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NOTES e Test Yourself

1.1. OBJECTIVES

- After going through this unit, you will be able to discuss about various algebraic
structures like groups, rings and field. Apart from this, you will be able to understand
the concept of vector spaces, linear transformations and bilinear transformations.

1.2. INTRODUCTION

i

In the present units, we introduce the concept of algebraic system, binary
operations and groups. The study of cyclic groups, normal groups, group homomorphism
etc., help us in understanding various applications of computer science. Groups play
an important role in coding theory. This unit also includes the concept of rings, integral
domain, field and vector spaces. _

We shall acquaint ourselves with the notion of a linear transformation (or lin-
ear function or mapping) and its various properties. The significance of linear trans-
formations arises form the fact that we can pass from one vector space to another by
means of linear transformations. Linear transformations are classified into (¢) one-
one or injective, (i} onto or surjective and (¢if} both one-one and onto or bijective. We
shall also deal with isomorphism of vector spaces. .

\

1.3. ALGEBRAIC STRUCTURES

If there exists a system-such that it consists of a non-empty set and one or more
operations on that set, then that system is called an algebraic system. It is generally
denoted by (A, op,, 0p,, ..., 0p ), where A is a non-empty set and op,, op,, ..., op, are
operations on A.

An algebraic system is also called an algebraie structure because the opera-
tions on the set A define a structure on the elements of A. '

1.4. BINARY OPERATIOI!S

Consider a non-empty set A and a function fsuch that f: A x A = A is called a
binary operation on A. If # i a binary operation on A, then it may be written as a # b.

A binary operation can be denoted by a'ny of the symbols +, —, *, @, A, g, v, A etc.

The value of the binary operation is denoted by placing the operator between
the two operands. .
e.g.,. (i) The operation of addition is a binary operation on the set of natural numbers.

(i1) The operation of subtraction is a binary operation on set of integers. But, the
operation of subtraction is not a binary operation on the set of natural nunbers because
the subtraction of two natural numbers may or may not be a natural number.

2 Self-Instructional Maierial



(i) The operation of multiplication is a binary operation on the.set of natural
numbers, set of integers and set of complex numbers

(zv) The operation of set union is a binary nperahon on the set of subsets of a
universal set. Similarly, the operation of set mtersectmn is a binary operation on the
set of subsets of a universal set.
Tahles of Operation _

Consider a non-empty finite set A = {a,, a,, a,, .., ¢,}. A binary operation *on A

can be described by means of table as shown in Fig. 1.

’—i * a"‘1 (12 ay a,
-ﬂ"l t’]'--lI *ﬂ,l (1] *(12 .
a, a,*a, ay*a,
@y - i
4
a” Gn*an

Fig. 1

The empty in the Jth row and kth column represent the element ¢;a,.

ILLUSTRATIVE EXAMPLES

Example 1. Consider the set A = {1, 2, 3)-and a binary operation * on the set A
defined by
axb=2a+2b,
Represent operation * as a table on A.

Sol. The table of the operation is shdv@rll_ in Fig. 2.

x 1 2 3
4 el' 8"
6 & 10
8 10 12
Fig. 2

I
|

There are many properties of the binary operations which are as follows :

1. Closure Property. Consider a non-empty set A and a binary operation = on A.
Then A is closed under the operation #, if a * b € A, where ¢ and b are elements of A.

For example, the operation of addition on the set of integers 18 a closed opera-
tion. ie., ifa,be Z, thena+be ZVa,be Z |

Properties of Binary Operations

Example 2. Consider the set A = {1, 3, §, 7,11|9, ...}, the set of odd +ve integers.
Determine wf%éltfﬂerA is closed under (i) addition (i} multiplication.

Sol. (i) The set A is not closed under addition because the addition of two odd
numbers produces an'even number which does not belong to A,

Self-Instructional Marerial
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Discrete Mathematics

NOTES

(i) The set A is closed under the operation multiplication because the multipli-
cation of two odd numbers produces an odd number. So, for every a, b €'A, we have a
#be A .

2. Associative Property. Consider a non-empty set Aanda binary opefation
# on A. Then the operation * on A is assoctative, if for everya b, ¢, € A, we have (a * b))
c=a*x{b*c). ;

Example 3. Consider the bmary operation % on Q, the set ofratzonal numbers
defined by
a*b=a+b-abVa be Q

Determine whether * is associative.

Sol. Let us assume some elements a, b, ¢ € 'Q, then by thon
(axb)*rc=@+b-ab)sc=(a+b-ab)+c—(a+b-ablk
=a+b—ab+c—ca—be+abc=a+b+c—ab-ac-be+abe.
Similarly, we have
axbrc)=a+b+c—ab—-ac—be+abe
Therefore, (a*b)*c=a(b=c). '
Hence * is associative,

3. Commutative Property. Consider a non-empty set A and a binary operation
* on A. Then the operation * on A is commutative, if for every a, b ¢ A, we havea * b
=b=a, =
Example 4. Consider the binary operation * on @, the set of rational numbers,
defined by : ; A
a* a?+b*Va be Q.
Determine whether * is commautative.
Sol. Let us assume some eleménts a, b € Q, then by definition
a*b=a?+b2=b+al=b+a

Hence * is commutative.

Example 5. Consider the binary operation * and Q, the set of rational numbers

- defined by :

Determine whether * is (i) associative (ii) commutative.
Sol. (i) Let a, b €' Q, then we have

a#b:—:—:b*a
2

2
Hence * is commutative. ,
(i) Let @, b, ¢ € Q, then by definition we have

ab
ab 9 abe
(a b) C-—(2J$c__ 2 4
abc
) b 2 ab
Similarly, a*bse)=a % [-23) = —%— = 0,4_(:
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Therefore, as{bxc)=a=b e Fundamental Concepts
. .. d Vectors
Hence, * is associative. and yaciors

4, Identity. Consider a non-empty set A and a binary operation = on A. Then
the operation * has an identity property if there exists an element, e, in A such that NOTES
. . . . . I D
a * e (right identity).s e s a(left identity) =a Va e A.

Theorem 1. Prove that e, = e, where'e,' is a right identity and e,” is a left
identity of a binary operation. '

Proof. We know that e,” is a right identity.

Hence, e re=e” (1)
Also, we know that e,” is a left identity.
 Hence, e, e =e/ ' (2}

From (1) and (2), we have e,” = e,”.

: Thus, we can say that if ¢ is a right identity of a binary operation, then e is also
" a left identity.

1.5. SEMI-GROUP

Let us consider, an algebraic system (A, #), where % is a binary operation on A,
Then, the system (A, *) is said to be a semi-group if it satisfies the following proper-
ties ‘ . '

1. The operation * is a closed operation on set A.

2. The operation * is an associative operation.

Example 6. Consider an algebraic system (A, ), where A={1,3,5,7,9, ..} the
set of all positive odd integers and * is a binary operation means multiplication.
Determine whether (A, *) is a semi-group.

Sol. Closure property. The operation * is a closed operation because multipli-
cation of two +ve odd integers is a +ve odd number.

Associative property. The operation * is an associative operation on set A,
Since for every a, b, ¢ € A, we have

(@*b)*c=ax(b*c)
Hence, the algebraic system (A, ) is a semi-group.

Example 7. Let (A, ¥} be semi-group. Show that for a,b,cinA,ifa*c=c*a
andbxec=cxb, then(axb)*c=c*(ax*b)

Sol. Take 1..H.S., we have

@a*b)tc=a*b*c) [- *is associativel
=a#(c* b) | [+ bec=c#b]
={g*c)*bh - [ *1is associative]
={c*xa)«b . v a*c=c+*d] -
—c*(axh) " [ xis associative]

Hence, : (@xb)*c=c*(ax*b)

Self-instructional Muterial 5



Discrete Mathematics

NOTES

EXERCISE 1 |.

Let * be the operation on the set R of real numbers defined bya *b=a + b + 2ad
{a)Find 2~ 3,3 =(=5), 7+ (1/2)
) Is (R, *} 2 semi-group ? s it commutative ?
(¢) Find the identity element
() Which elements have inverses and what are they ?
Let S be a semi-group with identity ¢ and let & and b be inverses of a. Show that b = b’
i.e., inverses are uniques, if they exist.
Let S = Q x Q, the set of ordered pairs of rational numbers, with the operation * defined |
by
(a, b) * (x,¥) = (ex, ay + b)
() Find (3,4} (1, 2Yand (- 1, 3) #* (5, 2)
() Is S a semi-group ? Is it commutative ?
(¢} Find the identity element of S
{d) Which elements, if any, have inverses and what are they ?
Let A be a non-empty set with the operation * defined by a * b = ¢ and assume A has
more than one element. Then
(2) Is A a semi-groups ?
() Is A commutative ?
(¢) Does A have an identity element ?
(d) Which elements, if any have inverses and what are they ?

1.6. GROUP

6 Self-Instructional Material

Let us consider an algebraic system (G, *), where # is a binary operation on G.

Then the system (G, *) is said to be a group if it satisfies following properties.

(©) The operation * is a closed operation.

(¢if) The operation * is an associative operation.
(i) There exists an identity element w.r.t. the operation *,
(iv) For everyd € G, there exists an elementa~! e Gsuch thata l*g=a*al=¢

For example, the algebraic system (I, +), where | is the set of all integers and +

is an addition operation, is a group. The element 0 is the identity element w.r.t. the
operation +. The inverse of every elementa e Iis—ae 1.

Example 8. Prove that G = (1, 2, 3, 4, 5, 6) is a finite abelian group of order 6

under multiplication modulo 7.

Sol. G =1{1,2,3,4,5,6, x,}
Consider the multiplication modulo 7 table as shown below. Recall that « x, b -

= The remainder when ab is divided by 7

x, |- 1 2 3 4 5

I 9 3 4 5 6

2 1| 2 4 6 1 3 5
N T T 6 2 5 1 4
. 4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 9 1



From the table, we observe that each element 5.1!15ide the table is also an element
of G. It means that G is closed under multiplication modulo 7.

Also foreach a, b,c e G
a x, (b Xq ¢) = (ax, b) x,¢ i.e., associative law hold.

From the table, we nbserve that the first row inside the table is identical with
the top-row of the table. Therefore, 1 is the identity (multiplicative) of G.

Also, 2x,4=1; 38x,5=1, 4x;2=1, 5x,3=1,6x,6=1

Hence, each elcment G has an inverse, i.e.,

b4

Inverse of 2 is 4 and of 4 is 2
Inverse of 3is 5 and of 5is 3
Inverse of 6 is 6 ]
Hence, G is a group under the multiplication modulo 7.
Example 9. Consider an algebraic system (@, «)where Q (s the set of rational
numbers and * is a binary operation defined by
atrb=a+b-abVa be Q.
‘Determine whether (Q, *) is a group.
Sol. Closure property. Since the element a * b € Q for every a,'b € Q, hence,
the set @ is élosed under the operation *,
Associative property. Let us assume a, b, ¢ € @, then we have
(@xb)sc={a+b-ab)=c
=(a+b—ab)tc~-(as+b-ablk
=a+b-ab+c—ac-bc+abe

=a+b+c—-ab—ac—be+abe,.

Similarly, a*(buc)=a+b+c—ab-ac—bec+abe. "
Therefore, (@a=*bB)y*c=a=((bx=c)
% i associative. : -

Identity. Let e is an identity element. Then wehavea*e=aVae Q
a+e—qe=a or e—ae=10
or e(l —a)=0 or e=0ifl-a=0
Similarfly, for - era=aVae Q,wehavee=90
Therefore, fore = 0, we havea *e=e *a=a
Thus, 0 is the identity element.
Inverse. Let us assume an element ¢ € Q. Let ¢~ 11is an inverse of a. Then we

have . .
a*a 1=0 ' (Identity]
a+al-aal=0
or al{(l-a)=-a or al= ,azl
a-1
Now, EQ, if a=x1l

a p—
Therefore, every element has inverse such that g # 1. :
Since, the algebraic system (Q, «) satisfy all the properties of a group Hence
(Q, *) is a group.

Self-Instructional Material
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Discrete Mathematics Theorem 2. Shoz‘u that the identity element in @ group is unique.

Proof. Let us assume that there exists two identity elements i.e., ¢ and ¢’ of G.
Since, e ¢ G and e’ 15 an identity. We havee'e =ee’ =¢ '
Also, e’ € G and e is an identity. We havee’e =ce’ = ¢’

e=¢

NOTES
Hence, identity in a group is unique.

Theorem 3. Show that inverse of an element a in a g‘;"oup G is unique. '

Proof. Let us assume that ¢ € G be an element, Also, assume that a,”tand-

a,” 1 be two inverse elements of a. Then we have,

a; lea=aa,"'=e and a, la=aa,'=e
1, -1, _p-1 “1y = (=1 “Y e -1 1
Now, e t=a; e =a; Haa, ) =(a aa,” ! =ea,

Thus, the inverse of an element is unique.

=(12

Theorem 4. Show that (a~’) ' =a foralla € G, where G is agroup and a-!isan
inverse of a.
Proof. Given that ¢~ is an inverse of 2. Then, we have
aa~t=ala=c¢ .

This implies that a is also an inverse of @~ !, Therefore (a= )1 = a.

Theorem 5. Show that (aby 1= b-Ta ! foralla, be G.

Proof. We have to prove that eb is inverse of 5~ 1 a~ 1. We prove
(ab¥blaYy=(b"ta Yab)=e

Consider (ab)b~*aD=[ab)b a 1= [adbb V)] a?

=(ae)a " l=aa"l=e ., A1)

Similarly, (b~la )}ab)=e . (2}
From (1) and (2), we have '

(@b) (B la V) =e=(blaab- T Hence proved.

Theorem 6. Prove the left carcellation law irn a group G holds i.c., ab = uc
= b=cVa b ce G

Proof. Consider ab = ac.

Then, we have b=eb={(a ta)b=a1(ab)=a 1(ac) " [ ab =ac}
=(@ala)}=ec=c¢ ' | Associativily

Hence, ab=ac = b_='c. ] ' ' ‘

Theorem 7. Prove the right cancellation law in a group G holds i.e., bu = ca
= b=cVa bcel : !

Proof. Consider ba = ca.'. , . . .
Then, we have b=be=blae~) =ba)a ' =(ca)al" [ ba = cal

=claa Y =ce=¢ : | Associativity
‘Hence ba=ca = b=c. o
?

Theroem 8. Let G be a group and a, b € G. Then the equation ¢ * x = b his ¢
unique solution given by x = a1 # b,

¢

8 Self-instructional Marc;'ial



Proof. Given a, b € G and G is a group under I’k, therefore, a1 exists in G

Hence al*be G | Gis closed

Consider caxx=~h B
={a*xal)=b |e+al=e
=a* (@t =b) : | Associativity

= x=al%b ' | Left cancellation law

Uniqueness. Let the equation a * x = b has two solutions, say, x; and x,, then
we have

a x1=b (1)
e A3 x2 = b ' ‘(2)
(Dand (2) gives @ *x;,=0%x,

= X =Xy | Left cancellation law
© Z_, The Integers Modulo m

The integers modulo m, denoted by Z, , is the set given by
={0,1,2,..m-1;+ ) where the operations +, (read as addition modulo m)

m T m

and x, (read as muitlphcatmn modulo m) are defined as
a +, b =remainder after ¢ + b is divided by m
a x_ b = remainder after a x & is divided by m.

Fi'niie and Infinite Group

A group (G, #) is called a finite group if G is a finite set.

A group (G, *) is called an infinite group if G is an infinite set.
For example

1. The group (I, +) is an infinite group as the set [ of integers is an infinite set.

2. The group G = {1, 2, 3, 4, 5, 6, 7} under multiplicaticn modulo 8 is a finite
group as the set G is a finite set.

Order of Group

The order of the group G is the number of elements in the group G. It is denoted
by |G|. A group of order 1 has only the identity element i.e., {{e}).

A group of order 2 has two elements i.e., one identity element and one some
other Llem(&:nt '

Example 10. Consider an algebraic system ({0, 1‘1 +) where the operation + is

defined as shown in (Fig. 3).
) -

>
<
S e =

_ Fig. 3
The system ({0, 1}, +) is a group. In this 0 is identity element and eirery element
is its own inverse.

Theorem 9. If G is a ﬁmte group of order n and a € G, then there exists a
positive integer m such that a™ = e and m <n.

Fundamental Concepts
and Vectors

NOTES

Self-Instructional Material 9



Discrete Mathematics

T 10

NOTES

Proof. Consider the elements of the group G as g, a?,a?, ..., a**!. Thesearen + 1
elements. Since | G | = n. Therefore two of its elements, say, a”, ¥ must be equal, i.e.,
a? = a9, p<q Takem =g —p

R am =gt P=qa? - -q?P
=a? (a#)? = a? - (a9! | @? = at
= ;:z"a

Further, since p, ¢ are amongn + 1, /

- l<p<gsn+l = g-p=msn. |

Subgroup

Let us consider a group (G, #). Also, let S € G ; then (S, ) is called a subgroup iff
it satisfies following conditions :

{{) The operation * is closed operation on S.

(¢1) The operation * is an associative operation.

(iii) As eis an 1dent1ty element belonged to G. It must belong to the set Si.c., the
identity element of (G, *) must belongs to (S, *).

(ie) For every element a € S, a~ ! also belongs to S.

For example, let (G, +) be a group, where G is a set of all integers and (+) is an
addition operation. Then (H, +) is a subgroup of the group G, where H={2m:me Gl,
the sct of all even integer. :

For example, let G be a group. Then the two subgroups of G are G and G, = {e},
e is the indentity element. ’

Theorem 10. A subset H of a group G is a subgroup of G iff

(D) The identity elementec e H -

(ii) H is closed under the same operation as in G

(iii) H is closed under inverses i.e., ifa € H, thena™ € H.

Proof. Given G is a group and H is a subset of G. Let His a %ubgroup of Gpthen,
by definition, (), (i7), (iii) are true.

Converse. Let (i), (i0), (iif) hold. We show H is a subgroup of G. We show the
assomatlwty of elements of H..

Leta, b,ce Gandsince Hc G . a,bce H

Since elements of G are also elements of H »

associativity holds for H. Hence the Theorem,

Another statement : A subset H of a group G is a subgroup of G iffa « b1 € H.

Theorem 11. Let H, and H, be subgroup of group G, neither of which contains
the other. Show that there exist an element of G belonging neither to H, nor H,.

Proof. Given H, and H, are subgroups of G. Also H1 ¢ Hyand H, ¢ Hl. We
show that there exists an element belonging neither to H, nor H,. Let, if possible,
there is an element a belonging to H, and 11, i.e,, « € H, n H,,. '
Now a € H, and since H, is a subgroupof G .. a7'e H; A1
Buta e H, and since H, is a subgroupof G .. a7'e H, ToLA2),
(1) and (2) gives H, < H,, a contradiction.
Hence the theorem.

Theorem 12. If H and K are two subgroups of G, then Hn Kis also a subgroup
Ve

‘/

of G. }
Proof. We know that a subset H of a group G is a subgroup of G iffab'e HV a,
be H. .

Self-Instructional Material -



Leta,bc Hn K. Weshow ab e Hn K. ' ' Fundamental Concepts
Vector
Now ae HNK = aeHandae K and Vectors

Also be HNK = beHandbe K
Since H is a subgroup of Gand a, b€ H

= - able H (Using theorem X) D] NOTES
Also K is a subgroupof Ganda,be K
= ab‘] e K . (2)

From (1) and (2), ab~! € Hn K. Hence H n K is a subgroup of G.

Cor. If H and K are two subgroups of a group G, then give an example'to show that
H u K may not be a subgroup of G

Consider G = The group of integers under +

H ={.-6-4,-2024,6..1}
H,={.-12,-9,-6,-8,0,3,6,9, 12, ...] are subgroups of G under +.
But H, UH,=(. -4,-3,-2,0,2,3,4,6, ..}

Slnce2eH uH,,3e HHuH, = 2+3=5¢ H; UH, ie, H v H,is not
closed under +. HenceH uH is notasubgroup of G under+

Theorem 13. IfH is a non-empty finite subset of a group G and H is ' closed
under multiplication. Then H is a subgroup of G.

Proof. We know that a non-empty subset H of a group G is a subgroups of G iff
NaeH beH = abe H

(il)ae H = aleH

The condition (i) is true since it is given that H is closed under multiplication.
To show (ii), Letac Hae H = a?2c H

' | H is closed under multiplication
Again ae H,a2e H = o®e Handsoon. :

Thus the infinite collection of all the elements a, a2, a?, ... @™, ..., belongs to H. N
But H is finite. . there must be repeation. Leta"=a* r>s>0 :

= a.at=e

= a¥=e¢ee H

Take y = ™! and consider
ya=a*l. g=a""=¢

Similarly, ay =e
Hence ya=e=ay
=y 1s the inverse of a. Hence the theorem. -
Theorem 14. Let H be a subgroup of G. Then VY .
{a) H=He o acH \ i‘
(b) Ha = Hb e ableH o
(¢)aH = bH o albeH ™
(d)HH = H.
Proof. {a) Let Ha=H. IfeecH = eaeHa=H
= ae H | ea =
Conversly, Let a € H. As His a subgroupand 2 € H,e ¢ H
= haeH | His closed under multiplication.
= ' HocH _ A1) )
_ Again, 1fh e Hae Handsince Hisa subgroup of G,
1 haleH (Theorem X) .
k'l = (haVaeHa ' ' . N
= haa)e Ha = hee Ha
= heHea .
= HcHa I «(2) ¢

- Self-Instructional Material "11



Discrete Mathematics ' Fro.m (and (2)Ha = H
(b) Let Ha = Hb and we showap™' ¢ H

Now a=eac Ha
- NOTES = ae Ha=Hb
= ae Hb= a=hbhe H
' = abl=(b)bl=hbbl)=he=he H
- o = able H
Conversly, Let able H = abl=h heH
= - . a=hb
= . Ha = Hhb = Hb . |Forhe HHHA=H
(¢) Proceed yourself as in Part ().
“(dYLet h € H. Then,
H=Hr VheH i | Using part (a)
= HcHHcH
' HH = H.

Abelian Group

Let us consider, an algebraic system (G, *), where * is a binary operation on G.
Then the system (G, *)is said to be an abelian group if it satisfies all the propertles of
the group plus an additional following property :

(z) The operation * is commutative i.e.,

ar*b=bravVa beG

For example, consider an algebraic system (I, +), where'I is the set of all inte-

gers and + is an addition operation. The system (I, +) is an abelian group because it

satisfies all the properties of a group. Also the operation + is commutative for every a,
bel

ILLUSTRATIVE EXAMPLE

Example 1. Consider an algebraic system (G, *), where G is the set of all non-

b
zero real numbers and * is a binary operatwn defined bya » b = 2-4* Show that (G, *)

is an abelian group.
Sol. Closure property. The set G is closed under the operation * .Since,a = b

is a real number. Hence, belongs to G.

2 )
. Associative property. The operation * is associative. Let a, b,ce G, then we
have
@*b)vc= [ﬂ]* ¢ labe _ abe
4 16 16
s be albe) abe
Similarly, (brpy=ag*| 22| = _ '
mmtlarly axb*c)=a (4) 16 6 -

Identity. To find the identity element, 1et us assume that e is a positive real
number. Then for a € G,

12 Self-Instructional Material .
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4 . and Vectors
Similarly, are=a
ae
= 4 =@ or e=4, : NOTES

Thus, the identity an element in G is 4.
Inverse. Let us assume thata € G.Ife"'e Qisaninverseofa,thena*a~1=4

aa 16
= =4 or g l=—
4 a
Similarly, a !*a=4gives ol
-1 16
= - =4 or o l=-—.
4 a
16

Thus, the inverse of an element a in G is —.
a

Commutative. The operation * on G is commutative.
Since, atb=—"—="Z=b=a, ' -

Thus, the algebraic system (G, *) is closed, associative, has identity element,
has inverse and commutative. Hence, the system (G, #) is an abelian group.

EXERCISE 2

* 1. Ifa, b, c are elements of a group G and @ * & = ¢ * a. Then & = ¢ 7 Explain your answer.
2. Which of the following are groups ?

— (i) M, .(R) with matrix addition ' o
(ii) M, ,(R) with matrix multiplication
(iir) The positive real numbers with multiplication
(iv) The non-zero real numbers with multi-plicatlion
(v) The set [~ 1, 1] with multiplication.
3. Give an example of (i) a finite abelian group (if) an infinite non-abelian group.
4. LetV=le,a,b,cl Let*bedefined byx *x=¢ forall x € V. Write a complete table for * so that

(V, #) is a group. »
5. Which of the following subsets of the real numbers is a subgroup of (R, +] ?
(a) The rational numbers (b) The positive real numbers
K .. S
(eYH= > : K is an integer (d) H = {2*: K is an integer}

(e H=(x:—-100<x < 100}
6. Let G be a group of order p, p is prime. Find all subgroups of G.

Normal Subgroup

A subgroup H of a group G is called normal subgroup of G if for every g € G,
he H = ghg'le H.
or

A subgroup H of a group G is called a normal subgroup of G iff for g € G, we
have :

.
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NOTES

gHg'=HVge G
Example 2. Every subgroup of an abelian group is normal.

Sol. Let H be a subgroup of a normal group G. We show H is normal. Let h ¢ H
and g € G. Consider

ghgl=gglh _ _ he HcG = heG
=¢h . Alsoh,gle G and
=heH since G is abelian

= ghgle H. - & hgl=glh
Hence, H is a normal subgroup of G. '

Cyclic Group

A group G is called cyclic if for some ¢ € G, every element x € G is of the form a*
for some 7 e Z. The element a is called the generator of G.

If G is cyclic, we write G =< ¢ >
Foreg., If G ={1,-1, i, — i}, then G is a cyclic group generated by i.
Since ) =i i2=—1,83=—4,i"=1
i.e., every element of G is of the form i* for some n € Z. Hence i is a generator for the
cyclic group.
Remark. The order of a generator of the cyclic group is equal to the order of tht.;: group.
eg., Z,,=1Z,,;+,)is a cyclic group.
Sol. Z,,=10,1,2, . 11, +,,}1.
Consider 5=5 b
5+, 5=10
S5+,5+,5=3
5+4195+,8+,5=8
D485+, 5+,5=25=1etc.
~ Thus we see that every element of Z,,1s of the form 5n for some n € Z. Thus 5 is
a generator of Z,,.
Hence [Z,,, +,,] is a cyclic group with 5 as generator. Since inverse of 5 is
7 (5 4,,7 = 0), therefore, 7 is also a generator. (theorem X below)

Theorem 15. If a is a generator of a cyclic group G, show that inverse of a is also
a generator.

Proof. Let G = <a> i.e., G is a cyclic group and a is its generator. Let g € G, then
g=a forsomere Z -
Take r=-s,s ¢ Z, we have
g=a*=(a 1)y forsomese Z
Thus every element g € G islof the form (a™1)*. Hence a1 is a generator.
Theorem 16. Every cyclic group is abelian. '

Proof. Let G be a cycl/ic group with a as its generator. i.e., let G = <a> and
g, ¢ G. .
Then g, = ' for somer e Z 3

14 Self-Instructional Materiat
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Letg, € G, then g, = a® for somes € Z
Consider g,.8=a" .a°=a™**
' = gt , r+s=s+ras?Zis abelian
= af a=g,.8, -
= G is abelian. '
Theorem 17. Every siibgroup of a eyclic group is cyclic.

Proof. Let G = <a>i.e., G is a cyclic group with « as its generator. Let H be a.

subgroup of G. .
Case L If H = {e}, then H = <e> i.e., H is a cyclic group with ¢ as a generator.
Case II. If H # {e], then o(H) > 2 i.e., there existse #a € H.

Since H is a subgroup, it must be closed under inverses and so contains positive

powers of . Let m is the smallest power of a such that ¢ « H. We claim 6 = a™ ig a
generator of H. Let®* e H But Hc G - xe G.

Since G _is a cyclic group G with a as its generator. . x = a" for somen € Z.
Dividing n by m, we get a quotient ¢ and remainder r. i.e.,
n=mg+r,0sr<m

NOW at = gM9t = gMe  of = bY . g"
= : a" =69 g"
Here a”, b € H and since H is a subgroup .. b5?a" ¢ Hwhich means ¢’ € H.

But m was the least positive integer of a such that ¢ . ¢ Hand r < m.
Wemust haver =0

Hence a” = ¢ for some g € Z

= x =a” = b? i.e, every element x € H is of the form 7 for some g € Z
H is ¢yclic.

Theorem 18. Every group of prime order is cyclic.

Proof. Let G be a group of order p, p is prime. It means G must contain at least
two elements Since 2 is the least positive integer which is prime i.e., if ¢ € G, then
ola)> 2.

Let o(a) = m and H be a cyclic subgroup of G generated by a, then
o(H) = o(a) =
| The order of a ¢yclic group is equal to the order of ItS generator
Also By Lagrange’s theorem,
olH) |o(G) = m |p

= p=1 or p=m

But p#l o p=m

= oH)=0(G) = H=G.

Hence G is cyclic since H is cyclic. 7. L—

Theorem 19, Let G is a cyclic group of order p G: 15 prlme) Show that G has no
proper subgroups except G and fe}. . T

Proof. Let G is a cyclic group of order p. S

Let/H be any subgroup of G and o( ) = m. -

By ‘I‘_‘agrange thearem, o(H) JolG) = m|p
= . p=1 or p=m

Self-instructional Mm\er\iat'
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But pzrl o p=m
ie,ofl=m=p = Hisagroup of prime order and hence cyclic. Also o(G) =
G = Hi.e. G has no proper subgroups.

Cycllc group generated by a. Let G be any group and ¢ € G. Define a® ='e;
the cyclic group generated by a, denoted by <a>, where < a > denotes the set of all
powers of a, is defined by <a> = {...... a2 al, e, a,a? ad ...}
<a> contains the identity element e, closed under group operation, contains
inverses. :

<a> is a subgroup of G and is called théfcy/clic group generated by a.

| 1.7. GROUP HOMOMORPHISM

A mapping from a group (G;.). into a group (G,*) is said to be a group
hemomorphism if ’
ola . b) =dla) = 6(b) Va,be G

Group Isomorphism

A homomeorphism ¢ which is one-one and onto is called isomorphism and the
groups G and G’ are called isomorphic, written as G = G'.

A homomorphism which is onto is called epimorphism
A homomorphism which is one-one is called monomorphism.

KERNEL f

If f is 2 homomorphism of G to G, then kernel f is the set defined by
Kerf=[xe G:Ax)=¢,c € Gl

IMAGE f

The image [ 1s the set of the images of the elements under fie.,
Im(f) = (6 € G: fla) = b for a € G} where fis a homomorphism of G ta

The term ‘range f’ is also used for ‘image f°. -

Example 3. Let G be a group of real numbers under addition and let G be the
group of positive real numbers under multiplication. Define f: G — G’ by fla) = 2°

 Show that f is a homomorphism. Also show that G and G’ are isomorphic.
Sol. Given fis a mapping from (G, #} to (G’, .} defined by fa) = 2¢
Let a, b € G and consider
fa + b) = 20+0 = 90 20 = flg) . ib)
Hence f: G - G’ is homomorphism.
- To check fis one-one. Let fla) = Rb)
= 22=20 = a=b

fis one-one.
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To check fis onto : For each a € R; we have 2% is a positive real number. Thus
fla) = 2¢ is onto.

Hence f: G — G’ is an isomorphism and the groups G and G’ are isomorphic i.e.,
Gz=G.

Theorem 20. Let f : G — G’ is a group homomorphism. Then

fa)fle)=e,eec G, e’ e G '

() Ra )= (fla)) ' Vae G

Proof. (¢) Given : G » G’ is a homomorphism from G to G’. For x € G, consider

flx)e' =fx) le’ is identity of G’
, = flxe) = fx) fe) | £is homomorphism
5 e’ = fle) | Left cancellation law
= fle)=¢' ' s
(b) From Part (a¢), ¢’ =fle)=Ffaal)

= fla) RaD) . | #is homomorphism

= fla)fa D =e
= {(fla) ' fa) fle)) = (Ao e’
= Ra=1) = (Ra))?

Theorem 21. If f is @ homomorphism of G to G with Ker f = K, Show that K is
a normal subgroup of G.

Proof. By definition,
Kerf=lxe Gifix)=e',¢'e G} =K
We first show that Ker fis a subgroup of G

Let x,ye Kerf = flx)=¢,f(y)=¢
Consider Fay™) = Ax) Ry 1) o | homomorphism
=fx) FyNLl=e (e)Yl=e
= xyle Kerf = Kerfis asubgroup of G.
Let g € G and x € Ker f, consider .
Rexg™) = fg) Rxg™) | £is homomorphism

=g flx) flg 1) = fg) flx) (g
=fgre gl t=Rg)(flght=¢
= gxg'e Kerf = Ker fis a normal subgroup of G.

Theorem 22. Lef f be @ homomorphism of a group G to a group G’. Let Im(f) be
the homomorphism image of G in G* Then Im(f) is a subgroup of G".

Proof. By definition, Im(/) = {fx) : x € G}
Take ec G = e =fe)e Im(H
t.e. Im(f) # ¢, we first show that Im(f) is a subgroup of G’. Let x’, ¥" € Irh(f)
= There exists x,y € G such that fix) =", y) =y’
Consider ° S xy = Rx) (Ry)! _
= fx) fy™1) | fis a homomorphism
=flay Ve Im(f)] x,y e Gand Gisagroup.. xyle G

Fundamentat Concepts
and Veciors

NOTES

A
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= 2y~ e Im(f)

= Im{f}is a subgroup of G’

Theorem 23. Fundamental Theorem of Group Homomorphism

Statement. Let f: G — G is a homomorphism. Then G/K = G’, where K = Ker f

Proof. Given fis a homomorphism of G to G’. Also Ker fis a normal subgroup of
G. .. G/Ker fis defined.

Define 8 : G/K — G’ by 0(Kx) = fix), K = Ker f

We show 8 is well-defined, one-one and horiwrporphism. -

6 is well-defined : Consider Kx = Ky N

= xyte K=Kerf | Ho = Hb @ ablec H

o= oy =2, ge &
= f)fyD=¢ | Homomorphism
= ) fyNt=¢e
= flx) = fly)
= . 8(Kx) = B(Ky)
= 0is well-defined.
8 is one-one : Let 8(Kx) = 6(Ky)
= £x) =fy)
= ) (fynt=¢
= fofyy=e
= oy =¢
= xyle K=Kerf
= Kx = Ky | He =Hb < able H
= @is one-one.

0 is homomorphism. Consider .
B8(KxKy) = 8(K xy) = fxy) | HoHb = Had
= flx) fly) = 6(Kx) 8(Ky)
= 61is a homomorphism.

We lastly show that 8 is onto. Let y € G’. Since G’ is the Image of G under f,
there exists x € G suchthat Ax)=y = B8(Kx)=yi.e., 61is onto. Therefore we have
proved that 6 is homomorphism, one-one and onto

G|K=G"
Theorem 24, Any finite cyclic group of order n is zsomorphzc toZ,.
Proof. Let G = <a> be a finite cyclic group, with g as its generator and let o{G)

Definef: Z —» G by fim) = a™
Let m, r € Z such that Aim) = ™, fir) =
Consider fm +r)=a"" =a™.a" =fm)Ar)
Thus fis a homomorphism of Z to G.
By fundamental theorem of group homomorphism. Z | Ker f= G
But if s € Ker £, then by definition,
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As)=e,eec G

= a*=e

= ola)/s

= n/s

= s = nk, for some k

o 5 € <n>

< Ker f= <n>

Hence Z|<n>=GorG=Z ,whereZ =Z/<n>.
EXERCISE 3

1. Let Hbe a subgroupofagroupGanda,be G. Thenae b *Hiff 6-1*ae H.
2. If H is a finite subgroup of a group G. Show that H and any coset Ha have the same

number of elements.

3. Letf:G — G’ be a homomoerphism with kernel K. Then K is a normal subgroup of G.
4. .Show that any infinite cyclic group is isomerphic to additive group of integers.

Fundamental Concepts

and Vectors

NOTES

1.8. RING

Let R be a non-empty set with two binary compositions, addition (+) and multi- _

phcatlon {.). Then R is called a ring iff it satisfies the following:
L. R is an abelian group under +i.c.,
(iYFora,be R = a+be Rie,

R is closed under addition

@i)Fora,b,ce Ria+ (b +c)={(a+b)+cie,
Associativity under addition holds in R.

(iit) Foreachae e R,30e Rsuchthata +0=a=0+aie
R has additive identity.

(v} Foreache e R,3 —a e Rsuchthata + (—a)=0i.e,
R has an additive inverse. '

.3

(v)Foreacha,be R,a+b=b+a ie.,
R is additive.
II. For eacha, b€ R,a. be Ri.e.,
R is closed under multiplication.
III. Fora, b,ce R, a. (b.c)=(a. b).cie.,
Associativity under multiplication holds in R.
IV.Fora b, ce R, .
(Da . +c)=a b+a. c(Left distributive law)
(i) (@ +b) . ¢ = a. ¢ + b . ¢(Right distributive law).

Remark: The addltwe 1dent1ty 0 of R is unique, We call it ‘zero’ of the ring. The additive

inverse is also umque

Self-Instructional Material
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Commutative Ring

Aring R ié called a commutative ringife. b=5b.a v a,be R,

Ring with Unity

Aring R is called ring with unity if foreachxe R,31 e Rsuch'thatl .x=x=
x . 1. The element ‘1’ is called multiplicative identity of R.

Finite and Infinite Ring -

A ring R with finite number of elements, is known as finite ring, otherwise it is
known as infinite ring.

Ring with Zero Divisors

Let R be a ri.ng and ¢ # ¢, b € R. Then R is called ring with zero divisors if
a.b=0.1e,

If product of two non-zero elements in a ring R is zero, then R is called ring with
zero divisors. Also we say that the elerpent a is a zero divisor of b or b is a zero divisor
of a.

Fiing without Zero Divisors

A rlng R is called ring without zero divisors if whenever -
a.b=0 = a=0 or b=0Va beR.

ILLUSTRATIVE EXAMPLES

Example 1. Let Z be the set of integers, then (Z +, ) isaring Also Z is a
commuttative ring with unity.

Sol. We know that.Z is an additive group under +. (See Chapter on ‘Groups’).
Alsofora,beZ = a.beZ Va beZie,
Z is closed under multiplication. . -
Fora, b,ceZ,a.(b.c)=(a. b).c Ya, b ceZie,
Associativity under multiplication holds in Z.
Forae, b,ceZ, a.(b+c)=a.b+a.c
(a+b).c=a.c+b.cVa,b,cel
Hence we can say that Z is a ring.
Further, fora, be Z, a.b=b.a Ya beZ
'Z is commutative also.
Alsofora e Z,3 1 € Z such that
l.a=a=a.1l YaeZ

Z is a ring with unity (multiplicative identity). ‘
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: 1.9. RING ISOMORPHISM ' . T and Vectors

Let (R, +; -) and {R’, +, -] be two rings. The ring R is isomorphic to the ring R"iff
there exists a mapping f: R — R’ such that NOTES
(1) f is one-one and onto i
) fla+b)=FfaY+ fb) Va, beR
(i) fla . b6)=fla) " Aib) Vea,beR
The mapping /: R — R’ satisfying the conditions (i), (ii) and ({if) is called ring
isomorphism.
Remarks : To check whether the two rings are isomorphic, we should check the following :
(a) Both rings should have same cardinality.
(b) Both rings should be commutative.
{¢) Both rings should have unity.

(f) If there exists an equation which is solvable in one ring, but not solvable in another
ring, then two rings cannot be isomorphic.

Example 2. Consider the rings [Z, + , -] and 2Z, + , -] and define
[:Z—-22byfn)=2n VYnelZ
Is f a group homomorphism ? Is f a ring isomorphism ¢
Sol. Z and 2Z are groups under addition.
Consider f:Z —» 2Z defined by fin)=2nVne Z
For m, n € Z, consider
fm +n)=2(m+n)
=2m+2n=fim)+fn)vVm,ne Z
Hence f: Z — 27 is a group homomorphism.
To check whether f is a ring homomorphism.
Form, n e Z, consider flmn)=2mn
and fm)An)=2m .2n=4mn.
~_ . fmn)2fm)An)Vm,ne 2
f:Z = 27 cannot be a ring isomorphism.

1.10. SUBRING

Let [R, +, -] be a ring and S be a subset of R. Then S is called a subrmg of R iff
S s itself a ring uncler the operations of R. .

Theorem 25. A non-empty subset of a ring R is a subring of R r.ff

()a,be 8§ = a-becSVabelS

(iil)a,be § = abeSVa bes.

Proof. Let S be a subring of R. We prove (i) and (Z2).

As S is a subring of R, S is itself a ring under the operations of R.

Hence S is additive group under +. that is, S is closed under addition. i.e.,

For a,beS,a+beSVa,be S

Also for each b € S, there exists — b € S such that - b is the additive inverse of b.

Now ceS,-beS = a+(=b)e S I

= a ~b e S, which proves (i) -
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Discrete Mathematics Further, as S is a subring of R, it must be a ring under the operations of R.
Thus, S is closed under multiplication i.e.;

Fora,beS = a.beSVa,be S, which proves (i)
Converse. Let (i) and (i) hold. We show S is a subring of R under the opera-

‘NOTES tions of R. . . N
For a,ceS = a-ae8 = 0eS | Using (i}
i.e., S has additive identity.
Again DeS,aeS = 0-aecl8 = -~-aeS | Using ()
t.e., 8 has additive inverse. '
For ae SI, beS = -beS (Proved above)
From{i), a-(-6)e 8

= a+beS8 V abeS
i.e., Sis closed under addition. '
Since S ¢ R/ elements of S are alsoin R~
Associativity under addition holds in 8
Fore,be ScR = a, be R :
: ' , e+b=b+a | R is additive group
Hence we can say that S is an additive group.
From (ii),a,bc S = a.beS V abs8
i.e., Sis closed under multiplication.
Finally, \ a,b,ce ScR = a,bcecR
: til.(b+c):a.b+a.c
(@+8).c=a.c+b.c | Distributive laws hold In R
te., .left distributive law and right distributive law holds in S.
Hence S is a ring under the operations of R.
Example 3. The set of integers Z is subring of Q.
" Sol. We know that “A non-empty subset S of a nng R is a subring of'R
iff (a,6eS = a-beS V a,bec 8
(iia,be 8 = a.be8S V q,beS.
SinceZcQ ie, ZisasubsetofQ.
For a,beZ = a-beZ V a, be Zistrue.
Also for a,beZ = a.beZ V abel | Theorem II
Hence Z is a subring of Q.

EXERCISE 4
1. Consider the following sets. The operations involved are the usual operations defined on
the sets.
(@) [Z, +, ] (0 [Q, +, ] @ IC, +,"]
(d) IM,,, (R), +, ] () [Zy, +4, X,] (B [Zg, + %)
(&) [Zg, +3, %yl (h) [Z,, +;, %] DIZxZ, +,-]
(D272 + ]

!
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(z) Which of the above sets are rings ? Fundamental Concepts

(ii) Which of the above rings are commutative ? Are they rings with unity? Determine and Vectors

the unity of the above rings,
2, Perform the indicated Operation_s on the [Zg; +g, x,]:
(2) 2x. (— 4) (@) (- 3) x5
(i) (~ 2) xq (= 4) (iv) (= 3) xg5 +g{= 3) xg (— B)
3. For any ring [R; +, '], simplify
(Dla+d)(c+d)fore, b, c,deR
{i1) If R is comnmutative, show that (@ + b2 =a? + 2ab + b*V a, be R

NOTES

(iii) Simplify (@ + b)° in Z,.
4. Suppose a? = a for every ¢ € R (such a ring is called a Boolean ring.) Prove that R is
commutative given that x +y=0 = x=yforallx,ye R.

5. Let G be any additive group. Define a multiplication in G by e.b = 0 for everya, b € G.
Show that this makes G into a ring.

6. Let R be a ring with a unity element. Show that R*, the set of units in R is a group under
multiplication.

1.11. FIELD

A commutative ring F with unity such that each non-zero element has a multi-
plicative inverse i.e., E ! € F such that aa-1 =1 = a g, is called field. It is denoted by |
F. Alternatively, F is a field if its non-zero elements form a group under multiplica-
tion.

ILLUSTRATIVE EXAMPLES

- Example 1. Consider the set M of all 2 x 2 matrices of the type [ (—;— EJ where
- a

@, b are the conjugates of a and b. Is M a field ? Justify your answer.

Sol. Consider A, B e M where A = (g 3) B= {_i })

[EHEEE]

1 13/2 3 5 5
Also BA:(*I 1](3 2):(1 _J;tAB

Hence M is not commutative and therefore cannot be field.
Example 2. Consider Z,=00,1,2, 3, ...... B, +,, x,). Show that Z, is a field.

Then AB = [

W N
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Discrete Mathematics Sol. Consider the addition modulo 7 table as shown in Table I.

"Table I
+, 0 1 2 3: 4 5 6
NOTES 0 0 1 ]. 2 ¥ 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 S 6 0 1 2 3 4
6 6 0 1 2 3 4 5
We first show that Z, is' a ring under addition modulo 7 and multiplication
modulo 7.
From Table I, we observe that each element inside the table is also in Z,. lt
means that Z is closed under + ..
Addltmrl modulo is always associative
The first row inside the table coincides with the top most row of Table I. It
means 0 is the additive identity.
Each element of Z, has additive inverse.
For example, Inverse of 1is 6. Inverse of 2 is 5 etc. [1+,6=7=0
2 +,86=T= 0
Also Table I is symmetrical w.r.t. +,. It means Z, is additive w.r.t. +, i.c.,
For a be ZT,a+7b:b+7aVa,be'Z?.
Z, is an additive group w.r.t +,.
Now consider the multiplication module 7 table as shown in Table II.
Table II
. X 0 1 2 3 4 5 6
0 0 0 0 ¢ 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 | 2 6 3
5 0 5 3 1 6 4 2
6 1] 6/ 5 4 3 2 1
From Table II, we observe that each element inside the table is also in Z,. It
means Z, is closed w.rt. x,. i.e., fora,be Z, = axbe Z,Vabe Z,
Finally, For a, b, c € Z,
a x, (bll-.‘, e)=axb+,a x;¢
{a +,b) xc =ax,c+,6x,cistrue foralle, b,ce Z,.
Hence Z, is a ring w.r.t. addition modulo 7 and multiplication modulo 7.
‘Also the Table II is symmetrical w.r.t. x,. It means that Z, is commutative Le.,
- ax,b=bx,aVa, beZ,
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Further, the second row inside the table coincides with the topmost row of Ta-
ble 1. It means 1 is the multiplicative identity of Z..
Hence, we have shown that Z. is a commutative ring with unity. To show Z, is a
field, we show each non-zero element of Z, has multiplicative inverse.
The units of Z; are those elements which are relative primes to 7. (See Topic on
‘anits’)
The elements which are prime to 7 are 1, 2, 3, 4, 5, 6. Hence the units of Z, are
1, 2, 8, 4, 5, 6. We can also check the elements which are units as below.
1x,1=1;2x,4=1;3x%x,5=1;
4x,2=1;5x%,3=1;6x,6=1.
Hence, each non-zero element of Z, has multiplicative inverse. Therefore Z, is a
field.

1.12. VECTOR SPACES

So far, we have studied algebraic structures such as groups, rings or ficlds which
involve only internal binary operations, i.e., binary operations in which the element
associated to an ordered pair of elements of the underlying set is an element of the set.
Now, we are going to introduce a new algebraic structure called Vector Space, which
involves an external binary operation. The motivation for this algebraic system is the
set of vectors, where vectors can be added and can be multiplied by scalars (reals or
complex) to produce vectors.

We now, define the concept of a vector space over a field F.
Definition

Let (F, +, ) be a field. Then, a non-empty set V together with two binary operations
called vector addition +' (internal composition in V) and scalar multiplication “.’ (ex-
ternal composition) is called a vector space over the field F if the following conditions
are satisfied :

1. (V, 4) is an abelian group i.e.,
(i) Visclosed wrt.‘+'ie,u,veV > u+veV
. (é1) Addition is commutative tu +v=v +u, Vi,ve V
(iii) Addition is associative :
t+v+w)=(u+v)+w, Vu,v,weV

(iv) Existence of identity : There is a unique vector 0 in V, called the zero vector,
suchthatu +0=u=0+u VueV

" (v) Existence of inverse :
For each vector u in V, there is a unique vector —u in Vsuch that u + (-w) =0 =
(— i) + 1.
2. The scalar multiplication, ‘" which associates for each
u e Vand a e F, a unique vector au € V satisfies
()1 u=u, YueV
(ii)a(u+v)=au+av, VuveV,ackF
Gid{a+bu=au+bu, YuecVanda, be F
(iv) (@b¥u) =albu), @ VYue Vanda, be F.

Self-Instructional Material

Fundemental Concepts

and Vectors

NOTES

25



Discrete Mathematics Elements of F are called scalars and those of V are called vectors.

14

Thus, a vector space is a composite of ‘a field’, ‘@ set of vectors’ and two apera-

tions with certain properties.

We say Vis a vector space over the fzeld F and is denoted by V(F) but when there

NOTES is no chance of confusion, we just refer to the vector space as V.

Vector space is also called the linear space.

A Plane Vector is an Ordered Pair (A , A)) of Real Numbers

A space vector is an ordered triplet (a,, a,, a,) of real numbers.
‘We do not make any distinction between the plane vector (a,, @,) and the di-

rected line segment OP, where O is the orlgm and P is the point whose cartesian
_)
coordinates are (a,, a,). In fact, we write (a,, az) = QP.

In this case the vector (a a,) is also called the position vector of P, Similarly, in
the case of space vectors, we write (a,, a,, a;) = P The vector (0, 0, 0) is the zero
vector is space.

The set of all plane vectors (i.e., the set of all ordered pairs of real numbers) is
‘| denoted by V,. The set of all space vectors (i.e., the set of all ordered triplets of real
numbers) is denoted by V. Since V, is cartesmn pmduct R x R, we also denote V, by
R2. Similarly, : !

V3:R><R><R=R3.
Two plane vectors (a,, ¢,) and (b,, b,) are equal iff ¢, = b;and a, = b,.
Two space vectors (a,, a,, a,) and (b,, b,, b;) are equal iffa, =b,, @, =b,, a; = b,

Addition of vectors in V, is defined by (a,, a,} + (b,, b,) = (a, + &, @, + b,) for all
vectors (ay, a,), (b,, b,) € V,.

Multiplication of vectors in V, by a real number A is defined as
Ma,, a,) = (ha,, Aa,), for (@, a,) € V,and A e R.
Likewise, we define addition and scalar multiplication in V,.

Proceeding exactly as in the above example, we see that V, and V,; axe
vector spaces over R.

Visualisation of a Vector Space Involves the Following Five Steps

() Consider a non-empty set V.

(zz) Define a binary operation on V and call it vector addition.
(7if) Define scalar multiplication on V.
(fv}) Define equality in V.

(v) Check that V forms an abelian group w.r.t. vector addition and that scalar
multiplication satisfies the four properties mentioned in the definition of vector space.

Proceeding on the lines of V,,, and V,, we now generalize to the set of all ordered
n-tuples in the following example.
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ILLUSTRATIVE EXAMPLES

Example 1. Consider the set R" {(also denoted by R,) of all ordered n-tuples of

real numbers defined by
R*={X=(x, 2y ...... ,x )| xisreal, i=1,2/3, ..., nl.

Prove that R" is a vector space over B w.r.t. usual addition and scalar-multipli-
cation defined in R". :

Sol. The n-tuple X = (x,, x,, ...... , %,) is called-an n-lvector, x, 1s called the ith
coordinate or component of X. ¢ = (0, 0, ....., 0) is called the null vector.

We define addition and scalar multiplication among n-tuples as follows :

If X = (xy, xg, cou.e.. yx,) and Y = (yy, ¥y, --...., y,) then we define

X+Y=(x; 45,5 +Yg e X, F Y0

This (coordinate-wise) addition is called vector addition.

If Xis a real number, we define AX = (Ax,, Ax,, ......, Ax) and is called (coordinate
wise) scalar multiplication (A is called a scalar). ‘

Two vectors X and Y are equal iffx, =y,i=1,2,3, ..., n.

Now, we check that the set R" of all ordered n-tuples of real numbers is
a vector space over R under coordinate-wise vector addition and scalar mul-
tiplication :

Now, (1) R" forms an abelian group under vector addition. )

JFor, (1) X + Y=Y + X (commutative law of addition)

E)X +(Y+2Z)=(X+Y)+ Z (associative law of addition)

(iti) There is an n-tuple ¢ = (0, 0, ...... , 0) called the zero vector such that
- X+0=X=0+X,VXeR"
(iv) For each X in R”, there exists a unique Y in R* such that
X+Y=0=Y+X

Y is denoted by — X and is the vector

' X =(xy, =g ey — 2, )i X = (), Xy oy ).

(2) The scalar multiplication satisfies the following properties :

) 1X =X, vVXeR? :

GaX+Y)=aX+aY, VX, Ye R*andece R

(i) (@ + )X =aX + bX, YXe Rranda, be R
(iv) (ab)X = a(bX), VXeRrandg, be R

Hence R* is a vector space over R. -

Note that R” is a vector space over R but R" is not a vector space over C,
the field of complex numbers. For, suppose  is a complex number, then AX
= (A%, AX,, ..., ,Ax.) is not in R™ because the numbers 1x, are complex and
R*® contains only n-tuples of real numbers.

The spectal cases n = 2 and n = 3, give the vector spaces o,
R?=V, and R3=V, R

The special case n = 1 gives the vector space V,, which is nothing but the space

of real numbers, where addition is the ordinary addition of real numbers and scalar

multiplication is the ordinary multiplication of real numbers.
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Discrete Mathematics Example 2. Show that any field forms a vector space -over itself.

Sol. Let F be any field.
Let V="F
NOTES Since F is a field, F has two binary compositions defined in it say addition {+)

and multiplication (. ).

Addition composition of F is vector addition in V and multiplication composition
in F is scalar multiplication.

Now (1), (V, +) is an abelian group (v V=Fisafield).
(IT) From the field properties of F, it follows that scalar multiplication satisfies :
1. u=u YeeV ’

(alu+vy=au+av YuveV,aeF
(W) le+b)u=au+bu VueVandae,be F
(iv) (ab) u = albu) Yue Vanda, be F.
Hence, V is a vector space over F.

Some General Properties of a Vector Space

If V is a vector space over a field F and 0 is the zero of V and 0 is the zero of the
field F, then-

(1) a0 = 0, YaeF

(7i) Ou =0, YueV

(i) (- Du=-u, Ve V-
(Gv)al-u) = - (au) = (- a) u, YVaeF,ueV
(v)alu - v)=au -av, Yae F,u,veV
(v)lfau=0,thena=0 or u=0.

Proof. (¢} Let we V.

Then ) au =alu +0) =au + a0

= a0l =0

(1) 0+0=0,0e F

= O+0)=u=0m,YVueV

= Ou + Ou = Ou

= Ou=0

(2if) (~VDu+u=-De+l.a=(-1+u=0W=0
=> (=D w=-uwu.

Proofs of others are left to the reader as an exercise.

EXERCISE 5

1. Show that the set of all matrices of the form [_ ; Z] where x, ¥y € C, is a vector

space over C w.r.t, matrix addition and scalar multiplication.
2, Show that

(i) C is a vector space over C (ii) C is a vector space over R
({iz) R is not a vector space over C (fv) Q is not a vector space over R

under usual operations of addition and scalar multiplication.
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3. Which of the following sets form vector spaces over reals ?
Explain -
(2} All polynomials over R with constant term zero.
(if) All polynomials over R with constant term 1.
(¢iz) Set of all ordered pairs (e, &) of integers.
(iv) All polynomials with positive coefficients..

4. Show that the set Q({2) = {a + b2 | @, &b € Q} is a vector space over Q w.r.t. t\he

compositions : t

(a+bJ§)+(c+dﬁ)=(a+c+{b+d)f2;)
and a(a+bﬁ ]=aa+ba‘/§

where a, b, ¢, d and o are all rational numbers.

1.13. LINEAR COMBINATION OF VECTORS

For a vector space V(F), ifu,ve V and a, b € F, then
au+bve V.

In general, ¢ \v; +a,pu, + ... +a v, € V,forv,e Vand g, e F,(i =1, 2, vreeny IU).
This leads to the following definition :

Definition. A vector v ¢ Vis said to be a linear combination (L C.) of the vectors
Us, Uy, - ey U, € Vif there exist scalars a,, ag, ...... ,a, € Fsuchthatv=a, 1 + a,U,

+ o + anvn

Examples, () Ifv,=(1, 1, 1},v,=(1,0, 1), vy =(1, 0, 0), then the vector v = (8, 3, 7)
is a linear combination of the vectors v,, v, and v; as is clear from v = 3v, + 4v, + v,.

(it) Zero vector 0 is always a linear combination of any finite number of vectors
Uy, Uy, vy U, because

0 =00, +0u, + ... + Ov,,. .
@) Ifv, =(1,0,0),v, =(0, 1, 0), v, = (0, 0, 1), then any vector in space v, can be
expressed:as a linear combln‘itlon of Uy, 0y and v,. For instance, the vector v = (4, 5, 7)
can be written as

/
v =4v) + bu, + Tu,
vy, Vg, Uy-are called unit vectors in V,.

In the space v (R), then n vectors (1, 0, 0, ...... ,04Lb00,1,0,......,0),...,(0,0, ... R
0, 1) are unit vectors.

Gvy v, =(1,00,v,=(,20 and v = (2, - 1, 1), then v is not a linear
combmatmn of v, and v, since any linear combination of v, and v, must have its last
component zero. |

. . 3 -1 . - .
Example 3. Write the vector v = [1 B 2] .in the vector space of 2 x 2 matrtcei
as a linear combination of

*
1 1. [11 1 =1
r=lo -1]0%27|-1 0):YsT |0 o)

T 1 Sol. Let U=V + QyUy + QU3 Gy, g, A3 € R , ...(1)
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3 _1 1 11 [ 11 1 -
= [1 4}”1 0 —1}*%[-10]7%j0 0
- al+t12+a3 al+la.2—ﬂ.3 .
= —ay —-a;

By definition of equality of two matrices, we have
' a,+a,+a;=3,
a, +a,—-a,=-1,
. —a2=1,allz2.
Solving these, wegeta, =2,a,=-1,a, = 2.
Putting these values of ¢, a,, &3 in egn. (1), KN

v =20, — v, + 20,

1.14. INTERSECTION AND SUM OF VECTOR SPACES

Theorem 26. The intersection of two subspaces of a vector space V(F) is a subspace
of V. ' : .
Proof. Let W, and W, be two subspaces of V(F).
W, "W, # ¢ as zero vector of V belongs to both W, and W,
Letu,ve W "W, and aeF. / I

Now, u,ve W,nW, = u,ve Wandy, ve W,
u,ve W ;aeF = au+veW, [» W, is a subspacc]
and u,ve Wy;aecF = au+veW, [~ W, is a subspace]
au+ve W,au+veW, = au+ve W nW,

Thus, u,veW, nW,eeF = au+veW nW,
Hence, W, n W, is a subspace of V(F).

The result can be generalized to any number of subspaces. More precisely, if
W, W, , W are n -subspaces of V, then their intersection W, AW, n...... W,
is also a subspace of V., : ’

Linear Sum of Two Subspaces

Let W, and W,, be two subspaces of the vector space V(F). Then, the linear sum
of W, and W, is denoted by W, + W, and is the set of all possible sums u + v where u
€ Woandve W,
ie., W +Wo=fu+v |ue W, and ve Wyl

/! g b
For Example:Let V= d
(&

a,b,c,dER}.

Then clearly V is a vector space of all 2 x 2 matrices over R w.r.t. usual vector

" addition and scalar multiplication defined in matrices.

a,c,deR} s

Let S {[ ]
e

v

a,béR}. .
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Then, one can easily see that W,, W, are two subspaces of V.

| W, +W, = {[Zj de a,b,c,dER} -
Obviocusly, W, cW, +W, '
(- uer,OeW —Su+0= ue W, +W,, Vue W)
Similarly, W, cW, + W,
Hence, W, VW, c W + W,

Theorem 27, Linear sum W, + W, of two subspaces W, and W, of a vector space
V(F) is a subspace of V(F).

Proof. Let u, v € W, + W, and ¢ any arbitrary scalar in F.
Then, 3 ul, v, € W; and u,, v, € W, such that

Cu=u +r,.'.2andv—vl+v2

au +v =alu, +uy) + (v, +v,) —/faul +v,) + (au, +vy)
Since au, +v, e W, and’ au, +v,e W,
(-- W, and W, are subspaces)
(au, +v)) + (au, +v,) e W, + W, -

= aluy +u,) + (v, +vy) e W, + W,
=5 eau+rve W +W,
Thus, u, v e W, +W,aeF = au+vEW + W,
Hence, W, + W, is a subspace of V. ‘

Remark. One can show that if W, W ..... W are subspaces an(F), then W) + W, + ...
+ W, is also a subspace of V.~

Theorem 28. If W, and W, are two subspaces of a vector space V(F), then
W+ Wy =< W, uW, >

Le., linear sum of W, and W, is the subspace generated by the union of W, and W,.
Proof. Clearly, W, cW, +W,and W,c W, +W,
' WiuW,c W, + W,

Since < W, uWw, > is the smallest subspace ;:ontaip‘ing W, U W,, therefore,
| <W,UW,>cW,+W, ‘ A1)
Conversely, letu +ve W, + Wy whereu ¢ W ,ve W,

'
4

lut+lv=ut+ve <W UW,>
W+ W,c< W, UW, > ! A2)
From (1) and (2), ' '
Wi+ W, =<W UW, >,
Remarks. (i) If W, and W, are two subspaces of V(F) then W, "W, is a subspace of V
and is the largest subspace contamed in W,as well as W, .
YW, + W, confams W, as well as W, and is the smallest subspace of V that contains
both W, and W i /
(i) W, + W, =W, and if W, ;\,N thenW +W, =W,

, (iv) The aperations of forming the sum of subspaces is associative and commutative. If

W, W, .., W, aresubspacesof Vthen W, + W, +...... + W is, irrespective of any bracketing that
might be inserted and irrespective of the order of the summands, the set of all vectors in V
expressible as {(a vector in W) + (a vector in W,) + ... + (a vector in W ).
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Discrete Mathematics . Direct Sum of Subspace

Let V be a vector space over a field F. Let W,, W,, , W be subspaces of V.

Then, each vector in the sum W, + W, + ... + W _ can be expressed in atleast one way
NOTES in the form

(a vector in W) + (a vector in W) + ...... + (a vector in W ). In most of the cascs,
we can express a vector of W, + W, + ... + W, in more than one way. In case we can
express each vectorin W, + W, + ... + W, in exactly one way as :

(a vector in W,) + (a vector in W,) + __.... + (a vector in W ), then we call the sum
W, + W, +....+ W, ofsubspaces W, W,, ... , W, as the direct sum of subspaces W,
W, .. , W_and we writeitas W, © W, ® ... SW,.

Theorem 29. Let W, W, ...... , W, be n subspaces of V(F). Suppose that the only
way to express O in the form w, + w, +...... +w, withw; € W, for each i, is to take every
w; = 0. Then the sum W, + W, + ... + W is a diréct sum.

Proof. Let w be an arbitrary vector in W, + W, + ... +W .
Let, if possible, w can be written in two different forms :
W=U +Ug+ e+ U, =V + D5+ o, +v (1)
where, for each i, u; € W, and v, e W,

The two expressions for w are identical.

From (1), (g, ~v) + Uy~ vy) + o + (1w, —v,) =0
= uy~v =04y -0v,=0, ..., u,~v, =0

(by given hypothesis)
= . u=v, for i=12,..,n

= The two expressions for w are identical.
Hence, the sum of subspaces is the direct sum.

Following theorem gives a very simple criterion for the sum of two subspaces
anly to be the direct sum.

1.15. LINEAR INDEPENDENCE OF VECTORS

Definition. Let V be a vector space over F. Vectors v, v,, ...... ,v, €V, are said to '
be linearly dependent (L.D.) over F if there exist scalars a, @, ...... ,a, in F, not all zero
such that ' '

AU, + AUy + oo +au, =
Here, 0 on the right hend side indicates the null vector,
Vectors which are not linearly dependent are called linearly independent (L.1.).

In fact, vectors v, vy, ...... , U, are linearly independent if-and only if
|
QU+ gl + ... +auv . =0a¢efF x
implies ¢, =a,=....=qa,=0.

i.e., zero solution is the only solution. ‘

IfS =1v, vy, ..., v}, then we say that the set Sis L.I or L.D. according as the
vectors vy, Uy, ..., v, are L.I or L.D.

An infinite subset S of V is said to be L.I. if every finite subset of S is L 1

N
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Example 4.If X, , X,, ...... , X, isalinearly indeﬁendenr systemofn x 1 column

vectors and A is an n x n non-singular matrix, show that AX,, AX,, ..., AX, are lin-
early independent. '
Sol. Suppose a@,AX, + azxﬁsX2 + o + a,,AX;_- = O for some scalars ixl, Qg covnny @,
= Ala, X)) + AlaX,) + ... +AleX)=0
= A@,X, +aXy + o +2,X )= O (1)

Since A is non-singular, A™! exists.
Pre-multiplying both sides of (1) by A™1, we have _
ATA(@ X +a, Xy + . +aX)=A"10

= (A 1ANa X, +a,X, ...+ 2 X)=0

= - e X+ aXy + o +aX =0 (- AA=D)
= A =ay= ... =a,=0,since X, X, ...... , X, are linearly independent.
Hence, AX,, AX,, ...... , AX  are linearly independent.

- Theorem 30. Any set which contains the null vector 0 is linearly dependent.
- Proof. Let {v,v,, ....,u,) be a set of vector containing the null vector 0 over

V.Letv, =0

Then, Ov,, + Ov, + ....... +0v,_, + Ly, +0v; ; +...+0v, =0is alinear combina-
tion of vectors with not all coefficients zero. Hence, the set is linearly dependent.

Theorem 31. Every subset of a linearly independent set is linearly independent.

Proof. Let {v,, vy, ......, v,} be alinearly independent set.
Let, if possible, {v,, vy, ......., v}, k <, be a linearly dependent subset of (v,, v,,
...... , v,k ' '

Then there exist scalars a,, a,, ...... , @y, not all zero, such that

' A0+ aglp + o+ a0, =00

= R B PURE S oo, 00U+ +0v, =0.

and the scalars o, a,, ....... s @y, Oy e , 0 are not all zero.

= thevectorsv,,v,, ... v, are linearly dependent. But, this contradicts the
given hypothesis that the vectors o3;v,, ......., v, are linearly independent.

Hence, the set {vy, v,, ......, v,} is a linearly independent set.
Similarly, any other subset of (v, v,, ...... , U,} is linearly independent.

EXERCISE 6‘\

1. Examine for linear independence or dependence of the following sets of vectors in V,(R)
() {(1, 2, 3), (2, -2, O} (i) (1, 2,3),(8,-2, 1), (1, - 6, - 5)}
Ui, 3, 2, (5, -2, 1), (17,13, 4)} (iv) 1(1,1, 1,{1, 2, 3, (2, 3, ).
Wi3,0,-3),{(—1,1,2), (4, 2,~-2),(2, 1, D}, : ’
2. In the vector space of polynomials of degrees < 4, which of the following sets are linearly

independent ?

x+3,x*—x+1,x°+2x+1 Giya®+ 1,28~ 1, x, 2% —x

GilyL+x, x+x2, 02 +2% x3 424, 24 - 1.
3. A get of vectors is linearly dependent, Show that at least one member of the set is a

linear combination of the remaining ones.
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Discrete Mathematics 4, Ifu,v,w are L.I. in V(F) where F is any subfield of C, then show that the vectors
' Du+v,v+w,w+u
Glu+v,v—-w,u—-2v+ware L1
[Hint. (i) For scalars @, b, ¢
NOTES alu + )+ by +w)+cw +u)=0
= (a+lc)u+(a+b)u+(b+c)w=0
Since u, v, w are L.L
a+c=0,a+b=0,5+c=0
=  a=>5=c=0is the only solution.
= u+v,v+w+uareLl

1 1 a
5. Find ¢ if the vectors [— 1} , [ 2} , {0] are linearly dependent.
3 -3 1

1.16. BASIS AND DIMENSION OF A VECTOR SPACE

BASIS

Definition. Let V be a vector space. A set of vectors vy, v,, ......., v, € Viscalled
a basis of Vif .
" (i) the vectors vy, Uy, -y U, are linearly independent
(i) vy, Ugy wuven , v, span V o ' _ o .
(i.e., any vector v € V can be expressed as a linear combination of the vectors

Ugs Ugy eenes s : : .

The space V is finite dimensional if it has a finite basis. If V is not finite dimen-
sional, it is called infinite dimensicnal.

i\

The vector space V, = [0} is zero dimensional.

Dimension of a Vector Space

Definition. The number of vectors in a basis of a finitely generated vector spacc
is called the dimension of the vector space V and is denoted by dim V.

The dimension of a null vector space V i.e., V = {0} is defined to be zero.

Dimension of a non-zero vector space is a natural number greater than or equal
to 1.

If dim V.is n, then we say that V is an n-dimensional vector space. The dimen-
sions of the spaces R, RZ and R" are 1, 2 and n respectively. That is why we call
R” an n-dimensional vector space. The dimension of the vector space of polynomials of
degree < n is n + 1 because 1, x, 22, ...... , x* is a basis of the vector space.

Vector space of all polynomials with coefficients in F is an infinite dimensional
vector space. . )

A vector space of dimension 7 consisting of n-vectors is generally denoted by
V,7(F). When r = n, we denote by V (F) for V,"(F).

Remark. Since we can choose a basis of a vector space V from a given generating sel,
dimension of V is less than or equal to the number of elements in any generating set. Further,
since any maximal set of linearly independent elements of V farms a basis of V, we see tﬁat any
linearly independent set has at the most n elements if dim Visn.
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Theorem 32. (Extension Theorem). If V is a finitely generated vector space,
then any set of linearly independent vectors v, v, ......, v, in V, can be extended to a
basis of V.
Proof. Let V(F) be a finitely generated vector space over ¥F.
V has finite dimension z (say). '
Let B= {uy, uy, ..., u,} be a basis of V.

Let A={v, vy ... , v} be any L.I. set of vectors in V.
~ We shall show that A can be extended to form a basis for V.
Write B, =AUB={v,,vy ..cuv,,, Uy, Uy, ..t )
Since B, o B, and B is a basis.
B,isL.D.

= there exists a vector in B,, which is a linear combination of the preceding

vectors and that vector cannot be any one of the v, 's (*+ A is L.L). Therefore, that
must be one of the u;’s. Let that #, be ©,. Then u, is a linear combination of v, vz, ..... s
Uy Uy, Ugy coveey Uy g
After removing w,e from the set B, we denote the remaining set by B,.
B, = {ul, Ugy vrens y Uy Uyy Uy wvnns s Ugqs Upyqs voeees U,)
and B, spans, V.
(- fueV, can be expressed as a hnear combination of elements of B, and in

this linear combination, z, can be written as a linear combination of vl, Uy coveny Uy Uy
gy oo , U, 1, 80 & can be written as a linear combination of Vs Ugy veneey Uy Uy, Uy v s
Upy Yy oo s ).

If B, is L.I,, then B, is a basis of V.

If B, is L.D., then we repeat'the same procedure as we have done for B, to get a
new set. We contmue this process till we get a set B’ containing vectors v,, v,, ....., v
such that B’ is L.I. and spans V.

Thus, B’ is an extended set of A and is a basis of V. Thus, any linearly independ-
ent set in V can be extended to form a basis of V.

m

1.17. LINEAR TRANSFORMATION

Definition. Let U and V be any two vector spaces over the same field F. Then, a
function (map or mapping) T : U — Vis called a linear transformation (written as L.T.)
if '

- @Y Ty +uy) = Tu) + T(uy), Vuj,u,elU
and (i) T(au) = aT(w), Vue Uandae F.

Here, plus in u, + u, denotes addition in U and plus in T(x,) + T(x,) denotes
addition in V. Similar is the case for scalar multiplications in (ii).

Thus, a linear transformation is a function from U to V which preserves vector
addition and scalar multiplication.

Its domain and range are vector spaces, i.e., the variables as well as the values '

are vectors.

If T: U — V such that T(z) = v, then U and V are taken as vector spaces over the
same field. The vector space U is called the domain of the linear transformation T and
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V is called the codomain of T. v € V, is called the image of u under T and u is
called the pre-image of v under T. -

The set T(U) = {T(u) | ue U} of images of elements of U is called the range of T
and is a subset of V. It is denoted by R(T). Linear transformation is also called vector
space homomorphism.

Theorem 33. If U and V are two vector spaces over the same field F, then a
function T : U — V is a linear transformation if and only if

Tlau + bv) =aT(w} + bT(v), Va, b e F and u ve U

Proof. (i) Let Tbe a L.T. from Uto V.

Then, Tw+v)=Tw)y+Tw) Vuvel (1)

and T(au)=aTw), Yue UaecF . (2)
Now, T(ou + bv) = T(au) + T(hv) - ' By (1)}
=aT(u) + bT(v) _ , [By (2%}

(1) Conversely, let )
T(au + bv) = aT(u) + bT(v), Vu,ve U;a,bec ¥ I ..(3)
To show that Tis a L.T., take a =1, b = 1in (3), we have ’
T(u +v) =T(u) + Tw), Vu, ve U
Again, take b = 0 in (3), we have
T(au) = aT{(x),
Hence, T is a L.T. '

Note. The result of above theorem can be used as an alternative def. of linear transfor-
mation.
Def. A linear transformation T : U — U is also called a linear operator. i.e. a

-L.T. from a vector space U into itself is called a linear operator.

Def. We know that a field F can be regarded as a vector space over itself. ALT.
T from a vector space F(F) to F(F} is called a linear functional.

ILLUSTRATIVE EXAMPLES

Example 1. Skow that the function T:RS - RS defined by
| Tlxy %y %) = (X, %5, 0)
is a linear transformation. . .
(This function is r;also called the projection of R® on x, x,-plane).
Sol. To show that T is a L.T., we have to show that

T +Y) =T(X) + T(Y) and T(aX) = aT(X)

for all X, Y € .R3 and all scalars a.

Let X = (xy, 2, %3) and Y =(y,, ¥ ¥y
Now, X+Y=(x; +y,, %, + ¥y X3 +¥3)

and aX = (ax,, ax,, axé}l ‘ AN
By definition of T,

TX +Y)=T(x, + ¥, Xy + Yo, X3 + ¥3)
={x, + y-l, Xo +¥g, 0) (By rule of given mapping)
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= (x,, Xy, O) + (¥, 5,, 0) Frndamental Concepis
e Vectors

= T(X) + T(Y). (By rule of given mapping)
and T(aX) = T(ax,, ax,, ax,)
= {ax,, ax,, 0) (By rule of given mapping) NOTES

= a(x,, x,, 0) = aT(X).
Hence, Tis a L.T.

1.18. EQUALITY OF TWO LINEAR TRANSFORMATIONS

Two linear transformations T and S from U — V are said to be equal iff T(u) =
Stu) forallu e U.

. Theorem 34. If B = {u,, u,, ..., u,} is a basis for U and vy Uy s U, beany n
vectors (not necessarily different) in V, then there exists a unique linear transformation
T:U - Vsuch that~

Tw)=v, fori=12,..,n ' , A1)
Proof. Let u be any element of 1.
Then, u can be uniquely expressed as
W=y + Qylly + .+ a0,
for some scalars a,, a,, ..., @,.

Define T(u) = av, + Qyy + ... + @V o(2)

We shall show that T is the required linear transformation. i.e., we shall show
that :

(i) Tis a L.T. (if) T satisfies (1) and (i) T is unique. ;
To prove (i), let z, v be any two vectors of U and ¢, & be any scalars.

Then, U=aUy +0yly+ .+ 01,
and . ov=bu v bu, 4.+ b
' = au + bv = (aa; + bbdJu, + (aa, + bbyu, + ... +{aa, + bd v,
T(au + bv) = T((aa, + bb))u, +{aa, + bb)u,+ ..+ (aa, + bb Nv,
= (aa, + bb, v, + (aa, + bb,)v, + ... + (aa, + bb v, (By (2)]

=alaw, +av, + ... +a,v, )+ 6(byv, + b, +..+b v )}
=a T(w)+ b T()

Tis aL.T.
"To prove {ii), w; =0y + ..+ 0w+ 1u; + .+ O,
and therefore, T(u) = 0v, +0v, + ... + Lo+ ... +0v,
= Tul=1v,=v,VYi
To prove (iii), let S : U — V be another L.T. such that.
Su)=v, for i=1,2, ... ,n

Then, S(u) = Sleu, +au, + ... +a,u,)
=a, Su,) +a, S(u,) + ... +a, S(u)
=@+ ey + ke v, = Tw), Vue U

Hence S=T.
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Discrete Mathematics Remark. The above theorem can be used to define a L.T. T on a basis (i, u,, ..., u,} ofa
vectar space U and then the value of T on a general u is obtained as follows :

CIf u=au, +ag, + ..+ e, then
Tu) = a, T(u,) + a, Tw,) + ... + a, T(,).
NOTES The following example illustrates how to define a L.T. T by specifying its values
on a basis.
EXERCISE 7

1. Which of the following functions are linear transformations ?
{(£) T : R? - R? defined by

(@) T, y)=(x,x +y) b) T(x, ¥} =1+ x,%)
(c) Tlx, ¥) = (v, x) " (@) T(x, ¥) = (2, y).
(ii) T : R? - R? defined by /
(a) Tx, y) = (x + 2y, 8x — 5y, v) ) (b) Tlx, ¥) = Rx—y, x -y, — 2x).

(1) T : R?* = R defined by .
T(x,y,z) =x + 2y — bz,
(fv) T': R® — R? defined by
(@) Tx,y,2)=(]| x |,0) (6) T(x,y,2) = (2x — 3y, Ty + 22)
(&) T(x,y,2)=(x~2,¥) d) Tx, ¥, 2) = (x,y)
(&) T(x, y,z)=(x + y + z, O). )
() T: R? RS defined by
T(x, 5, 2) =y, —x, —2).
2. Find a L.T. in the following cases :
(i) T : R? — R2 such that T(1, 2) = (3, 0) and T(2, 1) = (1, 2)
@) T : R? — R? such that
TO,1)=(3,4), T(3,1) =(2,2) and T(3,2)=(,T)
(i) T: [y — [;(x) such that T(1 +x) = 1 + x,
T2 +x)=x+3x* and T =0.
3. Show that
T : R? — R?such that
T(0,1)=(3,4), T3,1)=(2,2)
and T(3,2)=(5, T)isnot a L.T.
4. Find a L.T. T in each of the following cases, which transforms
(£) the vectors, (1, 1, 1), (1, 1, 0), (1, 0, 0) in R to (2, 1), (2, 1), (2, 1) in RZ,
(i1} (2, 3), (3, 2)in R*to (1, 2), (2, 3) in R2.
() (3,-1,-2), (1, 1, 0), (— 2, 0, 2} in R* to twice the elementary vectors 2e,, 2e,, 2¢,in
R3.
@) (L, 1, 1),(-1,1,- 1),(L, 1, 2)in R to (1, 1), (1, 1},{1, 0} in R%.

1.19. ONE-TO-ONE AND ONTO TRANSFORMATION

A linear transformation T : U — V is said to be one to one (or just onc-one) if
different elements of U have different images i.e., ifu, u,e Uand u, # u,, then Tlu,) #

T(u,).

\
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A linear transformation T : U — V is said to be onto if for each v e V, there exists

at least one u € U such that T(uw) = v.

A linear transformation T which is onto is also called surjective, a one-to-one

transformation is called injective and the one which is both one to one and onto is
called bijective. A bijeciive linear transformation is also called an isomorphism.

Example 2.-Show that the function T : R? — R? defined by T(x,, x,) = (x, - x,,

x, + x,), for (x,, x,) € R?is bijective (i.e., an isomorphism).

Sol. T : R? - R2defined by T(x,, x,) = (&, — x,, x, + x,) for (x,, x,) & R%isaL.T.

(Prove.it !}

Le.,
Le..

T is one-to-one
Let 1, = (x,, x,) and u, = (y,, ¥,) be any two elements of R%(= U).
Then, T(u,) = T(u,)
= (xl—xg,x1+x2)=(?1 —3"2:}’1"'3’2)
Xy =Xy =Y~ Yo X+ Xy =¥y + Y,
Xy =Y X9 =Yy
Uy = Uy

L au

T is one-to-one.
To show T is onto.
Let (y,, ¥,) € R¥= V) be any element.
T is onto if there exists (x,, x,) € R* = U such that

T(x]_! xg) = (vls yg)

i (=, 2+ 25) = (g, 9,)
if X=Xy =YX T X =Yy
if : Xy =W+ Y X =3 By —y)

Thus, (y,, ¥,) is the image of (LG +39), 20~y
T is onto.
T is bijective.

1.20. NULL SPACE OR KERNEL OF A LINEAR

TRANSFORMATION

The null space (or Kernel) of L.T. T : U(F) — V(F) is the set of those elements ofU'k

whose image under T is the zero element of V, and is denoted by N(T).

ie.,

N(T)={u | v e Uand T(x) = 0}.

Let us find R(T) and N(T) of some linear transformations.
1. Consider T : R?® — R? defined by

T(xy, 2y, x3) = (x4, x5, 0).
Here, R(T) = ((x,, x,, 0) | %,, x, € R) which is nothing but the x,x,-plane in R,
To find N(T), we want those vectors {x,, x,, x,) for which . .

Tlx,, 2,4y x4) = 0.
= (xy,%,,00=-(0,0,00 = x,=0,%,=0.
Thus, every element ot the form (0, 0, x;) will be mapped by T into (0, 0, 0) and

no ather element is so map-ped.'Henc'e.
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N(T) = {(0, 0, x3) l x3 € R}

and is nothing but x,-axis of R2,

NOTES

'y,
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2

2. Consider T : R —» R? defined by
T(x,, x5, x5) = (x; —-xz, Xy + Xq})
Here R(T) = {{x; — x,, x, + x3) | x,, %y, %, € R}
We are to find vectors (¢, b) € R? such that
Ca=x %y, b=x, +xg
= . Xy =2, ~Q,Xy=b—x,
Hence, T(x,, x, - a, b —x,) = (a, b).
Thus, every vector (g, ) of R? is in R(T)
R(T) = R2. T is infact, onto.
To find N(T), we want those vectors (x,, x,, x,) € R? for which
Tix,, x5, x3) = 0
(x, — x5, x; +x) = (0, 0)
x,—x,=0 and x,+x;= 0
Xy =Xy =—Xy
us - N(T) = {(x}, x,, —x,) | x; € RL

3400l

- N(T} is the subspace of R® generated by < (1, 1,- 1) >.

3. Consider the zero map T : U - V defined by
Tw)=0,Vue U
Here, . R(T)={0} and N(T)=U

T is not onto.

. 4. Consider the identity map T : U — U defined by .

Tw)=u,Vue U

‘Here, RM=U and N(T)= (0}

T is onto.
5. Consider the L.T. T : R? —» R? defined by
Play, 2p) = (g, —xp).
Here, R(T) =R%? and N(T)={(0, O)}.
Here, T is onto.
Theorem 35. Let T : V — W be a linear transformation. Then, T is onto iff p(T)

=dim W

Proof. () Let p(T) =dim W
= dim R(T) = dim W
= R(TY=W = Tisonto
(i) Conversely, let T be onto
RT)=W = p(T)=dimW.
Theorem 36. Let T be a L.T. of the finite dimensional vector space V to itself.

. Then if we know that either T is one-one or that T is onto, then we can always conclude
that T is both one-one and onto (i.e. bijective).

Proof, It will suffice to show that each of the statements ‘ T is onc-one¢’ and ‘T

is onto’ implies the other.



- Now, Tisone-oneiff WT)=0

ie, iff p(T) = dim V s
ie, iff  Tisonto. '
: - EXERCISE 8

1. Which of the following L.T.’s are one-to-one, onto or both one-to-one and onto ?
(2) Tlxy, x5, x5) = (X, — 2y, Xy = Xy, X4 — ;)
(i5) Tlxy, x,, xg) = (%) ~ X, Xy — Xy) Gi5) T(xy, xy, X4} = (1, — X, X,).
2. Find R(T) and N(T) of the following linear transformations :
(i) T : R? — R% defined by T(x,, x,) = (x, + x,, 1)
(if) T : R? - R? defined by T{x,, x,) = (x,, x; + %,, X,)
(i) T : R? - R3 defined by T(x,, x,, x3) = (x,, x5, x3)
(@) T: | — | defined by T (p(x)) = x p(x}.

The images of a linearly independent set of vectors by a linear transformation
may not form a linearly independent set. However, the following theorem says that a
one-to-one linear transformation preserves linear independence and under any linear
transformation, the set of pre-images of a linearly independent set of vectors is lin-
early independent.

1.21. RANK AND NULLITY

If Tis a linear transformation from a vector space U to a vector space Vathen the
.dimension of range space R(T) of T is called the rank of T and is denoted by pET). The
dimension of null space N(T)-of T is called the nullity of T and is denoted by W(T).

Theorem 37 (Sylvestor’s Law). If T : U(F) » V( F) is a linear transformation
on an n-dimensional vector space U, then

. Rank (T) + Nullity (T} = Dimension U.

Proof. Since null space N(T) is a subspace of finite dimensional vector space U,

let the set

A=tlu,,u,, ... , uuh, (R <n)
be a basis set of N(T).
Nullity of T T=uT) =k . (1)
Now, extend the set A to a basis of U(F).
Let B = {u,, u,, ...... 2 Uy, Wy g, ooy ) De @ basis of U

(-~ U is nth dimensional vector space).
We claim, The set C = {T{(x,,), T(u,,,), -..... , T(u,)} is a basis of R(T).
Firstly, we show that the set Cis L.I. '

Let a,,, T, ) +a,,, T, +.. +a, Tu)= - “l(2)
= . Tay, sy + Uppotlpup + o + a'nun)
= Apaallppy F Qpaollpyg + -+ QU € N(T)

Since A is a basis set of N(T),
Qg T Opillpye t T ALY, )
can be expressed as a linear combination of elements of A.
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_ Discrete Mathematics Let a, uy +0, 5t o+ . +au, =du, +bu,+.. +bu,

= 7 buy+bu,+ . rbu,-a u, - —au, =0
= by=b,=..=b,=0andq,,,=...=¢a,=0
NOTES . ("~ B is a basis of U)
' From (2), Cis L.I.

1 Secondly, we show that C spans R(T).

Let v be any element of R(T).

There exists an element z € U such that
Tw) =v LA

Since B is a basis of U, therefore i can be expressed as a linear combination of

elements of B.

Let U=Qly + Gl + o+ Q0L + ...+ Q
i ¢ #ont
= T() = T(auy + agliy + ...+ ait, + ... +a,l )’
=a, Tw,) + 2, T(u,) + ... + a;{T({zk) oo+ a, T(uw,) L)
Since uy, Ug, .. , u, € N(T), we have :
T(u)=0 for i=1,2,3, ... ,
From (4), v=a,, T, )+... +aTk)

= The set C spans R(T).
Hence, the set C is a basis of R(T).
~ Dimension of R(T) = number of elements in a basis set C.
=n-k '
= pM=n—-F
= p(T) + i(T) = n. (o W=k
Example 3.IfT:R? > R3 is a L.T. defined by T(x,, x,) = (x, - x5 x, ~x,, — x,),
then find a basis and dimension for its R(T) and N(T).
" Also Uerzfy that p(T) + u(T) = 2(= dimension ofRz).
Sol. We know that .
N(T) = {x,, x,) | T(x,, x,) = 0 € R?}.
Let (x,, x,) be any element of N(T).

= T(x,, x,) =0

= () = Xg, Xy — %y, — ;) = (0, 0, 0)

= X, =%, =0,2,-2%,=0,-x, =0
Selving, we have x, =x,=0.

(0, 0) is the only member of N(T). i.e., N(T) = {0}.

Nullity of T = dimension of N(T) = 0. -
To find R(T) and its dimension
Since Tlx,, x,) = (x, X5, 2, — 2, — x,)
R(T) = {(x; ~x,, x, = xy, —x) | (x,,%,) € R¥), (1)
Let v be any element of R(T).
- There exists (x,, x,) € R* such that
Tix,, x,) = 0. '
Now, (x), %5) =2,(1, 0) + x, (0, 1) = x,e, + 2.0,

' v =Tlxy, xy) = T(xse, +x,e,)) = x,T(e,) +x,Tle,) (2)
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=T, 0)=(1-0,0-1,-1}=(1,-1,~1
But T(e;)=T(,0)=(1-0, y=( )} By (1]

Tley)=T(0,1)=(0-1,1-0,0)=(-1,1,0)

Substituting values of T(e,) and T(e,) in (2), we have
v=T(x, %) =2, (1,1, - 1) + x,(~ 1,1, 0)
Therefore every vector v of R(T) is a linear combination of vectors (1, — 1, =1)
and (-1, 1, 0).
Moreover, (1,-1,—1) and (-1, 1, 0) are L.I. because neither vector is a multiple
of the other.
Hence, {(1, — 1, - 1}, (- 1, 1, )} is a basis of R(T)
Dimension of R(T) =
Since dimension of R?13 2.
Rank T + Nuillity T = Dimension of R2.

1.22. OPERATIONS ON A LINEAR TRANSFORMATION.

Addition of Linear Transformations

Let L(R", R™) be the set of all linear transformations from R*to R”. If T, S e L
(R", R™), we denote the sum of T and S by T + S and is defined by (T + S}X) = T(X} +
S(X).
Now, T+SelL (R", R™)
For, T+8)X+YV)=TX+YV)+SX+Y)
= (TX) + T(Y)) + (SX) + S(Y)
= {TX) + S(X)) + (T(Y) + S(Y))
= (T + S}X) + (T + SYY)
and (T + S)AX) = TOX) + S(AX) = 7\. TX) + A.8X)
= MTX) + S(X)? k((T + S)XX)
IfA=la; ] B=1b, ] C=le; ]are the matrices associated with the linear transfor-
mations T, S and T+ S then the natural question is : What is the relationship be-
tween A, Band C?

N
IfX = (x, x5, oo X0 Y = (g, ¥, ..\....,ym) and Z = (2,, 2, ......., 2,)) are such that
T(X) = Y and S(X) = Z, then we have

A
y‘=ZG.UxJ-,I=1,2, ...... y

and z; —Z X, i=12, ... m (DY
i _ N
Now, - (T + 8)XX) = T(X) + 8(X) = (y,, Yoy e N 1 G- -
=y, +2, ¥+ 2y, oo Y +2,) - (2)

From (1) and (2),

n

vtz =, (@y+bapi=1,2,...,m

i=1

Fimdamental Concepts

e Vectors

NOTES

Self-Instructionatl Material

43



! )
Discrete Mathematics Thus, the matrixassociatedtoT+SisC=|a it b fj]' 1<i<m, 1£j <nwhich
’ is the sum of the matrices A and B.

Scalar Multiplication

) NOTES Fora transformation:T e L(R", R") and A € R, we define the function AT : R" —
R” by ATXX) = ATX) = (Ay,, Ay, --..e- ,Ay,)
if TX) = 3y, Ygr cerveees V)

One can verify that AT € L (R*, R") =
IfA - [ab.] is the matrix associated with T, then
Y =X F X o +a. x,,i=1,2, ... ,m
so that Ay, = la;xl + A, Xg + e +Aha, x ,i=1,2,...
Thus, the matrix associated to AT is [Aa;].

EXERCISE 9

1. For each of the following linear transformations, find a basis and the dimension of:
(¢) its range space (£} its null space.
Also verify that rank (T} + Nullity (T) = dim. U
(@) T : R? - R? such that T(x,, x,) = (x, + x,, x, ~ 2, x,)
() T : R® = R% such that T(x, y,2) = (x + , ¥ + 2).

2. Find a linear transformation T : R® - R* whose range is spanned by the vectors
(1,2,0,-4)and (2,0,- 1, - 3).
3. Let T, and T, be two linear operators defined on R? as
Tlx,y)=(x+y,0) and Tux, 3 =(-y,x\
!
{

Find a formulae defining the operators .
@) TeT, (i) Ty0T, ’ . i) T2(=T,oT).

1.23. ISOMORPHISM

Two vector spaces U(F) and V(F) are said to be isomorphic vector spaces if there
exists a one-one and onto linear transformation T from U(F) to V(F) and we write U(F)
= V(F). The one-one and onto linear transformation T is called an isomorphism of U
onto V.
Theorem 38. Every n-dimensional vector space U(F) is isomorphic to F*,
Proof. Let {u,, u,, ...... , u,} be a basis of U. '
Then, each # € U,.can be written as :
W= Qg+ Qolly + .. +a,u, for scalars a,, a,, ....... , Q.
Define a function T : U - F* by
T =(a,, ag ..ccry @)
We shall show that T is an isomorphism.

44  Self-Instructional Material



Y@ To s._’zqw T is one-one.

Letu,ve U

= ‘Us @ty + Ayl + ...+ a1, for some scalars @y, ¢, ... , 0,
and ~ v=by + by, + ...+ b u, for some scalars b, b,, ...... b,

- T} =(a,, a,, ...... ,a)and T(v}=(d,, b,, ...... ,b,)

Now, T(u) = T(v)

= {a;,ay, s @,)=(by, by, ..., b))

= a,-6,=0,a,-0b,=0, ... sa, —b, =

(v 1y, Ugy e , i, are L.L)

= _ a;=b,for1=1,2, ... , .

= u=uv.

Hence T is one one.

(iz) To show : T is onto .

If (a,, aq ... ,@,) is any element of F*, then a,u, + a,u, + ...... +a,u, € Usuch
that Tlau, + ayt, + ...... +a,u)={(a,ay ...,a,)

Hence, T is onto.
(iii) To show : T'isa L.T
Letu, v e Uand a, b scalars.

Then, u = a.u, + ayu, + ... + a,u_for some scalars a,, ay, ......, @,
and v=buy + by + o + b,u, for some scalars b, by, ..., b, .-
au + bv = (aa, + bbJu, + ...... +{aa, + bb Ju,
Tau + bv) = (aa, + bb, ...... ,aa, + bb,)
Also, aT(u) + dT(v) = ale,, a,, ...... ya,)+blby, by, ..., b))
= (aa, + bb,, aa, + bb,, ...... yaa, + bb,)
T(au+ bv) = aT(u) + bT(w).
Tis aL.T.
Hence, T is an isomorphism
or U = Fr, .

1.24. EIGEN VALUES AND EIGEN VECTORS IN A LINEAR
TRANSFORMATION

Definition. Let T : V — V be a linear operator on an n-dimensional vector space
over the field F. A scalar A e Fis called the eigen value of T if there exists a non-zero
vector v € V such that T(v) = Av and any v # 0 of V such that T(v) = Av is called an cigen
vector of T associated with the eigen value A

Note. () Eigen value is also known as proper value, characteristic value, spectral value
or latent value. Stmilarly, Eigen vector is algo called proper vector, characteristic vector, spec-
tral vector or latent vector. -

(i) If v is an eigen vector of T corresponding to the eigen value A, then every scalar

multiple kv (% # 0) of v is also an eigen vector corresponding to A, because
T(kv) = RT(W) = &(Av) = Mkv) ’
(¢if) The set of all eigen values of T is called the spectrum of T.
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(fv) If A is an n-square matrix associated with the linear operator T : V= V (dim V =»
say), then we can define eigen value as a root of (A - AI) X = O and the non-zero

solution X as the eigen vector. This concept, the students have already studied in
B.A/B.Sc. L.

+ Theorem 39. Let T : V = V be a linear operator on «a finite dimensional vector
space V(F). If v e V is an eigen vector of T, then v cannot be associated with more than
one eigen velue of T. ) ’

_Proof. Let, if possible, v corresponds to two different cigen values A, A, of T.
-~ . T(w}=%,v and T(}=2iwp
= Av=ky = (A -A)v=0
= v=0 (v Ay # A
which is not possible as v being an eigen vector must be non-zero. -
Hence, v cannot be associated with more than one eigen valuc of T.

Theorem 40. Let A be an eigen value of a linear operator T on a vector space
V(F). Then, the set V) of all eigen vectors of T corresponding to eigen value X, is «
subspace of V(F).

Proof. Here, V, = {v € V | vis an eigen vector of T corresponding to A}

={ve V| T()= v}
Since A is an eigen value of T, there exists a non-zero vector v’ such that
T(v') = v'.
v'eV, = V, %4
Letvl,vze Vianda,be F.
v,veV, = Tw)=2iy, and T, =iv,

Now, T(av, + bv,) = T(av,} + T(bvy) . (- Tisal.T)
=aT(v,) + bT(,) {+ TisaLT)
=a(hv,) + b(hw,) = Mav, + bu,)

= av,+ b02 is an eigen vector corresponding to A.

= av,+bvye V,. '

Hence, V is a subspace of V.

Note. This subspace V, is called the eigen space or the d:t;}m deristic space of the ugeu
value A

EXERCISE 10

1. Find all the eigen values and basis for eigen space if the linear operator T : R% - R? is
given by T(x, y) ={x + 2y, 3x + 2y).

2. For each of the following operator T : R* = R, find the eigen values and a hasm for each
eigen space.

(@) Tlx,y,2)=(2x +y,y =3, 2y + 42)
&) T(x,y,2) =(x +y + 2,2y +2, 2y + 32).
3. Findall t'he eigen values and basis for each eigen space of linear operator
T : R?* 5 R? defined by
T(x, v, 2) = (3x +y + 4z, 2y + 6z, 5z).
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1.25. BILINEAR FORMS

Bilinear Forms. Let V, (= R™) and V, (= R") be two vector spaces over the same
field F. Let X and Y be any two arbitrary uectors of V,, and V, respectively. Then, a
bilinear form over F is a function f of two vector variables X Y and sati:sfymg the

following properties.
D AeX, + X, V=X, D+RX, ) vX,X,eV ,YeV , aecF
and @) AX,aY, +Y,)=aflX, YD +AX,Y,), vXeU, Y,Y,eV, aecF.

m? ”n?
For afixed Y € V,, X, Y) defines a linear function from V,, = F and for a fixed

X, fIX, Y) defines a linear function from V, — F.

Because of this linear function properties w.r.t. two vector spaces V_ and V,
when considered separately, AIX, Y) is called a bilinear form.

For example, (i} Consider a function f: R® x R? - R defined by
X Y) =2y, + 20y, + X5, + 3%y,

where X =(xy, x5, 2,), Y = (yy, ¥5)-

Then X, Y) defines a bilinear form.

For, let - Xy = (g, Xy9) %13)y Xp = (g, %99, Xp9)
and Y, =0,y and Yy =0y, 55)

(We are using double suffix notation to denote elements of vectors where the
first suffix indicates the vector and second suffix indicates its element),

Let (X, Y)), X,, Y,) € R® x R? such that (X,, Y,) = (X,, Y,)
= Xy = Xgps Xyg = Xgg, Xyy = Xpg AN Yy =¥,p, Y1 = Vg A1)
Now, AX,, ¥)) =2y ¥55 + 2% ¥yp + X1p Y19 + 3139y,
= Xy) Va1 + 26y Yoo + Xgg Yoy + 3oz ¥y = fiX,, V).

= image under fis unique. : ~
To show that f satisfies the linearily conditions (i) and (it) of the definition.

flaX, + Xy, Yy) = {axy; +299) ¥yy + 20@x]; +25)) 10

+{axy, + 2x50) Yyp + Blaxyy + xy5)¥y,
= a{xy Y11 + 2X01Y 19 + X199 + 3%13Y11)
+{(xg¥yq + 2}“":213’12 +Xpg¥19 + 3%g5¥1y)
=afiX, Y)+ X, ¥)), VaeR

Similarly, we can show that

X, a¥,+Y,) =a fiX,, Y) +fX, Y,)), VaecR.
Hence, fis a bilinear form. '

" (#i) Consider a function 7 : R% x R? - R defined by
X ) =xy, +2,+ 1
where : X =(xy,2,) and Y={(y,,y,).

Then, fis not a bilinear form
Infact f does not satisfy the linearity property as shown below,
Let Xy =0y, 2090, Xy = (x5, %59) and Y =0y, 5,)
Then, aX, + X, = aly)), x,5) = €y, Xy9)

= (“xn + Xy, QX + Xyo), YV ae R (

I Self-instructional Material
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flaX; + Xy, Y) = (axyy +xy))yy + (@gp + Zp)y, + 1
afiX, Y) + fX,, Y) = alxyyyy + x5y, + 1) + (g5 + X9y, + 1)
flaX, + X,, ) # afX,, V) + fX,, ¥) ‘ ‘
Hence f is not a bilinear form. \

NOTES
i
Effect of Linear Transformations on a Bilinear Form ‘

Discrete Mathematics Now,
and

i "

Let the m x's of the bilinear form X’AY = Z
im1 -1

a; xy; be changed to new

variables u’s using the linear transformation
n -
%=9, byu, (=12 .,morX=BU
j=1 ’

and the n ¥'s be replaced by new variables v’s using the linear transtormation

i=1

X’AY = (BUY A(CV) = U(B'AC)V = U'DV where

Then,
‘ D = B'AC.
Thus, a bilinear rfqrm remains a bilinear form when subjected to linear transfor-
mations. ':

Applying the linear transformations U = IX and V = [Y, we obtain a new bilinear

form (IXY(B’AC) (IY) = X'(B’AC)Y = X'DY in the original variables.

EXERCISE 11

1." Express the following bilinear forms in the matrix notation and find the matrix of the
bilinear form : - :
() 2y, + 22,7, - g+ 7";}'1 =Xy + Bxyyy + 2y = By,
() 22,9, + 237, — 2%y, + Ty, — 22,y
S G) 2y~ XYy Yy~ X,
{fv) - 2x)y, — %,y + 22,y — 2oy, + 35y,
(v} Bxyyy + Tyyy + Xy, — 224y, — 4Xg¥y ~ dayy, + 3xyy,
which of the dbove forms are symmetric 7

Write the bilinear forms corresponding to the matrix A in the variables X and Y when

_ 2 3 5
(E)A= -2 1 7 ,X:(xl,xz),Y=(_}-1,y2,yl,‘]

05 -
GYA=|7 0 91,X =, %%, Y =0y, ¥ 7))
13 1 _

5
1} c K=y, 2y, 200, Y = (v, 3).
5 . X

SR R

(i) A= {—
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'SUMMARY :

An algebraic system (G, *) is said to be a group if it satisfiés the following properties.
(£) The operation * is a closed operation.

{i1) The operation * is an associative operation.

(iii) There exists an identity element w.r.t. the operation *.

(iv) For every a &G, there exist an elementa ¢ Gsuchthata'*g=a*a'=e

A group (G, *) is called a finite group if G is a finite set.

The order of the group G is the number of elements in the group G.

A homomorphism ¢ which is one-one and onto is called isomorphism and the groups G
and G’ are called isomorphic.

A ring R with finite number of elements is known as finite ring, otherwise it is known ag
infinite ring. : _ Ny

A commutative ring F with unity such that each non-zero element has a multiplicative
inverse i.e., Ea~! € F such that as™! = 1 =ala is called field.

Vector space is also called the linear space.

The number of vectors in a basis of a finitely generated vector space is called the dimen-
sion of the vectar space V and is denoted by dim V.

Two vector spaces V, and V, are called identical spaces if and only if every vector of V, is
a vector of V, and conversely, i.e., if and only if each is a subspace of the other.

Let U and V be any two vector spaces over the same field F. Then a function (map or
mapping) T : U — V is called a linear transformation (Written as L.T.) if

O T +uy=T@)+Ty Vp,pel
and (it) T (au) =aT () Vue Uandace F,
A lnear transformation T which is onto is called surjective.

Eigen value is also known as proper value, characteristic valug, spectral value or latent
value.

A bilinear form is a special type of function involving two different real or complex vec-
tor variables having the value of the function in a real or complex field F.

.

' TEST YOURSELF

Let S = N x N, the set of ordered pairs of positive integers with the aperation * defined
by

(a, b) * (¢, d) = (ad + be, bd)

(a) Find (3, 4) * (1, 5) and (2, 1) * (4, 7)

{b) Is S a semi-group ? Is S commutative ?

Prove that if H, K are subgroups of a group Gand HU K = G. Then either H=GorK=G.
Show that the intersection of any number of subgroups of G is a subgroup of G.

Let G be al group and a, b € G. Then the equation x * ¢ = b has a unique solution given by
x=bxal

Prove that if x? = 1 in an integral domain D, then x = Q orx = 1.

If R is a ring with unity, then this unity is unique.

Prove that the ring Z, x Z, is commutative and has unity.

If J and K are ideals in a ring R, then J + K and J n K are also ideals in R.

{e) Define a vector space and give one example of a vector space over the field of reals.

{b) Define vector space and show that the set C of all complex numbers is a vector space
over the set R of all reals w.r.t. usual addition and scalar multiplication.

Fundamental Concepis
and Veviors
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‘Prove that R is a vector space over the field Q of rationals where vector addition is

defined by
u+v=u+v,¥Vu, ve R andscalar multiplication is defined by :
a.u=au whereae Q,ue R.

Show that the set {x® —x + 1, 2% + 2x + 1, v + 1} is L. in the vector space of all ph]ynmni—
als over the field of reals. -

Prove that the vectors (a;, a,) and ( b], b, )m V (F) are L.D.if a, 6, — a,b, =0.
Show that the L.T. T : R?  R? defined by _
Tx,, x,) = (x, cos 6 + x, sin 6, - x, sin © + x, cos 6) -

is a bijective (i.c., an isomorphism).

(@) Show that the L.T. T : R? - R defined by T(x,, x,) = x, is onto but net one to onc.
‘(b) Show that the L.T. T : RY — R3 defined by

'I‘(x, v, z) = (x, ay, z)
where g is a fixed real number is an isomorphism.

110

Given the linear transformationY =| 2 3 1 X, show that ( 1) it is singular (if) the
-2 35

images of the linearly independent vectors X, =(1, 1, 1), X, = (2 1,2)and X, =(1, 2, 3

are linearly dependent.

Show that T ; R? > R¥* defined by T(x, v, z)=(xcos 6— ysin 6, xsin 0 + y cos ¢, 2) is
non-singular for all values of 6.

Let P and Q be two n x n matrices over a ﬁeld F and X‘an cigen vector of both the
matrices P and Q. Show that X is also an eigen vector nf the matrix aP + pQ where «,

pe F
Obtain the linear transformation which reduce each of the following bilincar forms {o
the canonical form ;

() %,y + 20,70 — X1Yq + 265y + BXg¥g — Xy¥y + By, + Ty,

3 2 -1 1 -510 _\’i;i
@x| 3 2 3|y GiyX'| 4 1 15|Y @IX gy -3
13 1 -5. 230 37 0
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1.25 Applications of Graph Theory .
I « Summary
. ¢ Test Yourself
NOTES J — -

1.1. OBJECTIVES

After going through this unit, you will be able to discuss about graphs,
multigraphs, weighted graphs, planar graphs, directed and undirected graphs, graph
colouring and covering, trees and rooted trees and various algorithms related to graphs
and trees.

1.2. INTRODUCTION

In many problems dealing discrete objects and binary relations, a graphical
representation of the objects and the binary relations on them is a very convenicent
form of representation. This leads us naturally fo'a study of the theory of graphs.

Also, we will discuss about special class of graphs, called trees. It is essential to
know the various common types of trees, their basic properties and applications.

1.3. GRAPH TERMINOLOGY

The graphs consist of points or nodes called vertices which a-re connected to
each other by way of lines called edges. These lines may be directed or undirected.

1.4. ENUMERATION OF GRAPHS

Directed Graph

A directed graph is defined as an ordered pair (V, E) where Visa sct and E is a
binary relation on V. A directed graph can be represented geometrically as a set of
marked points V with a set of arrows E between pairs of points. Also,

The elements in V are called vertices.

The ordered pairs in E are called edges.

For e.g., consider the Fig. 1 given below. It is a directed graph.

. a

Loop
. Directed graph

Fig. 1 Fig. 2
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Here, the vertices are a, b, d and the edges are (¢, b), (b, a), (b, d), {d, a).

An edge is said to be incident with the vertices.it Joins. For example, the edge
{a, b) is incident with the vertices e and b. Also, we say that the edge (q, b) is incident
from vertex @ and incident into vertex b, .

The vertex a is called the initial Vertex and the vertex b is called the terminal
" vertex of the edge (a, b).

An edge that is incident from and into the same vertex is called a loop or self-
loop. (Fig. 2).

Degree of a self-loop is two as it is twice incident on a vertex.

Corresponding to an edge (a, ), the vertex a is said to be ' a
adjacent to the vertex b and the vertex 4 is said to be adjacent
from the vertex a.

A vertex is said to be an isolated vertex if there is no, .
edge incident with it.

For example, consider-the following graph (Flg 3}

The vertex ‘@’ has a self-loop. - dega=4 d c

The vertex ‘4’ is a Pendent vertex since only one edge is
incident on it.

The vertex ‘¢’ is an isolated vertex as it has no edge incident on it. Also deg e = 0.

Fig. 3

Undirected Graph

An undirected graph G consists of a set of vertices, V and a set of edges E. The
edge set contains the unordered pair of vertices. If (i, v) € E then we say u and v are
connected by an edge where  and v are vertices in the set V.

For example, let V = {1 2 3, 4land E = {(1, 2), (1, 4), (3, 4), (2, 3)} Draw the
graph.

The graph can be drawn in several ways.

Two of which are as follows (Fig. 4 and Fig. 5). These are directed graphs.

Fig. 4 ' Fig. 5

Consider the graph shown in Fig. 6. Determine the edge set and the vertex set of
this undirected graph.

1 : 2

Fig. 6

Fundamental Concepts,
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NOTES
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Discrete Mathematics The edge set is E=1{1,2), (1,4, I(2, 3);&, 4),(8,4) -
The vertex set is V={1,2, 3,4}

Mixed Graph

NOTES A graph G = [V, E] in which some edges are directed and
some are undirected is called a mixed graph. The graph shown
in Fig. 7 is a mixed graph.

Finite graph " > .

A graph G = [V, E] is said to be finite if V and E are finite Fig. 7
sets. )
Linear graph

A graph G = (V, E) is said to be a linear graph if its edges joining vertices lic
along a line. For example, e——e——e——e——e is a linear graph.

-

Discrete or null graph

A graph containing only vertices and no edge is called a discrete or null graph.
The sct E of edges in a graph G = [V, E] is enipty'in a discrete graph. Also each vertex
in a discrete graph is an isolated vertex. .

Simple Graph
A simple graph is one for which there is no more one edge directed from any one
vertex to any other vertex. All other graphs are called multigraphs. (see Figs. 8, 9)

A e, C
A D '
e, €y
e, &,
e, .
B e, C B e — ¢
. h 5
Simple grap Multigraph
Fig. 8 Fig. 9

"In Fig. 9, the edges e, and ¢, are called multi edges.

Complement Graph .

~ The complement of a graph is defined to be a graph which has the same number
of vertices as in graph G and has two vertices connected iff they are not connceted in the
graph G. :

Degree

Let v be a vertex of an undirected graph. The degree of v, denoted by d(v), is the
number of edges that connect v to the other vertices in the graph. Thé degree of a
graph cannot be negative.
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lnDegree' and QutDegree

If v is a vertex of a directed graph, then the outdegree of
v, denoted by outless {(v), is the number of edges of the graph
that initiate v. The indegree of v, denoted by indeg(v), is the
number of edges that terminate at v. For e.g., consider the
graph shown in Fig. 10. The degrees of A, B, C, D are 3, 3, 5,

and 3 respectively. Multigraph
Fig. 10
Source and Sink )
A vertex with indegree 0 is called a source and a vertex
with outdegree 0 is called a sink.
For example, consider the graph shown'in Fig. 11. Here u, Fig. 11
is a sink. ’ :
, . a b
For example, consider the graph shown below (Fig. 12) 0
The graph shown in Fig. 12 has 7 edges.
Indegree of ‘a’ = 3, Indegree of ‘4’ = 2;
Indegree of ‘¢’ = 1, Indegree of ‘d’ = 1
Also, outdegreeof‘a’=1, outdegree of D’ =3
outdegree of ¢’ = 0, .. ¢ is asink. / . '
outdegree of ‘d’ = 3. Fig. 12
Even and Odd Vertex
A vertex is said to be even vertex if its degree is A D
an even number.
A vertex is said to be an odd vertex if its degree ot ®
is an odd number.
For example, consider the graph, as shc_)wn in & .
Fig. 13,
The vertices A and D are even vertices since
degiA) = 2, deg(D) = " 5 3

The vertices B and C are odd vertices since
deg(B) = 3, deg(C) =3 Fig. 13
A vertex of degree zero is called isolated vertex.

A vertex with degree one is cailled a pendent vertex. The only edge which is
incident with a pendent vertex is called the pendent edge.

Adjacent Vertices

Two vertices are called adjacent if they are connected by an edge. If there is an
edge (e,, ¢,), then we say that vertex ¢, is adjacent to vertexe, and vertex e, is adjacent
to vertex e,.

Theorem 1. Show that the sum of degree of all the vertices in a graph G, is even.

Proof. Each edge contribute two degrees in a graph. Also, cach edge contrib-
utes onc degree to each of the vertices on which it is-incident.

Fundameniad Concepts,

Algorithms and
Applications

NOTES

Self-tnstenetional Material

55



Discreie Mathematies

NOTES

Hence, if there are N edges in G, then we have
2N =d(v,) + d(vy) +.....+ d{vy)

Thus, 2N is always cven. '

Another statement. The sum of the degrees of the vertices of a graph -G is
equal to twice the number of edges in G.
Theorem 2. Prove that in any graph, there are an even number ufverticce-? of odd
degrec. .

Proof. Consider a graph having vertices of degree even and odd. Now, make
two groups of vertices. One with even degree of vertices vy, vy, ..., v, and other with odd

degrec of vertices u,, w,, ..., &,

Suppose,
V=d,) +d,) + .. +d,)
U=du,)+dluy) + ... +d{u,).

Now, we know that sum of degree of all the vertices is even (Theorem I). So,
V + Uis even.

Since, V is the sum of K even numbers. Hence, it is even. But U is the sum of n
odd numbers. So, to be U an even number, n must be even. Hence proved.

ILLUSTRATIVE EXAMPLES

Example 1. Verify that the sum of the degree of all the vertices is even for Hre
graph shown in Fig. 14, .

V‘I I V2 Vf!

Fig. 14

Sol. The sum of degree of all the vertices is
=d(v,) + dlv,) + dv,) + d(v,) + d(vg) + d(vg) + dlvy) + d(vy)
=2+83+3+3+3+4+2+2=22,whichiscven.

Example 2. Verify that there are an even niumber of vertices of odd degree in the
graph shown in Fig. 15.
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b c
a pd
e t
g h
Fig. 15

Sol. The number of vertices of degree odd are 8 and each have degree three in
the above graph. Hence, we have even number of vertices of odd degree.

1.5. PATHS AND CIRCUIT

-A path of length n is a sequence of » + 1 vertices of a graph in which cach pair of
vertices is an edge of the graph. :

1. A Simple Path. The path is cailled simple one if no edge is repeated in the
path i.e., all the vertices are distinct except that first vertex equal to last vertex.

2. An Elementary Path. The path is called clementary one if no vertex is
repeated in the path i.e., all the vertices are distinct.

3. Circuit or Closed Path. The circuit or closed path is a path which starts
and ends at the same vertex i.e.,, v, =v,.

4. Simple Circuit Path. The simple circuit is a simple path whlch is a circuit.

Theorem 3 (a). Suppose a graph G contains two distinct paths from a vertex u
to a vertex v. Show that G has a cycle.

Proof. Consider two distinct paths from  tov be P, ={¢,, ¢,, ¢, ...... ,e,)and P,
=(e,,e,, ey, ... ve,’).

Now delete from the paths P, and P, all the initial edges which are identical i.e.,
of we havee, =¢,/,e,=¢),e;=¢, .....,¢, =¢, bute, ,#¢', . We will delete all the
first % edges of both the paths P; and P,.

Now, after deleting the k edges both the paths start from the same vertex,
(let &,) and end at v.

Now, to construct a cycle, start from vertex u, and follow the left over path of P,
until we first meet any vertex of the left over path of P,.

If this vertex is u,, then the remaining cycle is computed by following the left
over path of P, which starts from u, and ends at v.

Theorem 3 (b). If a graph has n vertices and vertex v is connected to vertex w,
then there exists a path from v to w of length no more than n.

Proof. We prove this theorem by method of contradiction. Let us assume that v
is connected to w, and the shortest path from v to w has length m, where m is greater
than n. o

We know that, a vertex list for a path of length ' m will have m + 1 vertices. This
path can be represented as v, vy, v, ... v, Wherev, = v and v, = w.

Fundamenial Concepts,
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Discrete Mathematics Now since there are only  distinct vertices and m vertices are listed in the path
after vy, thus there must be same duplicated vertices in the last m vertices of the
vertex list, that represents a circuit in the path. Thus our assumption is not true and
the minimum path length can be reduced, which is a contradiction.

"NOTES . .
’ Example 3. Consider the graph shown in Fig. 16. Give Vv,

an example of the following :

(i) A simple path from V, to V.
(ii) An elementary path from V, to V. ’ v, .V,
(iii) A simple path which is not elementary from V, to

\%
6
(iv) A path which is not simple and starting from V,,.
(v) A simple circuit starting from V.
(vi) A circuit which is not simple and starting from V.
Sol. (i) A simple path from V| to V, is Va Vs
V,, V,, Vo, V,,V,, Ve
(ii) An elementary path from V, to V is
Vi Vy, Vg, Vs, V,, V. : .
(ii) A simple path which is not elementary from V| to Fig. 16
V. is
6

Ve

Vi Vo, Vi, Vi, V, V, Ve
(iv) A path which is not simple and starting from V, is ,
Vy, Vo, V,, V., V,, V,, Ve
(v) A simple circuit starting from V, is
V,V,,V,, Vo, V,, Vo, V.
(vi) A circuit which is not simple and starting from V, is
V,, V,, V,, V,, V,, V,, V,.

Undirected Complete Graph-

An undirected complete graph G = (V, E) of a vertices is a graph in which cach
vertex is connected to every other vertex i.e., and edge exists between cvery pair
of distinct vertices. It is denoted by K . A complete graph with n vertices will have
n{n — 1)/2 edges.

The complete graph 2, forn = 1, 2, 3, 4, 5, 6 are shown below:

. Fig. 17
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Example 4. Draw undirected complete graphs K, and K;.

Sol. The undirected complete graph of K, is shown in Fig. 17(a) and that of K;
is shown in Fig. 18. :

v, . v,
V,Q A
Vv, Vv,
Fig. 17.(0) K,  Fig. 18.K,
Connected Graph

A graph is called connected if there is a path from any vertex u to v or vice-
versa. )

Disconnecied Graph
A graph is called disconnected if there is no path between any two of its verti-
ces. )

Connected Component _

A subgraph of graph G is called the connected component of G, if it is not con-
tained in any bigger subgraph of G, which i1s connected. It is defined by listing its
vertices.

Example 5. Consider the graph shown in Fig: 19. Determine its connected
components. )

Fig. 19

Sol. The connected components of this graph is {a, b, ¢}, (d, ¢, f}, (g, R, i) and {j).

Theorem 4. Let G be a connected graph with at least two vertices. If the number
of edges in G is less than the number of vertices, then prove that G has a vertex of
degree 1.
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Discrete Mathematics Proof. Let G be a connected graph with n = 2 vertices. Because graph G is

- connected, G has no isolated vertices, Suppose G has no vertex of degree 1. Then the

degree of each vertex is at least 2. This implies that the sum of the degrees of vertices

of G is at least 2r. Hence, it follows that the number of edges is atleast n (' the sum

NOTES of the degrees of vertices in any graph is twice the number of edges), which is a contra-
diction. This implies that G contains atleast one vertex of degree 1.

1.6. SUBGRAPH

A subgraph of a graph G = (V, E) is,a graph G’ = (V, E") in which V' ¢ Vand ¥’
c E and each edge of G” has the same end vertices in G’ as in graph G.
Note. A single vertex is a subgraph.

Example 6. Consider the graph G shown in Fig. 20. Show the different subgraphs

of this graph. .
e )
A C
\ E 0
/
E /
Fig. 20 :

Sol. The following are all subgraphs of the above graph {(shown in Figs. 21, 22,
23, 24). There may be another subgraphs of this graph.

B A C
A c F D
Fig. 21 Fig. 22
=} ) 8
A c A/ , c
~ F D D
L
E E ,.
Fig. 23 Fig. 24 Vo
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Example 7. Consider the multigraph shown in Fig. 25. Show two dtﬁ"erent
subgraphs of th.'.s multigraph which are ;tselfmulugraphs

8, b

Fig. 25

SoL The two different subgraphs of this multigraph which are itself multigraphs
are shown in Figs. 26 and 27. There may be another subgraphs of this muitigraph.

Fig. 26 ' -Fig. 27

Spanning Subgraph

-Agraph G,=(V,E))is called a spannmg subgraph of G = (V, E) if G| contains

all the vertices of G and E #E,.

Fig. 29.

Fig. 28. Spanning Subgraph.

Complemént of a graph

Let G=(V,E) be a.givén graph. A graph G = (V, E) is said to be
complement of G = (V, E}If V =V and E does not contain edges of E.

i.e., edgesin E are join of those pairs of vertices which are not joined
in G. ! _ . Fig. 29

For example : The Flg 28 is the spanmng subgraph of the graph shown in

L

Fungamental Concepts.
Afgorithms and
Applications

NOTES

Self-Instructional Material 61



© T Discrete Mathemputics

NOTES

Consider the graph shown in Fig. 29.

The complement graph is shown in Fig. 30.

Note that a graph and its Eomplement graph have same vertices.
If a graph G has n vertices and K is a corhplete graph with n

vertices, then - Fig. 30
G=K,-G
Consider K, Then
_ : ' =
G k4 G 5
Consider K. Then
G Ke
Complement of a Graph

Let G = (V, E) be a graph and S be a subgraph of G. If edges of S be deleted from
the graph G, the graph so obtained is complement of subgraph S. It is denoted by §.

§=G-8

Consider the graph and its subgraph Then the

complement of subgraph S is
.S=

-

Note that in a complement of a subgraph, the number of vertices do not change.

1.7. CUT SET

Consider a connected graph G = (V, E). A cut set for G is a smallest sct of edges
such that removal of the set, disconnects the graph whereas the removal of any proper
subset of this set, left a.connected subgraph.

For example, consider the graph shown in Fig. 31. We determinc the cut set for
this groph. '
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Fig. 31 i

For this graph, the edge set {(V,, V), (V,, V)] is a cut set. After the removal of

this set, we have left with a disconnected subgraph. While after the removal of any of
its proper subset, we have left with a connected subgraph.

Cut Points or Cut Vertlces

Consider a graph G = (V, E). A cut point for a graph G, is a vertex v such that

G-u has more connected components than G or disconnected.

The subgraph G-v is obtained by deletmg the vertex v from.the graph G and

also deleting all the edges incident on v,

1

EXERCISE 1 [

(@) IfV.=1{1,2,3,4,5)and E=((1, 2),(2, 3), (3 3),(3, 4), (4 5)). Find the number of edgcs
and size of graph G = (V, E)

{(b) Fmd the order and size of the graph G shown in the ﬁgure below :

d o

() (i) © b

d

{a) A graph G has 16 edges and all vertu:es of G are of degree 2. Find the number of
vertices.

(b) A graph G has 21 edges, 3 vertices ofdegr:ee 4 and other vertices are of degree 3. Find
the number of vertices in G.

{¢) A graph G has 5 vertices, 2 of degree 3 and 3 of degree 2. Find the number of edges-

{a) How many nodes (vertices) are requlred to construct a graph with exactlv 6 edges in
which each node is of degree 2.

(b} Show that there does not exist a g"aph with 5 vertices with degrees 1, 3, 4, 2, 3
respectively,

Frndameniel Coneepsis,
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~—

NOTES

(c) Can there Lie a graph with 8 vertices and 23 edges? .
(d) How many vertices are there is a graph \\_rith 10 cdges if each vertex has degree 2?
(e) Does there exist a graph with two vertices each of degree 47 If so, draw il
4. (a) Draw a simple graph with 3 vertices _
' (b) Draw a simple graph with 4 vertices . .
5. Consider the graph G shown below: I

(a) Is G simple?
(b) What is order and size of incidence matrix for G.
(¢} Find minimum and maximum degree for G.

1.8. WEIGHTED GRAPHS

AgraphG=(V,E)iscalleda welghted graph if each edge of graph G is asslgm.d
a positive number w called the welght ‘of the edge e. For example,

The graph shown in Figs. 32 and 33 is a weighted graph.

N A 1"? B C
p
. 8y ' R 2B o8
b De E¢—>»—>F
0 - 8
Fig. 32 Fig. 33

Multiple Edges

Two edges ¢, and e, wh1ch are distinct are said to be multiple edges if they

connect che end points i.e, if 2, = (u, v) and ¢," = (&, v) then ¢, and e,” are multiple
edges. :

1.9. MULTIGRAPH -

A multigraph G = (V, E) consists of a set of vertices V and a set of edges E such
that edge set E may contain multiple edges and self loops. For e.g.,
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Consider the following graph shown in Fig. 34.

»V,

Fig. 34, Undirected Multigraph:

In the above Fig. 35, ¢, and e; are multiple edges, ¢; is a self-loop.

- Fig. 35. Directed Multigraph.

"In the graph shown in Flg 35, the edges e, e, and e4, e are mu]tlple edgese, is
a loop.

1.10. REPRESENTATION OF GRAPHS

There are two important ways to represent a graph G with the matrices i.e.,
I. Adjacency matrix representation.
I1. Incidence matrix representation.

{a) Representation of Undirected Graph

(i) Adjacency matrix representation. If an undirected graph G consists of n
vertices, then the adjacency matrix of graph is an n x » matrix A = [u;] and defined by

Lif {u,,u;}isanedgei.e,v; is adjacent to v,
%, =90, if thereis no edge between v, and v;

If there exists an edge between vertex v; and v, where i is a row andj is a
column then value ofa =1.

If there is no edge between vertex v, and v, then value of ¢, = 0.

Note that adjacency matrix of G'is a symmetnc matrix. Smce simple graph does
not contain any self loop, so diagonal entries of adjacency matrix are all zero. Further,
as adjacency matrix contains 0 or 1, so it is also known as Boolean matrix.

Note. Degree of a vertex v; in G is equal to sum of entries in the ith row or :th column of
the adjacency matrix.
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Discrete Mathematics For example, we find the adjaocency matrix M 4 of graph G shown in Fig.36. '

B
NOTES
f)
A c
Fig. 36
Since the graph G consists of four vertices. Therefore, the adjacency matrix will
be a 4 x 4 matrix. The adjacency matrix is as follows in Fig. 37.
' A BC:D ,
A0 1 1 1 degree of vertex ‘¢’ is 3
Bi1 0 1 1 ' which is equal to sum of
M, = Cl1 10 1 entries in third row 6/4 mm
DI1 110 of adjacency matrix.
Fig. 37
Adjacency List. In a adjacency list of a graph, we list each vertex 2 LV
followed by the vertices adjacent to it. First write vertices of graphina
vertical column, then after each vertex, write the vertices adjacent to
it. = / .
. Consider the graph shown in Fig. 38 the adjacency list is given Va_ .
below : . . Fig. 38
Uy Ug, Ug
‘ ) Uy Uy, Ug
. Up Vp U Uy
. Ul .
(if) Incidence matrix or Binary matrix representation. If an undirected
graph consists of n vertices and i edges, then the incidence matrix is an n x m matrix_
C= [c:}] defined by
1, if the vertex p; incident by edge ¢;
4~ |0, otherwise ’
There is a row for every vertex and a column for cvery edge in the incidence
/ matrix. . i
I3 . .
Note that incidence matrix of a graph need not be a square matrix. Entries in a
row are added to give degree of corresponding vertex. vy
For example ;
Consider the graph G=1[V,E]
where V= [ul,'vz, vy, U}, E=le, ey, 85] as
shown in Fig. 39.
Ya
A\
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The incidence matrix M, for G is showr below :

€ €2 €3
{11 1]*
v, |1 0 0
My=p, [0 1 0
v, (0 0 1
Since each edge in the graph is incident on »,,

first row for v, has all entries 1.
degreev,=1+1+1=3

Also v,, U, v, are pendant vertices.

In incidence matrix of a graph, sum of entries in column is not degree of vertex.
As an edge is incident on two vertices in a graph, therefore, each column of incidence
matrix will have twa Us!

-The number of one’s in an incidence matrix of undirected graph (without loops)
1s equal to the sum of degrees of all the vertices of the graph.

For example : Consider the undirected graph G as shown in Fig. 40. We find its
incidence matrix M.

Fig. 40

Sol. The undirected graph consists of four vertices and five edges. Therefore,
the incidence matrix is a 4 x 5 matrix, which is shown below :

wll 0 0 1 0
w0 110 0
M=yl 100 1
v (0 0 1 1 1

Fig. 40(a)

(6) Representation of Directed Graph

(i) Adjacency matrix representation. If a directed graph G consists of n ver-
tices, then the adjacency matrix of graph is an n x 2 matrix A = la;] defined by

1if v;,v; is an edgei.e., if v, is initial vertex'ahd v, is final vertex
0, if there is no edge between v, and v; oo

) If there exists an edge beﬂx_@en vertex v;and. u; withv,.as initial-vertex.and ¢ D;.aS_
fina) vertex, then value ofa, =1,

If there is no edge between vertex v, and v; then value of a;=0.

The number of one’s in the'z}dj acency matrix of a directed graph'is equal to the
number of edges. :
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Discrete Mathematics For example : Consider the directed graph shown in Fig. 41. We determine its
adjacency matrix M ,. ’ .

Yy ‘ V2
NOTES
vy Vv,
Vs
Fig. 41
. Sol. Since the directed graph G consists of five vertices. Therefore, the adja-
cency matrix will be a 5 x 5 matrix. The adjacency matrix of the directed graph is as
follows in Fig. 42.
Uy Up U3 Uy Uy
w0 1 1 0 0
v|(000 0 1 0
u[0 1 0 1 1 N
My=y,l0 0 0 0 1
vs[0 0 0 0 0
Fig, 42
(i) Incidence matrix representation. If a directed graph consists of 7 verti-
ces and m edges then the incidence matrix is an n x m matrix C = [¢;], defined by
1, if v; is initial vertex of edgee;
¢.. = ¢ =1, if v; is final vertex of edge e;
’ 0, if v; is not incident on edge e;
The number of one’s in the incidence matrixis "
equal to the number of edges in the graph.
For example, Consider the directed graph G
shown in Fig. 43. Find its incidence matrix M.
Sol. The directed graph consists of four verti-
ces and five edges. Therefore, the incidence matrix
is a 4 x 5 matrix which is shown in Fig. 43.
¢ € €3 € &
: w1 1 0 -1 0
Mi=ylo.-1 1 0 o
v0 0. -1 1 1 ,
m——1 Fig.44
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(c} Representation of Multigraph.

Represented only by adjacency matrix representation.

(:) Adjacency matrix representation of multigraph. If a multigraph G con-
sists of n vertices, then the adjacency matrix.of graph is an n x n matrix A = [g;] and
is defined by

N, If there are one or more than one edges between vertex v; and v;, where
: a':;- = _ N is the number of edges.
0, otherwise.

If there exists one or more than one edges between vertex v, and v; thena; =N,
where N is the number of edges between v; and v,.

If there is no edge between vertex v; and v, ; then value of g, = 0. Fore.g.,

For example : Consider the multigraph shown in Fig. 45. We determine its

adjacency matrix.

V2

Vs

Fig. 45

Sol. Since the multigraph consists of five vertices. Therefore, the adjacency
matrix will be an 5 x 5 matrix. The adjacency matrix of the multigraph is as follows in
Fig. 46. ‘ '

. Uy Uy Uy Uy Vg
vy /0 3 0 0 1
|3 0 0 0 2 .
M,=u;/0 0 0 1 1
/1 0 1 1 0 .
vs|10 2 1 0 1
Fig, 46

ILLUSTRATIVE EXAMPLES

Example 1. Draw the undirected graph represented by adjacency matrix M,
shown in Fr,g 47. .

s

eV Uy V3 T U

v [0 1 I 0 0
vell 0 1 0 Of
My=v3l1 1 0 1 0
ve|0 0 1 0 1
v |10 0 0 1 1 ~3
Fig. 47

Fundamentat Concepts,
Algorithms and
Applications

NOTES

Self-Instructional Material 69



Discrete Mathematics Sol. The graph represented by adjacency matrix M-A is shown in Fig. 48.

v,

NOTES

Vg4 - Yy
Fig. 48

Example 2. Draw the directed graph G whose incidence matrix M, is shown
in Fig. 49.
1 % € &4 & €5 & Cg g
-1 -1 ¢ 1 1 0 ¢ ©

a 0
bt 1 0 1 0 0 0 -1 0 O
My=c| 0 +1 -1 0 0 -1 0 0 1
aloe o0 o -1 0 1 1 1 0
el 0 0 0 0 -1 0 0 -1 -1
Fig. 49 _
Sol. The directed graph corresponding to the incidence matrix M, is shown in
Fig. 50. '
a
e, e,
~ ) b4 e : c
. e
e, A Je, . es &
, .
d e: e
Fig. 50

1.11. PLANAR GRAPH

A graph is said tobe planar if it can be drawn-in a plane so that no edges cross.

e e ——— b — . .
For e.g., the graph A is a planar graph: Also K, = is a planar graph
because it can be re-drawn as  in which edges do not cross each other.

70 S;e:'f—h:srrucfimml Material



For example: The graphs shown in Fig. 51 and Fig. 52 are planar graphs.

vy Vz

Vi Vs

Vg v,

Fig. 51 Fig. 52
Theorem 5. A planar and connected graph has a vertex of degree less than or
equal to 5.

Proof. Let G be connected and planar and suppose, if possible, degree of each
vertex x € G is greater than 5.

ie., { degx>5 = degxz=6 i.e,sum ofdegreeofall vertices=6v
= 2e 2 6v, where ¢ and v are the number of edges and vertices respectively.
= e > 3v, which contradicts e <3u-6<3u.
- Hence ' degx £ 5.
Region of a Graph

Consider a planar graph G = {V, E). A region is defined to be an area of the
plane that is bounded by edges and cannot be further subdivided. A planar graph
divides the plane into one or more regions. One of these regions will be infinite.

{(a) Finite Region. If the area of the region is finite, then that region is called
finite region.

(b) Infinite Region. If the area of the region is infinite, that region is called
infinite region. A planar graph has only one infinite region. .

Example 3. Consider the graph shown in Fig. 53. Determine the number of

regions, finite regions and an infinite region.

V, \$;
Ia
fs ry 4 - Vq
hy
+ .V4 S [ .. VS
Fig. 53

Sol. There are five regions in the above graph i.e, r|, 7, ry, r, and r,.
There are four finite regions in the graph i.e., ry, r, r, and ry,
There is only one infinite region i.e., r,.

+
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Discrete Mathematics.  Properties of Planar Graphs

Theorem I. If a connected planar graph G has e edges and r regions, then
2

rs —e
3

NOTES Theorem Il. If a connected planar graph G has e edges and v vertices, then

3v—-e26b.

Theorem II1. A complete graph K, is planar if and only if n < 6.

I. Proof. In a connected planar graph, each region is bounded by at least
3 regions _
' r regions are bounded by minimum 3r edges
= Number of edges in graph 2 3r
But number of edge in the graph = 2¢ (as each edge belongs to two regmnq)

2e > 3r
< 2e
g =
= 3 .
II. Let r be the no. of regions in a planar representation of G. .. By Buler
formula
v+r-g=2 (1)
Now sum of degrees of the regions = 2e, But each region has degree 3 or more.
2€ 23r = r< &
3
2e .e
From (1) we get 2=u+r—e$u+—3—~e:v—§
6<3v-e
= ¢ <3v -6 Hence proved.

ITL. If G has one or two vertices, then the result is true. If G has at least 3
vertices then. - :

£<30-6 or 2 <6v-12 . (1)
If degree of every vertex were at least 6, then using 2e =~ E deg v, we would

have 2e 2 6v, which contradicts the inequality (1) Hence there must be a vertex with
degree not greater than'5.

Example 4. Prove that complete graph K, is planar.

Sol. The complete graph K, contains 4 vertices and 6 edges.

We know that for a connectéd pianar graph 3v —e 2 8. Hence for K, we have
3 x 4 — 6 = 6 which satisfies the property (3).

®

Thus K, is a planar graph. Hence proved. -

State and PI;OVE Euler’s Theorem

Statement. Consider any connected planar graph G = (V, E) having R rcgmm

/ e V vertices and E edges. Then
V+R-E=2
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Proof. Use induction on the number of edges to prove this theorem. Fundamental Concepts,

Assume that the edges ¢ = 1. Then we have two cases, graphs of which are A;’;:;:;::_’::L‘:Td
shown in Figs. 54 and 55. '

NOTES-

Fig. 54 ' Fig. 55
InFig.54wehave V=2and R=1.Thus2+1-1=2
In Fig. 55 wehave V=1and R=2. Thus 1 + 2 - 1 = 2. Hence, the result holds for

L(;,t us assume that the formula holds for connected planar graphs with K edges.
Let G be a graph with K + 1 edges.

Firstly, we suppose that G contains no circuits. Now, take a vertex v and find a
path starting at v. Since G is circuit free, whenever we find an edge, we have a new
vertex. At last we will reach a vertex v with degree 1. So we cannot move further as
shown in Fig. 56.

Now remove vertex v and the corresponding edge incident on v. So, we are left
with a graph G* having K edges as shown in Fig. 57.

S

Fig. 56. G. ' Fig. 57. G*.

Hence, by inductive assumption, Euler’s formula holds for G*.

Now, since G has one gore edge than G¥, one more vertex than G* with same
number of regions as in G*. Hence, the formula also holds for G.

Secondly, we assume that G contains a circuit and e is an edge in the circuit
shown in Fig. 58.
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.Va N 'Vg _I Vai .Vl‘- ”

Fig, 58 . -, Fig. 59
Now, as e is the part of a boundary for two regions. So, we only remove the edge
and we are left with graph G* having K edges (Fig. 59).
Hence, by inductive assumption, Euler’s formula holds for G*.

Now, since G has one more edge than G*, one more region than G* with same
number of vertices as G*. Hence the formula also holds for G whi€h{ verifies the
inductive step and hence proves the thecrem.

Example 5. Show that-V-E +R =2 for the connected planar graphs shown
in Figs. 60 and 61.

a c e g i ;
® [ ® ] [ ] \
b d f h i

Fig. 60 _ - Fig. 61
Sol. (i) The graph shown in Fig. 60 contains vertices V = 10, edges E = 9 and
regions R = 1. Putting the values, we have 10 -9 + 1 = 2. Hence proved.

(i) The graph shown in Fig. 61 contains vertices V = 8, edges E = 15 and regions
R = 9. Putting the values, we have 8 — 15 + 9 = 2. Hence proved.

4.12. NON PLANAR GRAPHS

A graph is said to be non planar if it cannot be drawn in a plane so that no edges
Cross.

L]
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For example : The graphs shown in Figs. 62 and 63 are non planar graphs. Fundamental Concepts,
s ' - * Aleorithms and

. ’ Applications
¢

a
N4 NS | woms
¢ ‘a I d . -

Fig. 62 Fig. 63

These graphs cannot be drawn in a plane so that no edges cross hence they are
non planar graphs.

Properties of Non Planar Graphs

A graph is non-planar if and only if it contains a subgraph homeomorphic to K
or K; o [KURATOWSKI’S THEOREM].

Example 6. Show that K, is non-planar. Fig. 64.

.V]

Sol. Clearly K is a connected. Also we show K, is non

planar. For,
. . v="5¢=10 Y2 vs
If, K, is planar then, e<£3v-6 .
= 10<3(5)-8
= 10<15-6 ’ vy vy
= 10 £ 9, a contradiction - Fig. 64

The graph K is non planar,

Remark. Ife < 3v - 6 does not hold, then G is always non planar. But if this condition
holds, then we cannot conclude that G is planar.

Theorem 6. Prove that every planar graph has at least one vertex of degree 5 or
less than 5.

Proof. Consider a graph G, whose all vertices are of degree 6 or more, then the
sum of the degrees of all the vertices would be greater than or equal to 6v. We know
that the sum of the degrees of the vertices is twice the number of edges. Therefore, we
have .

6v < 2e

e ’ N
' £ —= (1
or v 3 (1)

But, any planar graph have the property,

2e C -
<= e 9
r<g S : «(2)
Also, from Euler’s formula, we have

2=v—-e+r ..{8)
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Discreie Mathematics Now, putting the value of v and r from (1) and (2) in (3), we have

2
2S§—e+?e=0

Since, the statement 2 < 0 is not true, hence we conclude that there must exist

NQTES some vertex in G with degree 5 or less than 5.
EXERCISE 2
1.  Find the adjacency matrix A = {a;} of the graphs shown below :
v, v4. i v — vy
v, vy V2 Va
(@) | (b)

2. Draw the graph G corresponding to each adjacency matrix.

01010
10011 g 207
{ew)A=(0 0 0 1 1 (b)A=0122
. 11101 612 0
01110 _
8. (a) Consider the graph (Fig. I) G show in the given figure. Verify Euler Theoremie., V +
R-E=2
a )
ﬂ‘\ A
A C :
» E
E D
: N
Fig. 1. : ’ Fig. 1L

(b) Verify Euler Theorem i.e., V + R — E = 2 for the graph Fig. IL.
4. (a) Verify Euler’s formula for the following graphs :

ENTES

(b) Show that if G is a bipartite simple graph with u vertical and e edges, then e =

P | .
. (@) .

(b) (©)

5. Show that a connected graph G with n vertices must have atleast (n — 1) edges.

;o
{
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1.13. GRAPH COLOURING

Suppose that G = (V, E} is a graph with no multiple edges. A vertex colouring of
G is an assignment of colours to the vertices of G such that adjacent vertices have
different colours. A graph G is M-colourable if there exists a colouring of G which uses
M-colours.

Proper Colouring. A colouring is proper if any two adjacent vertices v and v
have different colours otherwise it is ¢alled improper colouring.

A graph can be coloured by assigning a different colour to each of its vertices.
However, for most graphs a colouring can be found that uses fewer colours than the
number of vertices in the graph.

Chromatic number of G

The minimum number of colours needed to produce a
proper colouring of a graph G is called the chromatic number
of G and is denoted by %(G).

The graph shown in F1g 65 is minimum 3-colourable,
hence x(G) =

Slmllarly, for the complete graph K; we need six colours
to colour K since every vertex is adjacent to every other vertex
and we need a different colour for each vertex. .. The chro-
matic number for K; is x(K,) = 6. Similarly, the chromatic Fig. 65
number of K, is x(K,,) = 10.

ILLUSTRATIVE EXAMPLES

Example 1. The chromatic number of K, is n.

Sol. A colouring of K, can be constructed using n colours by assigning a differ-
ent colour to each vertex. No two vertices can be assigned the same colour, since every
two vertices of this graph are adjacent. Hence the chromatic number of K = n.

Example 2. The chromatic number of complete bipartite graph K, where m
and n are positive integers is fioo.

Sol. The number of colours needed does not depend upon m and n. However,
only two colours are needed to colour the set of m vertices with one colour and the set
of n vertices with a second colour. Since, edges connect only a vertex from.the set of m
vertices and a vertex from the set of n vertlces no two adjacent vertices have the same
colour.

Note 1, Every connected bipartite simple graph has a chromatic number of 2 or 1,

2. Conversely, every graph with a chromatic number of 2 is bipartite.

Example 3. The chromatic number of gr&ph ¢,, where ¢, is the cyvcle with n-

vertices is either 2 or 3.

Sol. Two colours are needed to colour ¢,, where ¢, is even. To construct such a
colouring, simply pick a vertex and colour it black. Then move around the graph in
clockwise direction colouring the second vertex white, the third vertex black, and so
on. The nth vertex can be coloured white since the two vertices adjacent to it, namely
the (n — 1)th and the first are both coloured black as shown in Fig, 66.

Fundamental Concepis,
Alvorithms and
Applications

NOTES

Self-Insirnctional Material T



Discrete Mathematics

NOTES

Fig. 66

When 7 is odd and n > 1, the chromatic number of ¢, is 3. To construct such a
colouring, pick an initial vertex. First use only two colours and alternate colours as
the graph is traversed in a clockwise direction. However, the nth vertex rcached is-
adjacent to two vertices of different colours, the first and (n — 1)th. Hence, a third
colour is needed. (Fig. 67)

¢ Black® ©

o & White White @

Red

a g
Fig. 67
Example 4. Determine the chromatic number of the graphs shown in Fig. G8.
34 - a4 '
4, az 4, ag
a 2 a, a,
a, : 4
(@) ()
Fig. 68

/
Sol. The graphs shown in Fig. 68(a), has the chromatic number %(G) = 2.
The graph shown in Fig. 68(6) has the chromatic number x(G) = 2, when n is an
even number and (G) = 3, where n is odd. '
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Theorem 7.Ifan undirected graph has a subgraph K, then its chromatic number
is at least three. .

wi Fravdamental Concepts,
Afgorithms and
Applications

Proof. Let G be an undirected graph. As G contains a cc‘)fnplete graph K, which

is 3-colourable. . G cannot be coloured with one or two colours
WG 2 3, _ 1
Four Colour Theorem. Every planar graph is four colourable.
Five Colour Theorem. Every planar graph has chromatic number < 5.
Theorem 8. The vertices of every planar graph can be properly coloured with

five colours.

Proof. We will prove this theorem by induction. All the graphs with 1, 2, 3, 4 or
5 vertices can be properly coloured with five colours. Now let us assume that every
planar graph with n — 1 vertices can be properly coloured with five colours. Next, if we
prove that any planar graph G with n vertices will require no more than five colours,
we have done.

Consider the planar graph G with n vertices.

Since G is planar, it must have at least one vertex with degree five or less as
shown in theorem V. Assume this vertex to be ‘u’".

Let Gl be a graph of n — 1 vertices obtained from G by deleting vertex «’. The G,
graph requires no more than five colours (Induction hypothesis). Consider that the

vertices in G, have been properly coloured and now add to it ‘%’ and all the edges

incident on «. If the degree of « is 1, 2, 3, or 4, a proper colour to u can be easily
assigned.

Now, we have one case left, in which the degree of 12 is 5, and all the 5 colours
have been used in colouring the vertices adjacent to u, as shown in Fig. 69.

S

Colour 1 Colour 2

Colour 3
Colour 4

Fig. 69

. . i .
Suppose that there is a path in G, between vertices v, and v, coloured alternately
with colours 1 and 4 as shown in Fig. 70.

NOTES
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v,
Colour 4 0 Colour $

Colour 2

. Colour1

Colour 4 v,

Colour 3
Colour 4

Colour 1

Colour 4

Colour 3

Fig. 70

Then a similar path between v, and v,, coloured alternately with colours 5 and
3, cannot exist ; otherwise, these two paths will intersect and cause G to be non-planar.

Thus, if there is no path between v, and v, coloured alternately with colour 5
and 3 of all vertices connected to v, through vertices of alternating colours 5 and 3.
This interchange will colour vertex v, with colour 5 and yet keep G, properly coloured.
As vertex v, is still with colour 5, the colour 3 is left over with which to colour vertex u
which proves the theorem.

1.14. COVERING, INDEPENDENCE AND DOMINATION

“Definitions. An edge {, v} in a graph is termed to cover its incident vertices «
and v. .

A vertex in a graph is said to cover the edges with which it is incident.

If G = (V, E)is a graph and E’ ¢ E, then E’ is said to be an edge cover of G and
to cover G if for each vertex v € V, there in the sense that it covers all the edges of the
graph but no proper subset of it does so. However U does not correspond to the vertex
covering number because U, = {v,} is the unique minimum vertex cover and thus o, = I,
Also o, = 4 because the set of edges {e,, e,, 4, ¢,) is the minimum cdge cover.

In general, the edges (vertices) of any spanning tree, Hamiltonian path or
unicursal path of any connected graph G, constitute an edge (vertex) cover of G.

Let G be a graph with vertex set V.-We can make some remarks about edge
coverings in G. :

C(1) An edge covering of G can always be found so long as G does not contain

an isolated vertex. )

C(2) If | V| = n, where (n > 1), then any edge covering of G will contain at

least n/2 edges. If G = K , then a, = [(n + 1)/2].

C(3) Every edge covering includes every pendant cdge.

C(4) Itis possible to remove a subset of edges (possibly empty) from any edge
covering of G in order to create a minimal (but not necessarily minimum)
edge covering of G.

C(5) - Minimal edge coverings are acyclic.
The similar remarks are about vertex coverings.
C(6) A vertex covering exists for any graph G.

Self-lnstructional Material



C(7) IfG=K ,thenoy=n-1.
A vertex covering may have only a single clement. This is true for any
star. A graph which possesses a unique vertex called the centre with which
every edge is incident. Figure 71(e) depicts a star with centre v,.

C(8) It is possible to remove a subset of vertices (possibly empty) from any
vertex covering in order to create a minimal (but not necessarily minimum)
vertex covering.

(¢}
Fig. 71. (&) Cover, Independence and Dominance (b) Colouring (¢) Matching,

Theorem 9. An edge covering in a graph does not contain a path of at least three
edges if and only if it is minimal.

Proof. Let us consider an edge covering containing a path of at least three
edges. The second edge of the path can be removed, leaving an cdge covering. Hence
* the original covering is not minimal,

Suppose now that there exists an edge covering which does not contain a path of
at least three edges. In this case, each component of the graph is a star. Hence it is
tmpossible to remove an edge from an cdge covering of a star, the edge covering is
minimal,

We now consider the concept of independence.

Definitions. If G = (V, E) is a graph and E’ ¢ E, then E’ is said to be an edge.
independent if no two edges of E are adjacent.

It G=(V,E)is a graph and U ¢ V, then U is said to be an vertex independent if
no two edges of U are adjacent.

For a given graph G, the cardinality of the set of edges of G which is the largest
vertex-independent set of G is said to be the edge dependence number of G and is
" denoted by 3,(G) or ;.

For a given graph G, the cardinality of the set of edges of G which is the largest
vertex-independent set of G is called the vertex dependence number of G and is denoted
by B, (G} or B,. a

-~ .
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Discrete Mathematics * An independent set is termed maximal if none of its proper supcrsets is
independent. An independent set in a graph G is called ntaximum if there is no
independent set in G with a greater number of clements.

' We demonstrate these ideas with the graph in figure 71(a). Any one of the edges
NOTES of the graph constitutes an edge-independent set. Such a singleton set is at once maximal

and maximum. .

The set (v} is a maximal vertex-independent set. However it is not maximum

because of the existence of the {v,, vy, v;, v,}. Thus in this graph ;=4 and B, = 1.

We make some remarks about edge-independent sets in ‘any graph G. '

(1) An edge-independent set can always be found in G contains at least one
edge. Any single edge of G constitutes such a set.

1(2) IfG =K, thecomplete graph on n vertices, then B, = [n/2], the integer part
of n/2,

I(3) Every pendant edge in G belongs to at least one maximal edge-
independent set.

1(4) It is possible to add a subset of edges (possibly empty) to any edge-
independent set in G in order to create a maximal {but not nccessarily
maximum) edge-independent set in G.

We can make similar observations about vertex-independent sets in G:

I(5) A vertex-independent set exists for G. (Any single vertex of G constitutes
such a get)- - -—

"I6) I G=K, thenB,=1.

I{7) Every pendant vertex in G belong‘-; to at least one maximal vertex-
independent set.

I(8) . It is possible to add a.subset of vertlceq (possibly empty) to any vertex-
independent set in G in order to create a maximal (but not nccessarily
maximum) vertex-independent set in G. |

We now give theorems linking the concepts of covering and independence.

1.15. SHORTEST PATH IN WEIGHTED GRAPHS

., Weighted graphs can be used to represent highways connecting the different
cities. The weighted edges represent the distance between different cities and the
vertices represent the cities. A common problem with this type of graph is to find the
shortest path from one city to another ¢ity. There are many ways to tackle this problein
one of which is as follows :

Shortest Paths from Single Source. We will find shortest paths from a single
vertex to all other vertices of the graph. The first algorithm was proposcd by E. Dijkstra
in 1959. Some common terms related with this algorithm are as follows :

Path Length. The length of a path is the sum of the weights of the odgcq on
that path.

Source. The starting vertex of the graph frm‘n which we have to start to find
the shortest path.

Destination. The termmal or last vertex upto which we have to find the path.
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1.16. DIJKSTRA’S ALGORITHM

This algorithm maintains a set of vertices whose shortest path from source is
already known. The graph is represented by its cost adjacency matrix, where cost
being the weight of the edge. In the cost adjacency matrix of the graph, all the diagonal
values are zero. If there is no path from source vertex V_ to any other vertex V,, then it
is represented by + . In this algorithm, we have assumed all weights are positive.

L. Initially there is no vertex in sets.

2. Include the source vertex V_in S. Determine all the paths from V_to all other
vertlces without going through any other vertex.

3. Now, include that vertex in S which is nearest to V_ and find shartcst paths to
all the vertices through this vertex and update the values. ,

4. Repeat the step 3.until n — 1 vertices are not included in § if there are n
vertices in the graph.

After completion of the process, we get the shortest paths to all the vertices
from the source vertex.

Example 5. Find the shortest path between K and L in the graph shown in
Fig. 72 by using Dijkstra’s Algorithm.

Fig. 72

Sol. Step I. Include the vertex K in S and determine all the direct paths from K
to all other vertices without going through any other vertex.

S Distance to all other vertices
K a b ¢ d L
K 0 4(K) oo 2(K) o0 20(K)

Step II. Include the vertexin S which is nearest to K and determine shortest
paths to all vertices through this vertex and update the values. The nearest vertex
is c.

S Distance to all other vertices
K a b ¢ d L
K, ¢ 0 3K, ¢} 7K, ¢) 2(K) 8(K, ¢) 18(K, ¢)
Step IIIL. The vertex which is 2nd nearest to K is ¢, included in S.
S Distance to all other vertices
K a b ¢ d L

Keca 0 3Ko Ko 20 7Keca 18K,

Fundamental Concepts,
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Step IV. The vertex which is 3rd nearest to K is b, is included in 8.
S . Distance to all other vertices
K a b c d L
K, e a b 0 3K, ) 7K, ) 2(Ky 7K, c, a)8(K,c, b)
Step V. The vertex which is next nearest to K is d, is included in S.
S . Distance to all other vertices
K .a b ¢ d ) L
K,ca b d 0 3K, e) MK, e) 2AK) 7K, ¢ a) 8K, ¢, ).
Since, n — 1 vertices included in S. Hence we have found the shortest distance
from K to all other vertices.
Thus, the shortest distance between K and L is 8 and the shortest path is K, ¢,
b, L. ) ’

Example 6. Show that e 23 V - 6 for the connected planar graphs shown in
Figs. 73 and 74. '

V? V&
Fig. 73 ‘ Fig. 74 -
Sol. () The graph shown in Fig. 73 contains vertices V = 8 and edges e = 17.
Putting the values we have e'= 3 x 8 ~ 6 = 18 2 17. Hence proved.

(i) The graph shown in Fig. 74 contains vertices V = 5 and édges ¢ = 6. Putting
the values, we have 3 x 5 — 6 = 11 > 6. Hence proved.

EXERCISE 3

1. Find the chromatic numbers of the following graphs.
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{e)

2. Find the shortest path and its length from s to ¢ by using Dijkstra’s algorithm in the
following graph.

(a)

(b)

6

4 G
2
3
]
a Z b
3
5
& r3
2 e 6

. 4
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1.17. TREE

A graph which has no ceycle is called an acyclic graph. A tree is an acyclic graph
or graph having no cycles.

A tree or general tree is defined as a non-empty finite set of elements called
vertices or nodes having the property that each node can have minimum degree 1 and
maximum degree n. It can be partitioned into n + 1 disjoint subsets such that the first
subset contains the root of the tree and the remaining n subsets contains the elements
of the n subtree. (Fig. 75) :

Fig. 75. General Tree.

Self-Instructional Material
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Discrete Mathematics Directed Trees

A directed tree is an acyclic directed graph. It has one node with indegree 1,
while all other nodes have indegree 1 as shown in Figs. 76 and 77.

NOTES

- Directed trees

Fig. 76

Fig. 77

The node which has outdegree 0 is called an external node or a terminal node or
a leaf. The nodes which has outdegree greater than or equal to one are called internal
nodes or branch nodes.

Ordered Trees

If in a tree at each level, an ordering is defined, then such a tree is called an
ordered tree,
e.g., the trees shown in Figs. 78 and 79 represent the same tree but have different
orders.

Fig. 79
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1.18. ROOTED TREES

If a dirccted tree has exactly one node or vertex called root whose incoming
degree is 0 and all other vertices have incoming degree one, then the tree is called
rooted tree.

* A tree with no nodes is a rooted tree (the empty tree).

* A single node with no children is a rooted tree.

1.19. BINARY TREE

If the outdegree of every node is less than or equal to 2, in a directed tree then
the tree is called a binary tree. A tree consisting of no nodes (empty tree) is also a
binary tree.

1.20. TREE TERMINOLOGY

(a) Root. A binary tree has a unique node called the root of the tree.

(b) Left Child. The node to the left of the root is called its left child.

(c) Right Child. The node to the right of the root is called its right chiid.
: {d) Parent. A node having left child or right child or both is called parent of the
nodes.
(e) Siblings. Two nodes having the same parent are called siblings.
() Leaf. A node with no children is called a leaf. The number of leaves in a
binary tree can vary from one (minimum) to half the number of vertices (maximum) in
a tree.

(g) Ancestor. If a node is the parent of another node, then it is called ancestor
of that node. The root is an ancestor of every other node in the tree.

(h) Descendent. A node is called descendent of another node if it is the child of
the node or child of some other descendent of that node. All the nodes in the tree are
descendents of the root.

(1) Left Subtree. The subtree whose root is the left child of some node is called
the left subtree of that node.

(/) Right Subtree. The subtree whose root is the right child of some node is
called the right subtree of that node.

(k) Level of a Node. The level of a node is its distance from the root. The level
of root is defined as zero. The level of all other nodes is one more than its parent node.
The maximum number of nodes at any level N is 2N,

. (1) Depth or Height of a Tree. The depth or height of a tree is defined as the
maximum number of nodes in a branch of tree. This is one more than the maximum
level of the tree i.e., the depth of root is one. The maximum number of nodes in a
binary tree of depth d is 2% ~ 1, whered > 1.

(m) External Nodes. The nodes which has no children are called external nodes
or terminal nodes.

{n) Internal Nodes. The nodes which has one or more than one children are
called internal nodes or non-terminal nodes.
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Discrete Mathematics Theorem 10. Let G be a graph with more than one vertex. Then the following
are equivalent :

(Z) G is a tree.
NOTES . (i) Each pair of vertices is connected by exactly one simple path.

(iii) G is connected, but if any edge is deleted then the resulting graph is not con-
nected.

(iv) G is cycle tree, but if any edge is added to the graph then the resulting graph
has exactly one cycle. -

Proof. To prove this theorem, we prove that (i) = (i), (if) = (i), _(iii) = (iv)and
finally ({v) = (). The complete proof is as follows :

(i) = (ii) Let us assume two vertices # and v in G. Since G is a tree, so G is
connected and there is at least one path between z and v. More over, there can be only
one path between u and v, otherwise G will contain a cycle.

(1) = (i) Let us delete an edge e = (i, v) from G. It means e is a path from « to
v. Suppose the graph result from G — e has a path p from « to v. Then P and e are two
distinct paths from u to v, which'is a contradiction of our assumption. Thus, there does
not exist a path between 1 and v in G = ¢, s0 G — ¢ is disconnected. .

(#i1} = (1v) Let us suppose that G contains a cycle ¢ which contains an edge e =
{r, v}. By hypothesis, G is connected but G’ = G —.e is disconnected with « and v
belonging to different components of G’. This-contradicts the fact that © and v arc
connected by the path P = C — ¢, which lies in G’ Hence G is cycle free.

Now, Let us take two vertices x and y of G and let H be P
the graph obtained by adjoining the edge ¢ = (x, ¥} to G. Since G
is connected, there is a path P from x to ¥ in G ; hence C = Pe

forms a cycle in H. Now suppose H contains another cycle C,. X y
Since G is cycle free, C; must contain the edge e, say C, = Pye.

Then P and P, are two paths in G from x to y as shown in P’
Fig. 80. Thus, G contains a cycle, which contradicts the fact that Fig. 80

G is cycle free. Hence H contains only one cycle.

(iv) = (i) By adding any edge C = (x, ¥) to G produces a cycle, the vertices x and
y must be connected already in G. Thus, G is connected and is cycle is free i.e., Gis a
tree. - = ‘

ILLUSTRATIVE EXAMPLES

Example 1. For the tree as shown in Fig. 81.
(@) Which node is the root ?
(i1) Which nodes are leaves ?

(ii) Name the parent node of each node.
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Fig. 81

S_ol.\(i) The node A is the root node.
(if) The nodes G, H, I, L, M, N, O are leaves.

(i} Nodes ' Parent
B,C ' A
D,E B
F C
G H D
ILJ E
K F
LM J
N, O K

Example 2. For the tree as shown in Fig. 82,

Fig. 82
(i) List the children of each node. (i) Eist the stblings.
(zit) Find the depth of each node. (iv) Find the level of each node.
Sol. (i) The children of each node is as follows :
| - 'Node Children
}} B,C
‘B D,E
- C F

D G, H

E I,Jd

K L,M
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(ii) The siblings are as follows :

Siblings
Band C -
DandE -
Gand H
Iand J
L and M are all siblings. _
(ifi) Node Depth or Height
A - ’ 1
B,C 2
D,E,F 3
G, HILJK 4
_ LM 5.
(tv) Node Level
A 0
B,C 1 .
D EF ' 2
G, HI1J K 3
L, M 4

Example 3. (a) How will you differentiate between a general tree and « binary

tree ¢

(b) Define a rooted tree with an example and shotw how it may be viewed as

directed graph.

Sol. (a)

General Tree

Binary Tree

. There is no such tree having zero nodes

or an empty general tree.

If some node has a child, then there is no
such distinction.

The trees shown in figure are same, when
we consider them as general trees.

3.

. There may be an empty binary tree.

1f some nodes has a ¢hild, then it is dis-
tinguished as a left child or a right
child,

The trees shown in figure are distincet,
when we consider them as binary trecs,
beeause in (i), 4 is right child of 2 while
in (fi), 4 is left child of 2.

s
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(b) Rooted tree: We first define the term ‘directed tree’. A directed graph is  Fundamenial Concepis.
said to be a directed tree if it becomes a tree when the dircctions of the edges are '”f‘"';f{"”f “-‘f”’
ignored. For example, the Fig. 83 is a directed trec. Applicattons

\\ o C NOTES
// Dir:cted tree \.:\

Fig. 83

A directed tree is called a roofed tree if there is exactly one vertex whose incoming
degree is 0 and incoming degree of all other vertices are 1. The vertex with incoming
degree 0 is called the root of the rooted tree. The Fig. 84 is an example of a rooted tree.

Rooted tree
Fig. §4 T

In arooted tree, a vertex whose outgoing degree is 0 is called a leaf or a terminal
code and a vertex whose outgoing degree is non zero, is called a branch node or an
internal node.

Rooted tree may be viewed as directed graph. We know that a tree is a
graph which is connected and without aﬁ}\cycles. A rooted tree T is a tree with a
designated vertex r, called the root of the tree. Since there is a unique simple path
from the root r to any other vertex v in T, this determines a direction to the edges of T.
Thus T may be viewed as a directed graph.

1.21. SPANNING TREE

Consider a connected graph G = (V, E). A spanning tree T is defined as a sub-
graph of G if T ig a tree and T includes all the vertices of G.

Example 4. Draw all the spanning trees of the graph G shown in Fig. 85.

A 3

B C o °F

" Fig. 85. Graph G.
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Sol. All the spanning trees of graph G is as shown in Fig, 86.

A E A E A E

(M ' (ii) (iii)
Fig. 86

1.22. MINIMUM SPANNING TREE

Consider a connected weighted graph G = (V, E). A minimal spanning tree T of
the graph G is a tree whose total weight is smallest among all the spanning trees of

-the graph G. The total weight of the spanning tree is the sum of the weights of the

edges of the spanning trees.

The minimum weight of the spanning tree is unique but the spanning tree may
not be unique because more than one spanning tree are possible when more than one
edges exist having the same weight.

1.23. KRUSKAL'S ALGORITHM

This algorithm finds the minimum spanning tree T of the given connected
weighted graph G. ’

1. Input the given connected weighted graph G with n vertices whose minimum
spanning tree T, we want to find. ,

2. Order all the edges of the graph G according to increasing weights.
3. Initialise T with all vertices but do not include any edge.

4. Add each of the graph G in T which does rot form a cycle until # — 1 cdges are
added. p

Example 5. Determine the minimum spanning tree of the weighted graph shown
in Fig. 87.

. A 6 8 5 c
3
=TT B 4 4
- 7
2
D 6 E 5 F
Fig. 87
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Sol. Using Kruskal's algorithm, arrange all the edges of the weighted graph in  Fimdamental Conceps.
increasing order and initialise spanning tree T with all the six vertices of G. Now start '”"*"”"f’l_””-f ‘”f""
adding the edges of G in T which do not form a cycle and having minimum weights Applications
until five edges are not added as there are six vertices. (Fig. 88).

NOTES
Edges Weights Added or Not Minimum Spanning Tree
(B, E) 2 Added A B . N
(C,D) 3 Added \ '
(A, D) 4 Added
(C,T) 4 Added 4 4
(B, ©) 5 Added »

(B, F) 5 Not added ) .
(A.B) 6 Not added D E F
(D, E) 6 Not added Fig. 88
(A, F) 7 Not added. '

Example 6. Find a minimum spanning tree of the labelled connected graph
shown in Fig. 89. :

Fig. 89

Sol. Using KRUSKAL’S ALGORITHM, arrange all the edges of the graph in
increasing order and initialize spanning tree with all the vertices of G. Now, add the
edges of G in T which do not form a cycle and have minimum weight until n — 1 cdges
are not added, where n is the number of vertices. The spanning tree is shown in Fig. 90.

Edges Weights Added or Not Minimum Spanning Tree
(B, D) 3 Added '

(A, E) 4’ Added

(D, F) 4 Added

(B, F) 5 Not added

(C, E) 6 Added

(A, O) 7 Not added

(B, C) 7 Added

(A, F) 8 Not added , Fig. 90

(E, B} 9 Not added

The minimum weight of spanning tree is = 24.

Example 7. Find all the spanning trees of graph G and find which is the mini-
mal spanning tree of G shown in Fig. 91. !
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a d
® 3 -
2 8 2 1
, °
b 3w ¢ !
Fig. 91

Sol. There are total three spanning trees of the graph G which are as shown in
Fig. 92, ' '

a d e
¢ 2

L - L

()]

\

b ® ¢ . - f b ¢ o f

(i)
Fig. 92

(i)

To find the minimal spanning trce, use the KRUSKAL'S ALGORITHM. The
minimal spanning tree is shown in Fig. 93.

Edges Weights Added or Not Minimal Spanning Tree
(E, F) 1 Added 3 — 3
(A,B) 2 Added
(C, D) 2 Added
(B, C) .8 Added 2 2 1
(D, E) 3 Added
(B, D) 6 - Not added.

b 3 c ;'

Fig, 93,

The first one is the minimal spanning having the minimum weight = 11.

Example 8. What are the properties of minimum spanning tree.
Sol. Properties of Minimum spanning tree .

A minimum spanning tree T of a graph G is a tree whose total weight is the
smallest among all the spanning trces of the graph G. It has the following propertics.

(¢) The total weight of the spanning tree is the sum of the weights of the edges of
the spanning trees. . |

(#2) The minimum weight of the spanning tree is unique.
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1.24. PRIM'S ALGORITHM

Mearithms ared

Let G be a graph with n vertices and ¢ ed'ges. '
Step 1. First assign a label for all vertices of G

Step 2. Form a matrix such that whose elements arc the weight of the edges of

G (as keep the incidenshipe of end vertices).
Step 3. Set the weight of non existent edge as .

Step 4. Select the smallest entry from first row of the matrix. (that is to a
vertex other than V; and V., has smallest entry in the row 1 and column j) let this new
vertex be V.. Step 4: Next regard V,, V; and V, as one sub graph and repeat the process

until  all the n vertices have been connected by n - 1 edges.

ILLUSTRATIVE EXAMPLES

Example 1. Find the minimal spanning tree for the following graph by using

" Prim’s algorithm

Applications

NOTES

Vg LA Vs
9
10
. Va
13
i
vy
Vo
Fig. 94
Sol.
v, v, v, v, v, v,
VI —_ o 10 e o
v, 9 — 13 15 = 6
v, o< 13 — 18 9 G
2 10 15 18 — 11 12
v, o 6 6 12 8 - |
/,
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Diverete Mathematics

NOTES

The edges are in the minimal s{)anning tree arc
(VL V) 5 (V,, V) 5 (V, V) 5 (V, V) 5 (V,, V) > (V, V)

The minimal spanning tree

Ve,

Fig. 95

Example 2. Find the minimum spanning tree by using Prim’s algorithm.

10
v 6 v, 4 v, 4 v
2
2 f 2 2
3 4
v, v,
6 Vi 4 v; 6
11
Fig. 96
Sol.
v, v, \£ v, vy \: \& Vi
v, | — 2 4 (1 o 11 « 6
v, 2 — 6 o 10 [+ [+ <
A 4’ 6 — 4 17 . ¢ o 2
IV4 o V3 4 — 6 u 2 3
V. o 10 43 6 — 2 q "
Vi 11 o ¢4 V4 2 — G v
v, o o o 2 4 ¢} — 1
Vg 6 o 2 3 « ¥ 4 —

Self-Instructional Marerial




The edges are selected Fundamental Concepis,

(Vy V) (Vy U5) = OV, Vg = (V3 0 = (V, V) (¥, V) Alorins o
The minimal spanning tree is
NOTES

Fig. 97

1.25. APPLICATIONS OF GRAPH THEORY

Graph theory is playing an increasingly important role in the design, analysis,
and testing of computer programs. Its importance is derived from the fact that flow of
control and flow of data for any program can be expressed in terms of directed graphs.
From the graph representing the flow of control, called the program graph, many other
can be derived that either partially or completely preserve the program control struc- ;
ture. Onc derived graph known as a cyclomatic tree is of particular value in program
testing. It is so named because the number of leaves of the tree is equal to the cyclomatic
number of the program graph.

Graph theory is becoming increasingly significant as it is applied to other areas
of mathematics, science and technology. It is being actively used in fields as varied as
biochemistry (genomics), electrical engineering {communication networks and coding
theory), computer science (algorithms and computation) and operations research (sched-
uling). The powerful combinatorial methods found in graph theory have also been
used to prove fundamental results in other areas of pure mathematics.

The best known of these methods are related to a part of graph theory called
matchings, and the result from this area are used to prove Dilworth’s chain decompo-
sition theorem for finite partially ordered sets. An application of matching in graph
" theory shows that there is a common set of left and right coset representatives of a
subgroup in a finite group. This result played an important role in Dharwadker’s 2000
;Ji‘oof of the four-colour theorem. The existence of matching in certain infinite bipar-
tite graphs played an important role in Laczkovich’s affirmative answer to Tarski’s
1925 problem of whether a circle i piecewise congruent to a square. The proof of the
existence of a subset of the real numbers R that is non-measurable in the Lebesgue

. sense is due to Thomas. Surprisingly, the theorem can be proved using only discrete
mathematics (bipartite graphs). There are many such example of applications of graphs
to other parts of mathematics.

Applications of graphs theory are primarily, but not exclusively, concerned with
labelled graphs and various specializations of these. Structures that can be repre-
sented, as graphs are ubiquitous, and many problems of practical interest can be rep-
resented by graphs. The link structure of a website could be represented by a directed
graph: the vertices are the web pages available at the website and directed edge from
page A to page B exists if and only if A contains a link to B. A similar approach can be
taken to problems in travel, biology, computer chip design, and many other fields. The
development of algorithms to handle graphs is therefore of major interest in computer
sclence.
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Discrete Mathematics Assigning a weight to each of the graph can extend a graph structure. Graphs
with weights, or weighted values. For example if a graph represents a raad network,
the weights could represent the length of cach road. A digraph with weighted edge in
the context of graph theory is called a network.

NOTES Networks have many uses in the practical sidc of graph theory, network analy-
sis (for example, to model and analyze traffic networks). Within netwerk analysis, the
definition of the term “network” varics, and may often refer to a simple graph.

Many applications of graph theory exist in the form of network analysis. These
split broadly inta three categories. Firstly, analysis to determine of the graph. A vast
number of graph measures exist, and the production of useful ones for various do-
mains remains an active arca of research. Secondly, analysis to find a measurable
quantity within the network, for example, for transportation networks, the level of
vehicular flow within any portion of it. Thirdly, analysis of dynamical propertics of
networks.

Graph theory is also used to study molecules in chemistry and physics. In con-
densed matter physics, the three dimensional structure of complicated simulated atomic
structures can be studied quantitatively by gathering statistics on graph-theoretic
properties related to the topology of the atoms. For cxample, Franzblau’s shortest:
path (SP) rings. In chemistry a graph makes a natural model for a molecule, where
vertices represent atoms and edge bonds. This approach is especially used in com-
puter processing of molecular structures, ranging from chemical editors to database
searching. o '

Graph theory is also widely used in sociology as a way, for example, to measure
actors’ prestige or to explore diffusion mechanism, notably through the use of social
network analysis software,

Graphs in Computer Science

In computer science, graphs are used in many arcas such as in computer de-
signing, scheduling problems in operating system, file management in database man-
agement system, data-flow control between networks, network of interconnected net-
works ete. In day-to-day applications, graphs find their importance as representations

of many kinds of physical structure.
The structure of digital computer is shown in figurc 98.

Alu

A 4
Control
unit
F

Input ——» ——> Cutput

r
Main
memory

Secondary
auxilliary memory

Fig. 98
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and in form of graph as Fundamenteal Concepty,
' : Agorithms wnd

Applications

NOTES

L 4
4
O

Fig. 99

We may use the cutset to show the different main components of computer such
as input device, output device, CPU and auxilliary secondary memory.

The theoretical or mathematical concepts of graphs such as conncctedness,
bioconnected, bipartite, planarity, duality etc..are used for designing the circuits and
simulate the effects of implementation before actual implementation.

. Concept ofplanar graph is used for designing the internal architecture of
computer in chip (Motherboard).

¢ The edges i.e., links/buses used to connect the components/nodes may be
directed or undirected. Normally all the properties of digraphs can be used
to handle the problem of data transmission.

* In case of multiprocessor systems, components may be partitions into a num-
ber of separate modules without loss of integrity of system by the help of cut- \
set theory. - N

» Maximum hwof data through links can be determincd by the concept of :
network flow with the help of weights, where weights arc nothing but the
storage capacity of each bus, .

» Minimal spanning tree help us to determinc the path from processor to a
memory module in multistage interconnection networks of processors and v
memories. \

\ « Concept of connectivity, separability and vulnerability is applicable on con- N
nected graphs such the after the separation of the remaining components .
1 [multiprocessor) can still continue to “communicate” the data. .

Miscellaneous: Appllcatlons

This is v1rtually no end to the list of problems that can be solved with graph
theory

In a modern information retrieval system each document carries a number of
index terms (also called descriptors). The index terms are represented as vertices and
if two index terms v, and v, are closely related (such as “graph” and “tree”) they are
H joined with an edge (v,, V). The simple, undirected large graph thus produced is called
sitmilarity graph. For retrleval one specifies some relevant index terms, and the maxi-
mal complete subgraph that includes the corresponding vertices will give the completc
list of index terms which specify the heeded documents.
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Discrete Mathematics Graphs have been used in linguistics to depict parsing dingrams. The vertices

160

represent words and word strings and the edges represent certain syntactical rela-
.tionships betwecen them. , B
Digraphs under the name sociograms have been used to represent relationships
NOTES among individuals in a socicty. Members are represented by vertices and the relation-
ship by directed edge connectdness, scparability, complete subdigraphs, size of frag-
ments and so forth, in a sociogram can be given immediate significance.
Graph theory has also been used in cconomics, logistic cybernetics, artificial
intelligence, pattern recognition, genetics theory, fault diagnosis in computers.

EXERCISE 4

1. Find all spanning trees of the graph shown belaw :

2. Find all spanning trees of Lthe graph shown in the following figure.

3. Find the minimal spanning tree of the following graph

2 1

2 2 v 1 2
2 1

3 3 j 1 3
3 3

4. Show that the sum of the degrees of the vertices of a tree with » vertices is 2n — 2,
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| | SUMMARY | . -

The g:aph consist of points or nodes called vertices whwh are connected to each oLher by
wav of lines called cdges. -

A graph containing only vertices and no edge is called a‘diserete or null graph.
Two vertices are called adjacent if they are connected by on edge.

The path is called simple one if no edge islrepeated in the path.

A gll‘é'l(p’lh G is said to be planar if it can be drawn in a plane so that no edges cross.

A gfzi;i"h G is said te be non-planar if it cannot be drawn in a plane so that no edges cross.

A colouring is proper if any two adjacent vertices u# and v have different colours other-
wise it is called improper colouring.

The minimum number of colours needed to produce a proper colouring of a graph G is
called the chromatic number of a graph G.

A vertex in g graph is said to cover the edges with which it is incident.

An edg\e in a, graph G is called to dominate those other edges in G with which it is

“adj q?:\ent

Dl}lhra 8 algorlthm mamtams a set of vertices whose shortest path from source is already
known,

A tree is an acyclic graph or graph having no cycles.
A directed tree is an acyclic directed graph.

If the ontdegree of every node ig less than or equal to 2, in a directed tree then the tree
is called a binary tree.

G.

TEST YOURSELF

.

What is the difference betwe\en di}'ected and undirected graph?
Differentiate between paths and Circuits.

Let G be a finite connected planner graph with at least three vertices, Show that G has
at least onc vertex of degree 5 or less.

{a) Suppose a graph G contains two distinct paths from a vertex a to vertex . Show that
G has a eyele, .-

(L) Ifa gmph G has more than two verticals of odd degree, then prove that there can be
no Kuler Path. -7

Draw the following graphs - .
(@) K, Tt~ o - (K,

SO K,

If G i€ a simple, connected and planner graph with more than one edge, then
MN2jE]|23|R| ’

(it | B <3|V |~6, where | E | denotes the number edges, | R |, the number of
1eg10n‘= and | V |, the number of vertices: \

Ay

“Show that K‘.L 4 18 non-planar graph. CN

Kruskal’s algorithm finds the minimum spanning tree T of the connected weighted g'raph1|1

Fundamental Concepts,
Algovithms and
Applications

NOTES
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Diserete Mathematics 8. Find the shortest path, by using either Breadth first search or DI]kHtI‘d $ .'.h.:mlthm
: from P to Q in the following weighted graph. -

A, 3 A, 6 A,

N

vores | = oL NS

9. Find the chromatic number of the following graphs.

<N
™\

'10. Draw all trees with exactly six vertices.
. 11. Draw all trees with five or fewer vertices.
12. Find the number of trees with seven vertices.

13. Find a minimum spanning tree of the weighted graph shewn below:

14. Discuss the'various applications of graph in computer science in detail.
15. Draw graphs of the following chemical compounds:
(a) CH, B (b) C,H,

(e) CH, @ N,0,

16. Name 10 situations that can be represent by means of graphs. Explain what the vertices
and the edge denote.

1
102 Self-Instructional Material



