—~ _ SYLLABUS

—) e -

OBJECT ORIENTED PROGRAMMING AND C++

- SECTION A _

OOP paradigm, Advantages of OOP, Comparison between functional programming and OOP
approach, characteristics of Object uriented Language objects, Class, Inhéritance,
Polymorphism, and abstraction, encapsulation, Dynamic Binding, Message passing.

Introduction to C++, Indetifier and keywords, constants, C++ Operators,. Type conversion,
variable cleclaranon Statement, expressions, User defined data types, Conditional expression
(For, While, Do-while) loop statements, breaking control statements (Break, Continue).

SECTION B

Defining a function, types of functions, Inline functions, Call by value and Call by reference,
Preprocessor, Header files and standard functions, Structures, Pointers and structures, Umons

Enumeratlon 7
-~

SECTION C

Classes, Member functions, Objects, Array of objects, Nested classes, Constructors, Copy
constuctors, Destructors, Inline member ﬁmctlons Static class member, frlend functlons,

Dynamic memory allocation. -
Inheritance: Single inheritance, Multi-level inheritance, Hlerarchlcal Virtual base class,

Abstr;tct classes, Constructors in Derived classes, Nesting of classes.
SECTIOND

Function oveérloading, Operator overloading, Polymorphism, Early binding, Polymorphism with
pointers, Virtual functions, Late binding, Pure virtual functions, Opening and closing of files,
Stream member functions, Binary file operations, Structures and file operatlons classes and file -
operations, Random access file processmg

o —

' SECTION A

unir: - OOP PARADIGM AND
INTRODUCTION TOC++

I.EARNING OB]ECTIVES

e ObJect Onented Programming Paradigm
e Benefits of OOP
Characteristics of Object-Oriented Language

e Introduction to C++
o ldentifier, Keyboards and Constants
e Variable Declaration

.II\— -
e C++ Operators

¢ Statement and Expreésions
- e UserDefined Data Types

e Conditional Ig;(pressicn

e Loop Statements

e _Breaking and Control Statements

OBJECT-ORIENTED PROGRAMMING PARADIGM

Introduction

Software products should always be evaluated carefully for their quality
before they are delivered and implemented. Some of the quahty issues
that must be considered for critical evaluation are:

* Correctness
- * Maintainability
* Reusability _ : - i
* ‘Openness and interoperability .
¢ Portability
* Security
¢ Integrity
* User friendliness

-

OOP Paradigm and.
Introduction to C++

NOTES

Self-Instructional Material

1

Object Oriented -
Programming in C++

" NOTES

To build today’s complex software,. it just not enough to put together
a sequence of programming statements and sets of procedures and
modules; we need to incorporate sound construction techniques
and program structures that are easy to comprehend, implement
and modify.

-Object-Oriented Programming Paradigm

Object oriented programming treats data as a critical element in the
program development and does not allow it to flow freely around the

system. It ties data more closely to functions that operate on it and

protects it from accidental modifications from outside functions. OOP
allows decomposition of a problem into a number of entities called
objects and then builds data and function around these objects. The
data of an object can be accessed only by the functions associated
with that object. However, a functmn of one object can access the -
function of other objects.

Some of the striking features of OOP are:
* Emphasis is on data rather than procedure
 Programs are divided into what we know as -objects

e Data structures are designed such that they characterize the
objects ' -

» TFunctions that operate on the data of an object are tied together
in the data structure

* Data is hidden and cannot be accessed by external functions
* Objects may communicate with each other through the functions

* Follows bottom-up approach in program d_esign.

BENEFITS OF OOP.

1. Through inheritance, we .can eliminate redundant code and |
extend the use of exlstmg classes.

2. We can build programs from the standard working modules
that communicate with one another, rather than having to start
writing code from scratch.- -

3. The principle of data hiding helps the programmer build secure
programs that cannot be invaded by code in other parts of the
program. '

4. It is possible to map objects in the problem -domain to those 1n
the program. o

5. It is: easy to partition work in a prOJect -based on ob_]ects

}

Comparison between Functlonal Programmmg and OOP OOP Paradigm and
Approach * Introduction to C++

Procedure-Oriented Programming

Conventional programming using high-level languages such as COBOL, NOTE

i X . S
FORTRAN and C is commonly known as procedure-oriented programming.
Here, the problem is viewed as a sequence of things to be done such
as reading, calculating and printing. A number of applications are
written to accomplish these tasks. The primary task is'a function. .
The technique of hierarchical decomposition is used to specify the
tasks to be completed for solving a problem.

Main program

Function-2

Function-4

Fig. 1

Procedure-oriented programming consists of writing a list of instructions
(or actions) for the computer to follow, and organizing these instructions
into groups known as functions. We normally 'use a flowchart to
organize these actions and represent the flow of control from one
action to another. While we concentrate on the development of functions,
very little attention is given to the data.

In a multifunction program, many important data items are placed as
global so that they may.be accessed by all the functions. Each function

may have its own local data.

Global data . Global data

Function-1 Function-2 Function-3
Local data Local data "1 Local data
Fig. 2

Some characteristics exhlblted by procedure orlented programming
include: :

. Emi)hasis is on doing things (algorithms)

- ‘ ' Self-Instructional Material 38

JIRCIV P

Object Oriented

Programming in C+#

NOTES

8 Self-Instructional Material.

~

¢ A collection 6bject is an object of a collection, e.g., array, list,
set, and bag. A collection holds members. Sample collection;
objects are listOfStudents and setOfCourses. For example, .
ligtOfStudents = {studentl, student2}. f

Classes

A class is a description of a group of objects with similar attributes,”
common operations, common relationships (association, aggregation,'
interaction, and generalization specialization) and a common semantic
purpose. In S/W a class is a module. An attribute is a characteristic
or property of an object. An attribute typically holds an atomic object,
e.g., an integer, a float, a character, efc. For example, an attribute of
a car is gasQuantity which is a float. However, an attribute can hold
a structured object or collection object to implement a relationship.
For example, an attribute of a car could be currentPassengers which
holds a set of current passenger objects. An attribute can hold a set
of literals, e.g., a string of characters. An operation is a function,
action or set of actions. For example, an operation of a car is to “set
gas quantity” and “start”. A relationship is a connection or link
between classes or between objects. The primary relationships are
association (“has a”), aggregation (“part of”), generalization specialization -
(“is a”), and interaction (“calls or communicates”). For example, the
Car Class has an association relationship with the Passenger Class:
The Car Class has a generalization specialization relationshipﬁwith
the Vehicle Class. The Car Class has an aggregation relationship
with the Motor Class. An interaction relationship (messages) exists
between: objects of the Car Class and objects of the Motor Class. The
semantic purpose of a class is the reason for being or existence of

‘objects of the class. For example, the semantic purpose of objects of

the Car Class is to provide transportation to carry users from one
location to another. We model a class with a class diagram and a class
specification. Objects are variables of the type class.

Data Abstraction and Encapsulation

The wrapping up of data and functions into a single unit (called
class) is known as encapsulation. The data is not accessible to the
outside world and only those functions that are wrapped in the class
can access it. These functions provide the interface between the object’s
data and the program. This insulation of the data from direct access
by the program is called data hiding or information hiding.

‘| Abstraction refers to the act of representing essential features without

including the background details or explanations. Classes use the
concept of abstraction and are defined as a list of abstract attributes
such as size, weight and cost, and functions to operate on these atti'ibutes.

They encapsulate all the -éssential propérties of -the objects to be
created. The attributes are _sometimes called data members. The
functions that operate on these data are sometirmes éalled methods.

Since classes use the concept of data abstraction, they are known as
Abstract Data Types (ADT) '

Inheritance

The process by which objects of one class acquire the properties of

objects of another class. In OOP, the concept of inheritance provides

. the idea of reusability. This means that we can add additional features
on existing class without modifying it.

Polymorphism
An operation may exhibit different behaviors in different instances.
The behaviour depends upon the types of data used in the operation.

The process of making an operation to exhibit different behaviour in
_different instances is known as operator overloading. Using a single
function name to perform different types of tasks is known as function
-overloading. . b .
Polymorphism plays an important role in allowing objects having different
internal structures to share the same external interface. This means
that a general class of operations may be accessed ifi\Qhe same manner
even though specific actions associated with each operation may differ.
Polymorphism is used extensively to implement inheritance.

Dynamic Binding

Binding refers to the linking of a procedure call to the code to be
executed. in response to the call. Dynamic binding (also known as late
binding) means that the code associated with a given procedure call
is not known until the time of the call at run time. A function call
associated with a polymorphic reference depends on the dynamic
type of that reference. .

Shape
Draw()
1 y
. — =}-—-Circle object Box object Triangle object
Draw {(circle) Draw (box) " Draw {triangls)
Fig. 4

QOP Paradigm and
Introduction to C++

~-

NOTES

Self-InstruétionaI Material 7
4 -

Object Oriented Message Passmg
Programming in C++

. I .
An object- -oriented program consists of a set of objects that commumcate
with each other. The process of programming in an-object-oriented’

language, therefore, involves the following basic steps:

NOTES 1. Creé.ting “classes that define objects and their behaviour -

2. Creating objects from class definitions _
3. Establishing communication among objects - _

Objects communicate with each other by sénding and receiving information
- 5\

much the same way as people pass messages to one another. \

\

A message for an object is a request for execution of a procedure; and
therefore will invoke a function (procedure) in “the receiving object
that generates the desired result. Message passing involves the specification
of the name of the object, the name of the function (message) and the
information to be sent. ' ‘

Object-Oriented Languages

The language should support several of the OOP concepts to claim it
. is object-oriented. Depending upon the features it supports, they can
be classified into the following two categories: '

r e -

- * Object-based programming languages, and

* Object-orlented programming languages.

Ob_]ect-based programming is the style of programming that prlmarlly
supports encapsulation and object identity. Major features that are
‘required for obJect based programming are:

—--_® Data encapsulatlon
¢ Data hiding and access mechanisms
* Automatic initialization and clear-up of objects
¢ Operator overloading

Languages that support programming with objects are said.to be object-
7 _ based programming languages. They do not support inheritance and

r ‘ - ' dynamic binding. For, example, Ada.

Object-oriented programming incorporates all of object-based programming

features along with two additional features, namely inheritance and

. dyna;nio binding. '

Examples include C++, Smal_ltalk and Java.

INTRODUCTION TO C++

In early days of computer programming, programmers worked with
the most primitive computer instructions say machine language. These
« | instructions were represented by long strings of ones and zeroes.

\

8 Self-Instructional Material

Soon, assemblers were invented to map machine instructions to human-

readable and manageable mnemonics, such as ADD and MOV. Mean
time, higher-level languages evolved, such as BASIC, COBOL, C. These

languages allow people to work with something approximating words

and sentences, such as I =S + 100. These instructions were translated
back into machine language by interpreters and compilers. Most of
the procedural languages like C was not able to solve real world
problems using an entity as object and software development process
“was costly too. As object-oriented analysis, design, and programming
began to attract the software industry, Bjarne Stroustrup took the
most popular language for commercial software development, C++,
and extended it to provide the features needed to facilitate object-
oriented programming. He created C++, and in less than a decade it
has gone from being used by only a handful of developers at AT&T to
being the programming language of choice for an estimated one million
developers worldwide soon. Now C++ is a predominant language for

commercial software development. While it is true that C++ is a .

superset of C, and that virtually any legal C program is a legal C++
program, the leap from C to C++ is very significant. C++ benefited
from its relationship to C for many years, as-C programmers can
easily start programmmg in C++.

C++ is a extension of C, but it does not mean that you should learn
C first. It is unnecessary to learn C first one can easily start C++
programming because C++ allow you to write code in C style. You can
learn C++ without prior experience of C. Even if you have no programming
experience of any kind you can be a good C++ programmer.

IDENTIFIER, KEYWORDS AND CONSTANTS

A programmer used C++ tokens to write a C++ program. You can
compare it with writing a English sentence there you need noun,
verbs; punctuations, symbols to write a proper sentence same is true
with a C++ program. You will use C++ tokens to write a program.

~C++ uses the following types of tokens: -

* Identifiers
* Keywords
. s Constants . _ ~

. Opefatcjrs .

Identifiers in C++

An id-ntifier is a user defined name , given to various data items in
a program like empname, sturollnumber, bookno ete., If you want to
use an identifier in a program use following rules:

OOP Paradigm and
Introduction to C++

NOTES

e ———

TR

Object Oriented
Programming in C++

NOTES

14 Seif-Instructicnal Material

void main{)
(
int numl
int num2;
COutécenter values of numl and num2 *;
cin>>num1f
cin>>num2;
cout<<*first number is:”<<numl;
cout<<*second number is:”<<num2;
cout<<“*sum of numbers is :”<< numl+num2;
}

Float Data Type .

The ﬂoating-poi;n; number is another data type in the C++ language.
Unlike an integer number, a floating-point number contains a decimal
point. For instance, 7.01 is a floating-point number; so are 5.71 and
~3.14. A floating-point number is also called a real number. A floating-
point number is specified by the float keyword in the C++ language.

Like an integer number, a floating-point number has a limited range.
The ANSI standard requires that the range be at least plus or minus
1.0*10e37. Normally, a floating-point number is represented by taking
32 bits. Therefore, a floating-point number in C++ is of at least six
digits of precision. That is, for a floating-point number, there are at
least six digits (or decimal places) on the right side of the decimal
point.

Declaring Floating-Point Variables

|

flocat variablename; l

The following shows the declaration format for a floating-point variable:

Similar to the character or integer declaration, if you have more than
one variable to declare, you can either use the format like this:

float wvariablenamel;

float variablenameZ:

float wvariablename3;
or like the following one:

float wvariablenamel, variablename2, variablename3;
Program - . IE
;rinting out floating(decimals)numbers on the screen.
/* Printing out float numbexrs */

#include <iostraem.h> t

void main ()

{

float numl ot
float npmza

cout<<“enter values of numl and num2 with decimals
like 2.37;

cin>>numi;

cin>>num?2 ;

cout<<*first number is:”’<<numl;
cout<<“*second number is:”<<num2;
cout<<*sum of numbers is :”<< numlinum2;

}

Double Data Type

In the C++ language, a floating-point number can also be represented
by another data type, called the double data type. In other words, you
can specify a variable by the double keyword, and assign the variable
a floating-point number. ' . _

The difference between a double data type and a float data type is
that the former normally uses twice as many bits as the latter. Therefore,
a double floating-point number is of at least 10 digits of precision,
although the ANSI standard does not specify it for the double data

type.

C++ OPERATORS

Operators In C++

An operator is a symbol that instructs C++ to perform some operation,
or action, on one or more operands. An operand is something that an
.operator acts on. In C++, all operands are expressions.

Like c=a+b;
Here + is an operator, while a and b are operands.
C++ offers following operators: |
1. The assignment operator
Mathematical operators
Relational operators
Logical operators

Address of operator (&)

oUW N

QOP Paradigm and
Introduction to C++

NOTES

Self-Instructiona! Material 15

-Object-Oriented - 6. Scope Resolution operator (: :)
‘Programming in-C++
7. Bitwise operators

Assignment Operator
NOTES The .assignment operator is the equal sign (=). Its use in programming '
is -somewhat different from its use in regular math. If you write
X = ¥
a = 560;

in a-C++ program, it doesn’t mean “x is equal to y.” Instead, it means
“assign the value of y to x.” In a C++ assignment statement, the right
:side can ‘be any expression, and the left side must be a variable name.
Thus, the form is -as follows:

variable = expression;

| When executed, expression is evaluated, and the resulting value is
assigned to variable.

‘Mathematical Operators

‘A C++ mathematical operators perform mathematical operations such
.as addition and subtraction. C++ has two unary mathematical operators
(++, - -) ‘and five binary mathematical operators (+ , -, * ,/, %). "

Program

/* Demo of unary operators */

$include <iostream.h>

int a, b;

void main()

{
/* Set a and b both equal to 5 */

. a=b = 5; '

/* Print them, decrementing each time.l*/

/* Use prefix mode for b, postfix mode for a */

cout<< a- - << - -b;
cout<<a - - < - —b;
cout€<— - a<<- -b;

}

Use .of Binary Operators in C++ program
Program '
/* Use of Binary Opefators_ in C++ program */

#include <iostream.h>

18 Self-Instructional Material

void main()
1

int x;

int v

int a,b,c,d,e;

cout<<*enter values of x and y

cin>>x>>y
a=x+y;
b=x-y;
c=xX*y;
d=x/vy;
e=xX%y;
cout<<- a;
cout<< b;
cout<< ¢;
cout<< 4;
.cout<< e;
}

if x=50 and y=3 then
a=53
b=47
c=150
d=16

e=2

Relational Operators

C++ relational operators -are used to

o,

compare expressions, asking -

questions such as, “Is a greater than 10?” or “Is y equal to 0?” An
expression RELATIONAL OPERATOR alse (0). C++ has six relational

operators:
Operator
Equal
Greater than
Less than
Greater than or equal to
Les;; .j;hgn or equal to

Not equél]

\

Symbol

Example

X::y

x>y

X<y

X>=y
X<=Yy

XI=y

OOP Paradigm and '
Introduction to C++

NOTES

Self-Instructional Material 17

Object Oriented
Programming in C++

NOTES

18 Self-Instructional Material

Program
/* Demo of relational expressions */
#include <iostream.h>
int x;

void main()

{
x=(7 == T7): /* Evaluates to 1 */
cout<<™\n a={7==7)\n a="<<x;
x=(7'=7); /* Evaluates-to 0 */
cout<<“ \n aé(TL;T)\n a=?<< X;
x={12==12)+(71=1); /* BEvaluates to 1+1 */
cout<<*\na={12==12)+(7!=1)\na=\n"<<x;

}

Logical Operators

Sometimes you might need to use more than one relational question
at once. For example, “If x is Male, have age more than 40 and not a
graduate”, C++ logical operators allow you to combine two or more
relational expressions into a single expression that evaluates to either
true or false.

Operator Symbol Example
AND && a=h && b="7
OR I - x=56 || y=80
NOT ! - le="s’

Conditional Operators _
The conditional operator is C++ only ternary operator, meaning that:
it takes three operands. Its syntax is:

expl ? exp2 : exp3; ‘
If expl evaluates to true (that is, non-zero), the entire expression
evaluates to the value of exp2. If expl evaluates to false (that is,
zero), the entire expression evaluates as the value of exp3. For example,

the following statement assigns the value 1 to x if y is true and
assigns 100 to x if y is false: '

X, =y ? 1 : 100;
Likewise, to make z equal to the larger of x and y, you could write
z = (X >y} ? x :.¥y; I

Perhaps you've noticed that the conditional operator functions somewhat
like an if statement. The preceding statement could also be written
like this:

if (x > y)

zZ = X;
else = _
zZ = Y;

The conditional operator can’t be used in all situations in place of an
if...else construction, but the conditional operator is more concise.
The conditional operator can also be used in places you can’t use an
if statement, such as inside a single cout.

Statement.

cout<<"The larger value is="<<{{x >y} ? x : y) };

STATEMENT AND EXPRESSIONS

C++ Statement

A statement is a complete direction instructing the computer to ¢arry -

out some task. In C++, statements are usually written one per line,
although some statements can use multiple lines. C++ statements
always end with a semicolon (except for preprocessor directives such
as #define and #include). Some of C++ statement for examples are:

x =2 + 3;
sum=numl+num2+num3 ;

is an assignment statement. It instructs the computer to add 2 and '3
and to assign the result to the variable x.

White Space

The term white space refers to spaces, tabs, and blank lines in your
source code. The C++ compiler isn’t sensitive to white space. When
the compiler reads a statement in your source code, it looks for the
characters in the statement and for the terminating semicolon, but it
ignores white space. Thus, the statement -

X=2+3;
ié equivalent to this statement:

x = 2 + 3;

Null and Compound Statements

Null Statements

If you place a semicolon by itself on a line, you create a null statement—
a statement that doesn’t perform any action. This is perfectly legal in
C++. ' ' :

OOP Paradigm and
Introduction to C++

NOTES

Self-Instructional Material

19

Object Oriented
Programming in C++

NOTES

20 Self-Instructional Ma_teria!

Compound Statements

b
A compound statement, also called a block, is a group of two or more

C++ statements enclosed in braces. Here’s an example of a block:
if (x>3) -
{
cout<<“Hello\n";
cout<<“world!”;

}

In C++, a block can be used anywhere a single statement can be used.
It’s a good idea to place braces on their own lines, making the beginning
and end of blocks clearly visible. Placing braces on heir own lines
also makes it easier to see whether you’ve left one out.

USER DEFINED DATA TYPES

In C++, you can use user defined data types like:

¢ Arrays

» Structures
* Pointers

* Union

_-»— Enumeration

CONDITIONAL EXPRESSION

If A student will score 50% marks in each subject he or she will be
declared pass in University exam or If your age is 18 years or more
you can use your vote to elect your. MP or PM. This type of real life
situation need conditional programmfng or decision making. The if
statement enables you to test for a condition (such as whether your
percentage of marks >50 or not) and branch to different parts of your
code, to process other parts. ' ‘

The simplest form of an if- statement is this:

if (expression)

statement;
Examples
A) if (marks>=50} | B) if {(Age>=18)
{ {
char result= ‘P’ ; char vote= ‘y’;
} ')
' else else

{ {
char result= ‘F’; char wvotes=

Yy }

Yes _

Is Condition True? -

v

Process
Statement

Fig. 5 Flow chart of If

You can use multiple statements, as .in following -'exarhple:

if {expression)

{
statementl;
' statement2;
statement3;
}
if (basic>=8000)
{

da={basic*67} / 100;
hra=(basic*25) /100 °
net =basic+da+hra;
}

If .. Else

You can also ask the compiler to check a condition; if that condition

is true, the compiler will execute the intended statement.
the compiler would execute alternate statement. This is

using the syntax:
if (Condition})
Statementl;
else

Statement?2;

OOP Paradigm and
Introduction to C++..
13 n s ;

NOTES

Otherwise,
performed

Self-Instructional Material 21

Object Oriented
Programming in C++

NOTES

22 Self-Instructional Materiol

- Yes
Is Condition True? -

Y

Y

Statement 2 Statement 1

¢

Fig. 6 Flow chart of nested if

C++ program to compute netsalary of an employee, netsalary is a
sum of basicsalry, da and hra of employee. An employee getting basic
salary more than or equal to 8000 will get 67% da, 25% hra on his
basic salary otherwise he will get 50% da, 18% hra on his basic salary.

Program .
: k* Use of - if -else in C++. program */
‘#include <liostream.h>
void main()
{
int basic ;
float da, hra, netsalary;
cout<<“enter basid salary of employee *;
cin>>basic;
if (basic>=8000)
{
" da= basic*67/100;
hra=basic*25/100;
netsalary=basic+da+hra;
} .
else
{
da= basic*50/100;
hra=basic*18/100;
netsalary=basic+da+h£a;

}

cout<<“Netsalary is“<<netsalary;

} ,
Sometimes, your program will need to check many more than that.
The syntax for such a situation is:)

if (Conditionl)
Statementl;

else if(Condition2)
Statement2;

An alternative syntax would add the last else as follows:

if (Conditionl)
Statementl;

else if(Condition2)
Statement2;

else if{(Condition3)
Statementj;

else
Statement-n; N

The compiler will check the first condition. If Conditionl is true, it
will execute Statementl. If Conditionl is false, then the compiler will
check the second condition. If Condition2 is true, it will execute
Statement2. When the compiler finds a Condition-n to be true, it will
execute its corresponding statement. It that Condition-n is false, the
compiler will check the subsequent condition. This means you can
include as many conditions as you see fit using the else if statement.
If after examining all the known possible condifions you still think
that there might be an unexpected condition, you can use the optional
single else. .
Program

//program to check a character input by keyboard
for wvowel (a,e,i,o,u) -

-/* Use of 1if -else-if in C++ program */

#include <iostream.h>

void main()

{

char alpha;

cout<< “ enter a character " e
cin>>aipha; - . '
if (alpha==‘a’)

{ .

OOP Paradigm and
Introduction to C++

NOTES

Self-Instructional Material

23

Object Oriented
Programming in C++

NOTES

2;4 SeIf-Instnictibﬁal Material

cout<< “A Vowel 7;

)
else if,(aIpha = = ‘e’)
{
cout<< “A Vowel “;
}
else if (albha = = ‘i’}
¢ .
cout<< “A'Vowel_";
}
else if ({(alpha = = ‘o)
{
cout<< “A Vowel *;
}
else if {(alpha == ‘u’)
(
cout<<. “A Vowel ”;
¥
else
cout<< “Not a Vowel *;
}

Program:

#include <iostream.h>
void. main () '
{
char Answer;
cout << “Are you more thah 18 (y;Yes/n=No)? “
cin >> Answer;
if(Answer == ‘y’)
{

cout << “\n You are mature now “;

1

cout << “\nYou can vote in election \n”;
: ;
else // Any other answer
cout << “\nWait for more years \n”;’

}

Multiple Condition with if

In many programming problems like result of a students, there can

be multiple conditions to allot grade based on percentage of marks

secured by the student. In C++ to join multiple conditions you can

use && (and) operator or you can use || (or) operator. && is used
when both conditions are true while | | is used when anyone of condition
is true. && and || also known as logical operators.
Exalﬁpl'e.
if { temp<=35 && temp >=15) // both must be true
_{f'(alpha = ='a’ || alpha=="‘e’ i | alpha==‘111 alpha=="" || alpha
== *‘u)
Program

/* Use of || operator with if -else in C++ program */

#include <iostream.h>
void main()

{

char alpha;

cout<< * enter a character. *;

cin>>alpha;
if (alpha =='a’||alpha ==‘e’||alpha ==‘i|| alpha
=='gQ' || alpha ==‘u’) : -

cout<< “A Vowel *;

}

else
{
cout<< “Not a Vowel *;
}
}. .
Program
/* Use of || operator with if -else in C++ program */

#include <iostream:h>
vofd main ()}
- {

int percentage ;

cout<< “Enter percentage of student {1-100) ~;
cin>>percentage; '

if (per <«=40)

OOP Paradigm and
I ntroductiqn to C++

NOTES

Self-Instructional Material 25

Object Oriented {
Programming in C++)
char grade='F‘';

,

NOTES else if (per>40 && per <=50)

charlgrade='D':

else if (per>59 && per <=69)
char grade='C’;

else if (per>60 && per <=70)
char grade='B’;

else. !

char grade=‘'A’';
}

cout<< “Grade of student isg "<<grade ; }

Conditional Operator (7:) .

In C ++, the conditional operator (?:) can be used in place of if-else
statement to check conditions. This is only one operator in C++ which.
uses three operands. Syntax is

Condition? expressionl : expression2

x>y ?10:50
Example .
/* Use of ?: in C++ program */

“%#include <iostream.h>
void main()
{
int %, v ;
cout<< “Enter. two numbers “;
cin>>x>>y;
int 'z = x > y? X i1y ;
Eout<< *The bigger number is ”<< z;

)

26 Self-Instructional Material

LOOP STATEMENTS

Sometimes you want to perform an action again and 'again,- like you
want to print first 100 even numbers, then loop concept of C++ will
help to do it in less numbers of line of codes. In examination processing
system same logic has to repeated for » numbers of students. In a
clock seconds, minutes and hours needles make a loop of 60 cycles.
Looping, also called iteration, is tused in programming to perform the
same set of statements over and over until certain specified conditions

are met.

Three statements in C++ are designed for looping:
1. The for statement
2. The while statement
3. The do-while statement

For Loop

The for statement is typically used to count a number of items. At its
regular structure, it is divided in three parts. The first section specifies
the starting point for the count. The second section sets the counting
limit. The last section determines the counting frequency. The syntax
of the for statement is:

for (expressionl; expression2; expression3)

{
statemenﬁl;
} .

Example
/* Sgure & Cube froml to 15 numbers */
#include <iostream.h>
' | ﬁoid main{))

{ .
cout<<*Number”<< *“Sgure ”“<<“ Cube\n “;
for (int i=1; i<=15; i++)
{
cout<<i<<i*i<<i*i*i ;

cout<<”"\n”;
y
)

Multiple Values in a for Loop

Example

/* Multiple expressions in for loop */

QOP Paradigm and
Introduction to C++

NOTES

- Self.Instructional Material

27

\

Object Orienited

Progiamming in C++

NOTES

S P
- 28 Self-Instructional Material
B % \ .

#include <iostream.h>

void main()

. .
int i, J;
for (i=0, j=8; i<8¢ i++, J~)
cout<<i<<j<<i+gi;

} '

Nested: for Loop

A for statement can be executed within another for statement. This
.is called nesting. By nesting for statements, you can: solve complex
programmmg problems.

Example s

/* Dem of mnesting two for statements */
#include <iostream.h>
void mybox{(int, int);

void main{)

{
‘mybox{ 5, 25 };
}
void mybox(irnt row, int column)
¢ o
"int col;
for (; row > 0; row-}
{
) for (col = column; ‘col > 0; col-)
{_’ .- .
cout<g™*¥
) .
cout<<™\n”";
} =
y
While Loop

-‘The_-whilfe statement, also known' as while loop, executes a block of

statements as long as a specified condition is true. The while statement
has the follpwing syntax:

while(x<=10) ' ' OOP Paradigm and

- . while .(condition)
d Introduction to C++

{ ' {
statement; . cout<<x;
statement; X=X+2:
\ : NOTES
"increment; }
}

Example
/* Demo of simple while statement */

- #include <iostream.h>
int count;
void main()

(

Statement

&

Is Condition true?
. Check again

-

False

increment

-
>

Y . -
' Stop | e A

Fig. 7 Wﬁile Loop
/ ‘ ' 4

- /* Print the numbers l'thrpugh-‘zs */ s o

count = 1;
'while (count <= 25}
{ . -~ - .) .
/ ‘,' "“--.\
cout<<“Number="<<count; , : .

Sl _ . (

AT) - " Selfinstructional Material 29

Objert Oriented count++;
Programming in C++ ’

NOTES Example :
#include <iostream.h>

int number;

void main{()

{

int x = 1;

cout<<*enter the number”; : -
cin>>number;

while (x < 10)

{

number=nunber * x ;

cout<<number<<”\n”"); 3

X++;

}

Do-Whilée Loop

One more loop in C++ is do...while loop, which executes a block of
statements as long as a specified condition is true. The do...while
loop tests the condition at the end of the loop rather than at the
beginning, as is done by the for loop and the while loop.

The syntax of do...while loop is:
do -
{
statement;
increment / decrement in loop ;
} while (condition);
int x=20;
do
{
cout<<x;
X = X - 2;

} while (x > = 2);

A
30 Selfinstructional Material

| Start |

-
-+

4

Statement

True

Is Condition true?

Fig. 8 Do..while loop

Exafnple

/* Demo of do...while statement */

#include <iostream.h
void main(}
{
int selection = 0;
cout<<“*¥You chose Menu Option \n”<<selection;
do ‘
{

cout<<*\n”;.

cout<<*\nl - Add a record”;
cout<<“*\n2 - Change -a record”;
cout4_<<“\n3 - Delete a record”;
cout<<“\n4d - Quit”;

cout<<“*\n”;

cout<<“\nEnter a selection: ™ ;

cin>>selection ;
} while (selection < 1 || selection > 4 };
}

The For, The While, or The Do...While

If you look at the syntax provided, you can see that any of the three
can be used to solve a looping problem. Each has a small twist to

O0P }’amdigm and
Introduction to C++

NOTES

Self-Instructional Material 31

Object Oriented
Programming-in C++

NOTES

.82 Self-Insiructional Material

" what ‘it can do, however.-The for statement is best when you know

that you need to initialize and increment in your loop. If you only

thave a condition that you want to meet, and you aren’t dealing with _
‘a specific .

number .of loops, while is a good choice. If you know that

a set of statements needs to be executed.at least once, a do...while
might be best. Because all three can be used for most problems, the
best course is to learn them all and then evaluate each programming
situation to determine which is best. .

Example

#include <iostream.h>

void main ()

{

int sSam;

long lar;

const int MAX=65535;

cout << "“Enter a -small number: “;
cin >> sam;

cout << “Enter a large number: “;

cin >> lar;

<< endl;

}

cout << “small: “* << sam<< *“,,.”";
while {sam < lar && lar > 0 && sam < MAX)
{

if (sam % 5000 = = 0) // write a*atevery 5000 lines
cout << ™ ok n.
san++;

lar = lar - 23
}

cout << *\nSmall: * << sam << * Large: “ << lar

Infinite Loop

The condition you use for ‘testing in a while loop.can be any valid
C++ expression. As long as that condition remains true, the while
loop will continue. You can create a infinite loop that will never end
by using the number 1 for the condition to be tested. Since 1 is always
true, the loop will never end, unless a break statement is reached.

like:

Example
#include <iostream.h>

void main()

{
int counter = 0;)
while (1) //infinite loop
c .
counter &+:I
if (counter > 25)
break; ' //break condition
} .
cout << “Counter: “* << counter << "“\n”;
3

OQutput: Counter: 26

While vs Do .. While Loop

It is possible that the body of a while loop will never execute. The
while statement checks its condition befof'e executing any of its statements,
and if the condition evaluates false, the entire body of the while loop
is skipped. The do...while loop.executes the body of the loop before
its condition is tested fgnd -ensures that the body always executes at

least one time. .
i NN
Example N

// Demonstraé@b‘do while

. . LAY
#include <1ost£gamﬂh>
X .
o
Vo
o

void main ()

{

int «counter; ﬁf\
cout << “How many he;Ips in loop you want ? *;
cin »>> counter; ; '
do
{ .
ccout << ™MHello PFPriend \n”*;
counteré; -

} while {(counter >0);

cout << “Value of Counter is: “ << counter <<
endl; ’)

QOP Paradigm and
Introduction to C++

NOTES

Self-Instructional Material 33

Object Oriented
Programming in C++

NOTES

34 -Seif-lnstructional Material

Output: How-many hellos in loop you want ? 2
Hello

Hello

Value of Counter is: 0

In above program the user is prompted for enter a starting value,
which is stored in the integer variable counter. In the-do...while loop,
the body of the loop is entered before the condition is tested, and
therefore the body of the loop is guaranteed to run at least once even
the condition can be false. '

Switch Statement

For decision making based programs, you have seen the use of if and
if/felse statements. These can become quite confusing when if nested
too deeply, but in C++ we have an alternative. Use switch statement,
unlike if, which evaluates one value, switch statements allow you to
branch on any of a number of different values. The general form of
the switch statement is: '

switch (condition / expression)
{
case One: statement;

break:

case Two: statement;

break;
case N: statement;
‘ break;
default: statement;
}
Example

// -Demonstrates switch statement
tinclude <icstream.h> _

void mainf)

{
int number;
" gout << "“Enter a number between 1 and 7: “;
cin >> number;
switch (number)
{

case 0: cout << “Amrapali Institute
Haldwani -List of courses!”; ’

break; * OOP Paradigm and
Introduction to C4+

case 6: cout << “B.Tech!\n?; -
case b cout << “MCA!\n*;
case 4: _cout <« “MBA!Sn”; NOTES
case 3: cout << “BBA!\n”";
case 2 cout << “BCA!\n”;
case 1 cout << “BHMCT!\n”;
break;
default: cout << “Please enter value 1—6!§n";
break;
}
cout << “\n\n”; . ;
} .
Output: Enter a number between 1 and 6:3
BB]-; !
BCA!
BHMCT!]
Enter a number between 1 and 6: 8
Please enter value 1-5!
BREAKING AND CONTROL STATEMENTS
Break and Continue
Any times in a loop if there is a need to return to the top of the loop
before the entire set of statements in the loop is executed. The
continue statement jumps back to the top of the loop. On the other
hand, if you may want to exit the loop before the exit conditions are
met. The break statement immediately exits the while loop, and program
execution resumes after the closing brace. ",
Loop (condition) 4 while (x<=10)
{ | (
statementl ; cout<<x;
if (condition) if{x=5)
{ . {
continue ; — —3 continue ;
stétement2; ‘ CQut2<x+5;
} } N
statementl ; éoi;t<<“end cf locp”;

Seif-Instructional Material 35

Object Oriented '} . y
Programming.in C++

Lo_cgp { condition) while (x<=10)
X {
NOTES .statementl :; cout<<x;
if { condition} 1f(x=5)
{ {
break ; ~ break ;
statement?2; cout<<x+3;
7}
statement3 ; : cout<<“end of loop”;
3

38 Sélf-lnstructiorg.ql Material

" OOP Paradigm and
" Introduction:to C++ .

STUDENT ACTIVITY

1. What is Object Oriented model of programming?

2. What happens if you create a loop that never ends?

=

Self-Instructional Material - ‘37

Object Oriented
Programming in C++

NOTES

88 Self-Instructional Material

SUMMARY

Object-orientéd programming treats data as a critical element
in the program development and does not allow it to flow freely '
around the system. '

Object-oriented programming attempts to respond to these needs,
providing techniques for managing enormous complexity, achieving
reuse of software components, and coupling data with the tasks
that manipulate that data.

Objects take up space in the memory. When a program is executed,
the objects interact by sending messages to one another.

A structured object is an object of a class with attributes,
operations, and relationships. '

C++ is a extension of C, but it does not mean that you should
learn C first. It is unnecessary to learn C first one can easily
start C++ programming because C++ allow you to write code
in C style.

A constant is a data storage lochildion, constants don’t change
their values in a program.

C++ statements always end with a semicolon (except for
preprocessor directives such as #define and #include).

SELF ASSESSMENT QUESTIONS

What is Object-oriented programming? How is it different from
the procedure-oriented programming?

Distinguish between the following terms:

(a) Objects and classes

(b) Data abstraction and data encapsulation

(¢} Inheritance and polymorphism

What is the difference between procedural vs object-oriented
programming? '

Explain the features of object oriented programming languages.

Why we should write reusable source codes and how. C++ is

helpful to write reusable codes?

What is a class and an object?

What is the difference between an integar variable and a floating-
point variable?

What are the differences between an unsigned short int and a
long int? '

10.

11.

12,
13.
14.
15.
16.

17.
18.
19.

20.

21.

22,
23.

24.

25.
26.
27,

28.
29.

What are the advantages of using a symbolfc constant rather.

than a literal constant?

What are the advantages of using the const keyword rather
than #define?

What are rules for a good ¢r bad variable name?
What is an expression?

Is x = 15/5 an expression? What is its value?

What is the value of 201/4? (if you will use integer)
What is the value of 201 % 47 ~

If myAge, a, and b are all int variables, what are their values
after:

myAge = 39;
a = myAge++;
b = ++myAge;

What is the value of 8+2*3?

What is the difference between x = 3 and x == 3?

Do the following values evaluate to. TRUE or FALSE?
(@) 0

1

(ey -1

(d) x =0

What is Conditional decision making, how it is important in
logical design development in a program?

Is if (5 + 7 >11) is a valid-if statement? What will be the return
value of it? '

What is nested if, describe with the help of an example?

.What are common operators, used to design multiple conditions

in if statement state some examples?

If myAge, a, and b are all int variables, what are their values
after: '

myAge = 39;

(@) = myAge++;

(b) = ++myAge;
How do you initialize more than one variable in a for loop?
Why is goto avoided? _
Is it possible to write a for loop with a body that is never

-executed?

Is it possible to nest while loops within for loops?

Is it possible to create a loop that never ends? Give an example.

OOP Paradigm and
Introduction to C++

NOTES

Self-Instructional Material 39

\ " Object Oriented -
Programming in C++

| SECTIONB |

Nores wnrs FUNCTIONS, STRUCTURES,
POINTERS AND UNIONS - |

" % LEARNING OBJECTIVES * |

° Deﬂning a Function

o Typesof Functions

o CallbyValue and Call by Reference
e Preprocessor

¢ Header Files and Standard Functioné
e Pointers and Structures

o Unions

DEFINING A FUNCTION

A function is a block of statements with a name. In your mobile set
you have several functions likecall a number, send a SMS-or read a
message. Any time you can use that without defining that, this is true -
with. C++ functions. Once a function has. been designed you can call
it to perform your task. Each function has a unique name. By using
that name in another part of the program, you can execute the statements
contained in the function. This is known as calling the function. A
function can be called from within another function, A\function is
independent. A function can perform its task without interference
from or interfering with other parts of the program. A function performs
a specific task like send your photo to your girlfriend using MMS
services of your handset. This is the easy part of the definition. A task
is a discrete job that your program must perform as part of its overall
operation, such as sending a line of text to a printer, sorting an array
"| into numerical order, or calculating a cube root. A function can return
a value to the calling program like your messege has been delivered.
When your program calls a function, the statements it contains are
executed. If you want them to, these statements can pass information
back to the calling program. | L

o +

‘40 Self-Instructional Material

If you want to define a functions in C++, you should use the following

stepsy _
(@) prototype the function' ‘

i //int sum (int ,. int)

(b) define' the function’

//int sum{ int x, int y ¥

Z =X + Y :
return. z ;
}I -
(c)* use or’ call the functions
// z=sum{a,b};
Example:
/* bemo of function for sum: */
#include <iostream.h>
int sum(int , int) // function prototype:
int X, Y ., 2 ; : ‘

void - maind()

It
cout<<“*Enter two' numbers :i“;
CLin>>X>>y;

z = sum (x, ¥)r //function: call
cout<<*The Sum of numbers is\ﬁ"<<z;
// function definition
< int sum (int x, int y}
{I .
return x+y;
}

TYPES OF FUNCTIONS

There are three main types of function in C++
1. C style functions
2. Inline functions

3. Friend functions

Functions, Structures,
Pointers and Unions

NOTES

Self-Instructional Material "41

- T S

Ubject Oriented
Programming in C++

NOTES

42 Self-Istructional Material

Inline Function

When you define a function, normally the compiler creates just one
set of instructions in memory. When you call the function, execution
of the program jumps to those instructions, and when the function
returns, execution jumps back to the next line in the calling function.
If you call the function 5§ times, your program jumps to the same set

| of instructions each time. This means there is only one copy of the

function, not 5. There is some performance overhead in jumping in
and out of functions. It turns out that some functions are very small,
just a line or two of code, and some efficiency can be gained if the
program can avoid making these jumps just to execute one or two
instructions, The program runs faster if the function call can be avoided.
If a function is declared with the keyword inline, the compiler does
not create a real function: it copies the code from the inline function
directly into the calling function. No jump is made; it is just as if you
have written the statements of the function right into the calling
function. To declare a function inline use the keyword inline before
the type of function. '

Inline returntype functionname(passing parameter)

inline int double(int);

_An_inline'"flfrfc_tion is a function whose code gets inserted into the

caller’s code stream. Like a #define macro, inline functions improve
performance by avoiding the overhead of the call itself and (especially!)
by the compiler being able to optimize through the call.

Example .

// inline function twe compute square and cube of
integer numbers

-#include <iostream.h>
inline double sguare{int):
inline double cube(int)
void main()
{
int num;
double sq,cub;
cout << “Enter a number"“;
cin >> num;
cout << “\n”;
sg = sqguare (num);
cout << “Square is :7<<sqg << endl;

cub = cube{(num) ;

cout << “Cube is : ™ << cub << endl;

} . .
double-squafe(int num}
{
return num*num;
}

double cube(int num)

{

return num*num*num ;

}

CALL BY VALUE AND CALL BY REFERENCE

Call by value

When you will use call by value style in a function you will pass
actual variables to the function, and you can declare variables within

the body of the function. This is done using value of variables, so .

- named because they exist within the function itself.

The parameters passed into the function are real values of variables
and can be used exactly as if they had been defined within the body
of the function.
Program
#include <iostream.h>
_ float Convert{float);
int main{)
{
float TempFer;
float TempCel; \ y
cout << “Please enter the temperature in
Fahrenheit: *;

cin >> TempFer;
-Teranel = Convert (TempFer) ; J
.1, cbut << “\nHere's the temperature in éelsius: oy
' cout << TempCel << endl; -
return 0; -
}
float Convert({float 'TempFer)

r - -~
1 ' g

Functions, Structures,
Pointers and Unions

NOTES

PO . . 1., .
. .. Self-Instructionsl Material 43

ran

Object Qriented
Programming in C++

NOTES

K
%\

".' \ l\\' ’
4% Self-Instructional Material

>

{
float Templel;
TempCel = ((TempFer - 32) * 5) '/ 9;
return TempCel; .
}
Call by Reference

When declaring a reference.variable you must also make it refer to
something at the same time. To declare on you simply make a variable
of the type you are going to be referring to, make up your own name,
and put an ampersand (&) in front of it:

int &ref;

That creates a reference variable called ref of type integer. Of course
this doesn’t do anything because you can’t assign references to other
variables at any other time than declaration. So to make ref refer to
something we have to do it in the declaration:

int &ref = x;

This is all assuming we have a variable called x and that it is also an .
integer (int). But after doing this, anything we do to ref will effect x.
Try this source code (cut and paste). '

’Program

#include <iostream.h>
void main()
{

-int x = 10; // create integer variable

"called x

int &ref = x; AL make a reference variable
that refers to x \ :

cout “x is * x * and ref is .~ ref endl;
cout *“Now we change -ref to eéual 25 ... % endl;
ref = 2;5;

cout “And now X is * x ™ and ref ils “ ref endl;

}

Using Reference Variables in Functions

The previous section was an intro into reference variables. But to be
quite honest if you use them like that then they’re not really necessary.
Reference variables come into shine when it comes to functions. The
point of reference variables and functions is that you can pass a

variable as a parameter and have the variable changed in the functlon. Functions, Structures,
Like in the following code snippet. Pointers and Unions

Program

- #include <iostream.h>
NOTES
void times2 (int &x}; // function prototype
void main(}

{

int var: // declare var as integer variable
var = 10; // put value of 10 in var

cout-¢< “yvar is “ << var <<endl;

times2(var); /f call ‘times2 ()’ with var as parameter

cout << “var is now “ << var <<endl;

}

void times2{int &x)
{

X = x * 2;

}

With references you could get multiple values, like in the following.
Program ’

#include <iostrea@.h>

void times2 (int &vl1, int &v2); // function prototype

void main{)

{
_int X,¥:
x = 10;
y = 15;

cout << “x is “x* and y is “<<y <<endl;

times2 (x,v); '

cout << “x is now “x" and y is now * << y << endl;
: _

void times2'(int &vl, int &v2)

{ .

vl vl.* 2;

v2

v2 * 2y

Self-Instructional Matericl- 45

. Object Oriented * .
Programming in -C++

NOTES

% Self-Instructional Materiol

PREPROCESSOR

Preprocessor directives are lines included in the code of our programs
that are not pfogram statements but directives for the preprocessor.
These lines are always preceded by a pound sign (#). The preprocessor
is executed before the actual compilation of code begins, therefore
the preprocessor digests all these directives before any code is generated
by the statements. These preprocessor directives extend only across
a single line of code. As soon as a newline character is found, the
preprocessor directive is considered to end. No semicolon (;} is expected

| at the end of a preprocessor directive. The only way a preprocessor

e

directive ¢an extend through more than one line is by preceding the
newline character at the end of the line by a backslash (\).

#define

To define preprocess-or-r.nacros we can use #define. Its format is:
#define identifier replacement
#define TRUE 1

When the preprocessor encounters this directive, it replaces any occurrence
of identifier in the rest of the code by replacement. This replacement

can be an expression, a statement, a block or simply anythmg The

preprocessor does not understand C++, it simply replaces any occurrence
of identifier by replacement.

#define TABLESIZE 100
int tablel [TABLESIZE];
int table2 [TABLESIZE]; ‘/
After the preprocessor has replaced TABLE_SIZE, the code becomes
equivalent to:

int tablel([1001];

int table2[100];
Example

// Use of #define to develép a function getmin{) to
find minimum in two numbers

include <iostream:h$ ‘
#define gei:min{a,b) {(a)y<{b)?(a):(b})
void main(} |
K

" int x=5, y=8;

y= getmin(x,y); /
cout << y << endl;

]) ‘ ‘\.

’ . ' \

AND # # ,

Function macro definitions acéept two special operators (# and ##) 'in
the replacement sequence. If the operator # is used before a parameter
is used in the replacement sequence, that parameter is replaced by
a string literal (as if it were enclosed between double quotes), The
operator ## concatenates two arguments leaving no blank spaces between
them. Like:

#define strix) #x
cout << str(test);

output will be “test”

#define join(a,b) a ¥ b

join{c,out)<<“*test”

cutput will be cout<< “test”
#undef

If you have defined some value usihg #define you can erase it using
#undef in a program. Like: '

#define TABLESIZE 100
int tablel [TABLESIZE]} [
#undef TABLESIZE
#define TABLESIZE 200
int table2[TABLESIZE]
You will get
tablel (100]
table2[200]

HEADER FILES AND STANDARD FUNCTIONS

Every implementation of C++ includes the header files and standard
library functions, and most include additional libraries as well. Libraries
are sets of functions that can be linked into your code. You've already
used a number of standard library functions and classes, most notably
from the iostreams.h library.

"To use a library, you typically include a. header file in your source
code, much as you did by writing #include <iostream.h> ih many of
the examples in this book. The angle brackets around the filename
are a signal to the compiler to look in the directory where you keep
the header files for your compiler’s standard libraries. There are
dozens of libraries, covering everything from file manipulation to
setting the date and time to math functions.

hS

Functions, Structures,
Pointers and Unions

NOTES

Self-Instructional Material 47 ‘

Object Oriented
Programming in C++

NOTES

48 Self-Instructionol Material

The mat:m header files are :

Iostream.h
Conic.h
Math.h
Graphics.h
String.h
Iomanip.h
Time.h

Fstream.f

Using of time.h header fi_le

#include <time.h>

#include <iostream.h>

int main{()

{

time_t currentTime;

// get and-print the current time

ctime (¤tTime); // £ill now with the current

time

cout << “It is now “ << ctime{¤tTime) << endl;

struct tm * ptm= localtime{¤tTime};

cout
cout
cout

cout

<< “Today is * <<- {{ptm->tm_mon}+l; << *“/%;
<< ptm->tm_mday << “/7;
<< ptm->tm _year << endl;

<< “\nDone.”;

return 0;

}

Qutput: It is now Mon Mar 31 13:50:10 1997
Today is 3/31/97

POINTERS AND STRUCTURES

To declare a pointer in a program, write the type of the variable or
object whose address will be stored in the pointer, followed by the
pointer operator (*) and the name of the pointer. For example,

int * point = 0;

To assign or initialize a pointér,'- prepend the name of the variable
whose address is being assigned.with the address of operator (&). For
example, ‘ : _
int theVar = 5;

int * point = & theVar;
To dereference a pointer, prepend the pointer name with the derefei‘énce
operator (*). For example,
int theValue = *point

you've seen step-by-step details of assigning a variable’s address to a
pointer. In practice, though, you would never do this. After all, why
bother with a pointer when you already have a variable with access
to that value? The only reason for this kind of pointer manipulation
of an automatic variable is to demonstrats how pointers work. Pointers
are used, most often, for following tasks:

e Managing data on the free store.
¢ Accessing class member data and functions.

. Pas-sing variables by reference to functions.

Reference Variable

" A reference is-work as an alias for an object, when you create a
. reference, you initialize it with the name of another object. From that
moment on, the reference acts as an alternative name for the target
object, and anything you do to the reference is really done to the

target object.

You can create a reference by writing the type of the target object,
followed by the reference operator (&), followed by the name of the
reference. References can use any legal variable name. If you have an
integer variable named myint, you can make a reference to that variable

by writing the following:

int & myref = myint;
now myref will éct as a reference variable for myint in the whole
program.

Example

1

// show the use of reference variables
// Demo of References
#include <iostream.h>
Ivoid main()
{_
int aone;

int &%ref = aone;

Functions, Structures,
Pointers and Unions

NOTES

 Self-Instructional Material 49

 Object Oriented | acne = 15; - - :
Programming in C++)) X t
- cout << “AOne: “ << abne << endl;
cout << “ref: " << ref << endl;
ref = 74;

cout << MAOne: “ << aone << endl;

NOTES

cout << ‘ref: * << ref << endl;
}
Example
~//Use of Address of Operator - & - on References.
#include <iostream.h>

void main()

.ﬂ‘
int intOne;
int &SomeRef = intOne;
intOne f 5; .
cout ;%'“intOne: " << intOne << endl;
cout << “SomeRef: * << SomeRef << endl;
cout <¥ “&intOne: “ << &intOne << endl;
cout << “&SomeRef: * “z<. gSomeRef << endl;
y

Reference to Objects

You can create a reference to an object, but not to a class. You can
not write this: :

int & intref = int; /] wrong— |

- You must initialize intref to a particular integer value, such as this:
int bignumber = 1200;
int & intref = bignumber;

In the same way, you don’t initialize a reference to a class like:
student & rstu = student; // wrong

You must initialize rstu to a particular student object first to set
reference like:

student nitinpadlia;
. . student & rstu = nitinpadlia ;
Example

#include <jiostream.h>

class SCat

50 Self-Instructional Material "

{ . : - S * . "Functions, Structures,
. Pointers and Unions
public: .

SCat (int age, int weight);
~SCat (} (} , ‘ NOTES
int GetAge({) { ré_turn itsAge; }
int GetWeight () (return itsWeight; }-
private:
int itsAge;

int itsWeight;

HH
SCat::SCat(int age, int weight)
{
itsAge‘=_age;
itsWeight = weight;
}
void main()
{
SCat juli (15,3);
SCcat & rCat = juli;
cout << “juli isg: “;
, cout << .juli.GetAge(} << * years old. \n”;
| cout << “*And juli’'s weight is : *; o
cout << rCat.‘GetWeight()ﬁ*:«: K Kgﬁn;';
}
UNIONS

Unions are similar to structures. A union is declared and used in the
same ways that a structure is. A union differs from a structure in that
only one of its members can be used at a timi€. The reason for this is
simple. All the members of a union occupy the same area of memory.
They are laid on top of each other. '

Defining, Declaring, and Initializing Unions

Unions are defined and declared in the same fashion as structures.
The only difference in the declarations is that the keyword union is
used instead of struct. To define a simple union of a char variable and
an integer variable, you would “Wwrite the following: '

A

Self-Instructional ‘Matzrial .51

Object Oriented
Programming in C++

NOTES

62 Self-Instructional Material

union shared

{

char c¢;

-t -

int i;
i !
This union, shared, can be used to create instances of a union that
can hold -either a character value ¢ or an integer value i. This is an

OR condition. Unlike a structure that would hold both values, the
union can hold only one value at a time.

Functions, Structures,
- Pointers and Unions

STUDENT ACTIVITY

1. Define Inline functions..

2. Name four preprocessor derivatives with examples.

Self-Instructional Material 63

Object Orierited -
Programming in C++

NOTES

54 Self-Instructional Material

2.

3.

SUMMARY o

A function can return a value to the calling program like your’
messege has been delivered. |

An inline function is a func¢tion whose code gets inserted 1nt0
the caller’s code stream.

The point of reference variables and functions is that you can
pass a variable as a parameter and have the variable changed

-in the function.

Preprocessor directives are lines included in the code of our
programs that are not program statements but directives for

‘the preprocessor.

If you have defined some value using #define you can erase it
using #undef in a program.

A reference is work as an alias for an object, when you create

_a reference, you initialize it with the name of another object.

Unions are similar to structures. A union is declared and used
in the same ways that a structure is.

: L . . ,
SELF _ASS/ESSMENT QUESTIONS J

What do you mean by preprocessor denvatlves"

How do you use f#define to set values of constants in your
program?

What is the difference between #deﬁne debug 0 and #undef
debug?

SECTION C

unirs CLASSES, INHERITANCE
AND CONSTRUCTORS

% LEARNING OBJECTIVES *

. Classes
‘e Member Functions
o Objects
e Array of Objects
. Conétructors
o Copy Constructors
e Destructors
° InIineMembérFunctions
o StaticClass Member-Functions -
o Friend Functions
o Dynamic Memory Allocation —
¢ Inheritance
e Virtual Base Class
o Abstract Classes

e Constructors in Derived Classes

e Nesting of Classes

T

CLASSES S0

Programs are usually written to solve real-world problems, such as
keeping track of employee records in an organization like Amrapali

Institute or simulating the workings of a heating system. Although it

is possible to solve complex problems by using programs written with
only integers and characters data types, but it is more easier to solve
large, complex problems if you can create objects using base classes.
In other words, simulating the workings of a heating system is easier
if you can create variables that represent rooms, heat sensors, thermostats,

Classes, Inheritance and
Constructors

NOTES

Self-Instructional Material 85

Object Oriented and boilers. The closer these variables correspond to reality, the easier
Programiming in C++ it is to write the program. To solve real world problems there is a
need to create new data types also known as user defined data types, |

a class help us to design a new data type with attributes and operations

NOTES or functions in a single unit. A class defines a data type, much like a!
struct C. In a computer science sense, a type consists of both a set of '
states and a set of operations which transition between those states.
You can make a new data type by declaring a class. A class is just a
collection of variables often of different types combined with a set of
related functions. One way to think about a car is as a collection of
wheels, doors, seats, windows, and so forth. Another way is to think
about what a car can do: It can move, speed up, slow down, stop,
park, and so on. A class enables you to encapsulate, or bundle, these
various parts and various functions into one collection, which is called

an object. '

CAR class
wheels
doors
seats

windows

Functions
Move
Start
Stop
Park

Fig. 1 ¢ CAR class
CAR cl, c2;
Two objects of CAR, having same attributes and functions

‘Encapsulating everything you know about a car into one class has a
number of advantages for a programmer. Everything is now in one
place, which makes it easy to refer to, copy, and manipulate the data
using objects of class.

Example

A class employee with following attributes empno, empname, empdept,
empsalary and . functions join; computesalary, printdata, printsalary.

Class employee
Empno - integer
Empname ~ string

Empdept — string

Empsalary — integer

56 Self-Instructional Material

Functions
Join()
Computesalary()
Printdata()
Printsalary(

Example
A class bankaccount with following attributes accno, custname, custadd,
singamount and functions open, deposit, withdrawal,

openamount, clo
checkbalance, close.
Class bankaccount
Accno — integer
Custname -~ string
" Qustadd - string
Openamount — integer
Closingamount — integer
‘ ' Functions
(Open()
: , Deposit()
Withdrawal()
Checkbalance()
Close()

'
1
i

\ .
WIEMBER FUNCTIONS

Classes, Inheritance

Constructors

NOTES

jor
class can consist of any combination of the variable types and also

gunc® |
her class types. The variables in the class are referred to as the
s - mber variables or data members. Like a Car class might have member
o %, jables representmg the seats, windows, doors, tires eic. Memb
e ables also known as data members, are the variables in ypur ¢] N
‘ber variables are part of your class, just like the whnelsc :181?1

s are part of your car class. The fun
ﬂate the member variables. They Zi?ii;;rlee ;:aSQ f}“plcalb
s or methods of the class. Methods of the Ca EI‘S Srember
3tart{) and Stop(). Member functions, alsp know; e uight
\nctions in your class. Member funchons are as ;i:f =b0ds
€ part

Y
58 as the member variables. They 4
ete
{3 s the n y rmine what the}b &ota
\ ; {
\ - | I
d programming languages like C4-4, obJE]—u-;T
e of a class.” Thus a class defines the bﬂrmuf I';-r
0

Seiy.
elf- b:stmct:b.r:a! Mater;, I
ial 3

* Object Oriented

Irien Possibly many objects. You tan_say now an object ig 8n individygi |
Frogramming in Cas instance of 4 class. You cap define ap object of your new clas” as
You define ap Integer variahle Like: / \ !
. - . ‘\
Car c1, // One object of Ca~
NOTES

Eh'nployee el,eé, /7 'i'wo obj)ict/
Student 31,52,33 // Three o}

" Slclf Inatmctiona!-Mau_na.l_ s
w | . ' .. - . -

Functions
Join(}
Computesalary()
Printdata()
Printsalary()
Example

A class bankaccount with following attributes accno, custname, custadd,
openamount, closingamount and functions open, deposit, withdrawal,
checkbalance, close.

Class bankaccount
Accno — integer
Custname —-string
Custadd - string
Openamount — integer
Closingamount - integer
Functions -
Open()
Deposit()
Withdrawal()
Checkbalance()
Close()

MEMBER FUNCTIONS

A class can consist of any combination of the variable types and also
other class types. The variables in the class are referred to as the
member variables or data members. Like a Car class might have member
variables representing the seats, windows, doors, tires etc. Member
variables, also known as data members, are the variables in your class.
Member variables are part of your class, just like the wheels and
engine are part of your car class, The functions in the class typically
manipulate the member variables. They are referred. to as member
functions or methods of the class. Methods of the Car class might
include Start() and Stop(). Member functions, also known as methods,
are the functions in your class. Member functions are as much a part
of your class as the member variables. They determine what the objects
of your class can do.

OBJECTS

In object oriented programming languages like C++, “object” usually
means “an instance of a class.” Thus a class defines the behaviour of

e

Classes, Inheritance and
Constructors

NOTES

Seif-Instmct'ional Material 57

- Object Oriented
Programming in C++

NOTES

68 * Seif-Instructional Material

possibly many oi::jects. You can say now an object is an individual

instance of a class. You can define an object of your new class Jjust as
you define an integer variable. Like:

Car-cl(

Employee el,e2,
Student sl,s2,

// One object of Car class

s3 // Three objects of student class

CAR class

" wheels

doors

seats .

windows

Functions

~ Move

Start

Stop

Park
CAR cl;
Class. . - .. Object
Data members " Functions
Wheels Move.
Doors - Start
Seats Stop
Windows

Class Declaration

To declare a class, use the class keyword followed by an opening -

// Two objects of Emplcoyee class

Park

brace, and then list the data members and methods of that class. End
the declaration with a closing brace and a semicolon. Here’s the declaration
-of a class called Car:

class Car

(

int doors; ™

int wheels;

start{};

Stop(};
}:

//member function

/ /member variable

~

Declaring this .class doesn’t allocate memory for a Car. It just tells

the compiler what a Car is, what data it contains (wheels and doors), .

and what it can Start() and Stop() It also tells the compiler the s1ze

of a Car in bytes, to know how much bytes the compiler must set Classes, Inheritance and
aside for each Car object that you will create in future. In this example, Constructors

if an integer is two bytes, a Car is only four bytes big: doors is two

bytes, and wheels is another two bytes. Start() and Stop() takes up

no bytes, because no storage space is reserved for member functions. NOTES

Public Vs Private

Some more keywords are used in the declaration of a class. Two of
the most important are public and private. All members of a class
data and methods are private by default. Private members can be
accessed only within methods of the class itself. Public members can
be accessed through any -object of the class. This distinction is both
important and confusing. To make it a bit clearer, consider an example
from earlier in this chapter:

class Car

{

int doors;

int wﬁeels;

Start();

Stop(}:

1 :
in this declaration, doors, wheels, Start() and Stop() are all private, -
because all members of a class are private by default. This means

that unless you specify otherwise, they are private. However, if you
now declare object of Car class like: /

Car cl; : - : -
. cl.wheels=6; // error! can’t access private data!

the compiler will show this as an error. Because you cannot access
private data values utrectly. / . '

I
I}

Now change the class declaration as:
class Car
{ . .
publid;
int dobfs;
int wheeis;_ . : . .- . I
Start(); L
Stop{):

. }i

Example

. #include <iostream.h>
B! b;

class Car // declare the class object

e
t

7t Self-Instructional Material 59

Object Oriented q
Programming in C++ _)
public: “ //-members which follow are public
int wheels; '

int doors;

NOTES

};

void main{)

{
Car maruti; . //0bject declaratioﬁ
maruti.wheels = 4; //assign to. the member variable
cout << “Maruti 1is a car which has"“;
cout << maruti,wheels << “ Wheels\n”;

) _

Example

-

//add and subtract twe numbers using classes and
objec€$
#include <iostream.h>

—

class ~addsuk

{ .
int X; '

int y: //private data members

public: '

void: twosum({) ; // public member function

void twosub{);

}i // class defined

veid addsub::twosum() // define membe¥ function
{

cins>>x;

cin>>y;

int z=x+y:

R cout<< *“Sum is ="<<z;
o : - L)
void addsub::twosubl().
{

cin>>x;

cin>>y;

. int z=x-y;

< N
,

€0 Self-Instructional Material

cout<< “Subtraction is ="<<z;

} rRopwg
void main()}

{

addsub s; // object declaration of addsub class
s.twosum(); // calling member function with object

s.twosub();

} . o .

Example

//multiply and divide two numbers using classes and

objects

#include <iostream.h>
class addsub

{

int x;

int vy; // private data members

- public: S

.
. e
addsub s,

class

void twomult() // public member function inside class

{

cin>>x;

L

cin>>y;
int z=x*y;
="<<zZ;

cout<< “Product is

}

void twodiv()}
{

cin>>x;
cin>>y;

int Z=X-Y;
cout<< “Division is- ="<<z;
}

Yi // class defined

void main{)

{

'
[

//object declarqtioﬁ of addsub

Classes, Inheritance and
Constructors .

NOTES

Self-Instructional Material . 61

Object Oriented
Programming in C++

NOTES

N .
62 Self-Instructional Material

s.twomult{); // calling member function with object
s.twodiv{);

3

ARRAY OF OBJECTS

Any object, whether built-in or user-defined, can be stored in an array.
When you declare the array, you tell the compiler the type of object
to store and the number of objects for which to allocate room. The
compiler knows how much room is needed for each object based on
the class declaration. The class must have a default constructor that
takes no arguments so that the objects can be created when the array
is defined.

©O OO OO O O Q O C’ © @
’ Fig. 2 An array of faces

SAC HINTE NDULIKAR
Fig. 3 An array of characters
An array is a collection of similar data values in a single unit.

Accessing member data in an array of objects is a two-step process.
You identify the member of the. array by using the index operator
(I 1), and then you add the member operator (.) to access the particular
member variable. Like:

e int x[10]; ' Iff array of 10 integer data types
¢ - float y[12]; . // array of 12 float data types
o child ¢[5} / array of 5 child class objects.
Example - -
// Demo - An array of .objects
#includé <iostréam.h>

class CHILD

{ g
ﬁublic: .
CHILD() { itsAge = 1; itsWeight=5; }
~CHILD() {(}
int ‘GetAge{) const { return itsAge; }
int GetWeight(} const { return itsWeight;)
void éetAge(int age) { itsAge = aée; } o
private:

int itsAge;
int itsWeight;

}i
void main () *
{
CHILD suhani[5]; 7 array of objects of CHILD
class '
int 1i;
for (i = 0; 1 < 5; i++)
suhani[i].SetAge(2*i +1);
for (i = 0; 1 < 5; i++)
{
cout << “Child #” << i+l<< “: %
cout << suhanil[i].GetAge() << endl;
) _
}

Axray of Pointers

The arrays of objects usually store all their members in a stack. Usually
stack memory is severely limited, whereas free store memory is. far
larger. It is possible to declare each object on the free store and then
to store only a pointer to the object in the array. This.dramatically
reduces the amount of stack’ memory used and fasten the processing
speed. As an indiaimcaion of the greater memory that this enables,
the array in next example extended from 5 to 500.

Example
// demo of An-array of pointers to objects
#include <iostream.h>
class AIMCA
{
public:
ATIMCA{) { itsAge = 1; itsWeight=5; }
~AIMCA() {} // destructor
int GetAge() c¢onst { return itsage; 1}
int GetWeight{) const { return.itSWeight; }
void SetAge(int age)} -{ itsAge = age; }
private:

int itsAge;

Classes, Inheritance and
Constructors

NOTES

Self-Instructional Material

63

Object Oriented
Programming in C++

NOTES

64 Self-Instructional Material

int itsWeight;

void main()
{ _
AIMCA * Family[500];
int i;
AIMCA * pAimca;
for (i = 0; 1 < 500; i++)
{ _
pAimca = new AIMCA;
pAimca—#SetAge(Z*i +1);

Family[i] = pAimca; '

for (i = 0; i < 500; i++)
{
cout << “Aimca #" << i+l << “; %;

cout << Family[i]->GetAge() << endl;

}

CONSTRUCTORS

There are two ways to define an integer variable. You can define the
variable and then assign a value to it later in the program. For example,

int Weight; // define a variable
// other code here
Weight = 7; // assign it a value
Or you can define the integer and immediately initialize it. For example,
int Weight = 7; // define and initialize to 7

Initialization combines the definition of the variable with its initial
assignment. Nothing stops you from changing that value later. Initialization
ensures that your variable is never without a meaningful value. How
do you initialize the member data of a class? Classes have a special
member function called a constructor. The constructor can take parameters
as needed, but it cannot have a return valué—not even void. The
constructor is a class method with the same name as the class itself.

Whenever you declare a constructor, you'll also want to declare a
destructor. Just as constructors create and initialize objects of your
class, destructors clean up after your object and free any memory you

might have allocated. A destructor always has the name of the class,
preceded by a tilde (~). Destructors take no arguments and have no
return value. Therefore, the Cat declaration includes

~Cat {);

Default Constructors and Destructors

If you don’t declare a constructor or a destructor, the compiler makes

one for you. The default constructor and destructor take no arguments -

and do nothing. What good is a constructor that does nothing? In
part, it is a matter of form. All objects must be constructed and destructed,
and these do-nothing functions are called at the right time. However,
to declare an object without passing in parameters, such as

Cat Reena; // Rags gets no parameters
you must have a constructor in the ferm
Cat();

When you define an object of a class, the constructor is called. If the
Cat constructor took two parameters, you might define a Cat object
by writing

Cat Reena(5,7): // Parameterized constructor

If the constructor took one parameter, you would write

Cat Reena(3);

In the event that the constructor takes no parameters at all, you
leave off the parentheses and write

Cat Frisky:

This is an exception to the rule that states all functions require parentheses,
even if they take no parameters. This is why you are able to write

Cat Reena;

which is a call to the default constructor. It provides no parameters,
and it leaves off the parentheses. You don’t have to use the compiler-
provided default constructor. You are always free to write your own
constructor with no parameters. Even constructors with no parameters
can have a function body in which they initialize their objects or do
other work. As a matter of form, if you declare a constructor, be sure
to declare a destructor, even if your destructor does nothing. Although
it is true that the default destructor would work correctly, it doesn’t
hurt to declare your own. It makes your code clearer.

Now rewrite the Cat class to use a constructor to initialize the Cat
object, setting its age to whatever initial age you provide, and it
demonstrates where the destructor is called.

Program
f#include <iostream.h> // for cout

class Cat // begin declaration of the class

Classes, Inheritance and
Constructors _

_NOTES

-Self-Instructional Material €5

Object Oriented pr ivate:
Programming in C++
// one data field: ptr to allocated string

char *str;
}:

NOTES .
Concerning this interface we remark the following:

The class contains a pointer char *str, possibly pointing to allocated
memory. Consequently, the class needs a constructor and a destructor.
A typical action of the constructor would be to set the str pointer to 0.
A typical action of the destructor would be to release the allocated
memory. For the same reason the class has an overloaded assignment
operator. The code of this function would look like:

String const & String::operator=(String const & other) .

{
if (this != & other)
{
delete str;
str = strdupnew(other.str);
}
return (;this};
}

The class has, besides a default constructo'r, a constructor which expects
one string argument. Typically this argument would be used to set
the string to a given value, as in:

String a(“Hello World!\n*);

The oﬁly interface functions are to set the string part.of the quecf;
and to retrieve it. let’s consider the following code fragment. The
statement references are discussed following the example:

String a (“Hello Worldin®), b, ¢ = a;
int main() '
{
b = c;
return {0};
}

Statement 1. This statement shows an initialization. The object a is
initialized with a string “Hello World”. This construction of the object
a.therefore uses the constructor which expects one string argument.
It should be noted here that this form is identical to

String a = “Helloc World\n”;

68 Selﬁfnstmctfonp! Material

Even though this piece of code uses the operator =, this is no assignment:
rather, it is an initialization, and hence, it’s done at construction time
by a constructor of the class String.

Statement 2. Here a second String object is created. Again a constructor
is called. As no special arguments are present, the default constructor
is used.

Statement 3. Again a new object ¢ is created. A constructor is therefore
called once more. The new object is also initialized. This time with a
copy of the data of object a.

This form of initializations has not yet been discussed. As we can
rewrite this statement in the form

String cla);

it suggests that a constructor is called, with as argument a (reference
to a) String object. Such constructors are quite commaon in C++ and
are called copy constructors. More properties of these constructors
are discussed below.

Statement 4. Here one object is assigned to another. No object is
created in this statement. Hence, this is just an assignment, using the
overloaded assignment operator.

The simple rule emanating from these examples is that whenever an
object is created, a constructor is needed. All constructors have the
following characteristics: ‘

¢ (Constructors have no return values,

¢ (Constructors are defined .in functions having the same names
as the class to which they belong.

Therefore, we conclude that, given the above statement (3), the class
String must be rewritten to define a copy constructor:

// class definition
class String
{
~ .
p&?lle |
String{String const & other);
}:
// constructor defini;ion
String::8tring(String const & other)
{

str = strdupnew{other.str);

Classes, Inheritance and
Constructors

NOTES

Self-Instructional Material 69

Object Oriented
Programming in C++

' NOTES

72 Self-Instructional Matetrial

need them is when you use dynamic memory allocation, mess with
things that need to be set back when your done, etc.

To declare a destructor function is similar to declaring a constructor
function. The destructor’s name should be exactly the same as the
name of the class (like a constructor), however it should also be preceded
by a tilde (~). So for our class Cat the destructor prototype would be:

~Cat () ;

The biggest difference between constructors and destructors is that
the latter cannot have any parameters. :

Program

#include <iostream.h> _

int num date_objects; // global variable to
keep track c¢f the number // of ‘date’ objects

class date

{

public:
// constructor!
date(int y,lint m, int &)
{

year = yi
month= m;
day = d;

num_date_objects++; // add one to the number of date
objects, this '

// number will be THIS object’s id numbexr
id = num_date_objects;

cout << *“Calling constructor, creating date object
#7 14 w!” << endl;

}

// destructor!

~date ()

{

. cout << “Calling destructor! *AWOOGA* *AWOOGA*!
date cbject #~«
<< 1d <<* has perished!” <<endl;:
}

int year, month, day, id;

Yoo

void main()

{
num_date_cbjects = 0;°
date neil_dob(1979,8,18};
date joey_dob(1976,11,28);

} ' - .

INLINE MEMBER FUNCTIONS

The way to implement inline functions leaves a class interface intact,
but mentions the keyword inline in the function definition. The interface
and implementation in this case are as follows:

class Person

{

public:-

char const *getname(void) const;

};
inline char const *Person::'getname() const
{

return (name);
}

Again, the compiler will insert the code of the function getname()
instead of generating a call. However, the inline function must still
appear in the same file as the class interface, and cannot be compiled
to be stored in, e.g., a library. The reason for this is that the compiler
rather than the linker must be able to insert the code of the function
in a source text offered for compilation. Code stored in a library is
inaccessible to the compiler. Consequently, inline functions are always
defined together with the class interface.

When to use inline functions

When should inline functions be used, and when not? T_here is a
~ number of simple rules of thumb which may be followed:

Defining inline functions can be considered once a fully developed
and tested program runs too slowly and shows ‘bottlenecks’ in certain
functions. A profiler, which runs a program and determines where
most of the time is spent, is necessary for such optimization. Inline

Classes, Inherirancé and
Constructors

NOTES

© Self-Instructional Material 73

Object Orientea
Programming in C++

NOTES -

76 Se!f-]nstmctlfonal Material

}

class B // class B: tries to touch

{ // A's private parts

public:
void touch{a &a)
{ a.value++; }

}s |
This code will not compile, since the classless function decrement() .
and the function touch() of the class B attempt to access a private
datamember of A. We can explicitly allow decrement() to access A's
data, and we can explicitly allow the class B to access these data. To

accomplish this, the offending classless function decrement() and the
class B are declared to be friends of A:

class A
{
public:
frﬂend class B; // B’s my buddy, I trust him
friend void decrement (A // decrement () is

also a good pal’

&what} ;

R A
Friendship is not mutual by default. This means that once B is declared
as a friend of A, this does not give A the right to access B’s private
members. Friendship, when applied to program design, is an escape
mechanism which circumvents the principle of data hiding. Using
friend classes should therefore be minimized to those cases where it
is absolutely essential.

If friends are used, realize that the implementation of classes or
functions that are friends to other classes become implementation
dependent on these classes. In the above example: once the internal
organization of the data of the class A changes, all its friends must be
recolrfﬁpiled (and possibly modified) as well.

DYNAMIC MEMORY ALLOCATION

In C++ you can use two keywords new and delete for dynamic memory
allocation.

Use of new

To allocate memory for objects or variables you can use the new keyword.
New is followed by the type of the object that you want to allocate so
that the compiler knows how much memory is required. Therefore,
new unsigned short int allocates two bytes in the free store, and new
long allocates four. bytes. The return value from new is a memory
address. It must be assigned to a pointer. To create an unsigned short
on the free store, you might write

unsigned short int * myp;
myp = new unsigned short int;

You can, of course, initialize the pointer at its creation with
unsigned short int .* myp=new unsigned short int;

In either case, myp now points to an unsigned short int on the free

store. You can use this like any other pointer to a variable and assign .

a value into that area of memory by writing

*myp = 56;
This means, “allocate 56 at the value in myp,” or “Assign the value 56
to the area on the free store to which myp points.”If new cannot
create memory on the free store (memory is, after all, a limited resource)

it returns the null pointer. You must check your pointer for null each

time you request new memory.
- I

Use of delete

When you are finished with your area of memory, you must call delete
on the pointer. Delete returns the memory to the free store. Remember
that the pointer itself—as opposed to the memory to which it points—
is a local variable. When the function in which it is declared returns,
that pointer goes out of scope and is lost. The memory allocated with
new is not freed automatically, however. That memory becomes
unavailable—a situation called a memory leak. It’s called a memory
leak because that memory can’t be recovered until the program ends.
It is as though the memory has leaked out of your computer. To
restore the memory to the free store, you use the keyword delete.
For example, . : '

delete myp;
Program '
//Creating and deleting objects using new and deletia.
#incliude <iostream.h>
class mycat
{

" publie: .
! . -
4 .

¢

P
¢

Classes, Inheritance and
Constructors

NOTES

Selﬁ!psfr;:ctianal Material 77

 Object Oriented
Programming in C++

'NOTES

§ . .
78 Self:Instructicnal Material

mycauvyy ;
~mycat () ;

private:
int Age;

}i

. mycat: :mycat ()
{
c cout << “Constructor called.\n";

Age = 1;

)

mycat: :~mycat ()

{ Lo
cout << “Destructor called.\n”;

} -

void main()

{
cout << “mycat jul{ \n”;
mycat juli;
coﬁt << “mycat *pcat = new mycat \n”;
mycat * pcat = new mycat;
cout << “delete pcat .A\n”";
delete pcat ;
cout << *“check where is juli \n*";

}

| INHERITANCE

When you create a class and uses objects to work with class, with a
set of attributes and functions, you have created something that is
ready to pass these qualities on to it's children or subclass for reuse
the main class to save your time and efforts on coding. This is called
inheritance, every super class (parent) gives its gualities to its subclass
(child). Inheritance in programs made possible to reuse the attributes

‘and functions of a parent class into a child class.

| The Fanﬁly Inheritance

With all family trees we inherit the characteristics of our parents,

‘grand parents and great grand parents. We can inherit that beautiful

nose from our’ mothers side of the family, the buck teeth from our
father, the long black hair from our great grandfather etc.

Inheriting Functions and Attributes

The functions and attributes of a class are the combination of two
things, its own functions and attributes and the functions r and attributes
of all its super classes. A class which adds new functionality to an
existing class is said to derive or inherited from that original class.
The original class is said to be the new class’s base class.

Benefits of Inheritance

* You can reuse your base class functions and attributes in child
class, without redifne or retype.

* You can merge functions of multiple classes in a single class,
" and you will get a new mixed class.

* Your new mobile handset carry many functions of your old one,
thus we have to add just few new functions in old handset
class.

* In case of windows operating system, all OS uses base classes
as inherit class.

ANALOG / D]GlTAL \ HYBRID

. MICRO MAINFRAME SUPER

PC MULTIMEDIA PC
* Fig. 4 Example of Inheritance

Now from figure you can say a PC inhérit the features of MICRO
computer, while a MICRO computer inherits the features of a DIGITAL
computer and the parent class for all is COMPUTERS.

Types of Inheritance

You can design four type of Inheritance in C++
1. Single level (Parent — Child)

2. Multilevel (Grandparent — Parent — Child)
3. Multiple (Many parents — one child)
4, Hybrid (Mixture of multiple and multilevel)

~ Classes, Inheritance and
Constructors. .

_NOTES

Self-Ingtructional Material 79

Object Oriented
Programming in C++

NOTES

80 Self-Instructional Material

" SINGLE MULTI LEVEL MULTIPLE
Class A Class X Class ab Class ac Class ca
L 2 v
Class B / ClassY Class abc

A 4
- Class 2 \

" Fig. 8 Types of inheritance

v
Class Zabc
HYBRID

Single Level Inheritance

To use single level inheritance in a program you should design-a base
class or parent class and then child class will inherit it. When you
declare a class, you can indicate what class it derives from by writing
a colon after the class name, the type of derivation (public or other),
and the class from which it derives like:

Class child : public parent // syntax
Class MCA : public amrapali // example

The class from which you derive must have been declared earlier, or
you will get a compiler error.

Program
' //Creation of parent - class

class institute

{

char name[25]};

int telno;

public

void getdata{()

void showdataf():

};
//Creation of child class
. ciass student : public institute
{ .
int rollno;
char sname([25];

public

-void readdata}):
void displaydatal();
3
void institute::getdatal()
parent class
{
cin>>n§me;
cin>>telno;
}
void student
child class

{

cin>>sname;

::readdatal(]

cin>>rollno;

}

void institute::showdata ()
parent class

{

cout<<name;

cout<<telno;

}

void student::displaydataf}

child class

{

coukt<<sname;
cout<<rollno;
}
// Creation of class objects
void main
{

student s;

s.getdata () //function of parent class used by child

class object
s.readdata(};

s.showdata() ;.
child class object

s.displaydata();
}

//function of parent c¢lass used by

//member function ‘of

/ /member function of

//member function of

//member function of

and function calling

Classes, Inheritance and
Constructors -

NOTES

Self-Instructional Materiel 81

»

82 Self-Instructional Material

»

+ Object Oriented

' Programming in C++

NOTES

Access Specifiers

. Theré are, in total, three access specifiers:

"¢ “public
‘s protected
* private

All three can be used by a derived class. If a function has an object
of your class, it can access all the public member data and functions.
The member functions, in turn, can access all private--data members
and functions of their own class, and all protected data members and
‘functions of any class from which they derive. However, private members
are not available to derived classes. Protected data members and
functions are fully visible to derived classes, but are otherwise private.

Visibility Modes

Accessible from

3
Access Mode Base Class Derived Class Outside the Class
Public Y Y Y
Private Y N N
Protected Y Y N

Fig. 8 Table for visibility modes

Multilevel Inheritance

In some situations classes can be derived more than one level, and
we can form of a chain of classes derived by each others.

Class win3.1ll
2 " Win 3.11
{
} .
v
class win95:public wind.1ll - Win 85
{
}
+
class win98:public win95
' ' Win 98
{
}

. ¥
class win2000:public W}nQB Win 2000
{

Fig. 7 Multilevel inheritance in Windows OS .

example and ﬁgure shows multilevel inheritance, in that win2000

derived from win98, and win98 is derived from win95 and the parent -

for all is win3.11 class. That shows 'win2000 will get the features of
earlier parent classes.

Multiple Inheritance

The most common inheritance consists of an ohject deriving its foundation
from another object. This is referred to as single inheritance. C++
allows an object to be based on more than one -object. This is called
refered to as multiple inheritance. When a class inherits properties
- or features of more than one base classes, it is known as multiple
inheritance. Like:

Class a
{

int x,¥y;
public

* start():
sum{()
getdata()
}

class b
{

.int r,1:
public:
move () ;
setdatal();
}

class ¢
{

float area;’
public;

show (} ;

=sses, Inheritance and

Constructors

NOTES

Self-Instructional Material 63

Object Oriented

_ stop{):
Programming in C++

}

class d :public a , public b , private ¢ //multiple
inheritance - ‘ '

{
start(};

NOTES

move (};
stop();
final();
}

Class b Classb Class ¢

start () move {} stop ()

v ‘__/’/
Class d
start {
move ()

stop ()

Fig. 8 Multiple inheritance

VIRTUAL BASE CLASS

class Truck: public Auto
{
public:

// cons tructoré
Truck(} ;
Truck({int engine_wt, int sp, char const *nm,
int trailer_wt);
// interface: to set two weight fields

void setweight (int engine_wt, int trailer_wt);

// and to return combined weight

84 » Self-Instructional Material

int getweight() const;
private: o
// data
. int trailer_weight;
Y:
// example of constructor

. Truck: ;Truck (int engine_wt, int sp, char const *nm,
int trailer_wt) '

Auto(engine_wt, sp, nm)

trailer weight = trailer_wt;
} _
// example of interface function

int Truck::getweight () const

{
return
{ // sum of:
" Auto::getweight () + // engine part plus
trailexr_wt ' // the trailer
):
}

ABSTRACT CLASSES

- In object-oriented proéramming, classes are used to group related
variables and functions. A class describes a collection of encapsuldted
instance variables and methods (functions), possibly with implementation
of those types together with a constructor function that can be used
to create objects of the class.

An abstract class, or abstract base class (ABC), is one that is designed. -

only as a parent class and from which child classes may be derived,

and which is not itself suitable for instantiation. Abstract classes are

often used to represent abstract concepts or entities. The incomplete
features of the abstract class are then shared by a group of sibling
subclasses which add different variations of the missing pieces. In
C++, an abstract class is defined as a class having at least one pure

Classes, Inheritance and
Constructors

NOTES

Self-Instructional Material * 85

. Object Orignted
Programming in C++ .

NOTES

88 Self-Instructional Material

. virtual method, i.e., an abstract method, which may or may not possess

an implementation.

Abstract classes are superclasses which contain abstract methods and
are defined such that- concrete subclasses are to extend them by

implementing the methods. The behaviours defined by such a class

are ‘generic” and much of the class will be undefined and unimplemented.
Before a class derived from an abstract class can be instantiated, it
must implement particular methods for all the abstract methods of
its parent classes. ' o

CONSTRUCTORS IN DERIVED CLASSES

When a derived class object is created, his base constructor is called
first, creating a parent. Then the derived class constructor is called,
completing the construction of the derived class object. When derived
class object is destroyed, first the derived class destructor will be
called and then the destructor for the parent class will be called.
Each destructor is given an opportunity. to clean up after its own
part of derived class object.

Constructor of Base/parent class

Constructor of Deriv-ed /child class

Destructor of Derived/child class

Destructor of Base/parent class

'NESTING OF CLASSES

Classes can be defined inside other classes. Classes that are defined
inside other classes are called nested classes. A class can be nested
in every part of the surrounding class: in the public, protected or
private section. Such a nested class can be considered a member of

the surrounding class. The normal access and visibility rules in classes

apply to nested classes. If a class is nested in the public section of a
class, it is visible outside the surrounding class. If it is nested in the
protected section it is visible in subclasses, derived from the surrounding
class, if it is nested in the private section, it is only visible for the
members of the surrounding class. The surrounding class has no privileges
with respect to the nested class. So, the nested class still has full
control over the accessibility of its members by the surrounding class.

For example, consider the following class definition:

class Surround ' -
{
public:
class FirstWithin
{
public: _
FirstWithin();
int getVar(} const

{

. return (variable);

}
private:
int wvariable;
}:
private:
' class SecondWithin
{
public: .
SecondWithin() ;
int getVar() const

{

return {(variable);

}
private:

int variable;

}:

// other private members of Surround

}:

In thiz ‘definition access to the members is defined as follows:

The class FirstWithin is visible both outside and inside Surround.
The class FirstWithin has- therefore global scope. The constructor
FirstWithin() and thé memberfunction getVar() of the class FirstWithin
are also globally vigible. Th}:\lnt variable datamember is only visible
for the members of the class FirstWithin. Neither the members of
Surround nor the members of SecondWithin can access the variable
of the class FirstWithin directly. The class SecondWithin is visible
only inside Surround. The public members of the class SecondWithin

Classes, Inheritance gnd
Constructors

NOTES

Self-Instructional Material

87

Object Oriented
Programming in C++

NOTES

__ 88 Self-Instructional Material

can also be used by the members of the class FirstWithin, as nested
classes can be considered members of their surrounding class. The
constructor SecondWithin() and the memberfunction getVar()} of the
class SecondWithin can also only be reached by the members of Surround
(and by the members of its nested classes).

The int variable datamember of the class SecondWithin is only visible
for the members of the class SecondWithin. Neither the members of
Surround nor the members of FirstWithin can access the variable of
the class SecondWithin dix}actly. If the surrounding class should have
access rights to the private members of its nested classes or if nested
classes should have access rights to the private members of the sJurrounding
class, the classes can be defined as friend classes.

The nested classes can be considered members of the surroynding
class, but. the members of nested classes are not members of the

| surrounding class. So, a member of the class Surround may, not access

FirstWithin::getVar() directly. This is understandable considering the
fact that a Surround object is not also a FirstWithin or SeqondWithir_l
object. The nested classes are only available as typenames. They do

i not imply containment as objects by the surrounding class. If a member

of the surrounding class should use a (non-static) member |caf a nested

class then a pointer to a nested class object or a nested class d'atamember

must be defined in the surrounding class, which can thcilareupon be -
used by the members of the surrounding class to access members of
the nested class. ' -

For example, in the following class definition there is a surrounding
clags Outer and a nested class Inner. The class Outer contains 'a
memberfunction calier() which uses the inner object that is composed
in Cuter to call the infunction() memberfunction of Inner:

class Outer |
{
public:
void caller ()
{
inner.infunction();
}
private:
class Inner
{
- public: .

void infunction();

Inner inner;
Yi :
Also note that the function Inner::infunction() can be called as part of

the inline definition of Outer::caller(), even though the definition of
the class Inner is yet to be seen by the compiler.

Inline functions can be defined as if they were functions that were
defined outside of the class definition: if the function Outer::caller()
would have been defined outside of the class Outer, the full class
definition (including the definition of the class Inner would have
been available to the compiler. In that situation the function is perfectly
compilable. Inline functions can be compiled accordingly and there is,
e.g., no need to define a special private section in Quter in which the
class Inner is defined before defining the inline function caller().

Defining Nested Class Members

Member functions of nested classes may be defined as inline functions.
However, they can also be defined outside of their surrounding class.
Consider the constructor of the class FirstWithin in the example of
the previous section. The constructor FirstWithin() is defined in the
class FirstWithin, which is, in turn, defined within the class Surround.
Consequently, the class scopes of the two classes must be used to
define the constructor. E.g.,

Surround: :FirstWithin: :FirstWithin()
{

variable = (;

}
Static (data) members can be defined accordingly. If the class FirstWithin
would have a static unsigned datamember epoch, it could be initialized
as follows:

Surrol.llnd: :FirgtWithin: :epoch = 1970;
Furthermore, both class scopes are needed to refer to public static
members in code outside of the surrounding class:

void showEpoch()

{

cout << ‘Surround::FirstWithin::epoch = 1970;

}

- Of course, inside the members of the class Surround only the FirstWithin::
scope needs to be mentioned, and inside the members of the class
FirstWithin there is no need to refer explicitly to the scope. What
about the members of the class SecondWithin? The classes FirstWithin
. and SecondWithin are both nested within Surround, and can be considered

Classes, Inkeritance and’
. Constructors

~ NOTES

Self-Instructionnl Matericl 89

Object Qﬁe?}ted members of the surrounding class. Since members of a class may

' Programming in C++ directy refer to each other, members of the class SecondWithin can
refer to (public) members of the class FirstWithin. Consequently, members

of the class SecondWithin could refer to the epoch member of FirstWithin

NOTES | @8
FirstWithin: :epoch

Declaring Nested Classes

Nested classes may be declared before they are actually defined in a

contains multiple nested classes, and the nested classes contain pointers
to objects of the -other nested classes. For example,'_ the following
class Outer contains two nested classes Innerl and Inner2. The class
Innerl contains a pointer to Inner2 objects, and Inner2 contains a
pointer to Inner1 objects. Such cross references require forward declarations:

class QOuter

{

private:
class Inner2; // forward declaration
class Innerl

‘ | (

private;:
Inner2
*pi2; // points to Inner2 objecté
-} _
class Inner2
{.
ﬁrivate :
Innerl
*pil; // points to Innerl cbjects

Y.

Access to Private Members in Nested Classes

In order to allow nested classes to access the private members of the
surrounding class or to access the private members of other nested

, 90 Seif-Instructional Material
’) nef

[ad

surrounding class. Such forward declarations are required if a class - -

classes or to allow the surrounding class to access the private members

of nested classes, the friend keyword must be used. Consider the
following situation, in which a class Surround has two nested classes
FirstWithin and SecondWithin, while each class has a static data
member int variable: ‘

class Surround

{
public:
‘class FirstWithin
{
public:]
int getvalue():
private;
static int
variable;
}i
-int getvValue():
private:
class SecondWithin
{
public:
int getValue()};
pri#ate:l . :
. static int variable;
};
static int wvariable;
};

If the class Surround should be able to access the private members of
FirstWithin and SecondWithin, these latter two classes must declare
Surround to be their friend. The function Surround::getValue() can
thereupon access the private members of the nested classes. For example,
(note the friend declarations in the two nested classes):

class Surround
. _
 public:
ciass FirstWithin
{

friend class Surround;

“Classes, Inheritance and
Constmdol rs

DKHIS

Self-Instructional Material 91

‘Object Oriented public:
Programming in -C++
int getValue(}:;

private:
NOTES static int
variable;
}i
int getvalue()
{ 2/
Firstwithin::variable = SecondWithin::variable; -
N return (variable);- '
v)
private:
class SecondWithin
- Aq
friend class Surround;
public:
int getValue();
private:
static int
variable;
}i
static int .
variable;
Y

Now, in order to allow the nested classes to access the private members
of the surrounding class, the class Surround must declare the nested
classes as friends. The friend keyword may only be used when the
clags that is to become a friend is already known as a class by the
compiler, so either a forward declaration of the nested classes is
required, which is followed by the friend declaration, or the friend
declaration. follows the definition of the nested classes. The forward
declaration followed by the friend declaration looks like this:

class Surround

{
class‘FirstWithin;
class SecondWithin;-

friend class FirstWithin;

L friend class SecondWithin;

4 et 5
.’ AR ¢
!

92 Self-Instructiona'E Material

public:
¢class Fifstwithin

(etc)

Alternatively, the friend declaration may follow the definition of the
classes. Note that a class can be declared a friend following its definition,
while the inline code in the definition already uses the fact that it
will be declared a friend of the outer class. Also note that the inline
code of the nested class uses members of the surrounding class which
have not yet been seen by the compiler. Finally note that the variable
that is defined in the class Surround is accessed in the nested classes

as Surround::variable:
cla;s Surround
{ o
public:

clagg FirstWithin

{
friend class Surround;
public: .
int getvValue ()
{
Surround: :variable = 4;
return (variable);
}
private:
static int
. variable;
“ };

friend class FirstWithin;
int gétValue(Y
{ ' f_ '
FirstWithin::variable = SecondWithin
return {(variable};
:)
ﬁrivate:
class SecondWithin \ Yo

{ .
{
friend class Surround;

co L
P public:

::variable;

Classes, Inhéritance and
Constructors

- NOTES

\\5\
/I /
{

Selflfnstructlional Materia! 93

v

* Object Oriénted
Programming in C++

4 Self-Instructional Material

int getValue()
{
Surround::variable = 40; -
return .(variable};
}
private:
static int
variable; °
};: .
friend clasé SecondwWithin; -

static ipc' : |

vari};ole ;

}:, . .,) -
Finally, we"'w_ant to allow the nested classes to access each other’s
private. members. Again this requires some friend declarations. In

| order to allow FirstWithin to access SecondWithin's private members
" nothing but a friend declaration in SecondWithin is required. However,

to allow SecondWithin to access the private members of FirstWithin
the friend class SecondWithin declaration cannot be plainly given .in

the class FirstWithin, as the definition of SecondWithin has not yet

been . given, .4 forward declaration of SecondWithin is required, and
this forwawdzgeciaration must be given in the class Surround, rather
than in tbe ciass FirstWithin, Clearly, the forward declaration class
SecondWithin in the class FirstWithin itself makes no sense, as this
would refer to an external (global) class FirstWithin. But the attempt
to provide the forward declaration of the nested class SecondWithin

‘inside FirstW:thin as class Surround::SecondWithin also fails miserably,

with the compiler issuing a message like ‘Surround’ does not have a
nested type named ‘SecondWithin’ The right proceduré to follow here
is to declare the class SecondWithin in the class Surrouzid, before the
class FirstWithin is defined. Using this procedure, the friend declaration
of SecondWithin is accepted inside the definition of FirstWithin. The
following class definition allows full access of the prwate members of
all classes by all other classes:

class Surround
{
class Secondwithin;
- public:
- ¢lass FirstWithin .
{

’ o friend class Surround;

friend class SecondWithin;. -
public:)
int getValue()
1
_Sur¥ound: :variable = SecondWithin::variable;
‘ ' return (variable);
- ' }
private:
static int
variable;
}i
friend class FirstWithin;

int getValue()
- {
FirstWithin::variable = SecondWithin::variable;
return (variable); .
}
i;ivate:
class SecondWithin
{
friend class Surround;
friend c¢lass FirstWithin;
public: .
int getvValuel{)
{

Surround: :variable =

FirstWithin: :variable;
return (variable);
}
private:
static .int
variable;
}i
friend class SecondWithin;

static int

variable;

Classes, Inheritance and
Constructors -

NOTES

Self-Instructiommd Muwterial __ 95

Object Oriented
Programming in C++

STUDENT ACTIVITY

1. What are different types of inheritance, describe with examples?

2. How can you create a virtual copy constructor?

96 Self-Instructional Material

8.

SUMMARY

Member functions are as much a part of your class as the
member variables. They determine what the objects of your
class can do.

The constructor is a class method with the same name as the
class itself. T
Consequently, inline functions’are always defined together with
the class interface.’

Inline functions can be used when member functions consist of
one very simple statement (such as the return statement in
the function Person:getname()). -

The statlc functions can therefore address only the static data
of a class, non-static data are unavailable to these functions.

Delete returns the memory to the free store. Remember that
the pointer itself—as opposed to the memory to which it points—
is a local variable, '

Inheritance in programs made possible to reuse the attributes
and functions of a parent class into a child class.

The functions and attributes of a class are the combination of
two things, its own functions and attributes and the functions
r and attributes of all its super classes:

Abstract classes are superclasses which contain abstract methods

. and are defined such that concrete subclasses are to extend

them by 1mplement1ng the methods.

SELF ASSESSMENT QUESTIONS

" What is inheritance?

How do you show the declaration of a multiple class inheritance?

How do you invoke a base member function from a derived
class in which you’'ve overridden that function?

How do you invoke a base member function from a derived

. class in which you have not overridden that function?

If a base class declares a function to be virtual, and a derived
class does not use the term virtual when overriding that class,
is it still virtual when inheritcd by a third-generation class?

3

L

Classes, Inheritance and
Constructors

"NOTES

Self-Instructional Material 97

Object Oriented
Programming in C++

NOTES

Self-Instructional Material

SECTION D

‘onr4 FUNCTION OVERLOADING

AND POLYMORPHISM

% LEARNING OBJECTIVES *

e Polymorphism
e Function Overloading

st

e Operator Overloading

Early Binding

Polymorphism with Pointers

Virtual Functions

Late Binding and Pure Virtual Functions
Opening and Closing of Files

Stream Member Functions

Binary File Operations

¢ & ¢ @

e Structures and File Operations
e Classes and File Operations

¢ RandomAccess File 'Processing

POLYMORPHISM

The word polymorphism has been derived from the greek word
Polymorphous. Polus means (Many) and Morphous means (forms), so
the meaning of polymorphism is many forms. You can relate polymorphism
with synonyms of English language a single word can have multiple
meanings. In C language you have already used function, but if you
have multiple functions in a C program to perform same type of task
you should think individual name for each functions. Using polymorphism
C++ solved this problem, now a programmer can define same name
functions in a program. Like you want to compute area of a rectangle,
circle, triangle you can use area() name for each function. like:

. area(iht length, int width) // function for rectangle
» area(int radius) ' // function for circle
¢ area(int base, int height) // function for triangle

now you can see that in C++ same name functions can be used to
perform different tasks.

In C++ two most popular forms of polymorphism are:

(¢) Function Overloading

(6) Operator Overloading

FUNCTION OVERLOADING

In function overloading a same name functions can be used in a program
- to perform various tasks like:

Print (int x)
Print (char s)
Print (float 'y)

* Print (emp e)

e

The Pnnt() function is overloaded here.
e area(int length, int w1dth) /! function for rectangle
* area(int radius) // function for circle
¢ area(int base, int height) // function for triangle

The area function is overloaded here. You can use area() function to

compute area of different shapes like circle or triangle. On the other.

hand the meaning of operator overloading is use of single operator
like (+ or >>) for different operations. Like: '
X=a+b; (/add two integer values
Name3=sname+fname; // concat two strings
2.35 //use of . operator for. decimal place
3.67
emp.name= “mksharma’ //use of.operator for obiject,
Program
i // function overloading exa.mpie
#include <iostream>
/7 Rectangle

double MornentOfInert:La(double b double h)
{
return b * h*h*h/ 3;
}
// Semi-Circle
double MomentOflnertia{double R)
{ .
const double PI =13,14159;
return R *:R . R *R * PI/ 8;

punction Overloading
and Polymorphism

NO'TES

. Self-Instructional Matericl 98

Object Oriented
Programming in C++

NOTES

100 Self-Instructional Material

// Triangle

doublé'MomeptOfInertia{dgubIe 5{ double h, int}-

{

- return b * h * h * h / 12;

}

void main{)

{ ~ _

double base = 7.74, height = 14.38, radius =

12.42;

cout << “Rectangle\n”<< “Moment of inertia with
regard to the X axis: *;

cout << “I = ™ << MomentOfInertia(base, height)
<< “mm\ni\n”;

cout << "Bemi-Circle\n” << “Moment of inertia

with regard to the X axis: ;

cout << *I = " << MomentOfInertia{radius) <<
“mm\ﬁ\n";

cout << “*Enter the dimensions cf the triangle\n”;

cout << “Base: “; cin >> base;

cout << “Height: “: ¢cin >> height;

cout << *\nTriangle\n” << “Moment of inertia with
regard to the X axis: “;- :

cout << "I = * << MomentOfInertia(base, height,
1) << “mm\n\n”"; ')
}
Program .

//C++ program to overload func;ion show({), to -show

different values using the show{() function

#include <iostraem.h>
void show{int val)

{ ‘

N\ . cout<<val;

)

void show(double wval}
{

cout<<val;

}
void show(char *val)

A

cout<< val; -

void A main()

{

show (12} ;

show({3.1415);

show{"Hello World\n!”"};
}

OPERATOR OVERLOADING

Operator overloading allows C/C++ operators to have user-defined
meaning in user defined class. Overloaded operators are part of C++
polymorphism. If you want to overload a defined operator like + or
* to perform some user defined action then, the syntax is:

return type operator + (value, values);
return type opefator * (value , value);
example: '
oload operator + (oload, oload); / oxlferl-:-)ading + operator

_oload operator * (oload, oload); // overloading * operator

Program

class oloéd'
{
Qﬁblic:

// Without operator overloading:
oload add(oload, oload); '
oload mul{olcad, oload);

oload f(oload a, oload b, oload c)
{ _

return add(add(mul(a,b), mul({b,c)), mul{c,a));

} i
// With dpefator overloading:
oload operator + (oload; oload) ;
oload operator * (oload, oload):

oload f(olocad a, cload b, oload «c)
{

Function Overloading
and Polymorphism

NOTES

Self-Instructiond! Material 101 -

Object Oriented
Programming in C++

NOTES

102 Seif-Instructional Material

return a*b + b*c + c*a;

}

Benefits of Operator Overloading

By overloading standard operators on a class, you can exploit the
intuition of the users of that class. This lets users program in the
language of the problem domain rather than in the language of the
machine.
Examples of operator overioading
Few of examples of operator overloading:
* myString + yourString might concatenate two string objects
e myDate++ might increment a Date object
' a * b might multiply two Number objects
* a[i] might access an element of an Array object

73

* x = *p might dereference a “smart pomter that actually points”
to a disk record

Overloaded operators

The following operators can be overloaded: _
+ - * ! % N & I

- ! , = < > <= >=
++ — << >> == = && I
+= -= *= = %= Am &= I=
<<= >>= (1 O 5 ¥ new delete

However, some of these operators may only be overloaded as member
functions within a class. This holds true for the ‘=, the [T, the Y and
the ->’ operators.

EARLY BINDING

When a C++ program is executed, it executes sequentially, beginning
at the top of main(). When a function call is encountered, the point
of execution jumps to the beginning of the function being called. How
does the CPU know to do this? '

When a program is compiled, the compiler converts each statement
in your C++ program into one or more lines of machine language.
Each line of machine language is given it's own unique sequential
address. This is no different for functions — when a function is encountered,
it is converted into machine language and given the next available
address. Thus, each function ends up w1th a unique machine ! _anguage
address '

Binding refers to the process that is used to convert identifiers
(such as variable and function names) into machine language addresses.

Although binding is used for both variables and functions, in this

lesson we’re going to focus on function binding.

Early binding

Most of the function calls the cdmpiler encounters will be direct
function calls. A direct function call is a statement that directly calls
a function. '

Direct function calls can be resolved using a process known as early

binding. Early binding (also called static binding) means the compiler -

is able to directly associate the identifier name (such as a function or
variable name) with a machine address. Remember that all functions
havé a unique machine address. So when the compiler encounters a
function call, it replaces the function call with a machine language
instruction that tells the CPU to jump to the address of the function.

Let’s take a lock at a simple calculator program that uses early binding:
#include <iostream>

int Add{int nX, int nY)

{
return nX + nY;
}
int Subtract{int nX, int nY)
{)
return nX - ny;
}

int Multiply{int nX, int nY)

{ -
return nX * nY;
} .
int main()
t

v int nX;

:c5ut << “Enter a number: *;
cin »>> ?X;
int nY;

cout << "“Enter another number: *“;

Function Overloading
and Polymorphism

NOTES

Self:Instructional Material 108

Object Oriented
Programming in C++ ~

NOTES -

104 Self-Instructional Material

cin >> nY;

int noﬁeration;
do
{

cout << “Enter an cperation {0=add, l=subtract,
2=multiply): %

cin >> nOperation;-

} while (nOperation < 0 || nOperation > 2};

int nResult = 0;

switch (nOperation)

Add(nX, nY¥); break;
Subtract{nX, nY); break;
Multiply{(nX, nY); break;

case 0: nResult

case l: nResult

. -case 2: nResult

cout << “The answer is: “ << nResult << endl; -

return 0;

}

‘Because Add(), Subtract(), and Multiply() are all direct fusnction calls,
the compiler will use early binding to resolve the Add(), Subtract(),
and Multiply() function calls. The compiler will replace the Add()

‘function call with an instruction that tells the CPU to jump to the

address of the Add() function. The same holds true for Subtract() and
Multiply(). ' _

POLYMORPHISM WITH POINTERS

In next program the main program defines pointers.to the objects
rather than defining the objects themselves in shown below:

vehicle *unicycle;
car *sedan_car;
truck *trailer;

beoat '\ *gailboat;

Since we only defined pointers to the objects, we find it necessary to
allocate the objects before using them by using the new operator in
shown below:

unicycle =

new vehicle;

"sedan_car = new car;

trailer =

sailboat =

new truck;

new boat; -

Upon running the program, we find that even though we-are
using pointers to the objects, we have done nothing different
than what we did in the first program.

The program operates in exactly the same manner as the first
program example. This should not be surprising because a pointer

to a method can be used to operate on an object in the same

manner as an object can be directly manipulated.

Be sure to con:npile and run this prograrh before continuing on
to the next program example. In this program you will notice
that we failed to check the allocation to see that it did allocate
the objects properly, and we also failed to deallocate the objects
prior to terminating the program.

In such a simple program, it doesn’t matter because the heap
will be.cleaned up automatically when we return to the operating
system.

In real program development you have to implement this allocation. .
checking and the deallocation:As shown in the previous Module,”

if we do not deallocate, there will be garbage left.

Program

1. //Polymorphism with pointers
2. #include <iostream.h>

3. #include <stdlib.h>

4.

5. //---base .class declaration A
- 6. //---and implementation part---
7. class vehicle

8 . “

9. int Wheels;

10. float weight;

11. public:

12, void message(void)

13. /Airst mességé()

 Function Overloading]
- and Polymorphism

NOTES

Self-Instructional Material 105

°~

Object Oriented
Programming in C++

NOTES

108 Self-Instructional Material

" 15.
16.
17,
18.
19.
20.
21.
22.
23.
24,
95,
26.
97.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42>
43.
44.
45.
48.
47.
48.
49.

{c\out<<“Vehicle message, from vehicle, .the base class\n”;}

)

//---derived class declaration and implementation part---
class car : public vehicle

{

int passenger_load;

public: - _

void message(void) //second message()

{cout<<“Car message, from car, the vehicle derived class\n”;}
B ‘

class truck : public vehicle

{

int passenger_load;

- float payload;

public: :
int passengers(void) {return passenger_load;l
5

“clags boat : public vehicle

{

int passenger_load;

public:

int passengers(void) {return ‘passenger_load;}

void message(void) //third message()

(cout<<“Boat message, from boat, the vehicle derived class\n”;}

b

//=—————+the main program
int main()

{

vehicle *unicycle;

cal; =“sedan_car_;-

truck *trailer;

boat *sailboat;

50.
51.
52.
53.
54.
55,
56.
57,
58.
59.
60.
61.

67.
'68.

69

70.

E&RER

cout<<“Omitting the virtual keyword. Using\n”; ..

cout<<“pointer variables, and new keyword\n”;

\n”;

cout<<”
unicycle = new vehicle;
unicyclé—>message();
sedan_car = new car;
sedan_car->message();
trailer = new truck;
trailer->message();
sailboat = new boat;
sailboat->message();
unicycle = sedan. car;

unicycle->message();

system(“pause”);
return 0;

}

' VIRTUAL FUNCTIONS

A virtual function is a functiorjl that makes sure that, in an inheritance
scenario, the right function is called regardless of the expression
that calls the function. The late or dynamic binding is achieved in
C++ with virtua! functions. A function becomes virtual when its declaration
starts with the keyword virtual. Once a function is declared virtual

in d base class, its definition remains virtual in all derived classes; -

-even when the keyword virtual is not repeated in the definition- of
the derived classes. Like:

virtual double Area() const;

. virtual void show() const;

virtl.ial" void setweight(int wt);

Program

/7 C++ program! to show the use 6f virtual function.

lclass Vehicle -

Funition Overloading
and Poly'fncr}'i}}ism

. NOTES

. Self-Instructiongl Matérial 107

(jbject Oriented

Programming in C++

‘NOTES

- 1;08' Self-Instructional Material

{ .
Ipublic: .
Vehicle(); // constructors
Vehicle{int wt); // interface.. now virtﬁals!

virtual int getweight() const;
virtual void setweight(int wt); -
private: .
int weight ;
} .
// Vehicle’s own getWeight() function:

int Vehicle::getweight() const

{

return (weight);
} .
class Land: public Vehicle
{
}
class Auto: public #qnd
(| ;

J

}
class Truck: public Auto
{ '

public:

Truck(); // gonétructors -

| Truck({int engine_wt, int sp, char const *nm,

int trailer wt);

// interface: to set two weight

fields

void setweight (int engine_wt, int trailer_wt);
// and’ to return combined weighE
int getweight() const;
private: -
int trailer weight;

7 Truck'’'s own getweight() function
int Truck::getweight(} const
{

retﬁrn AAuto::getweight(} + trailer_wt}:;
Note that the keyword virtual appears only in the definition of the

~ base class Vehicle; it need not be repeated in the derived classes. The
effect of the late binding is: ‘

Vehicle

v{1200); // vehicle with weight 1200

Truck t (6000, 115,”Sawrajmazda”, 25000);
Vehicle *vp;
int main{)
{ //omne
vp = &V; ,
cout<<vp->getweight () ;
//two
vp = &t;
cout<<vp->getweight () ;
cout<<vp->getspeed{);
}
Since the function getweight() is defined as virtual, late binding is

used here: in the statements above, just below the one tag, Vehicle’s
function getweight() is called. In contrast, the statements below tag

two use Truck’s function getweight().

LATE BINDING AND PURE VIRTUAL - . >
FUNCTIONS R

In some programs, it is not possible to know which function will be
called until runtime (when the program is run). This is known as late
binding (or dynamic binding). In C++, one ‘way to get late binding is
to use function pointers. To review function painters briefly, a function
pointer is a type of pointer that points to a function instead of a
variable. The function that a function pointer points to can be called
1|3y using the function call operator ((}) on the pointer.

For example, the following code calls the Add() function:
int Add{int nX, int nY)
{

- Funetion Overloading
and Polymorphism

'~ NOTES

1

gglﬁln_struct-ional Material 109

Object Oriented
Programming in C++

NOTES

1 |

L
130 Se’i?-i'ns;’mctiona; Material

int

Add

}

return nX + ny;

main (}

// Create a function pointer and make it point to the
function

int (*pFcn) (int, int) = Add;
cout << pFen{5, 3) << endl; // add 5 + 3

return 0¢;

Calling a function via a function pointer is also known as an indirect
function call. The following calculator program is functionally identical
to the calculator example above, except it uses a function pointer -
instead of a direct function call:

#include <iostream>

using namespace std:

int

{

.int

[N

int

int

Add(int nX, int nY)

return nX + nY;

Subtract (int nX,lint ny)

1

return nX - nY{

Multiply (int nX, int nY)

return n¥ * ny;

main (}

int: nX;\

.cout << “Enter .a number: *“;

¢in >3 nX;

int nY;
"

cout << “Enter another number: :

cin »>> nv¥;

int nOperation;

do - . | \

{

cout << “BEnter an operation {(0=add, 1l=subtract,

2=multiply): *;

cin >> nOperation;

} while (nOperation < 0 || nOperation > 2);

// Create a function pointer named pFcn (yes, the

syntax is ugly)

" int (*pFcn) (int, int);)

// Set pFcn to point to the function the user chose

!

switch (nOperation)

{ _
case 0: pFcn = Add; break;
case 1l: pFcn = Subtract; break;
case 2: pFen = Multiply: break;
}

// Call the function that pFecn is pointing to with nX

and nY as parameters

y

cout << “The ‘answer is: " << pFcn{nX, -nY) << endl;

return 0; .

~ In this example, instead of calling the Add(), Subtract(), or Multiply()
function directly, we’'ve instead set pFcn to point at the function we
wish to call. Then we call the function through the pointer. The compiler

is unable to use early binding to resolve the function call pFen(nX,

nY) because it cannot tell which function pFen will be pointing to at
compile time! ‘ :

Function Overloading
and Polymorphism

NOTES

Self Instructional Material 111

———

. Object Oriented
Programming irn C+

Late binding is slightly less efficient since it involves an extra level .
of indirection. With early binding, the compiler can tell the CPU to

_ jump directly to the function’s address. With late binding, the program

NOTES

"112 SelfIustructional Material

has to read the address held in the pointer and then jump to that
address. This involves orie extra step, making it slightly slower. However,
-the'__:ridvahtage of late binding is that it is more flexible than early

-1 l_)i_n'di;;_g,"_ because decisions about what function to call do not need to
. ."|be nmiade- until run time.

Implementing Pure Virtual Functions -

Typically, the pure virtual functions in an.abstract base class are
never -'ir_nplemented. Because no objects of that type are ever created,
there is no reason to provide implementations, and the ADT works
purely as the definition of an interface to objects which derive from .
it. It is -possible, however, to provide an implementation to a pure
virtual function. The function can then be called by chjects derived
from the ADT, perhaps to provide common functionality to all the
overridden functions.

In this example, the additional functionality is simply an additional
message printed, but ohe can imagine that the base class provides a
shared -drawing mechanism, perhaps setiing up a window that all
derived classes will use.

1. kﬂ'r_r_;p'lementing pure virtual functions

W

2.
3. ﬁ__‘incl_ude «;{iostream.h?
s
5. enum BOOL (FALSE, TRUE };
8.
7, ‘class Shépé' .
8.
9. pliblic:
10. -:__Shapé(){}
11; “~Shape(t)
12, : ,‘éttual long GetArea() = 0; // error
13. virtual long GetPerim(= 0;
14, virtual void: Draw() = 0;
15 privaté: ' ;
16.‘ 5 " |
17. .
18_.-?_ , vmd__ Shape::Draw() -

1.
20.
21.

‘22,
23.

24,
25,
26.
27,
28,
29.
30.

31.
32.
33.
34.
35.
36.
a7.
38.
39.
40.
41.
42.
43,

45.
46,
47.
48,
49,
50.
51.
52.
53.
54.

{
cout << “Abstract df‘éWing mecl?anism!\n”;

}

class Circle : public Shape

{

publie:

Circle(int radius):itsRadius(radius){}
~Cirele(){) ' ,
long GetArea() { return 3 * itsRadius * itsRadius; }
long GetPerim() { return 9 * itsRadius; }
void Draw(); -

private:

int itsRadius;’

int itsCircumference;

I

void Circle;:Draw()

{

cout << “Circle drawing routine here!\n”;
Shape::Draw();
)

class Rectangle : public Shape

{ _

public:

Rectangle(int len, int width):

itsLength(len), itsWidth(width}{}

~Rectangle(}{} .
long GetArea() { return itsLength * itsWidth; }
long GetPerim() {return 2*itsLength'+ 2*itsWidth; |
virtual int GetLength() | retui‘g itsLength; 1
virtual int GetWidth() { returi"l!l-';itsWidth; }

void Draw(); o

private: o TN

“\.‘.

Function Overloading
and Polymorphism

‘NOTES

Self-Instructional Material 118

Object Qriented . 55, int itsWidthy
Programming.in C++ | .
o ' 56. -int itsLength;

57 };°
NOTES B
. 59. wvoid Rectangle::Draw()
60. {
61. for (int i = 0; i<itsLength; i++)
62. (.
63. for (int'j = 0; j<itsWidth; j++)
64, cout << “x 4
65.
66. cout << “\n”;
67. } '
68. Shape::Dravéf();
69.) |
70.
71. |
72. class Square : public Redtahgle
73. |
74. public: -

- 75, Square(int len);

76. Square(int len, int width);

' 77. ~Square(){} - .

78. long GetPerim(). {return 4 * GefLength();} .
EINL N | '
80.

81. Square::Square(int len):

82. Rectangle(len,len)

83. 1}

'84.

85. Square::Square(int Ien,.int width):
86. Rectangle(len,width)

87.

88. { .

89. if (GetLength() = GetWidth()

90. cout << “Error,.not -a square... a Rectangle??\n”;

114, Self-Instructional Material

91
92,
93,
94,
95.
96.
97.
98,
99.

100.
101..
102.
103.
104.
"105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118,
119.
120.
121.
122.

iht main()

{

int choice;

BOOL fQuit = FALSE;
Shape * sp;

while (1)
{ |

cout << 41)Circle (Z)Rectangle (3)Square (0)Quit:”;

¢in >> choice; N

switch (choice) . \.

{ .

case 1: sp = new Circle(5);

break; .
case 2: sp = new Rectangle(4,6);

break;

case 3: sp = new Square .(5);
break; -

default: fQuit = TRUE;
break;

}

if (fQuit)

break;

sp->Draw(};

cout << “\n”;"

)

return 0;

}

OPENING AND CLOSING OF FILES

File Streams

File Stream provide a uniform way of dealing with data coming from
the hard disk and going out to the screen or printer or coming

Function Overloadirig
_and Polymorphism

NOTES

Selﬁlnstructio.nd Maier_ia.! 115

Object Oriented
Programming in C++

. NOTES

118 Self-Instructional Material

from the keyboard and going to hard disk. In either case, you can use
the insertion and extraction operators with file stream objects with
related functions. To open and close files, you have ofstraem, ifstream
and fstream objects.

‘ « Ofstraem ' to write into files
* Ifstream : to read from files
¢ Fstream : . both read and write

Ofstream and Ifstream

The ofstream wused to read from or write to files are called ofstream
objects. These are derived from the iostream objects you’ve been using
‘so far. To get started with writing to a file, you must first create an
ofstream object, and then associate that object with a particular file
on your disk. To use ofstream objects, you must be sure to include
fstream.h in your program.

While the ifstream is used read data values from a file. To get started
to read from a file, you must first create an ifstream object, and then
associate that object with a particular file on your disk. To open the
file myfile.txt with an ofstream object, declare an instance of an ofstream
object and pass in the filename as a ‘parameter:

ofstream fout(“myfile.txt”);

Opening this file for input works exactly the same way, except it uses
an ifstream object:

ifstream fin(“myfile.txt”);
Program
#include <fstream.h>
void main(}
{
char fileName[80];
char buffer[255]; ~ // for user input
cout << “Enter File name: “; |
cin >> fileName;
ofstream fout(fileName); // open for writing

fout << "“This line written directly to the
file...\n”";

cout << “Enter text for the f}le: w

cin.ignore{l, ‘\n’'); // ignd{e the newline after

the file name 7

cin.getline{buffer,255}); // get the usér’'s ihput

fout << buffer << "\n”’; // and write it to .the
file .)
fout.close(); + // close the file,
ready for reopen
ifstream fin(fileName); // reopen for reading
cout << “Here’s the contents of the file:\n”;
char ch;: .
while (fin.get{ch))
cout << ch;
cout << “\ﬁ***End of file ***\n*;
fin.cloéé(); // close .the file stream
}

 File Opening Modes

The default behaviour upon opening a file is to create the file ilf it
" doesn’t yet exist and to truncate the file or delete all its contents if
"it does exist. If you don’t want this default behaviour, you can explicitly
provide a second argument to the constructor of your ofstream object.Valid
arguments mclude

. ms::app—Appends to the end of existing files rather than
truncating them.

¢ ios:at—Places yoﬁ at the end of the file, but you can write
data anywhere in the file. '

. ios::t'run—:l‘he default. Causes existing files to be truncated.
e iosinocreat—If the file does not exist, the open fails.
+ josunoreplac—If the file does already exist, the open fails.

Note that app is short for append; ate is short for at end, and trunc
is short for truncate.

Program

. // progrdm to show the Appending
of data at the end of a file

#include <fstream.h>

void main{)

char fileName[80];

‘char buffer([255];

cout << “Please re-enter the file name:”
cin >> fileName;

.ifstream fin(fileName}:

-

Function Overloading
and Polymorphism

NOTES

Self-Instructionsl Material

117

Object Oriented . _if (fin) // already exists?
Programming in C++ . . -

\ I { .
cout << “Current file contenﬁé:\n";
\NOTES char ch:
while_(fin.get(ch)) -
cdut << ch;
cout << “\n***End of file contents.***\n”;
: : .
fin.cloge();
cout << “\nOpening” << fiieName << in'apéend
modg...\n”;

,ofstfeam fout(fileName,ioé;:app);

if (!'fout) .
) gout << “Unable to open “ << fileName << '* for
appending.\n”;

return{l};
} I .
Icout << "\nEnter text for the file:”;
cin.ignore(l,’\n’);
tin.getline (buffer, 255);
-fout << buffer << *\n”;
foutlclose(};
fin.open(fileName); // reassign existing fin object!
if (1£in)
;

cout << ."Unable to open” << fileName << “ for
reading.\n”;

return(l);
) |
cout << “\nHere’s the cqnteﬁts of the file:\n";
char ch;
‘while {fin.get (ch)}
wout << ch; .
cout << “\n***End of file contents.***\n";
fin.closel();

}

118 Self-Instructional Matérial: " ~

STREAM MEMBER FUNCTIONS

Every C++ program that includes the iostream classes has four objects

that are created and initialized. When iostream class library is added .

to your program you can use all the functions to put the appropriate
include statement at the top of your program listing. Like:

cin: handles input from the standard input, the keyboard.

cout: handles output to the standard output, the screen.

Cer: handles un buffered output to the standard error device, the

screen. Because this is un buffered, everything sent to cerr is written
to the standard error device immediately, without waiting for the
buffer to fill or for a flush command to be received.

_clbg: handles buffered error messages that are output to the standard
error device, the screen. It is common for this to be “redirected” to
a log file, as described in the following section.

Read Data Values

The object cin is responsible for read or input data values and is
.made available to your program when you include iogtream.h. Using
the overloaded extraction operator (>>) cin can put data into your
- program’s variables. Like: ' ' ' '

int someVariable; .
cout << “Enter a number:”;
cin >> someVariable;

You should learn now that cin can overloaded the extraction operator
for a great variety of parameters, among them int&, short&, long&,
double&, float&, char&, char*, and so forth. When you write:

cin >> someVariable;

the type of'someVariable is assessed. In the example above, someVariable
is an integer, so the following function is called:

istream & operator>> (int &) S

Note that because the parameter is passed by reference, the extraction
operator is able to-act on any type of C++ original variable like:

Program
© #include <iostream.h>
volid main{)
{
int myInt;
long myLong;
double myDouble;

Function Overloading
and Polymorphism

NOTES

_ SelfInstructional Material 119

Object Oriented
Programming in C++

NOTES

120 SeIﬁInsItmctiona! Material

float myFloat;
unsigned int myUnsigned;
cout << “int:”;
cin >> myInt;
cout << “Long:";
"¢in >> myLong;
cout << “Double:”;
cin >> myDouble;
cout << “Float:%;
"¢in >> myFloat;
cout << "“Unsigned:*;
cin >> myUnéigned;
cout << “\n\nInt:\t"-<£‘myInt << endl;
cout << “Long:\t” << myLong << endl;
cout << “Double:\t” << myDouble << epdl;
cout << “Float:\t’ << myFloat << endl;

cout << *Unsigned:\t” << myUnsigned << endl;

} i -

String Handling Problem

Using cin, when.you will try to enter a full name into a string. cir
believes that white space is a separator. When it sees a space or ¢
new ‘line, it éss_umes thél input for the parameter is complete, and ir
the case of strings it adds a null character right then and there anc
you cannot input two strings separated using simple cin like “m]
sharma”. In above example you can check it, '

Example
- !/ string problem using cin
#include %iostream.h>
void main(}
{
char YourName[50];
cout << *Your first name: .,
cin >> YourName; . -
cout << “Here it is: » << YourName << endl;
cout << “Your Full name:™“;
cin >> YourName;
cout << “Here it‘;s: %' << YourName << enal;

}

A .3

A

Output: Your first name: Mahesh
Here it is: Mahesh
Your Full name: Mahesh Kumar Sharma

Here it is: Mahesh Kumar Sharma

Get() with Cin

The cin Operator >> taking a character reference can be used to get
a single character, multiple characters or strings from the standard
input. That you will check in given examples:

Example
#include <iostream.h>

void main{)

{
char ch;
while { (ch = cin.get(}) {= EOF)
: .
cout <<_“ch: " << ch <« endl;'
}

cout << “\nDonel\n”;

}

to exit this program, you must send end of file from the keybeard. On
DOS /windows computers use Ctri+Z .

World
ch: W
ch: o
ch: r
ch: 1
ch: d
ch:
(ctrl-z)
| Done!
Example
// Read multiple characters with cin
void main()
t TN
char a,_b, c;

cout << “Enter three letters:”;

Funcetion Overtb'ading
and Polymorphism

NOTES

Self-Instructional Material 121 -

 Object Oriented -
Programming in C++

NOTES

122 Self-Instructional Material

cin.get{a)..get(b}.get(c); '

cout << “a: * << a << “\nb: " << b << *\nc: " << ¢ <<
endl;

)
Output: Enter three letters: mks

a: m

b: k

c: s
Example : b
//Read strings with cin.’
void main()
{
char stringOne[256];
char stringTwo[ZSG];
cout << “Entef string one: *;
cin.get(stfingOne,éSS);
cout << “stringOne: " << stringOne << endl;
couf << “Enter string two: “; ° —
cin >> stringTwo; - '

cout << “StringTwo:“ << stringTwo << endl;

} ' ' e

Output: Enter string one: My name is mks

stringOne: My name is mks .
Enter string two: What is yours

StringTwo: What

getliné(). putline()

When a user want to enter a string, and that string can be read by
getline(). Like get(), getline()} takes a buffer and a maximum number
of characters. Unlike get(), however, the terminating newline is read
and thrown away. With get() the terminating newline is not thrown
away. It is left in the input buffer. You can use putline() to print the

string on screen with spaces.

Examf)le
#include _ <iostream.h>
void main()

Bt

.“ ‘-—
vy ¥

-

@ ‘1'3-”'#‘:'.

|
.ok ‘““"'_ o

v

'1'\,-’}1

ol

char sOne(256]:
char sTwo[256):
char sThreef[256];

-

\ cout << “Enter string one:"
cin.getline{sOne, 256);

cout << “stringOne:" << sOne << endl;

a_ cout << “Enter string two: -;

ﬂ cin »> sTwo;
cout << "“stringTwo:” << sTwo << endl;
cout << *Enter string three:”

cin.getline(sThree, 256);

cout << *stringThree:* << sThree << endl;

Output: Enter string one: one two three
stringOne: one two three

Enter string two: four.fiﬁe six
string™o: four

Enter string three: stringThree: five six

gnore(), peek() and putback()

Function Overloading
and Polymoarphism

NOTES

\ny times you want ‘0 ignore the remaining characters on a’ ‘line
antil you hit either end of line (EOL) or end of file (EOF). The member
function ignore() serves this purpose. Ignore() takes two parameters,
the maximum number of characters to ignore and the termination ;)
character. If you write ignore(80,'\n’), up to 80 characters will be
thrown away until a newline character is found. The input object cin |- ,
has two additional methods that can be used in some programs peek(),
- which looks at but does not extract the next character, and putback(),

" which inserts a character into the input stream.
Program

#include <iostream.h>

void main()

{
char ch;

cout << *enter a phrase:”;

while { cin.get{ch))

Self-instructional Materiol 128

ey v AT - 4T

Object Oriented
Programming in C++

NOTES

ot

24,7 Sg!ﬁlns_rr‘i; ctional. Material

if (ch == *1¢)
-~-cin.putback{‘'$’):
else “
cout << ch;
while (cin.péek_{) == ‘§#')

cin.ignore(l, '#');

}
Output: enter a phrase: Now!is#the!time#for! fun#!

Now$isthe$timefor$fﬁn$

Iput(), write()

You have used cout along with the overloaded insertion operator (<<)
to write strings, integers, and other numeric data to the screen. It is
also possible to format the data, aligning columns and writing the
numeric data in decimal and hexadecimal. Just as the extraction operator
can be supplemented with get() and getline(), the insertion operator
can be supplemented with put() and write(). The function put() is

{ used to.write a single character to the output device. Because put()

returns an ostream reference, and because cout is an ostream object,
you can concatenate put() just as you,do the insertion operator.

Example

// use of put with cout

#include <iosztream.h>

void main() . ' |
« . . o |
cout.put (*H’) .put (*e’).put (*17) .put (*17) .put (‘o) .put (*\n') ;

} _

output: Hello

Example

s

/! program to show the use of write() function
with cout : :

#include <iostream.h>

s#include <string.h>

void main() T -
{

char One[] = “India is my land”; Function Overloading

. and Polymorphism
int fulllength = strlen(One):;
int tooShort = fullLength -7;
int toolong = fullLength + 5; NOTES

cout.write(One, fullLength) << “\n”";
cout.write (One, tooShort) << *“\n";
cout.write(One, toolLong) << *\n*;
}
Output: India is my motherland
India is .

India is my motherland i?!.{ . I
width(), £i1l()

The default width of your output will be just enough space to print
the-number, character, or string in the cutput buffer. You can change
this by using width(). Normally cout fills the empty field created by
a call to width() with spaces. At times you may want to fill the area
with other characters, such as asterisks or +. To do this, you call-fill() |
and pass in as a parameter the character you want used as a fill
character. Like: oo
Example
finclude <iostream.h>
void mainf)) 5\
{
cout << “aimca >";
cout.width(25);
cout << courser << “< MCA\n”; ﬁ
‘cout << ‘aimca >
cout.width(25);
cout . £111(***);

cout << courses << “< MBA\n”;

}

Qutput: aimca > courses< MCA

aimca >***[*'**************coui'ses< MBA

b 7.‘1 8 ' " ' -
getf ()" R
f’,,,""/,'/"’ ! .

i . _
Self-Instructional Materigl 125

[N TN

Object Oriented
Programming in C++

NOTES

¥
O o s
-'126 Self-Instructional Material

The iostream objects keep track of their state by using flags: You can
set these flags by calling setf() and passing in one or another of the
predefined enumerated constants. For example, you can'set whether
or not to show trailing zeroes (so that 20.00 does not become truncated

to 20). To turn trailing zeroes on, use setf{ios::showpoint).You can . '

turn on the plus sign (+) before positive numbers by using ios::showpos.
You can change the alignment of the output by using ios::left, ios'::right,
or ios::internal.Finally, you can set the base of the numbers for display
by using ios::dec (decimal), ios::oct (octal—base eight), or ios::hex
(hexadecimal—base sixteen). Like:

//.

Example
#include <iostréam7h>
#include <iomanip.h>
void main()
{ !
cénst int‘numbéf = 185;
cout << “The nu@bgr'is"~<<'number << endl;
~ cout << “The nu.mb‘efj-‘:i.‘s" X< hex << number << endl;
cout.setf{ios::showbase);
cout << “The number is” << hex << number << endl;
cout << “The number.is";)
cout .width(10);
‘cout << hex << number << endl;
cout << “The number is”;)
‘ éout.width{lO};
cout.setf{ios::left};
cout << hex << number << endl;
cout << “The number is”; :
codt.width(lO);
cout.setf(ios::internal):; ‘ .
cout << hex << number << endlj

cout << “The number is:” << setw{l(} << hex <<
number << endl;

}

BINARY FILE OPERATIONS

Operating systems, such as DOS or Windows, distinguish between
text files and binary files. Text files store everything as text large

numbers such as 54, 325 are stored as a string of numerals (‘5°, ‘4’, *),
‘3, ‘2, '6"). This can be inefficient, but has the advantage that the text
can be read using simple programs such as the DOS command type
or Unix command cat or in Windows using notepad. Today therte is a
need to store images, sounds, video in a file form. To help this file

system distinguish between text and binary files, C++ provides the’

ios::binary flag to create binary files. On many systems, this flag is
ignored because all data is stored in binary format. Binary files can
store not only integers and strings, but entire data structures or
class can be write or read at once in a binary file using write() and
read() methods. Like in a class employee to write or read an object
you can use: © -

fout.write(char* &name of object .~izeof (object));

~ fout.write(char* &emp,sizeof {emp));
fout.read(char* &name of object ,sizeof (object));
fout.read(char* &emp,sizeof (emp));

Each of these functions expects a pointer to character, hoWever, S0
you must cast the address of your class to be a pointer to character.
The second argument to these functions is the number of characters
to write, which you can determine using sizeof{) function.

Example

// program to write and read data of an employee in teéxt

file
#include <fstream.h>
#include <iostream.h>
#include <string.h>
void main()
{
char FileName[20];
char EName[éO], Address[50], City[20], State[32],
pinCode[10];)
cout << "“Enter the Following pieces of information\n”;
cout << “Employeze Name:”;
cin-getline(ﬁName, 40} ;
. cou£ €< “Address "
cin.getline(Address, 50);
cont << “City: “;
_cin.getline(City, 20);
\ cout << *“State: ~ "3

¢in.getline(State, 32);

Function Ovérloading
and Polymorphism

NOTES

~

Self-Instructional Material

127

Object Oriented cout << "“Pin Code:”;

Programming in C++ T
. cin.getline(pinCode, 10);)

cout. << *“\nEnter the name of the file you want: to

create:”;
NOTES) .
cin >> FileName;
ofstream EmplRecords (FileName, ios::out);
EmplRecords << EName_<<}“\n" << Address << “\n” << City
<< “\n” << State << *\n” << ZIPCode: '

cout << "Enter the name of the file you want to
open:”; ’

cin >> FileName;
ifstream EmplRecords (FileName):;
EmplRecords.getline (EName, 40, ‘\n’);
EmmplRecords.getline {Address,. 50);
Emleecords.getline(City, 20} ;
EmplRecords.getline(State, 32);
Emleecords.getiine{ZIPCode, 10);

L

”

cout << “\n -=- Employee Information -=-7;

cout << “\nEmpl Name: " << EName;

cout << *\nAddress: " << Address;
cout << "\nCity: ¥ << City;
cout << *\nState: ¥ << State;

cout << “\nZIP Code: * << ZIPCode;

cout << “\n\n”;

Example
//program to write a block of c¢lass object and read with
the help of write() and read function

#include <fstream.h>"

) ‘ class Animal >
{

public: //éanstructor defined

7

Animal {(int weight, long days):itsWeight (weight),
itsNumberDaysAlive {(days) {} | :
. ~Animal(}{} // use of destructor

1

int GetWeight ()const. { return itsWeight;)

s
7 _

rd

128 Self-!nstructiqnal Material

void SetWeight {(int weight) { itsWeight = weight;}
long GetDaysAlive{)const { return itsﬁumberDaysAlive;}
. void SetDaysAlive(long days) { itsNumberDaysAlive
= days; }
priv&te:
int itsWeight;
long itsﬁumberDaysAlive;‘
}:
void @ain{)
{
char fileName[80];
char buffer[255];
cout << “Please enter the file name:”;
Ein >> fileName;
ofstream fout(fileName,ios::binary);
if (1fout}
{
cout << “Unable to open” << fileName << “for
writing.\n”";
return(l);
-}
Animal Dog(50,3b}:
fout.write({char*) &Dog,sizeof Dog):
fout.close();
ifstream fin(fileName,ios::binary);
if (1fin) : ' : -

>

<P

cout << “Unabkle to open ™ << fileName << * for
reading.\n*; '
return{l):

}
‘Animal-DogTwotl,l):
cout << “DogTwo weight:” << DogTwo.GetWeight(}.

]

<< endl;
cout << “DogTwo days:” << DogTwo.GetDaysAlive(}-
<< endl; o . '

3 \,

fin.read((char*) &DogTwo, “sizeof DogTwo);

Function Ovérloading -
and Polymorphism

~

NOTES

Self-Instructional Material 129

Object Oriented
Programming in C++

NOTES

130" Self-Instructional Material

cout << “DogTwo -weight:" << DogTwo.GetWeight ()}
<< endl; o T .

. .- cout << “DogTwo days:” << DogTwo.GetDaysAlive/()
<< endl;

fin.close();

STRUCTURES AND FILE OPERATIONS

C++ File /O with binary files using fstream class‘is a simple task.
fstream class has the capability to do both Input as well as Qutput

_operations i.e., read and write. All types of operations like reading/

writing of characters, strings, lines and not to mention buffered I/O
are supported by fstream. Operating systems store the files in binary
file format. Computers can deal with only binary numbers. But binary
files are not readable by humans. Qur level of comfort lies only with
proper ASCII or UNICODE characters. This article deals with how

| C++ File . YO.class fstream can be used for reading and writing binary

files. For ASCII file operations in C++, refér to C++ Text file 1/O
article. For our C++ File /O binary file examples, now assume a
struct WebSltes with two members as follows, "

vy Struct for C++ File I/O b;l.nary f:Lle sample
struct WebSites
‘ S

e

. “char.'SiteName[100];
int ‘Ra,nk;
};

Write operatlons in C++ Binary Flle jr ey

There are some important points to be noted whlle ‘doing a write
operation. / -

* The file has to be opened in output and binary mode using the
flags ios::out (output mode) and ios: bmary(binary mode)

* The function write takes two parameters. "The first parameter
ig of type- ‘chat * for the data to be written and the second is
of type .int asklng for the S}ze of data to be«wrltten to the
binary file. '

A ~is

-

¢ TFile has to be closed at the end.
// Sample for C++ File I/O binary file write

void write_to_binary file (WebSites p_Data)

..";.'.u-
s ".r

fstream blnary flle{ c:\\test.dat”,
iog::out|ios: blnary|1os app},

binary_file. wrlte(ve1nterpret cast<char
*>(&p_Data),31zeof(Web81tes)))
' binary_file.close();
} ,/‘ ‘ t .

. The above C++ File I/O binary sample function writes some data to
the function. The file is opened in output and binary mode with ios::out
and ios:binary. There is one more specifier ios::app, which tells the
Operating system that the. file is alsc opened in append. mode. This
means any new set of data will be appended to the €nd of file. Also
the write function used above, needs.the parameter as a character
pointer type. So we use a type converter reinterpret_cast to typecast

=the structure into char* type. :

_ Read Operations in C++ Binary File I/O
* This also has a similar flow of operations as above. The only difference
is to open the file using 10s::iin, which opens the file in read mode.
|
// Sample for|C++ File I/O binary file read
void -read_from binary_file()
("*.
WebSites p_Data;
fstream blnary_flle(“c \\test.dat”",

ios:: blnaryllcs rin) ; -
binary_file. read(relnterpret cast<char
*> (&p_Data),sizeof (WebSites)}; T .

binary file.close();
cout<<p_Data,SiteName<<endl;

. cout<<“Rank :7<< p_Data Rank<<endl:;

CLASSES AND FILE OPERATIONS -

-~

Writing a class to a file
1. #include <fstream.h>
o2
3. class Animal

Tlne

Function Overloading

and Polymorphism

NOTES

" Self-Instructional Material

131

Object Oriented - 4. | _
Programming in C++ i
' 5. public:

. Animal(int weight, long days):itsWeight{(weight),
o itsNumberDaysAlive(days){} -~

NOTES ~Animal(){}
. int GetWeight()const { return itsWeight; }
: 10. void SetWeight(int weight) { itsWeight = weight; }

11. -

12, long GetDaysAlivé()rconst { return itsNumberDaysAlive; |
‘13, void SetDaysAlive(long days) { itsNumberDaysAlive = days; }
14. o -

© 15, i)ri\'rate:
16. int itsWeight;
17. long itsNumberDaysAlive;
18. k
19.

20. int main() // returns 1 on error
2L

~ 22. char fileName[80];

_ 23. char buffer[25l5];-

24, '

.. _- 1 25. cout << “Please enfer the file name:>;—

2§ cin >> fileName;

== ﬂf2l7 ofstream fout(fileName,ios::hinary);
28. if (‘fout)

29, |

30, .cout << “Unable to open” << filéName << “ for writing.\n”;

31. feturn(l); | |

32, |

33.

34. Animal Bear(50,100);
35. 'fc‘)ut.writle((char*) &Bear,sizeof Bear);
6. .

37." 'foat.cloég();

192 - Self-Instructional Matérial .-~

.38. ‘
39, ifstream ﬁn(ﬁleName,ios::binary); .
40. if (!fin)
41, { -

42. cout << “Unable to open” << fileName << “ for reading.\n”;

43. réturn(l);

4.)

45. |

46. Animal BearTwo(1,1); -
41,

48. cout << “BearTwo weight:” << BearTwo.GetWeight() << endl;
49, cout << “BearTwo days:” << BearTwo.GetDaysAlive() << endl;
50. |
51. fin.read({(char*) -&BearTwo, sizeof BearTwo);

5.‘21.

53, fin.close();
54 return 0;
55}

RANDOM ACCESS FILE PROCESSING

A binary file is a file of any length that holds bytes with values in the
range 0 to Oxff. (0 to 255). These bytes have no other meaning. In a

text file a value of 13 means carriage return, 10 means line feed, 26 |,

means end of file. Software reading or writing text files has to deal
with line ends. In Linux these are just separated by line feeds but
Windows uses carriage returns and line feeds.

In modern terms we can call a binary file a stream of bytes and more
modern languages tend to work with streams rather than files. The
important part is the data rather than where it came from! This
example shows that you can write text to a binary file.

RandomA;cesé ra{ filename) ;

if ra.OpenWrite())

{ _ .
if (Ira.Write(mytext))

Function Overloading
- and Polymorphism

NOTES

Self-Instructional Material 138

Object Oriented . . ~
Programming in C++

-~

NOTES

v
7 134 Self-Instructional Material

cout << “Failed to write to file “ << filename << endl;
ra.Close() ;
)
else

cout << “Failed to open” << fileﬁame << ™ fior writing*
<< endl; L .
This uses the class RandomAccess to open a binary file for writing,
then writes a string intd it. The RandomAccess class uses a FILE to
do the main work. It's opened in “wb “ mode (refer to the C tutorial
for more information on that) and then writes the text to the file. It’s
actually writing sequentially though it could be made to write anywhere
in the file. :

Function Overloading
and Polymorphism

- STUDENT ACTIVITY

1. What are the common operators for overload?

2. What is a ofstream object?

Self-Instructional Material 135

" Object Oriented
Programming in C++

188 Self—lnttlmctian'al Material

SUMMARY

i The word polymorphism has been derwed from the greek word '
Polymorphous. :

* Operator overloading allows C/C++ operators to have user-
defined meaning in user defined class,

* Early binding (also called static binding)} means the compiler
is able to. directly associate the identifier name (such as a

“function or variable name) with a machine address.

e A virtual function is a function that makes sure that, in an
inheritance scenario, the right function is called’ regardless of
the expression that calls the function.

¢ The ofstream used to read from or write to files are called
ofstream objects.

~* Binary files can store not only integers and stfings, but entire

data structures or class can be write or read at once in a
‘binary file using write() and read() methods.

SELF ASSESSMENT QUESTIONS

1. When you overload member functions, in what ways must they differ?
2. What is the difference between function and operator overloading,
- describe with the help of example?
3. When is the destructor called?
4. How does the copy constructor differ from the assignment operator
(=)? '
5o~ What_is the this pointer?

" 6. How do you differentiate between overloading the prefix and

postfix increment operators?
7. Can you overload the operator+ for short integers?

8. Is it\"legal in C++ to overload the operator++ so that it decrements
a value in your class?

9. What return value must conversion operators have in their
. declarations?

10. What is a’'stream, how can you differ input stream and output

stream?

\ 11. What is fstream, and what does it do"
" 12. What are the three forms of cin.get(), and what are their differences?
13. What is the difference between cin.read() and cin.getline()?
14. What are the different file opening modes?

15. Write about command line parameters.
16. What does’the ios::app argument do? R

t

