g., via Start menu. Windows services, on the other hand, are

started by Service Control Manager. In Windows Vista and later, they are run in a

separate session. There is no limit to how much a system service or background

process can use system resources. Indeed, in the Windows Server family of Microsoft

operating systems, background processes are expected to be the principal consumers

of system resources.[citation needed]

On a Unix or Unix-like system, a background process or job can be further identified as

one whose process group ID differs from its terminal group ID (TGID). (The TGID of a

process is the process ID of the process group leader that opened the terminal, which is

typically the login shell. The TGID identifies the control terminal of the process group.)

This type of process is unable to receive keyboard signals from its parent terminal, and

typically will not send output to that terminal.[4] This more technical definition does not

distinguish between whether or not the process can receive user intervention. Although

background processes are typically used for purposes needing few resources, any

process can be run in the background, and such a process will behave like any other

process, with the exceptions given above.

Windows services

In Windows NT family of operating systems, a Windows service is a dedicated

background process.[5] A Windows service must conform to the interface rules and

protocols of the Service Control Manager, the component responsible for managing

Windows services.[6]

Windows services can be configured to start when the operating system starts, and to

run in the background as long as Windows runs. Alternatively, they can be started

manually or by an event. Windows NT operating systems include numerous

services which run in context of three user accounts: System, Network

https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Background_process#cite_note-tlt-1
https://en.wikipedia.org/wiki/Background_process#cite_note-2
https://en.wikipedia.org/wiki/Background_process#cite_note-ios-3
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Windows_service
https://en.wikipedia.org/wiki/Start_menu
https://en.wikipedia.org/wiki/Service_Control_Manager
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Service_Hardening
https://en.wikipedia.org/wiki/Windows_Service_Hardening
https://en.wikipedia.org/wiki/Windows_Server
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Process_group
https://en.wikipedia.org/wiki/Background_process#cite_note-bash-4
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Background_process#cite_note-Services_snap-in-5
https://en.wikipedia.org/wiki/Service_Control_Manager
https://en.wikipedia.org/wiki/Background_process#cite_note-Service_MSDN-6
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_components#Services
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_components#Services
https://en.wikipedia.org/wiki/User_account

121

Service and Local Service. These Windows components are often associated with Host

Process for Windows Services: svchost.exe. Since Windows services operate in the

context of their own dedicated user accounts, they can operate when a user is not

logged on.

Before Windows Vista, services installed as "interactive services" could interact with

Windows desktop and show a graphical user interface. With Windows Vista, however,

interactive services became deprecated and ceased operating properly, as a result

of Windows Service Hardening.[7][8]

The three principal means of managing Windows services are:

¶ Services snap-in for Microsoft Management Console

¶ sc.exe

¶ Windows PowerShell

process synchronization

On the basis of synchronization, processes are categorized as one of the following two
types:

¶ Independent Process : Execution of one process does not affects the execution
of other processes.

¶ Cooperative Process : Execution of one process affects the execution of other
processes.

Process synchronization problem arises in the case of Cooperative process also because
resources are shared in Cooperative processes.

Race Condition

When more than one processes are executing the same code or accessing the same
memory or any shared variable in that condition there is a possibility that the output or the
value of the shared variable is wrong so for that all the processes doing the race to say
that my output is correct this condition known as a race condition. Several processes
access and process the manipulations over the same data concurrently, then the
outcome depends on the particular order in which the access takes place.
A race condition is a situation that may occur inside a critical section. This happens when
the result of multiple thread execution in the critical section differs according to the order
in which the threads execute.

Race conditions in critical sections can be avoided if the critical section is treated as an
atomic instruction. Also, proper thread synchronization using locks or atomic variables

https://en.wikipedia.org/wiki/Svchost.exe
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Desktop_metaphor
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Deprecated
https://en.wikipedia.org/wiki/Windows_Service_Hardening
https://en.wikipedia.org/wiki/Background_process#cite_note-7
https://en.wikipedia.org/wiki/Background_process#cite_note-7
https://en.wikipedia.org/wiki/Microsoft_Management_Console
https://en.wikipedia.org/wiki/Windows_PowerShell

122

can prevent race conditions.

Critical Section Problem

Critical section is a code segment that can be accessed by only one process at a time.
Critical section contains shared variables which need to be synchronized to maintain
consistency of data variables.

In the entry section, the process requests for entry in the Critical Section.

Any solution to the critical section problem must satisfy three requirements:

¶ Mutual Exclusion : If a process is executing in its critical section, then no other
process is allowed to execute in the critical section.

¶ Progress : If no process is executing in the critical section and other processes
are waiting outside the critical section, then only those processes that are not
executing in their remainder section can participate in deciding which will enter in
the critical section next, and the selection can not be postponed indefinitely.

123

¶ Bounded Waiting : A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted.

Petersonôs Solution

Petersonôs Solution is a classical software based solution to the critical section problem.
In Petersonôs solution, we have two shared variables:

¶ boolean flag[i] :Initialized to FALSE, initially no one is interested in entering the
critical section

¶ int turn : The process whose turn is to enter the critical section.

Petersonôs Solution preserves all three conditions :

¶ Mutual Exclusion is assured as only one process can access the critical section at
any time.

¶ Progress is also assured, as a process outside the critical section does not block
other processes from entering the critical section.

124

¶ Bounded Waiting is preserved as every process gets a fair chance.

Disadvantages of Petersonôs Solution

¶ It involves Busy waiting

¶ It is limited to 2 processes.

TestAndSet

TestAndSet is a hardware solution to the synchronization problem. In TestAndSet, we
have a shared lock variable which can take either of the two values, 0 or 1.

0 Unlock

1 Lock

Before entering into the critical section, a process inquires about the lock. If it is locked, it
keeps on waiting until it becomes free and if it is not locked, it takes the lock and executes
the critical section.

In TestAndSet, Mutual exclusion and progress are preserved but bounded waiting cannot
be preserved.

Question : The enter_CS() and leave_CS() functions to implement critical section of a
process are realized using test-and-set instruction as follows:

int TestAndSet(int &lock) {

 int initial = lock;

 lock = 1;

 return initial;

}

void enter_CS(X)

{

 while test-and-set(X) ;

}

void leave_CS(X)

{

125

 X = 0;

}

In the above solution, X is a memory location associated with the CS and is initialized to
0. Now, consider the following statements:

I. The above solution to CS problem is deadlock-free

II. The solution is starvation free.

III. The processes enter CS in FIFO order.

IV. More than one process can enter CS at the same time.

Which of the above statements is TRUE?

(A) I

(B) II and III

(C) II and IV

(D) IV

Click here for the Solution.

 true

Semaphores

A semaphore is a signaling mechanism and a thread that is waiting on a semaphore can
be signaled by another thread. This is different than a mutex as the mutex can be
signaled only by the thread that called the wait function.

A semaphore uses two atomic operations, wait and signal for process synchronization.
A Semaphore is an integer variable, which can be accessed only through two
operations wait() and signal().

There are two types of semaphores: Binary Semaphores and Counting Semaphores
¶ Binary Semaphores: They can only be either 0 or 1. They are also known as mutex

locks, as the locks can provide mutual exclusion. All the processes can share the
same mutex semaphore that is initialized to 1. Then, a process has to wait until the
lock becomes 0. Then, the process can make the mutex semaphore 1 and start its
critical section. When it completes its critical section, it can reset the value of
mutex semaphore to 0 and some other process can enter its critical section.

http://quiz.geeksforgeeks.org/gate-gate-cs-2009-question-33/

126

¶ Counting Semaphores: They can have any value and are not restricted over a
certain domain. They can be used to control access to a resource that has a
limitation on the number of simultaneous accesses. The semaphore can be
initialized to the number of instances of the resource. Whenever a process wants
to use that resource, it checks if the number of remaining instances is more than
zero, i.e., the process has an instance available. Then, the process can enter its
critical section thereby decreasing the value of the counting semaphore by 1. After
the process is over with the use of the instance of the resource, it can leave the
critical section thereby adding 1 to the number of available instances of the
resource.

Sharing of data

All your files on the UNIX file store are private files, that is, unless you particularly

request it, no one has access to your files. If you wish to share a file with someone else,

you must specifically change the protections associated with that file to allow that

person access.

You can copy a file from another user if the file protection has been changed by the

owner to give you read access permission. You will need to include a pathname

(absolute or relative) to the file. For example, to copy the file called data belonging to a

user xyz5 into your current working directory.

Type: cp /disk/a/xyx5/data .

Checking File Protections

To see a long listing of your files showing the file type and the protections currently set

for the three classes of users that UNIX recognises:

Type: ls -l

The first field of the listing is a 10-character field which can be broken into four parts: a

single character and three 3-character fields similar to this:

Type: -rwx------

The first character indicates the file type and can be one of the following:

- signifies that this is a normal file

127

d signifies that this file is a directory

b block device - such as a disk

c character device - such as a terminal

p print spooler

s socket

The next three 3-character fields are associated with the different classes of users that

the UNIX system recognises. The first 3-character field is you, the owner, or user [u], of

the file; the second field is associated with people who are in the same group [g] as you;

and the final field is all other [o] users. NOTE: As far as UNIX is concerned users fall

into only one of the above classes - other users are every user except you and your

group members.

The settings associated with these fields on the example shown above are:

user rwx

group ---

other ---

where rwx indicates the following access permissions:

r read

w write

x execute

Changing Protections On A File

To change the protections on a file, or directory:

Type: chmod permissions filename

or

Type: chmod [ugo][+-=]rwx] filename

Where ugo are abbreviations for the following classes:

128

u user

g group

o other users

and

+ adds a permission to those that may already be set

- removes a permission from those already set

= resets the permission to that specified

For example, suppose you want to share a file called fred with a user that is not in your

group. To change the protection on this file to allow access to the other user:

Type: chmod o+r fred

Here the [o]ther users field has had the [r]ead protection added [+]. After the other user

has finished with your file to remove the access permission:

Type: chmod o-r fred

Several fields can be set in one go:

Type: chmod ug+w test

Here the user and all group members can write to the file called test.

The + and - actions shown above only affect the indicated fields, i.e. read permission is

added and removed. If other permissions are set they are not affected by the + and -

 operations.

A new set of permissions can be set on a file wiping out all previously set values by

using the = operator. To do this:

Type: chmod ugo+r demo

This example clears any previously set permissions on the file called demo and sets

read only permission for all classes of users.

129

Another Use Of chmod

Computer programmers prefer to think in terms of numbers rather than letters and UNIX

programmers are no exception. Consider one of the above classes of users, for

example the group. They can have three types of access to one of your files (read, write

and/or execute) which can either be switched on or off. If the access permission is

switched on then that counts as binary 1; if the access permission is switched off then

that counts as binary 0.

If we applied this to all classes of users then the fields showing a file's permission status

might look like this:

-rwxr--r--

0111100100

where, beside the user, group members and other users also have read permission to

this file.

This type of binary number can be represented in octal format. Again this 10 digit

number is divided into four fields (from the right): three 3-digit fields and a single digit

field. Consider one of these 3-digit fields and the various protections/permissions that

can be set and their associated binary numbers:

Permission
Binary

number

Octal

number

r-- 100 4

-w- 010 2

--x 001 1

rw- 110 6

r-x 101 5

-wx 011 3

rwx 111 7

For each of the 3-digit fields we can add up the binary numbers as shown above and we

end up with an octal number which represents the required protection on the file. For

example

Type: chmod 744 fileabc

130

This command would set read, write, execute [rwx] permission for the user and read

permission for the group and other users on the file called fileabc .

The umask Command

The umask command controls the type of protection that a UNIX file, or directory, is

given when it is created.

By default, all UNIX files, except directories and executable binary programs, are

created with the file protection 666 (see above) which gives read and write permission

to every user. The exceptions are created with file permission 777 which also gives

execute permission to everyone. The umask command defines which of these

permission bits are not to be set when a file is created.

To see the current setting for umask:

Type: umask

Response: 007

To alter this value:

Type: umask new_value

For example:

Type: umask 022

Any file created after this command is issued has the protection code 644 set.

By default, UNIX creates a new directory with protection code 777 set, i.e. everyone has

read, write and execute permission to your account. The umask command also controls

the protections given to a directory when it is created.

The default value of umask on the irix system is 077 . Files and directories will have this

value masked from their default values (666 and 777, respectively) when they are

created. This gives your files protection code of 600, so that all files created by you can,

by default, only be accessed by you and gives directories a protection code of 700,

allowing only you the right to have access to your information.

131

Userid

login is used when signing onto a system. It can also be used to switch from one user

to another at any time (most modern shells have support for this feature built into them,

however).

If an argument is not given, login prompts for the username.

If the user is not root, and if /etc/nologin exists, the contents of this file are printed to
the screen, and the login is terminated. This is typically used to prevent logins when
the system is being taken down.

If special access restrictions are specified for the user in /etc/usertty, these must be
met, or the log in attempt will be denied and a syslog message will be generated. See
the section on "Special Access Restrictions".

If the user is root, then the login must be occurring on a tty listed in /etc/securetty.
Failures will be logged with the syslog facility.

After these conditions have been checked, the password will be requested and
checked (if a password is required for this username). Ten attempts are allowed
before login dies, but after the first three, the response starts to get very slow. Login
failures are reported via the syslog facility. This facility is also used to report any
successful root logins.

If the file .hushlogin exists, then a "quiet" login is performed (this disables the checking
of mail and the printing of the last login time and message of the day). Otherwise,
if /var/log/lastlog exists, the last login time is printed (and the current login is recorded).

Random administrative things, such as setting the UID and GID of the tty are
performed. The TERM environment variable is preserved, if it exists (other environment
variables are preserved if the -p option is used). Then the HOME, PATH, SHELL,
TERM, MAIL, and LOGNAME environment variables are set. PATH defaults
to /usr/local/bin:/bin:/usr/bin for normal users, and
to /usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin for root. Last, if this is not a
"quiet" login, the message of the day is printed and the file with the userôs name
in /var/spool/mail will be checked, and a message printed if it has non-zero length.

The userôs shell is then started. If no shell is specified for the user in /etc/passwd,
then /bin/sh is used. If there is no directory specified in /etc/passwd, then / is used (the
home directory is checked for the .hushlogin file described above).

OPTIONS

Tag Description

-p Used by getty(8) to tell login not to destroy the environment

132

-f Used to skip a second login authentication. This specifically

does not work for root, and does not appear to work well

under Linux.

-h Used by other servers (i.e., telnetd(8)) to pass the name of

the remote host to login so that it may be placed in utmp and

wtmp. Only the superuser may use this option.

SPECIAL ACCESS RESTRICTIONS

The file /etc/securetty lists the names of the ttys where root is allowed to log in. One

name of a tty device without the /dev/ prefix must be specified on each line. If the file

does not exist, root is allowed to log in on any tty.

On most modern Linux systems PAM (Pluggable Authentication Modules) is used. On
systems that do not use PAM, the file /etc/usertty specifies additional access
restrictions for specific users. If this file does not exist, no additional access restrictions
are imposed. The file consists of a sequence of sections. There are three possible
section types: CLASSES, GROUPS and USERS. A CLASSES section defines classes
of ttys and hostname patterns, A GROUPS section defines allowed ttys and hosts on a
per group basis, and a USERS section defines allowed ttys and hosts on a per user
basis.

Each line in this file in may be no longer than 255 characters. Comments start with #
character and extend to the end of the line.

The CLASSES Section

A CLASSES section begins with the word CLASSES at the start of a line in all upper

case. Each following line until the start of a new section or the end of the file consists of

a sequence of words separated by tabs or spaces. Each line defines a class of ttys and

host patterns.

The word at the beginning of a line becomes defined as a collective name for the ttys
and host patterns specified at the rest of the line. This collective name can be used in
any subsequent GROUPS or USERS section. No such class name must occur as part
of the definition of a class in order to avoid problems with recursive classes.

An example CLASSES section:

CLASSES
myclass1 tty1 tty2

133

myclass2 tty3 @.foo.com

This defines the classes myclass1 and myclass2 as the corresponding right hand
sides.

The GROUPS Section

A GROUPS section defines allowed ttys and hosts on a per Unix group basis. If a user

is a member of a Unix group according to /etc/passwd and /etc/group and such a group

is mentioned in a GROUPS section in /etc/usertty then the user is granted access if the

group is.

A GROUPS section starts with the word GROUPS in all upper case at the start of a
line, and each following line is a sequence of words separated by spaces or tabs. The
first word on a line is the name of the group and the rest of the words on the line
specifies the ttys and hosts where members of that group are allowed access. These
specifications may involve the use of classes defined in previous CLASSES sections.

An example GROUPS section.

GROUPS
sys tty1 @.bar.edu
stud myclass1 tty4

This example specifies that members of group sys may log in on tty1 and from hosts in
the bar.edu domain. Users in group stud may log in from hosts/ttys specified in the
class myclass1 or from tty4.

The USERS Section

A USERS section starts with the word USERS in all upper case at the start of a line,

and each following line is a sequence of words separated by spaces or tabs. The first

word on a line is a username and that user is allowed to log in on the ttys and from the

hosts mentioned on the rest of the line. These specifications may involve classes

defined in previous CLASSES sections. If no section header is specified at the top of

the file, the first section defaults to be a USERS section.

An example USERS section:

USERS
zacho tty1 @130.225.16.0/255.255.255.0
blue tty3 myclass2

134

This lets the user zacho login only on tty1 and from hosts with IP addreses in the range
130.225.16.0 - 130.225.16.255, and user blue is allowed to log in from tty3 and
whatever is specified in the class myclass2.

There may be a line in a USERS section starting with a username of *. This is a default
rule and it will be applied to any user not matching any other line.

If both a USERS line and GROUPS line match a user then the user is allowed access
from the union of all the ttys/hosts mentioned in these specifications.

Origins

The tty and host pattern specifications used in the specification of classes, group and

user access are called origins. An origin string may have one of these formats:

Tag Description

o The name of a tty device without the /dev/ prefix, for example

tty1 or ttyS0.

o The string @localhost, meaning that the user is allowed to

telnet/rlogin from the local host to the same host. This also

allows the user to for example run the command: xterm -e

/bin/login.

o A domain name suffix such as @.some.dom, meaning that

the user may rlogin/telnet from any host whose domain name

has the suffix .some.dom.

o A range of IPv4 addresses, written @x.x.x.x/y.y.y.y where

x.x.x.x is the IP address in the usual dotted quad decimal

notation, and y.y.y.y is a bitmask in the same notation

specifying which bits in the address to compare with the IP

address of the remote host. For example

@130.225.16.0/255.255.254.0 means that the user may

rlogin/telnet from any host whose IP address is in the range

130.225.16.0 - 130.225.17.255.

Any of the above origins may be prefixed by a time specification according to the

syntax:

135

timespec ::= ô[ô <day-or-hour> [ô:ô <day-or-hour>]* ô]ô
day ::= ômonô | ôtueô | ôwedô | ôthuô | ôfriô | ôsatô | ôsunô
hour ::= ô0ô | ô1ô | ... | ô23ô
hourspec ::= <hour> | <hour> ô-ô <hour>
day-or-hour ::= <day> | <hourspec>

For example, the origin [mon:tue:wed:thu:fri:8-17]tty3 means that log in is allowed on
mondays through fridays between 8:00 and 17:59 (5:59 pm) on tty3. This also shows
that an hour range a-b includes all moments between a:00 and b:59. A single hour
specification (such as 10) means the time span between 10:00 and 10:59.

Not specifying any time prefix for a tty or host means log in from that origin is allowed
any time. If you give a time prefix be sure to specify both a set of days and one or more
hours or hour ranges. A time specification may not include any white space.

If no default rule is given then users not matching any line /etc/usertty are allowed to
log in from anywhere as is standard behavior.

FILES

/var/run/utmp
/var/log/wtmp
/var/log/lastlog
/var/spool/mail/*
/etc/motd
/etc/passwd
/etc/nologin
/etc/usertty
.hushlogin

group-id

In Unix-like systems, multiple users can be put into groups. POSIX and

conventional Unix file system permissions are organized into three classes, user, group,

and others. The use of groups allows additional abilities to be delegated in an organized

fashion, such as access to disks, printers, and other peripherals. This method, among

others, also enables the superuser to delegate some administrative tasks to normal

users, similar to the Administrators group on Microsoft Windows NT and its derivatives.

A group identifier, often abbreviated to GID, is a numeric value used to represent a

specific group.[1] The range of values for a GID varies amongst different systems; at the

very least, a GID can be between 0 and 32,767, with one restriction: the login group for

the superuser must have GID 0. This numeric value is used to refer to groups in

the /etc/passwd and /etc/group files or their equivalents. Shadow password files

https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Group_(computing)
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/File_system_permissions
https://en.wikipedia.org/wiki/Computer_printer
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Superuser
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Group_identifier#cite_note-1
https://en.wikipedia.org/wiki/etc/passwd
https://en.wikipedia.org/wiki/Shadow_passwords

136

and Network Information Service also refer to numeric GIDs. The group identifier is a

necessary component of Unix file systems and processes.

Supplementary groups

In Unix systems, every user must be a member of at least one group, the primary group,

which is identified by the numeric GID of the user's entry in the passwd database, which

can be viewed with the command getent passwd (usually stored

in /etc/passwd or LDAP). This group is referred to as the primary group ID. A user may

be listed as member of additional groups in the relevant entries in the group database,

which can be viewed with getent group (usually stored in /etc/group or LDAP); the IDs of

these groups are referred to as supplementary group IDs.

Pipes

A series of filter commands can be piped together using the pipe symbol: ó|ô. When two

commands are piped together, the stdin of the second program is read from the stdout

of the first program. This creates a powerful mechanism for running complex commands

quickly.

Command

sort: this command is used to sort the contents of the file. This command is

also useful to merge the sorted files and store the result in some file. The

contents of the original file remain unaltered.

Common

Syntax:

sort[OPTION]é[FILE]

Example1: sort file1

This command will sort the contents of file1

Example2: sort -o output_file file1 file2

This will sort the contents of file1 and file2 and save the result in output_file

file.

Command

cut ï this command is used to cut a given number of characters or columns

from a file. For cutting a certain number of columns it is important to specify

the delimiter. A delimiter specifies how the columns are separated in a text

file e.g. number of spaces, tabs or other special characters.

https://en.wikipedia.org/wiki/Network_Information_Service
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/LDAP
https://en.wikipedia.org/wiki/LDAP

137

Command

sort: this command is used to sort the contents of the file. This command is

also useful to merge the sorted files and store the result in some file. The

contents of the original file remain unaltered.

Common

Syntax:

cut OPTION é[FILE]

Example 1 cut -c 5-10 file1

It will cut 5 to 10 characters from each line of file1

Example 2 cut -d ñ,ñ -f2,6 file1

This will cut 2nd and 6th fields from file1, where the fields are separated by

delimiter ñ,ò

This will cut 2nd and 6th fields from file1, where the fields are separated by the

delimiter ñ,ò.

Let us now see an Example of using pipes to print out a sorted list of unique words. If

file1 has a list of words in a random order with random repetitions, then the following

piping can be used to achieve this.

$ sort file1 | uniq > file2

Here, the sort command reads input from the file ófile1ô and sends the output to stdout.

The pipe symbol causes the output of the sort command to be redirected to the input of

the uniq command. The uniq commands reads the sorted list from its stdin and prints

the unique words from there to its stdout.

Finally, the output redirection symbol ó>ô redirects the stdout of the uniq command to the

file ófile2ô.

Fifos

It's hard to write a bash script of much import without using a pipe or two. Named pipes,
on the other hand, are much rarer.

Like un-named/anonymous pipes, named pipes provide a form of IPC (Inter-Process
Communication). With anonymous pipes, there's one reader and one writer, but that's
not required with named pipesðany number of readers and writers may use the pipe.

138

Named pipes are visible in the filesystem and can be read and written just as other files
are:

$ ls -la /tmp/testpipe

prw-r--r-- 1 mitch users 0 2009-03-25 12:06 /tmp/testpipe|

Why might you want to use a named pipe in a shell script? One situation might be when
you've got a backup script that runs via cron, and after it's finished, you want to shut
down your system. If you do the shutdown from the backup script, cron never sees the
backup script finish, so it never sends out the e-mail containing the output from the
backup job. You could do the shutdown via another cron job after the backup is
"supposed" to finish, but then you run the risk of shutting down too early every now and
then, or you have to make the delay much larger than it needs to be most of the time.

Using a named pipe, you can start the backup and the shutdown cron jobs at the same
time and have the shutdown just wait till the backup writes to the named pipe. When the
shutdown job reads something from the pipe, it then pauses for a few minutes so the
cron e-mail can go out, and then it shuts down the system.

Of course, the previous example probably could be done fairly reliably by simply
creating a regular file to signal when the backup has completed. A more complex
example might be if you have a backup that wakes up every hour or so and reads a
named pipe to see if it should run. You then could write something to the pipe each time
you've made a lot of changes to the files you want to back up. You might even write the
names of the files that you want backed up to the pipe so the backup doesn't have to
check everything.

Named pipes are created via mkfifo or mknod:

$ mkfifo /tmp/testpipe

$ mknod /tmp/testpipe p

The following shell script reads from a pipe. It first creates the pipe if it doesn't exist,
then it reads in a loop till it sees "quit":

#!/bin/bash

pipe=/tmp/testpipe

trap"rm -f $pipe" EXIT

139

if[[! -p $pipe]]; then

mkfifo $pipe

fi

while true

do

 if read line <$pipe; then

 if[["$line"=='quit']]; then

break

fi

echo$line

fi

done

echo"Reader exiting"

The following shell script writes to the pipe created by the read script. First, it checks to
make sure the pipe exists, then it writes to the pipe. If an argument is given to the script,
it writes it to the pipe; otherwise, it writes "Hello from PID".

#!/bin/bash

pipe=/tmp/testpipe

if[[! -p $pipe]]; then

echo"Reader not running"

140

exit 1

fi

if[["$1"]]; then

echo"$1">$pipe

else

echo"Hello from $$">$pipe

fi

Running the scripts produces:

$ sh rpipe.sh &

[3] 23842

$ sh wpipe.sh

Hello from 23846

$ sh wpipe.sh

Hello from 23847

$ sh wpipe.sh

Hello from 23848

$ sh wpipe.sh quit

Reader exiting

Note: initially I had the read command in the read script directly in the while loop of the
read script, but the read command would usually return a non-zero status after two or
three reads causing the loop to terminate.

while read line <$pipe

do

141

 if[["$line"=='quit']]; then

break

fi

echo$line

done

message queues

Why do we need message queues when we already have the shared memory? It
would be for multiple reasons, let us try to break this into multiple points for
simplification ī

¶ As understood, once the message is received by a process it would be no longer
available for any other process. Whereas in shared memory, the data is
available for multiple processes to access.

¶ If we want to communicate with small message formats.

¶ Shared memory data need to be protected with synchronization when multiple
processes communicating at the same time.

¶ Frequency of writing and reading using the shared memory is high, then it would
be very complex to implement the functionality. Not worth with regard to
utilization in this kind of cases.

¶ What if all the processes do not need to access the shared memory but very few
processes only need it, it would be better to implement with message queues.

¶ If we want to communicate with different data packets, say process A is sending
message type 1 to process B, message type 10 to process C, and message
type 20 to process D. In this case, it is simplier to implement with message
queues. To simplify the given message type as 1, 10, 20, it can be either 0 or
+ve or ïve as discussed below.

¶ Ofcourse, the order of message queue is FIFO (First In First Out). The first
message inserted in the queue is the first one to be retrieved.

Using Shared Memory or Message Queues depends on the need of the application
and how effectively it can be utilized.

Communication using message queues can happen in the following ways ī

¶ Writing into the shared memory by one process and reading from the shared
memory by another process. As we are aware, reading can be done with
multiple processes as well.

142

¶ Writing into the shared memory by one process with different data packets and
reading from it by multiple processes, i.e., as per message type.

Having seen certain information on message queues, now it is time to check for the
system call (System V) which supports the message queues.

To perform communication using message queues, following are the steps ī

Step 1 ī Create a message queue or connect to an already existing message queue
(msgget())

Step 2 ī Write into message queue (msgsnd())

143

Step 3 ī Read from the message queue (msgrcv())

Step 4 ī Perform control operations on the message queue (msgctl())

Now, let us check the syntax and certain information on the above calls.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key, int msgflg)

This system call creates or allocates a System V message queue. Following
arguments need to be passed ī

¶ The first argument, key, recognizes the message queue. The key can be either
an arbitrary value or one that can be derived from the library function ftok().

¶ The second argument, shmflg, specifies the required message queue flag/s such
as IPC_CREAT (creating message queue if not exists) or IPC_EXCL (Used with
IPC_CREAT to create the message queue and the call fails, if the message
queue already exists). Need to pass the permissions as well.

Note ī Refer earlier sections for details on permissions.

This call would return a valid message queue identifier (used for further calls of
message queue) on success and -1 in case of failure. To know the cause of failure,
check with errno variable or perror() function.

Various errors with respect to this call are EACCESS (permission denied), EEXIST
(queue already exists canôt create), ENOENT (queue doesnôt exist), ENOMEM (not
enough memory to create the queue), etc.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msgid, const void *msgp, size_t msgsz, int msgflg)

This system call sends/appends a message into the message queue (System V).
Following arguments need to be passed ī

¶ The first argument, msgid, recognizes the message queue i.e., message queue
identifier. The identifier value is received upon the success of msgget()

¶ The second argument, msgp, is the pointer to the message, sent to the caller,
defined in the structure of the following form ī

struct msgbuf {
 long mtype;
 char mtext[1];
};

144

The variable mtype is used for communicating with different message types, explained
in detail in msgrcv() call. The variable mtext is an array or other structure whose size is
specified by msgsz (positive value). If the mtext field is not mentioned, then it is
considered as zero size message, which is permitted.

¶ The third argument, msgsz, is the size of message (the message should end
with a null character)

¶ The fourth argument, msgflg, indicates certain flags such as IPC_NOWAIT
(returns immediately when no message is found in queue or MSG_NOERROR
(truncates message text, if more than msgsz bytes)

This call would return 0 on success and -1 in case of failure. To know the cause of
failure, check with errno variable or perror() function.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv(int msgid, const void *msgp, size_t msgsz, long msgtype, int msgflg)

This system call retrieves the message from the message queue (System V). Following
arguments need to be passed ī

¶ The first argument, msgid, recognizes the message queue i.e., the message
queue identifier. The identifier value is received upon the success of msgget()

¶ The second argument, msgp, is the pointer of the message received from the
caller. It is defined in the structure of the following form ī

struct msgbuf {
 long mtype;
 char mtext[1];
};

The variable mtype is used for communicating with different message types. The
variable mtext is an array or other structure whose size is specified by msgsz (positive
value). If the mtext field is not mentioned, then it is considered as zero size message,
which is permitted.

¶ The third argument, msgsz, is the size of the message received (message
should end with a null character)

¶ The fouth argument, msgtype, indicates the type of message ī

o If msgtype is 0 ī Reads the first received message in the queue

o If msgtype is +ve ī Reads the first message in the queue of type
msgtype (if msgtype is 10, then reads only the first message of type 10
even though other types may be in the queue at the beginning)

145

o If msgtype is ïve ī Reads the first message of lowest type less than or
equal to the absolute value of message type (say, if msgtype is -5, then it
reads first message of type less than 5 i.e., message type from 1 to 5)

¶ The fifth argument, msgflg, indicates certain flags such as IPC_NOWAIT (returns
immediately when no message is found in the queue or MSG_NOERROR
(truncates the message text if more than msgsz bytes)

This call would return the number of bytes actually received in mtext array on success
and -1 in case of failure. To know the cause of failure, check with errno variable or
perror() function.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msgid, int cmd, struct msqid_ds *buf)

This system call performs control operations of the message queue (System V).
Following arguments need to be passed ī

¶ The first argument, msgid, recognizes the message queue i.e., the message
queue identifier. The identifier value is received upon the success of msgget()

¶ The second argument, cmd, is the command to perform the required control
operation on the message queue. Valid values for cmd are ī

IPC_STAT ī Copies information of the current values of each member of struct
msqid_ds to the passed structure pointed by buf. This command requires read
permission on the message queue.

IPC_SET ī Sets the user ID, group ID of the owner, permissions etc pointed to by
structure buf.

IPC_RMID ī Removes the message queue immediately.

IPC_INFO ī Returns information about the message queue limits and parameters in
the structure pointed by buf, which is of type struct msginfo

MSG_INFO ī Returns an msginfo structure containing information about the
consumed system resources by the message queue.

¶ The third argument, buf, is a pointer to the message queue structure named
struct msqid_ds. The values of this structure would be used for either set or get
as per cmd.

This call would return the value depending on the passed command. Success of
IPC_INFO and MSG_INFO or MSG_STAT returns the index or identifier of the
message queue or 0 for other operations and -1 in case of failure. To know the cause
of failure, check with errno variable or perror() function.

Having seen the basic information and system calls with regard to message queues,
now it is time to check with a program.

146

Let us see the description before looking at the program ī

Step 1 ī Create two processes, one is for sending into message queue (msgq_send.c)
and another is for retrieving from the message queue (msgq_recv.c)

Step 2 ī Creating the key, using ftok() function. For this, initially file msgq.txt is created
to get a unique key.

Step 3 ī The sending process performs the following.

¶ Reads the string input from the user

¶ Removes the new line, if it exists

¶ Sends into message queue

¶ Repeats the process until the end of input (CTRL + D)

¶ Once the end of input is received, sends the message ñendò to signify the end of
the process

Step 4 ī In the receiving process, performs the following.

¶ Reads the message from the queue

¶ Displays the output

¶ If the received message is ñendò, finishes the process and exits

To simplify, we are not using the message type for this sample. Also, one process is
writing into the queue and another process is reading from the queue. This can be
extended as needed i.e., ideally one process would write into the queue and multiple
processes read from the queue.

Now, let us check the process (message sending into queue) ï File: msgq_send.c

/* Filename: msgq_send.c */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define PERMS 0644
struct my_msgbuf {
 long mtype;
 char mtext[200];
};

int main(void) {
 struct my_msgbuf buf;

147

 int msqid;
 int len;
 key_t key;
 system("touch msgq.txt");

 if ((key = ftok("msgq.txt", 'B')) == -1) {
 perror("ftok");
 exit(1);
 }

 if ((msqid = msgget(key, PERMS | IPC_CREAT)) == -1) {
 perror("msgget");
 exit(1);
 }
 printf("message queue: ready to send messages.\n");
 printf("Enter lines of text, ^D to quit:\n");
 buf.mtype = 1; /* we don't really care in this case */

 while(fgets(buf.mtext, sizeof buf.mtext, stdin) != NULL) {
 len = strlen(buf.mtext);
 /* remove newline at end, if it exists */
 if (buf.mtext[len-1] == '\n') buf.mtext[len-1] = '\0';
 if (msgsnd(msqid, &buf, len+1, 0) == -1) /* +1 for '\0' */
 perror("msgsnd");
 }
 strcpy(buf.mtext, "end");
 len = strlen(buf.mtext);
 if (msgsnd(msqid, &buf, len+1, 0) == -1) /* +1 for '\0' */
 perror("msgsnd");

 if (msgctl(msqid, IPC_RMID, NULL) == -1) {
 perror("msgctl");
 exit(1);
 }
 printf("message queue: done sending messages.\n");
 return 0;
}

Compilation and Execution Steps

message queue: ready to send messages.
Enter lines of text, ^D to quit:
this is line 1
this is line 2
message queue: done sending messages.

148

Following is the code from message receiving process (retrieving message from
queue) ï File: msgq_recv.c

/* Filename: msgq_recv.c */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define PERMS 0644
struct my_msgbuf {
 long mtype;
 char mtext[200];
};

int main(void) {
 struct my_msgbuf buf;
 int msqid;
 int toend;
 key_t key;

 if ((key = ftok("msgq.txt", 'B')) == -1) {
 perror("ftok");
 exit(1);
 }

 if ((msqid = msgget(key, PERMS)) == -1) { /* connect to the queue */
 perror("msgget");
 exit(1);
 }
 printf("message queue: ready to receive messages.\n");

 for(;;) { /* normally receiving never ends but just to make conclusion
 /* this program ends wuth string of end */
 if (msgrcv(msqid, &buf, sizeof(buf.mtext), 0, 0) == -1) {
 perror("msgrcv");
 exit(1);
 }
 printf("recvd: \"%s\"\n", buf.mtext);
 toend = strcmp(buf.mtext,"end");
 if (toend == 0)
 break;
 }
 printf("message queue: done receiving messages.\n");
 system("rm msgq.txt");

149

 return 0;
}

Compilation and Execution Steps

message queue: ready to receive messages.
recvd: "this is line 1"
recvd: "this is line 2"
recvd: "end"
message queue: done receiving messages.

Semaphores

The first question that comes to mind is, why do we need semaphores? A simple
answer, to protect the critical/common region shared among multiple processes.

Let us assume, multiple processes are using the same region of code and if all want to
access parallelly then the outcome is overlapped. Say, for example, multiple users are
using one printer only (common/critical section), say 3 users, given 3 jobs at same
time, if all the jobs start parallelly, then one user output is overlapped with another. So,
we need to protect that using semaphores i.e., locking the critical section when one
process is running and unlocking when it is done. This would be repeated for each
user/process so that one job is not overlapped with another job.

Basically semaphores are classified into two types ī

Binary Semaphores ī Only two states 0 & 1, i.e., locked/unlocked or
available/unavailable, Mutex implementation.

Counting Semaphores ī Semaphores which allow arbitrary resource count are called
counting semaphores.

Assume that we have 5 printers (to understand assume that 1 printer only accepts 1
job) and we got 3 jobs to print. Now 3 jobs would be given for 3 printers (1 each). Again
4 jobs came while this is in progress. Now, out of 2 printers available, 2 jobs have been
scheduled and we are left with 2 more jobs, which would be completed only after one
of the resource/printer is available. This kind of scheduling as per resource availability
can be viewed as counting semaphores.

To perform synchronization using semaphores, following are the steps ī

Step 1 ī Create a semaphore or connect to an already existing semaphore (semget())

Step 2 ī Perform operations on the semaphore i.e., allocate or release or wait for the
resources (semop())

Step 3 ī Perform control operations on the message queue (semctl())

150

Now, let us check this with the system calls we have.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg)

This system call creates or allocates a System V semaphore set. The following
arguments need to be passed ī

¶ The first argument, key, recognizes the message queue. The key can be either
an arbitrary value or one that can be derived from the library function ftok().

¶ The second argument, nsems, specifies the number of semaphores. If binary
then it is 1, implies need of 1 semaphore set, otherwise as per the required
count of number of semaphore sets.

¶ The third argument, semflg, specifies the required semaphore flag/s such as
IPC_CREAT (creating semaphore if it does not exist) or IPC_EXCL (used with
IPC_CREAT to create semaphore and the call fails, if a semaphore already
exists). Need to pass the permissions as well.

Note ī Refer earlier sections for details on permissions.

This call would return valid semaphore identifier (used for further calls of semaphores)
on success and -1 in case of failure. To know the cause of failure, check with errno
variable or perror() function.

Various errors with respect to this call are EACCESS (permission denied), EEXIST
(queue already exists canôt create), ENOENT (queue doesnôt exist), ENOMEM (not
enough memory to create the queue), ENOSPC (maximum sets limit exceeded), etc.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf *semops, size_t nsemops)

This system call performs the operations on the System V semaphore sets viz.,
allocating resources, waiting for the resources or freeing the resources. Following
arguments need to be passed ī

¶ The first argument, semid, indicates semaphore set identifier created by
semget().

¶ The second argument, semops, is the pointer to an array of operations to be
performed on the semaphore set. The structure is as follows ī

struct sembuf {
 unsigned short sem_num; /* Semaphore set num */
 short sem_op; /* Semaphore operation */

151

 short sem_flg; /* Operation flags, IPC_NOWAIT, SEM_UNDO */
};

Element, sem_op, in the above structure, indicates the operation that needs to be
performed ī

¶ If sem_op is ïve, allocate or obtain resources. Blocks the calling process until
enough resources have been freed by other processes, so that this process can
allocate.

¶ If sem_op is zero, the calling process waits or sleeps until semaphore value
reaches 0.

¶ If sem_op is +ve, release resources.

For example ī

struct sembuf sem_lock = { 0, -1, SEM_UNDO };

struct sembuf sem_unlock = {0, 1, SEM_UNDO };

¶ The third argument, nsemops, is the number of operations in that array.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, é)

This system call performs control operation for a System V semaphore. The following
arguments need to be passed ī

¶ The first argument, semid, is the identifier of the semaphore. This id is the
semaphore identifier, which is the return value of semget() system call.

¶ The second argument, semnum, is the number of semaphore. The semaphores
are numbered from 0.

¶ The third argument, cmd, is the command to perform the required control
operation on the semaphore.

¶ The fourth argument, of type, union semun, depends on the cmd. For few cases,
the fourth argument is not applicable.

Let us check the union semun ī

union semun {
 int val; /* val for SETVAL */
 struct semid_ds *buf; /* Buffer for IPC_STAT and IPC_SET */
 unsigned short *array; /* Buffer for GETALL and SETALL */
 struct seminfo *__buf; /* Buffer for IPC_INFO and SEM_INFO*/
};

The semid_ds data structure which is defined in sys/sem.h is as follows ī

152

struct semid_ds {
 struct ipc_perm sem_perm; /* Permissions */
 time_t sem_otime; /* Last semop time */
 time_t sem_ctime; /* Last change time */
 unsigned long sem_nsems; /* Number of semaphores in the set */
};

Note ī Please refer manual pages for other data structures.

union semun arg; Valid values for cmd are ī

¶ IPC_STAT ī Copies the information of the current values of each member of
struct semid_ds to the passed structure pointed by arg.buf. This command
requires read permission to the semaphore.

¶ IPC_SET ī Sets the user ID, group ID of the owner, permissions, etc. pointed to
by the structure semid_ds.

¶ IPC_RMID ī Removes the semaphores set.

¶ IPC_INFO ī Returns the information about the semaphore limits and parameters
in the structure semid_ds pointed by arg.__buf.

¶ SEM_INFO ī Returns a seminfo structure containing information about the
consumed system resources by the semaphore.

This call would return value (non-negative value) depending upon the passed
command. Upon success, IPC_INFO and SEM_INFO or SEM_STAT returns the index
or identifier of the highest used entry as per Semaphore or the value of semncnt for
GETNCNT or the value of sempid for GETPID or the value of semval for GETVAL 0 for
other operations on success and -1 in case of failure. To know the cause of failure,
check with errno variable or perror() function.

Before looking at the code, let us understand its implementation ī

¶ Create two processes say, child and parent.

¶ Create shared memory mainly needed to store the counter and other flags to
indicate end of read/write process into the shared memory.

¶ The counter is incremented by count by both parent and child processes. The
count is either passed as a command line argument or taken as default (if not
passed as command line argument or the value is less than 10000). Called with
certain sleep time to ensure both parent and child accesses the shared memory
at the same time i.e., in parallel.

¶ Since, the counter is incremented in steps of 1 by both parent and child, the final
value should be double the counter. Since, both parent and child processes
performing the operations at same time, the counter is not incremented as
required. Hence, we need to ensure the completeness of one process
completion followed by other process.

¶ All the above implementations are performed in the file shm_write_cntr.c

153

¶ Check if the counter value is implemented in file shm_read_cntr.c

¶ To ensure completion, the semaphore program is implemented in file
shm_write_cntr_with_sem.c. Remove the semaphore after completion of the
entire process (after read is done from other program)

¶ Since, we have separate files to read the value of counter in the shared memory
and donôt have any effect from writing, the reading program remains the same
(shm_read_cntr.c)

¶ It is always better to execute the writing program in one terminal and reading
program from another terminal. Since, the program completes execution only
after the writing and reading process is complete, it is ok to run the program
after completely executing the write program. The write program would wait until
the read program is run and only finishes after it is done.

Programs without semaphores.

/* Filename: shm_write_cntr.c */
#include<stdio.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<sys/types.h>
#include<string.h>
#include<errno.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>

#define SHM_KEY 0x12345
struct shmseg {
 int cntr;
 int write_complete;
 int read_complete;
};
void shared_memory_cntr_increment(int pid, struct shmseg *shmp, int total_count);

int main(int argc, char *argv[]) {
 int shmid;
 struct shmseg *shmp;
 char *bufptr;
 int total_count;
 int sleep_time;
 pid_t pid;
 if (argc != 2)
 total_count = 10000;
 else {
 total_count = atoi(argv[1]);
 if (total_count < 10000)

154

 total_count = 10000;
 }
 printf("Total Count is %d\n", total_count);
 shmid = shmget(SHM_KEY, sizeof(struct shmseg), 0644|IPC_CREAT);

 if (shmid == -1) {
 perror("Shared memory");
 return 1;
 }

 // Attach to the segment to get a pointer to it.
 shmp = shmat(shmid, NULL, 0);
 if (shmp == (void *) -1) {
 perror("Shared memory attach");
 return 1;
 }
 shmp->cntr = 0;
 pid = fork();

 /* Parent Process - Writing Once */
 if (pid > 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 } else if (pid == 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 return 0;
 } else {
 perror("Fork Failure\n");
 return 1;
 }
 while (shmp->read_complete != 1)
 sleep(1);

 if (shmdt(shmp) == -1) {
 perror("shmdt");
 return 1;
 }

 if (shmctl(shmid, IPC_RMID, 0) == -1) {
 perror("shmctl");
 return 1;
 }
 printf("Writing Process: Complete\n");
 return 0;
}

/* Increment the counter of shared memory by total_count in steps of 1 */

155

void shared_memory_cntr_increment(int pid, struct shmseg *shmp, int total_count) {
 int cntr;
 int numtimes;
 int sleep_time;
 cntr = shmp->cntr;
 shmp->write_complete = 0;
 if (pid == 0)
 printf("SHM_WRITE: CHILD: Now writing\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Now writing\n");
 //printf("SHM_CNTR is %d\n", shmp->cntr);

 /* Increment the counter in shared memory by total_count in steps of 1 */
 for (numtimes = 0; numtimes < total_count; numtimes++) {
 cntr += 1;
 shmp->cntr = cntr;

 /* Sleeping for a second for every thousand */
 sleep_time = cntr % 1000;
 if (sleep_time == 0)
 sleep(1);
 }

 shmp->write_complete = 1;
 if (pid == 0)
 printf("SHM_WRITE: CHILD: Writing Done\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Writing Done\n");
 return;
}

Compilation and Execution Steps

Total Count is 10000
SHM_WRITE: PARENT: Now writing
SHM_WRITE: CHILD: Now writing
SHM_WRITE: PARENT: Writing Done
SHM_WRITE: CHILD: Writing Done
Writing Process: Complete

Now, let us check the shared memory reading program.

/* Filename: shm_read_cntr.c */
#include<stdio.h>
#include<sys/ipc.h>

156

#include<sys/shm.h>
#include<sys/types.h>
#include<string.h>
#include<errno.h>
#include<stdlib.h>
#include<unistd.h>

#define SHM_KEY 0x12345
struct shmseg {
 int cntr;
 int write_complete;
 int read_complete;
};

int main(int argc, char *argv[]) {
 int shmid, numtimes;
 struct shmseg *shmp;
 int total_count;
 int cntr;
 int sleep_time;
 if (argc != 2)
 total_count = 10000;

 else {
 total_count = atoi(argv[1]);
 if (total_count < 10000)
 total_count = 10000;
 }
 shmid = shmget(SHM_KEY, sizeof(struct shmseg), 0644|IPC_CREAT);

 if (shmid == -1) {
 perror("Shared memory");
 return 1;
 }
 // Attach to the segment to get a pointer to it.
 shmp = shmat(shmid, NULL, 0);

 if (shmp == (void *) -1) {
 perror("Shared memory attach");
 return 1;
 }

 /* Read the shared memory cntr and print it on standard output */
 while (shmp->write_complete != 1) {
 if (shmp->cntr == -1) {
 perror("read");

157

 return 1;
 }
 sleep(3);
 }
 printf("Reading Process: Shared Memory: Counter is %d\n", shmp->cntr);
 printf("Reading Process: Reading Done, Detaching Shared Memory\n");
 shmp->read_complete = 1;

 if (shmdt(shmp) == -1) {
 perror("shmdt");
 return 1;
 }
 printf("Reading Process: Complete\n");
 return 0;
}

Compilation and Execution Steps

Reading Process: Shared Memory: Counter is 11000
Reading Process: Reading Done, Detaching Shared Memory
Reading Process: Complete

If you observe the above output, the counter should be 20000, however, since before
completion of one process task other process is also processing in parallel, the counter
value is not as expected. The output would vary from system to system and also it
would vary with each execution. To ensure the two processes perform the task after
completion of one task, it should be implemented using synchronization mechanisms.

Now, let us check the same application using semaphores.

Note ī Reading program remains the same.

/* Filename: shm_write_cntr_with_sem.c */
#include<stdio.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<sys/sem.h>
#include<string.h>
#include<errno.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>

#define SHM_KEY 0x12345
#define SEM_KEY 0x54321
#define MAX_TRIES 20

158

struct shmseg {
 int cntr;
 int write_complete;
 int read_complete;
};
void shared_memory_cntr_increment(int, struct shmseg*, int);
void remove_semaphore();

int main(int argc, char *argv[]) {
 int shmid;
 struct shmseg *shmp;
 char *bufptr;
 int total_count;
 int sleep_time;
 pid_t pid;
 if (argc != 2)
 total_count = 10000;
 else {
 total_count = atoi(argv[1]);
 if (total_count < 10000)
 total_count = 10000;
 }
 printf("Total Count is %d\n", total_count);
 shmid = shmget(SHM_KEY, sizeof(struct shmseg), 0644|IPC_CREAT);

 if (shmid == -1) {
 perror("Shared memory");
 return 1;
 }
 // Attach to the segment to get a pointer to it.
 shmp = shmat(shmid, NULL, 0);

 if (shmp == (void *) -1) {
 perror("Shared memory attach: ");
 return 1;
 }
 shmp->cntr = 0;
 pid = fork();

 /* Parent Process - Writing Once */
 if (pid > 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 } else if (pid == 0) {
 shared_memory_cntr_increment(pid, shmp, total_count);
 return 0;
 } else {

159

 perror("Fork Failure\n");
 return 1;
 }
 while (shmp->read_complete != 1)
 sleep(1);

 if (shmdt(shmp) == -1) {
 perror("shmdt");
 return 1;
 }

 if (shmctl(shmid, IPC_RMID, 0) == -1) {
 perror("shmctl");
 return 1;
 }
 printf("Writing Process: Complete\n");
 remove_semaphore();
 return 0;
}

/* Increment the counter of shared memory by total_count in steps of 1 */
void shared_memory_cntr_increment(int pid, struct shmseg *shmp, int total_count) {
 int cntr;
 int numtimes;
 int sleep_time;
 int semid;
 struct sembuf sem_buf;
 struct semid_ds buf;
 int tries;
 int retval;
 semid = semget(SEM_KEY, 1, IPC_CREAT | IPC_EXCL | 0666);
 //printf("errno is %d and semid is %d\n", errno, semid);

 /* Got the semaphore */
 if (semid >= 0) {
 printf("First Process\n");
 sem_buf.sem_op = 1;
 sem_buf.sem_flg = 0;
 sem_buf.sem_num = 0;
 retval = semop(semid, &sem_buf, 1);
 if (retval == -1) {
 perror("Semaphore Operation: ");
 return;
 }
 } else if (errno == EEXIST) { // Already other process got it
 int ready = 0;

160

 printf("Second Process\n");
 semid = semget(SEM_KEY, 1, 0);
 if (semid < 0) {
 perror("Semaphore GET: ");
 return;
 }

 /* Waiting for the resource */
 sem_buf.sem_num = 0;
 sem_buf.sem_op = 0;
 sem_buf.sem_flg = SEM_UNDO;
 retval = semop(semid, &sem_buf, 1);
 if (retval == -1) {
 perror("Semaphore Locked: ");
 return;
 }
 }
 sem_buf.sem_num = 0;
 sem_buf.sem_op = -1; /* Allocating the resources */
 sem_buf.sem_flg = SEM_UNDO;
 retval = semop(semid, &sem_buf, 1);

 if (retval == -1) {
 perror("Semaphore Locked: ");
 return;
 }
 cntr = shmp->cntr;
 shmp->write_complete = 0;
 if (pid == 0)
 printf("SHM_WRITE: CHILD: Now writing\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Now writing\n");
 //printf("SHM_CNTR is %d\n", shmp->cntr);

 /* Increment the counter in shared memory by total_count in steps of 1 */
 for (numtimes = 0; numtimes < total_count; numtimes++) {
 cntr += 1;
 shmp->cntr = cntr;
 /* Sleeping for a second for every thousand */
 sleep_time = cntr % 1000;
 if (sleep_time == 0)
 sleep(1);
 }
 shmp->write_complete = 1;
 sem_buf.sem_op = 1; /* Releasing the resource */
 retval = semop(semid, &sem_buf, 1);

161

 if (retval == -1) {
 perror("Semaphore Locked\n");
 return;
 }

 if (pid == 0)
 printf("SHM_WRITE: CHILD: Writing Done\n");
 else if (pid > 0)
 printf("SHM_WRITE: PARENT: Writing Done\n");
 return;
}

void remove_semaphore() {
 int semid;
 int retval;
 semid = semget(SEM_KEY, 1, 0);
 if (semid < 0) {
 perror("Remove Semaphore: Semaphore GET: ");
 return;
 }
 retval = semctl(semid, 0, IPC_RMID);
 if (retval == -1) {
 perror("Remove Semaphore: Semaphore CTL: ");
 return;
 }
 return;
}

Compilation and Execution Steps

Total Count is 10000
First Process
SHM_WRITE: PARENT: Now writing
Second Process
SHM_WRITE: PARENT: Writing Done
SHM_WRITE: CHILD: Now writing
SHM_WRITE: CHILD: Writing Done
Writing Process: Complete

Now, we will check the counter value by the reading process.

Execution Steps

Reading Process: Shared Memory: Counter is 20000
Reading Process: Reading Done, Detaching Shared Memory
Reading Process: Complete

162

shared variables

Using the shared variable, you can share data between loops on a single diagram or
between VIs across the network. In contrast to many existing data sharing methods in
LabVIEW, such as UDP/TCP, LabVIEW queues, and Real-Time FIFOs, you typically
configure the shared variable at edit time using property dialogs, and you do not need to
include configuration code in your application.

You can create two types of shared variables: single-process and network-published.
This paper discusses the single-process and the network-published shared variables in
detail. To create a shared variable, right-click on a computing device such as ñMy
Computerò or a real-time target in the project tree, and select New»Variable to display
the shared variable properties dialog. Specify the configuration for the new variable in
the dialog presented.

You must have a project open to create a shared variable. To add a shared variable to a
project, right-click a target, a project library, or a folder within a project library in
the Project Explorer window and select New»Variable from the shortcut menu to
display the Shared Variable Properties dialog box. Select among the shared variable
configuration options and click the OK button.

If you right-click a target or a folder that is not inside a project library and
select New»Variable from the shortcut menu to create a shared variable, LabVIEW
creates a new project library and places the shared variable inside. Refer to the Shared
Variable Lifetime section for more information about variables and libraries.

Figure 1 shows the Shared Variable Properties dialog box for a single-process shared
variable. The LabVIEW Real-Time Module and the LabVIEW Datalogging and
Supervisory Control (DSC) Module provide additional features and configurable
properties to shared variables. Although in this example both the LabVIEW Real-Time
Module and the LabVIEW DSC Module are installed, you can use the features the
LabVIEW DSC Module adds only for network-published shared variables.

163

Figure 1. Single-Process Shared Variable Properties

Data Type

You can select from a large number of standard data types for a new shared variable. In
addition to these standard data types, you can specify a custom data type by
selecting Custom from the Data Type pull-down list and navigating to a custom control.
However, some features such as scaling and real-time FIFOs will not work with some
custom datatypes. Also, if you have the LabVIEW DSC Module installed, alarming is
limited to bad status notifications when using custom datatypes.

After you configure the shared variable properties and click the OK button, the shared
variable appears in your Project Explorer window under the library or target you
selected, as shown in Figure 2.

164

Figure 2. Shared Variable in the Project

The target to which the shared variable belongs is the target from which LabVIEW
deploys and hosts the shared variable. Refer to the Deployment and Hosting section for
more information about deploying and hosting shared variables.

Variable References

After you add a shared variable to a LabVIEW project, you can drag the shared variable
to the block diagram of a VI to read or write the shared variable, as shown in Figure 3.
The read and write nodes on the diagram are called Shared Variable nodes.

165

Figure 3. Reading and Writing to a Shared Variable Using a Shared Variable Node

You can set a Shared Variable node as absolute or target-relative depending on how
you want the node to connect to the variable. An absolute Shared Variable node
connects to the shared variable on the target on which you created the variable. A
target-relative Shared Variable node connects to the shared variable on the target on
which you run the VI that contains the node.

If you move a VI that contains a target-relative Shared Variable node to a new target,
you also must move the shared variable to the new target. Use target-relative Shared
Variable nodes when you expect to move VIs and variables to other targets.

Shared Variable nodes are absolute by default. Right-click a node and
select Reference Mode»Target Relative or Reference Mode»Absolute to
change how the Shared Variable node connects to the shared variable.

Introduction to socket programming

How do we build Internet applications? In this lecture, we will discuss the socket API
and support for TCP communications between end hosts. Socket programing is the key
API for programming distributed applications on the Internet. Note, we do not cover the
UDP API in the course. If interested take CS60 Computer Networks.

Socket program is a key skill needed for the robotics project for exerting control - in this
case the controller running on your laptop will connect to the server running on the bot.

Goals

We plan to learn the following from these lectures:

¶ What is a socket?

¶ The client-server model

¶ Byte order

¶ TCP socket API

¶ Concurrent server design

¶ Example of echo client and iterative server

¶ Example of echo client and concurrent server

166

The basics

Program. A program is an executable file residing on a disk in a directory. A program is
read into memory and is executed by the kernel as a result of an exec() function.
The exec() has six variants, but we only consider the simplest one (exec()) in this
course.

Process. An executing instance of a program is called a process. Sometimes, task is
used instead of process with the same meaning. UNIX guarantees that every process
has a unique identifier called the process ID. The process ID is always a non-negative
integer.

File descriptors. File descriptors are normally small non-negative integers that the
kernel uses to identify the files being accessed by a particular process. Whenever it
opens an existing file or creates a new file, the kernel returns a file descriptor that is
used to read or write the file. As we will see in this course, sockets are based on a very
similar mechanism (socket descriptors).

The client-server model

The client-server model is one of the most used communication paradigms in networked
systems. Clients normally communicates with one server at a time. From a serverôs
perspective, at any point in time, it is not unusual for a server to be communicating with
multiple clients. Client need to know of the existence of and the address of the server,
but the server does not need to know the address of (or even the existence of) the client
prior to the connection being established

Client and servers communicate by means of multiple layers of network protocols. In
this course we will focus on the TCP/IP protocol suite.

The scenario of the client and the server on the same local network (usually called LAN,
Local Area Network) is shown in Figure 1

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-60011

167

168

The client and the server may be in different LANs, with both LANs connected to a Wide
Area Network (WAN) by means of routers. The largest WAN is the Internet, but
companies may have their own WANs. This scenario is depicted in Figure 2.

Figure 2: Client and server on different LANs connected through WAN/Internet.

The flow of information between the client and the server goes down the protocol stack
on one side, then across the network and then up the protocol stack on the other side.

Transmission Control Protocol (TCP)

TCP provides a connection oriented service, since it is based on connections between
clients and servers.

TCP provides reliability. When a TCP client send data to the server, it requires an
acknowledgement in return. If an acknowledgement is not received, TCP automatically
retransmit the data and waits for a longer period of time.

TCP is instead a byte-stream protocol, without any boundaries at all.

TCP is described in RFC 793, RFC 1323, RFC 2581 and RFC 3390.

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-60022

169

Socket addresses

IPv4 socket address structure is named sockaddr_in and is defined by including
the <netinet/in.h> header.

The POSIX definition is the following:

struct in_addr{

in_addr_t s_addr; /*32 bit IPv4 network byte ordered address*/

};

struct sockaddr_in {

 uint8_t sin_len; /* length of structure (16)*/

 sa_family_t sin_family; /* AF_INET*/

 in_port_t sin_port; /* 16 bit TCP or UDP port number */

 struct in_addr sin_addr; /* 32 bit IPv4 address*/

 char sin_zero[8]; /* not used but always set to zero */

};

The uint8_t datatype is unsigned 8-bit integer.

Generic Socket Address Structure

A socket address structure is always passed by reference as an argument to any socket
functions. But any socket function that takes one of these pointers as an argument must
deal with socket address structures from any of the supported protocol families.

A problem arises in declaring the type of pointer that is passed. With ANSI C, the
solution is to use void * (the generic pointer type). But the socket functions predate the
definition of ANSI C and the solution chosen was to define a generic socket address as
follows:

struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family; /* address family: AD_xxx value */

 char sa_data[14];

};

170

Host Byte Order to Network Byte Order Conversion

There are two ways to store two bytes in memory: with the lower-order byte at the
starting address (little-endian byte order) or with the high-order byte at the starting
address (big-endian byte order). We call them collectively host byte order. For example,
an Intel processor stores the 32-bit integer as four consecutives bytes in memory in the
order 1-2-3-4, where 1 is the most significant byte. IBM PowerPC processors would
store the integer in the byte order 4-3-2-1.

Networking protocols such as TCP are based on a specific network byte order. The
Internet protocols use big-endian byte ordering.

The htons(), htonl(), ntohs(), and ntohl() Functions

The follwowing functions are used for the conversion:

#include <netinet/in.h>

uint16_t htons(uint16_t host16bitvalue);

uint32_t htonl(uint32_t host32bitvalue);

uint16_t ntohs(uint16_t net16bitvalue);

uint32_t ntohl(uint32_t net32bitvalue);

The first two return the value in network byte order (16 and 32 bit, respectively). The
latter return the value in host byte order (16 and 32 bit, respectively).

TCP Socket API

The sequence of function calls for the client and a server participating in a TCP
connection is presented in Figure 3.

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-90013

171

172

As shown in the figure, the steps for establishing a TCP socket on the client side are the
following:

¶ Create a socket using the socket() function;

¶ Connect the socket to the address of the server using the connect() function;

¶ Send and receive data by means of the read() and write() functions.

The steps involved in establishing a TCP socket on the server side are as follows:

¶ Create a socket with the socket() function;

¶ Bind the socket to an address using the bind() function;

¶ Listen for connections with the listen() function;

¶ Accept a connection with the accept() function system call. This call typically
blocks until a client connects with the server.

¶ Send and receive data by means of send() and receive().

The socket() Function

The first step is to call the socket function, specifying the type of communication
protocol (TCP based on IPv4, TCP based on IPv6, UDP).

The function is defined as follows:

#include <sys/socket.h>

int socket (int family, int type, int protocol);

where family specifies the protocol family (AF_INET for the IPv4 protocols), type is a
constant described the type of socket (SOCK_STREAM for stream sockets
and SOCK_DGRAM for datagram sockets.

The function returns a non-negative integer number, similar to a file descriptor, that we
define socket descriptor or -1 on error.

The connect() Function

173

The connect() function is used by a TCP client to establish a connection with a TCP
server/

The function is defined as follows:

#include <sys/socket.h>

int connect (int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);

where sockfd is the socket descriptor returned by the socket function.

The function returns 0 if the it succeeds in establishing a connection (i.e., successful
TCP three-way handshake, -1 otherwise.

The client does not have to call bind() in Section before calling this function: the kernel
will choose both an ephemeral port and the source IP if necessary.

The bind() Function

The bind() assigns a local protocol address to a socket. With the Internet protocols, the
address is the combination of an IPv4 or IPv6 address (32-bit or 128-bit) address along
with a 16 bit TCP port number.

The function is defined as follows:

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);

where sockfd is the socket descriptor, myaddr is a pointer to a protocol-specific address
and addrlen is the size of the address structure.

bind() returns 0 if it succeeds, -1 on error.

This use of the generic socket address sockaddr requires that any calls to these
functions must cast the pointer to the protocol-specific address structure. For example
for and IPv4 socket structure:

struct sockaddr_in serv; /* IPv4 socket address structure */

bind(sockfd, (struct sockaddr*) &serv, sizeof(serv))

174

A process can bind a specific IP address to its socket: for a TCP client, this assigns the
source IP address that will be used for IP datagrams sent on the sockets. For a TCP
server, this restricts the socket to receive incoming client connections destined only to
that IP address.

Normally, a TCP client does not bind an IP address to its socket. The kernel chooses
the source IP socket is connected, based on the outgoing interface that is used. If a
TCP server does not bind an IP address to its socket, the kernel uses the destination IP
address of the incoming packets as the serverôs source address.

bind() allows to specify the IP address, the port, both or neither.

The table below summarizes the combinations for IPv4.

IP Address IP Port Result

INADDR_ANY 0 Kernel chooses IP address and port

INADDR_ANY non zero Kernel chooses IP address, process specifies port

Local IP address 0 Process specifies IP address, kernel chooses port

Local IP address non zero Process specifies IP address and port

The listen() Function

The listen() function converts an unconnected socket into a passive socket, indicating
that the kernel should accept incoming connection requests directed to this socket. It is
defined as follows:

#include <sys/socket.h>

int listen(int sockfd, int backlog);

where sockfd is the socket descriptor and backlog is the maximum number of
connections the kernel should queue for this socket. The backlog argument provides an
hint to the system of the number of outstanding connect requests that is should
enqueue in behalf of the process. Once the queue is full, the system will reject
additional connection requests. The backlog value must be chosen based on the
expected load of the server.

The function listen() return 0 if it succeeds, -1 on error.

The accept() Function

175

The accept() is used to retrieve a connect request and convert that into a request. It is
defined as follows:

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *cliaddr,

socklen_t *addrlen);

where sockfd is a new file descriptor that is connected to the client that called
the connect(). The cliaddr and addrlen arguments are used to return the protocol
address of the client. The new socket descriptor has the same socket type and address
family of the original socket. The original socket passed to accept() is not associated
with the connection, but instead remains available to receive additional connect
requests. The kernel creates one connected socket for each client connection that is
accepted.

If we donôt care about the clientôs identity, we can set the cliaddr and addrlen to NULL.
Otherwise, before calling the accept function, the cliaddr parameter has to be set to a
buffer large enough to hold the address and set the interger pointed by addrlen to the
size of the buffer.

The send() Function

Since a socket endpoint is represented as a file descriptor, we can use read and write to
communicate with a socket as long as it is connected. However, if we want to specify
options we need another set of functions.

For example, send() is similar to write() but allows to specify some options. send() is
defined as follows:

#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t nbytes, int flags);

where buf and nbytes have the same meaning as they have with write. The additional
argument flags is used to specify how we want the data to be transmitted. We will not
consider the possible options in this course. We will assume it equal to 0.

The function returns the number of bytes if it succeeds, -1 on error.

The receive() Function

176

The recv() function is similar to read(), but allows to specify some options to control how
the data are received. We will not consider the possible options in this course. We will
assume it is equal to 0.

receive is defined as follows:

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buf, size_t nbytes, int flags);

The function returns the length of the message in bytes, 0 if no messages are available
and peer had done an orderly shutdown, or -1 on error.

The close() Function

The normal close() function is used to close a socket and terminate a TCP socket. It
returns 0 if it succeeds, -1 on error. It is defined as follows:

#include <unistd.h>

int close(int sockfd);

Concurrent Servers

There are two main classes of servers, iterative and concurrent. An iterative server
iterates through each client, handling it one at a time. A concurrent server handles
multiple clients at the same time. The simplest technique for a concurrent server is to
call the fork function, creating one child process for each client. An alternative technique
is to use threads instead (i.e., light-weight processes).

The fork() function

The fork() function is the only way in Unix to create a new process. It is defined as
follows:

#include <unist.h>

pid_t fork(void);

The function returns 0 if in child and the process ID of the child in parent; otherwise, -1
on error.

177

In fact, the function fork() is called once but returns twice. It returns once in the calling
process (called the parent) with the process ID of the newly created process (its child).
It also returns in the child, with a return value of 0. The return value tells whether the
current process is the parent or the child.

Example

A typical concurrent server has the following structure:

pid_t pid;

int listenfd, connfd;

listenfd = socket(...);

/***fill the socket address with serverôs well known port***/

bind(listenfd, ...);

listen(listenfd, ...);

for (; ;) {

 connfd = accept(listenfd, ...); /* blocking call */

 if ((pid = fork()) == 0) {

 close(listenfd); /* child closes listening socket */

 /***process the request doing something using connfd ***/

 /* */

 close(connfd);

 exit(0); /* child terminates

 }

 close(connfd); /*parent closes connected socket*/

}

}

When a connection is established, accept returns, the server calls fork, and the child
process services the client (on the connected socket connfd). The parent process waits

178

for another connection (on the listening socket listenfd. The parent closes the connected
socket since the child handles the new client. The interactions among client and server
are presented in Figure 4.

https://www.cs.dartmouth.edu/~campbell/cs50/socketprogramming.html#x1-100374

179

Figure 4: Example of interaction among a client and a concurrent server.

180

TCP Client/Server Examples

We now present a complete example of the implementation of a TCP based echo
server to summarize the concepts presented above. We present an iterative and a
concurrent implementation of the server.

We recommend that you run the client and server on different machines so there is a
TCP connection over the Internet. However, you can also use a local TCP connection
bewteen the client and server processes using the IP address 127.0.0.1 as the address
given to the client. The localhost (meaning òthis computerò) is the standard hostname
given to the address of the loopback network interface.

Please note that socket programming regularly resolve names of machines such as
wildcat.cs.dartmouth.edu to a 32 bit IP address needed to make a connect(). In class
we have interacted directly with the DNS (domain name server) using the host
command:

$# you can use localhost or 127.0.0.1 for testing the client and server on the same mac

hine

$ host localhost

localhost has address 127.0.0.1

$# find the name of the machine you are logged into

$ hostname

bear.cs.dartmouth.edu

$# find the IP address of the machine

$ host bear

bear.cs.dartmouth.edu has address 129.170.213.32

bear.cs.dartmouth.edu mail is handled by 0 mail.cs.dartmouth.edu.

$# If you have the dot IP address form you can find the name

$ host 129.170.213.32

32.213.170.129.in-addr.arpa domain name pointer bear.cs.dartmouth.edu.

181

Host allows us to get the host IP address by name or get the host name given the IP
address.

Luckly you donôt have to call ñhostò from your code. There are two commands that you
can use:

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyaddr(const char *addr, int len, int type);

echoClient.c source: echoClient.c

TCP Echo Client

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <arpa/inet.h>

#define MAXLINE 4096 /*max text line length*/

#define SERV_PORT 3000 /*port*/

int

main(int argc, char **argv)

{

 int sockfd;

 struct sockaddr_in servaddr;

 char sendline[MAXLINE], recvline[MAXLINE];

 //basic check of the arguments

 //additional checks can be inserted

 if (argc !=2) {

 perror("Usage: TCPClient <IP address of the server");

 exit(1);

 }

 //Create a socket for the client

http://www.cs.dartmouth.edu/~campbell/cs50/echoClient.c

182

 //If sockfd<0 there was an error in the creation of the socket

 if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) <0) {

 perror("Problem in creating the socket");

 exit(2);

 }

 //Creation of the socket

 memset(&servaddr, 0, sizeof(servaddr));

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr= inet_addr(argv[1]);

 servaddr.sin_port = htons(SERV_PORT); //convert to big-endian order

 //Connection of the client to the socket

 if (connect(sockfd, (struct sockaddr *) &servaddr, sizeof(servaddr))<0) {

 perror("Problem in connecting to the server");

 exit(3);

 }

 while (fgets(sendline, MAXLINE, stdin) != NULL) {

 send(sockfd, sendline, strlen(sendline), 0);

 if (recv(sockfd, recvline, MAXLINE,0) == 0){

 //error: server terminated prematurely

 perror("The server terminated prematurely");

 exit(4);

 }

 printf("%s", "String received from the server: ");

 fputs(recvline, stdout);

 }

 exit(0);

}

echoServer.c source: echoServer.c

TCP Iterative Server

#include <stdlib.h>

#include <stdio.h>

http://www.cs.dartmouth.edu/~campbell/cs50/echoServer.c

183

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#define MAXLINE 4096 /*max text line length*/

#define SERV_PORT 3000 /*port*/

#define LISTENQ 8 /*maximum number of client connections */

int main (int argc, char **argv)

{

 int listenfd, connfd, n;

 socklen_t clilen;

 char buf[MAXLINE];

 struct sockaddr_in cliaddr, servaddr;

 //creation of the socket

 listenfd = socket (AF_INET, SOCK_STREAM, 0);

 //preparation of the socket address

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servaddr.sin_port = htons(SERV_PORT);

 bind (listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));

 listen (listenfd, LISTENQ);

 printf("%s\n","Server running...waiting for connections.");

 for (; ;) {

 clilen = sizeof(cliaddr);

 connfd = accept (listenfd, (struct sockaddr *) &cliaddr, &clilen);

 printf("%s\n","Received request...");

 while ((n = recv(connfd, buf, MAXLINE,0)) > 0) {

 printf("%s","String received from and resent to the client:");

 puts(buf);

184

 send(connfd, buf, n, 0);

 }

 if (n < 0) {

 perror("Read error");

 exit(1);

 }

 close(connfd);

 }

 //close listening socket

 close (listenfd);

}

Localhost Execution of Client/Server

To run the client and server try the following. It is best if you can run the server and
client on different machines. But we will first show how to test the client and server on
the same host using the locahost 127.0.0.1

$# first mygcc the client and server

$ mygcc -o echoClient echoClient.c

$ mygcc -o echoServer echoServer.c

$# first run the server in background

$./echoServer&

[1] 341

$ Server running...waiting for connections.

$ #Now connect using the localhost address 127.0.0.1 and then type something

$ # the control C out of the client and ps and kill the server

$./echoClient 127.0.0.1

Received request...

Hello CS23!

String received from and resent to the client:Hello CS23!

String received from the server: Hello CS23!

185

^C

$ ps

 PID TTY TIME CMD

 208 ttys000 0:00.04 -bash

 341 ttys000 0:00.00 ./echoServer

 236 ttys001 0:00.01 -bash

$ kill -9 341

$

[1]+ Killed ./echoServer

Remote Execution of Client/Server

Now lets do the same thing but run the server on a remote machine and client locally.
This time we will have to use the host command to find the IP address of the host we
run the server on. The rest is the same as the localhost example above.

First, we ssh into bear and run the server and get the local IP address of bear

$ssh campbell@bear.cs.dartmouth.edu

campbell@bear.cs.dartmouth.eduôs password:

Last login: Sun Feb 14 23:27:30 2010 from c-71-235-190-26.hsd1.ct.comcast.net

$ cd public_html/cs23

$ mygcc -o echoServer echoServer.c

$./echoServer&

[1] 6020

$ Server running...waiting for connections.

$ host bear

bear.cs.dartmouth.edu has address 129.170.213.32

bear.cs.dartmouth.edu mail is handled by 0 mail.cs.dartmouth.edu.

Next, we start the client on our local machine and type something. We terminate the
same way as before

First, we ssh into bear and run the server and get the local IP address of bear

$# Just to show we are running on a different machine

$ hostname

andrew-campbells-macbook-pro.local

186

$./echoClient 129.170.213.32

Hello CS23!

String received from the server: Hello CS23!

^C

Notice, that when we type make a connection and type in ñHello CS23!ò we get the
following at the server.

$# Just to show we are running on a different machine

$ Received request...

String received from and resent to the client:Hello CS23!

$# Now we clean up

$ ps

 PID TTY TIME CMD

 5972 pts/2 00:00:00 bash

 6020 pts/2 00:00:00 echoServer

 6040 pts/2 00:00:00 ps

$ kill -9 6020

$

[1]+ Killed ./echoServer

conEchoServer.c source: conEchoServer.c

TCP Concurrent Echo Server

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#define MAXLINE 4096 /*max text line length*/

http://www.cs.dartmouth.edu/~campbell/cs50/conEchoServer.c

187

#define SERV_PORT 3000 /*port*/

#define LISTENQ 8 /*maximum number of client connections*/

int main (int argc, char **argv)

{

 int listenfd, connfd, n;

 pid_t childpid;

 socklen_t clilen;

 char buf[MAXLINE];

 struct sockaddr_in cliaddr, servaddr;

 //Create a socket for the soclet

 //If sockfd<0 there was an error in the creation of the socket

 if ((listenfd = socket (AF_INET, SOCK_STREAM, 0)) <0) {

 perror("Problem in creating the socket");

 exit(2);

 }

 //preparation of the socket address

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servaddr.sin_port = htons(SERV_PORT);

 //bind the socket

 bind (listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));

 //listen to the socket by creating a connection queue, then wait for clients

 listen (listenfd, LISTENQ);

 printf("%s\n","Server running...waiting for connections.");

 for (; ;) {

 clilen = sizeof(cliaddr);

 //accept a connection

 connfd = accept (listenfd, (struct sockaddr *) &cliaddr, &clilen);

 printf("%s\n","Received request...");

188

 if ((childpid = fork ()) == 0) {//if itôs 0, itôs child process

 printf ("%s\n","Child created for dealing with client requests");

 //close listening socket

 close (listenfd);

 while ((n = recv(connfd, buf, MAXLINE,0)) > 0) {

 printf("%s","String received from and resent to the client:");

 puts(buf);

 send(connfd, buf, n, 0);

 }

 if (n < 0)

 printf("%s\n", "Read error");

 exit(0);

 }

 //close socket of the server

 close(connfd);

}

}

Remote Execution of concurrent Client/Server

Now, we run the server on a remote machine and then run two clients talking to the
same server. We use hostname so we know what machines we use in the example
below.

First, we start the concurrent server on a remote machine and get its IP address that the
clients will use.

$ mygcc -o conEchoServer conEchoServer.c

$./conEchoServer&

[1] 6075

$ Server running...waiting for connections.

$ hostname

bear.cs.dartmouth.edu

$ host bear

189

bear.cs.dartmouth.edu has address 129.170.213.32

bear.cs.dartmouth.edu mail is handled by 0 mail.cs.dartmouth.edu.

Next, we run one client on my local machine, as follows:

$# Just to show we are running on a different machine

$ hostname

andrew-campbells-macbook-pro.local

$./echoClient 129.170.213.32

Hello from andrew-campbells-macbook-pro.local

String received from the server: Hello from andrew-campbells-macbook-pro.local

Next, we run one client on my local machine, as follows:

$# Just to show we are running on a different machine

$ hostname

andrew-campbells-macbook-pro.local

$./echoClient 129.170.213.32

Hello from andrew-campbells-macbook-pro.local

String received from the server: Hello from andrew-campbells-macbook-pro.local

Notice, that when we type make a connection and type in ñHello from andrew-
campbells-macbook-pro.localò we get the following at the server.

$ Received request...

Child created for dealing with client requests

String received from and resent to the client:Hello from andrew-campbells-macbook-

pro.local

Now, we ssh into a another machine and start a client

$ ssh campbell@moose.cs.dartmouth.edu

campbell@moose.cs.dartmouth.eduôs password:

Last login: Mon Feb 8 10:25:01 2010 from 10.35.2.112

190

$ cd public_html/cs23

$ mygcc -o echoClient echoClient.c

$./echoClient 129.170.213.32

Hello from moose.cs.dartmouth.edu

String received from the server: Hello from moose.cs.dartmouth.edu

Over at the server we see that the new client is recognized proving that our concurrent
server can handle multiple clients at any one time; that is cool!

$Received request...

Child created for dealing with client requests

String received from and resent to the client:Hello from moose.cs.dartmouth.edu

191

Unit-4

Unix System Administration

File System

A file system is a logical collection of files on a partition or disk. A partition is a
container for information and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contain only one file system,
such as one file system housing the /file system or another containing the /home file
system.

One file system per partition allows for the logical maintenance and management of
differing file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-
ROMs, USB devices, and floppy drives.

Directory Structure

Unix uses a hierarchical file system structure, much like an upside-down tree, with root
(/) at the base of the file system and all other directories spreading from there.

A Unix filesystem is a collection of files and directories that has the following properties
ī

¶ It has a root directory (/) that contains other files and directories.

¶ Each file or directory is uniquely identified by its name, the directory in which it
resides, and a unique identifier, typically called an inode.

¶ By convention, the root directory has an inode number of 2 and
the lost+found directory has an inode number of 3. Inode numbers 0 and 1 are
not used. File inode numbers can be seen by specifying the -i option to ls
command.

¶ It is self-contained. There are no dependencies between one filesystem and
another.

The directories have specific purposes and generally hold the same types of
information for easily locating files. Following are the directories that exist on the major
versions of Unix ī

Sr.No. Directory & Description

192

1
/

This is the root directory which should contain only the directories needed at the
top level of the file structure

2
/bin

This is where the executable files are located. These files are available to all
users

3
/dev

These are device drivers

4
/etc

Supervisor directory commands, configuration files, disk configuration files, valid
user lists, groups, ethernet, hosts, where to send critical messages

5
/lib

Contains shared library files and sometimes other kernel-related files

6
/boot

Contains files for booting the system

7
/home

Contains the home directory for users and other accounts

8
/mnt

Used to mount other temporary file systems, such as cdrom and floppy for
the CD-ROM drive and floppy diskette drive, respectively

9
/proc

Contains all processes marked as a file by process number or other information
that is dynamic to the system

193

10
/tmp

Holds temporary files used between system boots

11
/usr

Used for miscellaneous purposes, and can be used by many users. Includes
administrative commands, shared files, library files, and others

12
/var

Typically contains variable-length files such as log and print files and any other
type of file that may contain a variable amount of data

13
/sbin

Contains binary (executable) files, usually for system administration. For
example, fdisk and ifconfig utlities

14
/kernel

Contains kernel files

Navigating the File System

Now that you understand the basics of the file system, you can begin navigating to the
files you need. The following commands are used to navigate the system ī

Sr.No. Command & Description

1
cat filename

Displays a filename

2
cd dirname

Moves you to the identified directory

3
cp file1 file2

194

Copies one file/directory to the specified location

4
file filename

Identifies the file type (binary, text, etc)

5
find filename dir

Finds a file/directory

6
head filename

Shows the beginning of a file

7
less filename

Browses through a file from the end or the beginning

8
ls dirname

Shows the contents of the directory specified

9
mkdir dirname

Creates the specified directory

10
more filename

Browses through a file from the beginning to the end

11
mv file1 file2

Moves the location of, or renames a file/directory

12
pwd

Shows the current directory the user is in

13
rm filename

Removes a file

195

14
rmdir dirname

Removes a directory

15
tail filename

Shows the end of a file

16
touch filename

Creates a blank file or modifies an existing file or its attributes

17
whereis filename

Shows the location of a file

18
which filename

Shows the location of a file if it is in your PATH

You can use Manpage Help to check complete syntax for each command mentioned
here.

The df Command

The first way to manage your partition space is with the df (disk free) command. The
command df -k (disk free) displays the disk space usage in kilobytes, as shown
below ī

$df - k

Filesystem 1K- blocks Used Available Use% Mounted on

/dev/vzfs 10485760 7836644 2649116 75% /

/devices 0 0 0 0% /devices

$

Some of the directories, such as /devices, shows 0 in the kbytes, used, and avail
columns as well as 0% for capacity. These are special (or virtual) file systems, and
although they reside on the disk under /, by themselves they do not consume disk
space.

The df -k output is generally the same on all Unix systems. Here's what it usually
includes ī

Sr.No. Column & Description

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

196

1
Filesystem

The physical file system name

2
kbytes

Total kilobytes of space available on the storage medium

3
used

Total kilobytes of space used (by files)

4
avail

Total kilobytes available for use

5
capacity

Percentage of total space used by files

6
Mounted on

What the file system is mounted on

You can use the -h (human readable) option to display the output in a format that
shows the size in easier-to-understand notation.

The du Command

The du (disk usage) command enables you to specify directories to show disk space
usage on a particular directory.

This command is helpful if you want to determine how much space a particular
directory is taking. The following command displays number of blocks consumed by
each directory. A single block may take either 512 Bytes or 1 Kilo Byte depending on
your system.

$du /etc

10 /etc/cron.d

126 /etc/default

6 /etc/dfs

...

$

The -h option makes the output easier to comprehend ī

197

$du - h / etc

5k / etc / cron . d

63k / etc / default

3k / etc / dfs

...

$

Mounting the File System

A file system must be mounted in order to be usable by the system. To see what is
currently mounted (available for use) on your system, use the following command ī

$ mount

/dev/vzfs on / type reiserfs (rw,usrquota,grpquota)

proc on /proc type proc (rw,nodiratime)

devpts on /dev/pts type devpts (rw)

$

The /mnt directory, by the Unix convention, is where temporary mounts (such as
CDROM drives, remote network drives, and floppy drives) are located. If you need to
mount a file system, you can use the mount command with the following syntax ī

mount - t file_system_type device_to_mount directory_to_mount_to

For example, if you want to mount a CD-ROM to the directory /mnt/cdrom, you can
type ī

$ mount - t iso9660 /dev/cdrom /mnt/cdrom

This assumes that your CD-ROM device is called /dev/cdrom and that you want to
mount it to /mnt/cdrom. Refer to the mount man page for more specific information or
type mount -h at the command line for help information.

After mounting, you can use the cd command to navigate the newly available file
system through the mount point you just made.

Unmounting the File System

To unmount (remove) the file system from your system, use the umount command by
identifying the mount point or device.

For example, to unmount cdrom, use the following command ī

$ umount /dev/cdrom

The mount command enables you to access your file systems, but on most modern
Unix systems, the automount function makes this process invisible to the user and
requires no intervention.

User and Group Quotas

198

The user and group quotas provide the mechanisms by which the amount of space
used by a single user or all users within a specific group can be limited to a value
defined by the administrator.

Quotas operate around two limits that allow the user to take some action if the amount
of space or number of disk blocks start to exceed the administrator defined limits ī

¶ Soft Limit ī If the user exceeds the limit defined, there is a grace period that
allows the user to free up some space.

¶ Hard Limit ī When the hard limit is reached, regardless of the grace period, no
further files or blocks can be allocated.

There are a number of commands to administer quotas ī

Sr.No. Command & Description

1
quota

Displays disk usage and limits for a user of group

2
edquota

This is a quota editor. Users or Groups quota can be edited using this command

3
quotacheck

Scans a filesystem for disk usage, creates, checks and repairs quota files

4
setquota

This is a command line quota editor

5
quotaon

This announces to the system that disk quotas should be enabled on one or
more filesystems

6
quotaoff

This announces to the system that disk quotas should be disabled for one or
more filesystems

