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• Summary
• Test YourselfNOTES

1.1. OBJECTIVES

After going through this unit, you will be able tt) discuss about various algebraic 
structures like groups, rings and field. Apart from this, you will be able to understand 
the concept of vector spaces, linear transformations and bilinear transformations.

1.2. INTRODUCTION

In the present units, we introduce the concept of algebraic system, binary 
operations and groups. The study of cyclic groups, normal groups, group homomorphism 
etc., help us in understanding various applications of computer science. Groups play 
an important role in coding theory. This unit also includes the concept of rings, integral 
domain, field and vector spaces.

We shall acquaint ourselves with the notion of a linear transformation (or lin­
ear function or mapping) and its various properties. The significance of linear trans­
formations arises form the fact that we can pass from one vector space to another by 
means of linear transformations. Linear transformations are classified into (i) onc- 
one or injective, (u) onto or surjective and (m) both one-one and onto or bijectivo. We 
shall also deal with isomorphism of vector spaces.

1.3. ALGEBRAIC STRUCTURES

If there exists a system-suc,h__that it consists of a non-empty set and one or more 
operations on that set, then that system is called an algebraic system. It is generally 
denoted by (A, opj, 0P2, •••> op„), where A is a non-empty set and op^, op^, ..., op^ are 
operations on A.

An algebraic system is also called an algebraic structure because the opera­
tions on the set A define a structure on the elements of A.

1.4. BINARY OPERATIONS

Consider a non-empty set A and a function f such that /": A x A ^ A is called a 
binary operation on A. If « is a binary operation on A, then it may be written asa * h. 

A binary operation can be denoted by any of the symbols -t-, *, ©, A, □, v, a etc.
The value of the binary operation is denoted by placing the operator between 

the two operands.
e.g., ' (i) The operation of addition is a binary operation on the set of natural numbcr.s.

Hi) The operation of subtraction is a binary operation on set of integers. But, the 
operation of subtraction is not a binary operation on the set of natural numbers because 
the subtraction of two natural numbers may or may not be a natural number.

2 Sclf-lnsimciional Muicmil
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[Hi) The operation of multiplication is a binary operation on the.set of natural 
numbers, set of integers and set of complex numbers^

(ill) The operation of set union is a binary operation on the set of subsets of a 
universal set. Similarly, the operation of set intersection^is a binary operation on the 
.set of subsets of a universal set.
Tables of Operation

Consider a non-empty finite set A = Iqj, Og, Oj, a,,). A binary operation on A 
can be described by means of table as shown in Fig. 1.

NOTES

"2 a

a,

«2 I

n.

a

Fig. 1

The empty in the jth row and ith column represent the element a-*a^.

ILLUSTRATIVE EXAMPLES

Example 1. Consider the set A = II, 2, 3} and a binary operation " on the set A
defined by

a ’f b = 2a -i- 2b..
Represent operation * as a table on A.

Sol. The table of the operation is shown in Fig. 2.

1 2 .3■

6 81 4
6 102 8

123 8 10

Fig. 2

Properties of Binary Operations
There are many properties of the binary operations which are as follows :
1. Closure Property. Consider a non-empty set A and a binary operation * on A. 

Then A is closed under the operation if a * ^ ^ A, where a and b are elements of A.
For example, the operation of addition on the set of integers is a closed opera­

tion. i.e,.. if a, 6 e Z, then a + beZVa, baZ. i
I

Example 2. Consider the set A = II, 3, 5, 7,\ 9, .../, the set of odd +ve integers. 
Determine whether A is closed under (i) addition (ii) multiplication.

Sol. {i)i The set A is not closed under addition because the addition of two odd 
numbers produces an even number which does not belong to A.

Sclf-lnsinwlioiiol Mciieritd 3



(ii) The set A is closed under the operation multiplication because the multipli­
cation of two odd numbers produces an odd number. So, for every o, b e'^A, we have a 
« 6 € A.

Disrn'lc Malhmuuics

2. Associative Property. Consider a non-empty set A and a binary operation 
on A- Then the operation * on A is associative, if for every o 6, c, e A, we have (a b) * 

c = a w (6 * c). '

I'.*-

NOTES

Example 3. Consider the bina ry operation on Q, the set of rational numbers.
idefined by '

a * b = a + b - ah V a, b ^ Q. 
Determine whether is associative.

Q, then bySol. Let us assume some elements a, b, c e
(a * b) * c - (a + b - ab) ■* c = (a + b~ ab) + c - (a + b ~ ab)c

-a + b — ab + c — ca - be + abc = a + b + c —ab —ac — bc + abc.

nition

Similarly, we have
a {b ’^ c) = a + b + c — ab — oc — be + abc 
(a * b) * c = a ‘ (b '■■■ c).Therefore,

Hence * is associative.
3. Commutative Property. Consider a non-empty set A and a binary operation 

* on A. Then the operation on A is commutative, if for every a, 6 e A, we have a * b 
= b ■■ a.

Example 4. Consider the binary operation * on Q, the set of rational numbers,
defined by \

+ 6- V a, 6 e Q 
Determine whether * is commutative.

*'v

Sol. Let us assume some elements a, ft e Q, then by definition 
a « 6 = = b^'-y a^ = b » a

a *

Hence ’1= is commutative.

Example 5. Consider the binary operation * and Q, the set of rational numbers
defined by

ab
j V a/6 6 Q.

Determine whether * is (i) associative (ii) commutative. 
Sol. (i) Let a, b e' Q, then we have

a * 6 =

a6 _ ba
Y~~2a * b = = b * a

Hence * is commutative.
(ii) Let a, b,c s Q, then by definition we have

ab . cab' a6c2(a ■' 6) * c = *c =
I 2 ) 2 4

a6c
’6c'I 2
-TJ" 2

abc
Similarly, a * (6 * c) = a '' 4

4 Sclf-ln.aniciional Maierial



Therefore,
Hence, * is associative.
4. Identity. Consider a non-empty set A and a binary operation « on A. Then 

the operation * has an identity property if there exists an element, e, in A such that 
a * c (right identity-).^ c ^(left identity) = a V a e A.

Theorem 1. Prove that Cj = e/' where e^ is a right identity and e^" is a left 
identity of a binary operation.

a * {b * c) = a > (b c) Fiinikimcnial Concepts 
anil Vectors

NOTES

«■

■ Proof. We know that is a right identity.
Hence, ...(1)
Also, we know that e^" is a left identity. 
Hence, V-^e,' = c/
From (1) and (2), we have ef = Cj".

...(2)

Thus, we can say that if e is a right identity of a binary operation, then e is also
a left identity.

1.5. SEMI-GROUP

Let us consider, an algebraic system (A, «), where * is a binary operation on A, 
Then, the system (A, *) is said to be a semi-group if it satisfies the following proper­
ties : ' ' ■

1. The operation * is a closed operation on set A.
2. The operation * is an associative operation.

Example 6. Consider an algebraic system (A, *), where A = {1, 3, 5, 7, 9,.../, the 
set of all positive odd integers and * is a binary operation means multiplication. 
Determine whether (A, *) is a semi-group.

Sol. Closure property. The operation * is a closed operation because multipli­
cation of two -i-ve odd integers is a -t-ve odd number.

Associative property. The operation * is an associative operation on set A. 
Since for every a, b, c e A, we have

(a * 6) * c = a * (6 » c)
Hence, the algebraic system (A, *) is a semi-group.

Example T.Let (A, *) be semi-group. Show that for a, b, c in A, ifa'‘c = c'^a 
and b * c = c *b, then (a * b) * c = c (a *h).

Sol. Take L.H.S., we have
(a * 6) * c = a * (6 c) 

= a*(c * b) 
= {a * c) * b 
= {c * a) * b 
= c * (a » 6) 

(a * 6) * c = c * (a * 6).

* is associative] 
[ •.• b c = c ■" b]

[ •.• * is associative)
a * c = c * a] 

[•.• is associative]
Hence;

Scif-lnsiriictional Muierial 5



Discrete Maihemaiics EXERCISE 1 .x--

1. Let * be the operation on the set R of real numbers defined bya*6=o + fa + 2ab
(a) Find 2 “ 3. 3 * (- 5), 7 (1/2)
(b) Is (R, ■*') a semi-group ? Is it commutative ?
(c) Find the identity element
(d) Which elements have inverses and what are they ?

2. Let S be a semi-group with identity e and let b and b' be inverses of a. Show that b = b 
i.e., inverses are uniques, if they exist.

3. Let S = Q X Q, Jhe set of ordered pairs of rational numbers, with the operation * defined ,

NOTES

by
(o, b) » (x, y) = (ax, ay + b)

(a) Find (3, 4) * (1, 2) and (- 1, 3) * (5, 2)
(h) Is S a semi-group ? Is it commutative ?
(c) Find the identity element of S
(d) Which elements, if any, have inverses and what are they ?

4. Let A be a non-empty set with the operation » defined by n « fe = a and assume A has 
more than one element. Then
(a) Is A a semi-groups ?
(b) Is A commbtative ?
(c) Does A have an identity element ?
Cd) Which elements, if any have inverses and what are they ?

1.6. GROUP

Let us consider an algebraic system (G, *), where « is a binary operation on G. 
Then the system (G, ») is said to be a group if it satisfies following properties.

(i) The operation * is a closed operation.
(it) The operation ”• is an associative operation.

(iii) There exists an identity element w.r.t. the operation *,
(iv) For every d e G, there exists an element a“^ e G such thata“^ * a = a *a~^ = e 
For example, the algebraic system (I, -i-), where I is the set of all integers and +

is an addition operation, is a group. The element 0 is the identity element w.r.t. the 
operation +. The inverse of every element o e I is - n s I.

Example 8. Prove that G = (i, 2, 3, 4, 5, 6) is a finite abelian group of order 6 
under multiplication modulo 7.

Sol. G = {1. 2, 3, 4, 5, 6, x^l
Consider the multiplication modulo 7 table as shown below. Recall that a • 

= The remainder when ab is divided by 7
1 3 5 62 4x.

61 1 2 3 54
52 2 6 1 34

2 5 43 3 6 1\
6 3< 4 1 5 24

5 25 3 1 6 4
6 6 2 15 4 3

6 Self-Instructional Material
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From the table, we observe that each element inside the table is also an element 
of G. It means that G is closed under multiplication modulo 7.

Also for each a, ft, c e G
a (ft x^ c) = (ax^ ft) x^ c i.e., associative law hold.

From the table, we observe that the first row inside the table is identical with 
the top-row of the table. Therefore, 1 is the identity (multiplicative) of G.

5x7 3 = 1, 6 6 = 1

NOTES

Also,
Hence, each element G has an inverse, i.e.,
Inver.se of 2 is 4 and of 4 is 2 
Inverse of 3 is 5 and of 5 is 3 
Inverse of 6 is 6
Hence, G is a group under the multiplication modulo 7.
Example 9. Consider an algebraic system [Q, «),io/ierc Q is the set of rational 

numbers and is a binary operation defined by
a * b = a + b - ab y a, b B Q.

Determine whether {Q, is a group.

2x,4 = l; 3x^ 5 = 1, 4x^2 = l,

Sol. Closure property. Since the element a « ft e Q for every a,\b e Q, hence, 
the set Q i.s closed under the operation

Associative property. Let us assume a, ft, c e Q, then we have 
(a * ft) * c = (a + ft - oft) ” c

= (o + ft — ab) + c - (a.+ ft — a&)c 
= a + ft — aft + c — Qc — fee + aftc 
= a -t- ft + c - nft — ac — fee -(- abc^. 

a (6 c) = a + ft + c — aft - ac — ftc -t- abc.
(a ft) » c = Q - (ft » c)

Similarly,
Therefore,

* is associative.
Identity. Let e is an identity element- Then we have a»e = oVaGQ 

.a + e-ae = a or e-ae = 0
c = 0, ifl—07^0 

e'‘a = aVas Q, we have c = 0 
ThereforeTfOr e = 0, we have a'^e=c*Q = a 
Thus, 0 is the identity element.
Inverse. Let us assume an element a s Q. Let a~ ^ is an inverse of a. Then we

e(l — a) = 0 oror
Similarly, for

have
-1 [Identity]= 0a* a 

a + a”' - aa -1 = 0
aa ^ (1 - a) = - a or 0-1 = a Tilor

a -1

° s Q, if a 7; 1 
a - 1

Therefore, every element has inverse .such that o 1-
Since, the algebraic system (Q, -) satisfy all the properties of a group. Hence, 

(Q, is a group.

Now,

Self-Instructional Material 7



Theorem 2. Show that the identity element in a group is unique.

Proof. Let us assume that there exists two identity elements i.e., e and e' of G. 
Since, e s G and e' is an identity. We have e'e = ee' = e 
Also, e' € G and e is an identity. We have e'e = ee' = e'

e = e'
Hence, identity in a group is unique.

Disncic Maihcmatir.!!

NOTES

Theorem 3. Show that inverse of an element a in a group G is unique.
/

Proof. Let us assume that a e G be an element. Also, assume that Oj ^ and 
^ be two inverse elements of a. Then we have,

^ a = aOj" ^ = e and a^ ^ a = aa^ ' = e
^ c = aj“ \aaf *) = (Qj" ^ 0)0^ ' = ^“2

“1
-1 -1Oi-i=aj

Thus, the inverse of an element is unique.
Now, = 02

Theorem 4. Show that = a for all a e G, where G is a group and a ^ is dJi
inverse of a.

Proof. Given that a~ ^ is an inverse of a. Then, we have 
aa~* = O'^ a

This implies that a is also an inverse of a~ ^ Therefore (a~^ = a.
= e •

Theorem 5. Show that iah)' ‘ = b~^ a~’ for all a, b e G.
Proof. We have to prove that ab is inverse of b~ ^ a~ We prove 

{ab)(b~ * a“ ^) = {b~ ^ a~ ^){ab) = e 
(ab)ib~ ^ a~ ^) = [(ab) b~ ^ = [a{bb~ ^)] a~ ^

= (ae) a~ ^ = aa~ ^ = e
Consider

...(1)
Similarly, (b~ ^ a~ ^)(ab) = e 

From (1) and (2), we have
(ab) (b~^ o"^) = c = (b~^ a“^) ab

...(2)

Hence proved.

Theorem 6. Prove the left cancellation law in a group G holds i.e., ab = ac 
^ b = c'd a, b, c e G.

Proof. Consider 
Then, we have

ab = ac.
b = eb = {a~ ^ a)b = a~' (ab) = a“ ^ (ac) 

= (q" ^ a)c = ec = c 
ab = ac =» b = c.

[■-■ a6 = ac]
I Associativity

I

Hence,

Theorem 7. Prove the right cancellation law in a group G holds i.e., ba = ca 
=> 6 = c V a, 6, c e G.

Proof. Consider ba = ca.
Then, we.have h = be = b(aa~ = (ba)a~ ^ = (ca)a~ ^ 

= c(aa~ ^) = ce = c 
ba = ca ^ b = c.

['.• ba = ca] 
Associativity

Hence,
Theroem 8. Let G be a group and a, b s G. Then the equation a-‘x = b has a 

unique solution given by x = a b.

<

8 Self-htsiruciional Material



proof. Given a,b a G and G is a group under *, therefore, a~^ exists in G
» 6 s G. 

a X = b

Fundamental Concepts 
and VectorsHence

Consider
I G is closed

= (c * a“^) * b 
= a * (q"^ " 6) 

x = a'^ * b
Uniqueness. Let the equation a * x = b has two solutions, say, Xj and X2, then

I a * a'^
. 1 Associativity 

Left cancellation law

= e NOTES

=>

we have
a * x-^ = b 
a * X2 = b
a Xj = a * X2

Xj =X2

...(1)

...(2)
(11 and (21 gives

Left cancellation law

Z^, The Integers Modulo m

The integers modulo m, denoted by is the set given by
Z„, = (0,1,2,... m -1; +„|, where the operations (read as addition modulo m) 

and (read as multiplication modulo m) are defined as
n 6 = remainder after a + & is divided by m 
a y.^b = remainder after a x ft is divided by m.

Finite and Infinite Group
A group (G, *) is called a finite group if G is a finite set.
A group (G, *) is called an infinite group if G is an infinite set.
For example
1. The group (I, +) is an infinite group as the set I of integers is an infinite set.
2. The group G = {1, 2, 3, 4, 5, 6, 71 under multiplication modulo 8 is a finite 

group as the set G is a finite set.

Order of Group

The order of the group G is the number of elements in the group G. It is denoted 
by 1G1. A group of order 1 has only the identity element i.e., (le)l.

A group of order 2 has two elements i.e., one identity element and one some 
other element. • .

Example 10. Consider an algebraic system ((0. H, +) ivhere the operation + is 
defined as shown in {Fig. 3). '

i
0 1+ ■

0 0 1
1 1 0

Fig. 3

The system {{0, H, +) is a group. In this 0 is identity element and every element 
is its own inverse.

Theorem 9. If G is a finite group of order n and a e G, then there exists a 
positive integer m such that a"‘ = e and m <n.

Self-Instructional Material 9



Proof. Consider the elements of the group G as o, a}, o^, 
elements. Since j G | = n. Therefore two of its elements, say, a>‘, a'> must be equal, i.e., 
aP = p < q. Take m = q ~p

These are n+ 1Discreie Malhemaiics . . . j

a"‘ = a'l-P - aP ■ a.-P
= a<i (aP)'^ = a‘‘ • (n'O"! aP = o''NOTES

Further, since p, q are among n + 1,
l<p<g<n + l q~p =m<n.

I
I

Subgroup

Let us consider a group (G, *). Also, let S c G ; then (S, *) is called a subgroup iff 
it satisfies following conditions :

(i) The operation is closed operation on S.
(ii) The operation is an associative operation.

(Hi) As e is an identity element belonged to G. It must belong to the set S i.e., the 
identity element of (G, *) must belongs to (S.

(iv) For every element a e S, a“' also belongs to S.
For example, let (G, +) be a group, where G is a set of all integers and (+) is an 

addition operation. Then (H, +) is a subgroup of the group G, where H = 12ni: m e G), 
the sot of all even integer.

For example, let G be a group. Then the two subgroups of G are G and Gj = le), 
e is the indentity element.

Theorem 10. A subset H of a group Gis a subgroup of G iff
(i) The identity element e s H '

(ii) H is closed under the same operation as in G
(Hi) H is closed under inverses i.e., if a s H, then a~‘ e H.
Proof. Given Gis a’group and H is a subset of G. Let His a subgroup of Cpthon, 

by definition, (i), (ii), (Hi) are true.
Converse. Let (i), (ii), (Hi) hold. We show H is a subgroup of G. We show the 

associativity of elements of H..
Let a, fe, c 6 G and since H c G a, 6 c e H
Since elements of G are also elements of H _

associativity holds for H. Hence the Theorem,
Another statement: A subset H of a group G is a subgroup of G iff a « b~^ e H.
Theorem 11. Let Hj and H2 be subgroup of group G, neither of which contains 

the other. Show that there exist an element ofG belonging neither to nor H.2.
Proof. Given Hj and Hg are subgroups of G. Also Hj e Hg and Hg s Hj. We 

show that there exists an element belonging neither to Hj nor Hg. Let, if possible, 
there is an element a belonging to Hj and Hg i.e., a e n Hg.

Now a e Hj and since Hj is a subgroup of G a"' e H 
But a e Hg and since H2 is a subgroup of G s Hg
(1) and (2) gives Hj c Hg, a contradiction.
Hence the theorem.
Theorem 12. IfH and Rare two subgroups ofG; then H nK is also a subgroup

,..(1)1
...(2)

/. /

ofG.
Proof. We know that a subset H of a group G is a subgroup of G iff ab * e H V a.

be H.

10 Self-lnslruciional Material
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Let o, 6 e H o K. We show a6 ^ e H n K.
aeHriK ^ asH and a e K 
fee HnK =>

Now
fe e H and fe e KAlso

Since H is a subgroup of G and a, b e H
afe“^ e H (Using theorem X) NOTES...(1)

Also K is a subgroup of G and a, fe e K
afe“’ e K

From (1) and (2), ofe"' e H n K. Hence H n K is a subgroup of G.
Cor. If H and K are two subgroups of a group G, then give an example to show that 
H u K may not be a subgroup of G 
Consider G = The group of integers under +

{...-6,-4.-2, 0,2,4,6...1
12, - 9, -6, - 3, 0, 3, 6, 9, 12, ...| are subgroups ofG under+.

But Hj w Hg = (... - 4, - 3, - 2, 0, 2, 3, 4, 6, ,„)
■ Since 2 e Hj w Hg, 3 e Hj u H2 => 2 + 3 = 5 e Hj u Hg i.e., Hj u Hg is not 

closed under +. Hence H^ u H2 is not a subgroup of G under +.
Theorem 13. If H is a non-empty finite subset of a group G and H is closed 

under multiplication. Then H is a subgroup of G.
Proof. We know that a non-empty subset H of a group G is a subgroups of G iff

-(2)

H,=

(j) a e H, fe e H => afe e H 
Hi) a e H =s. a"’ e H
The condition (i) is true since it is given that H is closed under multiplication. 
To show Hi), Let ogH, aeH =» a^eH

H is closed under multiplication
Again a e H, s H ^ e H and so on.
Thus the infinite collection of all the elements a, a^, ... a'", ..., belongs to H. 

But H is finite. .•. there must be repeation. Let a'' = r > s > 0
a'' . a”' = e 

a'-* = e e H=•
Take y = o'"-'"' and consider 

ya = 
ay = c

. Q = a'-' = e
Similarly,
Hence ya=e = ay

y is the inverse of o.'Hence the theorem. 
Theorem 14. Let H be a subgroup of G. Then

a e H 
0 fe-i e H 

fe G H

=>

(a ) H = Ha 
(fe) Ho = Hb
(c) aH = feH
(d) HH = H. 
Proof, (a) Let

I

Ha =H. IfeeH ^ eae Ha = H 
a 6 H

Conversly, Let a g H. As H is a subgroup and fe e H, H
fe a G H 
HacH

ea = a

H is closed under multiplication.
...d)

Again, if fe e H, a e H and since H is a subgroup of G, 
.'. fe G H (Theorem X)

(fea“^) a G H o \
h(a~^a) G Ha fe e G Ha

fe G H a 
HcHa ...(2)

Self-Instructional Material ' 11



Discrete Mathematics From (1) and (2) Ha = H
I

(6) Lot Ha = H6 and wc show ab''- e H
Now a = e a e Ha

a e Ha = H6NOTES
a 6 H6 ^ a = hb, h € a 

=> o6-i = = h{bb-^)= he = hsK
^ ab~^ e H

ab~^ G H => ab~^ = h,h g H 
a = hb

Ha = Hhb = Hb

=>

Conversly, Let

For b e H, H/i = H
(c) Proceed yourself as in Part (b). 

~(d)'Let b e H. Then,
H = Hb V b e H 
H c HH c H 

HH = H.

Using part (a)

Abelian Group

Let us consider, an algebraic system (G, *), where is a binary operation on G. 
Then the system (G, *)is said to be an abelian group if it satisfies all the properties of 
the group plus an additional following property :

ii) The operation » is commutative i.e.,
I

a*b = b«'aVa, be G
For example, consider an algebraic system (I, +), where'I is the set of all inte­

gers and + is an addition operation. The system (I, +) is an abelian group because it 
satisfies all the properties of a group. Also the operation + is commutative for every a, 
be I,

ILLUSTRATIVE EXAMPLE

Example 1. Consider an algebraic system {G, *), where G is the set of all non­

zero real numbers and * is a binary operation defined by a * b = Show that {G, -O 
is an abelian group.

Sol. Closure property. The set G is closed under the operation » . Since, a*b
ab

= — is a real number. Hence, belongs to G. '

Associative property. The operation * is associative. Let a, b, c e G, then we
have

ab abc(ab)c(a * b) « c = X c =
164 16

' be 'l _ o(bc) _ abc
,TJ”

Identity. To find the identity element, let us assume that e is a positive real 
number. Then for o s G,

Similarly, a * (b c) = a ’>-■

12 Seif-lnstruclionai Material .



Fimdameiual Concepts 
and Vectors

ca
= a or e = 4e ” a = a ^

4
Similarly, a * e = a

ae
, = a or e = 4.4

Thus, the identity an element in G is 4.
Inverse. Let us assume that a e G. c Q is an inverse of a, then a * a“^ = 4

NOTES

-1 16aa 1 _= 4 or a~4 a
a ^ * a = 4 gives

— = 4 or a ‘- = —

Similarly,
-1a=>
4 a

16Thus, the inverse of an element a in G is 

Commutative. The operation * on G is commutative.
ab _ ba
~4 r

Thus, the algebraic system (G, *) is closed, associative, has identity element, 
has inverse and commutative. Hence, the system (G, *) is an abelian group.

a

Since, ' a * b = = b * a. 9'

EXERCISE 2

' 1. If a, b, c are elements of a group G and a " b = c * a. Then b = cl Explain your answer.
2. Which of the following are groups ?

— (i) M2,,^(R) with matrix addition
in) M2,.2(R) with matrix multiplication 

(hi) The positive real numbers with multiplication 
dv') The non-zero real numbers with multiplication 
(v) The set [- 1, 1] with multiplication.

3. Give an example of (i) a finite abelian group (ii) an infinite non-abelian group.
4. Let V= \e,a,b,c\. Let* be defined byx = e for allx e V. Write a complete table for * so that 

(V, *) is a group.
5. Which of the following subsets of the real numbers is a subgroup of [R, +1 ?

(6) The positive real numbers(a) The rational numbers

K id) H = 12*^: K is an integer!—: K is an integer 2
(e) H = I* : - 100 <x< 1001 

6. Let Gbe a group oforderp.p is prime. Find all subgroups ofG.

(c)H =

Normal Subgroup
A subgroup H of a group G is called normal subgroup of G if for every g e G, 

^ e H, => ghg~^ e H.
or

A subgroup H of a group G is called a normal subgroup of G iff for g g G, we
have

Self-Instructional Material 13



Discrete Mathematics gHg-^ = RygeG
Example 2. Every subgroup of an abelian group is normal.
Sol. Let H be a subgroup of a normal group G. We show H is normal. Let /i e H 

andg G G. ConsiderNOTES
ghg-'' = gg-^ h 

= eh 
= e H

^ ghg-^ € H.
Hence, H is a normal subgroup of G.

/leHcG ==> /leG 
Also h, G G and 
since G is abelian 
' hg-^ = h

Cyclic Group

A group G is called cyclic if for some a g G, every element xe G is of the form a" 
for some ri e Z. The element o is called the generator of G.

If G is cyclic, we write G = < a >
For e.g., If G = {1, - 1,1, - i], then G is a cyclic group generated by i. 
Since

i.e., every element of G is of the form i" for some n g Z. Hence i is a generator for the 
cyclic group.

1, = - i, i'* = 1

Remark. The order of a generator of the cyclic group is equal to the order of the group. 
e.g., Z,2 = (Z|2 : +,2] is a cyclic group.
Sol. Zi2 = (0, 1, 2, ...11,+^^].
Consider 5 = 5

5 +J2 5 = 10 
5 +J2 5 +12 5 = 3 

5 +J2 5 +J2 5 +J2 5 = 8 
5 +12 5..+J2 5 +J2 5 +J2 5 = 25 = 1 etc.

Thus we see that every element of Zj2 is of the form 5n for some n g Z. Thus 5 is 
a generator of Z^2-

Hence [Zj2, +^2^ ® cyclic group with 5 as generator. Since inverse of 5 is
7 (5 +J2 7 = 0), therefore, 7 is also a generator, (theorem X below)

TheoremlS.//a is a generator of a cyclic group G, show that inverse of a is also
a generator.

Proof. Let G = <a> i.e., G is a cyclic group and a is its generator. Letg g G, then 
g = a’’ for some r e Z 
r = - s, s G Z, we have 
g = = (0“*)“ for some s e Z

Thus every element g g G islof the form Hence a“^ is a generator. 
Theorem 16. Every cyclic group is abelian.
Proof. Let G be a cyclic group with a as its generator, i.e., let G = <a> and

Take

/G,
Then gj = a' for some r g Z
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FwtdameiUal Concepis 
and Vecrnm

Let ^2 s G, then ^2 = for some s e Z 
, ^2 = - a* = a'-"®Consider

r + s = s + r as Z is abelianf+r= a
•o'-=^2-^1= a- NOTES

^ G is abelian..
Theorem 17. Every subgroup of a cyclic group is cyclic.
Proof. Let G = <a> i.e., G is a cyclic group with a as its generator. Let H be a 

subgroup of G.
Case I. If H = {e}, then H = <e> i.e., H is a cyclic group with e as a generator.
Case II. If H[e], then o(H) > 2 i.e., there existse*a b H.
Since H is a subgroup, it must be closed under inverses and so contains positive 

powers of a. Let m is the smallest power of a such that o'" e H. We claim 6 = a"* is a 
generator of H. Let'x e H. But H c G r e G.

Since G is a cyclic group G with a as its generator. .'. a: ^ a" for some n e Z.
Dividing n by m, we get a quotient g and remainder r. i.e., 

n = mg + r, 0 < r < m 
a" = = a"'9 , a'' = . a''Now
a'' = b-‘i . o"

Here a", 6 e H and since H is a subgroup .'. b~^ o'* e H which means a'' e H. 
But m was the least positive integer of a such that o'" . e H and r <m.

We must have r = 0
Hence o'* = 6^ for some g e Z

x = a''-b‘< i.e., every element r € H is of the form 6^ for some q e Z
H is cyclic.

Theorem 18. Every group of prime order is cyclic.
■ Proof. Let G be a group of order p,p is prime. It means G must contain at least 

two elements. Since 2 is the least positive integer which is prime i.e., if o s G, then 
o(a>>2.

Let o(a) = m and H be a cyclic subgroup of G generated by a, then 
o(H) = o(a) = m

The order of a cyclic group is equal to the order of its generator
Also By Lagrange’s theorem,

o(H) |o(G) => m \p
p = 1 or p = m 
p * 1 p = m 

o(H) = o(G) => H = G.
Hence G is cyclic since H is cyclic.
Theorem 19, Let Gis a cyclic group of order p{pis prime). Show that G has no 

proper subgroups except G and fe).
Proof. Let G is a cyclic group of orderp,
LetjH be any subgroup of G and o{H) = m.
By Lagrange theorem, b(H) j ,o{G) =* m ( p

p = I or p = m

But
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DiscrenTHlaihemalics But p :■ p = m
i.e., o(H) = m = p => Hisa group of prime order and hence cyclic. Also o(G) = m

G = H i.e. G has no proper subgroups.
Cyclic group generated by a. Let G be any group and a e G. Define a° ='e ; 

the cyclic group generated by a, denoted by <a>, where < a > denotes the set of all
powers of a, is defined by <a> = i......, a~^, e, a, a^, a^,.....1

<a> contains the identity element e, closed under group operation, contains

NOTES

inverses.
<a> is a subgroup of G and is called the-<>^Zic group generated by a.

1.7. GROUP HOMOMORPHISM

A mapping from a group (G;.). into a group (G, *) is said to be a group 
homomorphism if

<t)(a . b) = <))(a) * 0(6) V a, 6 e G

Group Isomorphism

A homomorphism 0 which is one-one and onto is called isomorphism and the ' 
groups G and G' are called isomorphic, written as G s G'.

A homomorphism which is onto is called epimorphism 
A homomorphism which is one-one is called monomorphism.

KERNELf

If/is a homomorphism of G to G, then kernel/'is the set defined by 

Ker f =[xe G : fix) = e, e e G ]

IMAGE f

The image fis the set of the images of the elements under f i.e.,
Im(/') = (6 e G'; fia) = 6 for o e G) where /is a homomorphism of G to

G'.
The term‘range/’is also used for‘image/’.
Example 3. Let G be a group of real numbers under addition and let G' he the 

group of positive real numbers under multiplication. Define f: G -^G'by f(a.) = 2“.

Show that fis a homomorphism. Also show that G and G'are isomorphic.

Sol. Given /is a mapping from'(G,.;f) to (G', .) defined by fia) = 2“

Let a, 6 6 G and consider
f{a + b) = 2“+'’ = 2“ . 2*^ = fia) . fib) 

Hence /: G ^ G' is homomorphism.

To check /is one-one. Let fia) = fib)
2° = 2'‘ ^ a = b=s>

/is one-one.
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To check fis onto : For each a e we have 2° is a positive real number. Thus
fla) = 2" is onto.

Hence/': G G' is an isomorphism and the groups G and G' are isomorphic i.e.,

Fimclamenlal Cnncepts 
ami Vacuirs

G = G'.
NOTES

Theorem 20. Let f: G ^ G'is a group homomorphism. Then
(a) f(e) = e'e e G, e'€ G''
(b) flar^) = (f(a)y^ V a e G.
Proof, (a) Given /: G —» G' is a homomorphism from Gto G'. Forx e G, consider

]e' is identity of G' 
I /is homomorphism 

I Left cancellation law

f{x) e' - f{x)
= f(xe) =f{.x)f{.e)

e' = f{e) 
fie) =e'

e' = fie) = f{aa~^)(6) From Part (a),
fia)fia-^) I /is homomorphism

f{a)f{a = e'
(/(a))-i fia) f{a-^) = ifia))~^ e' 

Aa-i) = ifia))-^

Theorem 21. If fis a homomorphism ofGtoG with Ker f =K. Show that K is 
a normal subgroup ofG.

Proof. By definition,

Ker /= (x e G: fix) = e',e' e G} = K 
We first show that Ker / is a subgroup of G

x.ysKer/ => fix) = c', fiy) = e' 
fixy-^)=fix)fiy-^)

= fix) ifiy))-^ = e' (e'H = e' 
xy'’ e Ker / => Ker /is a subgroup of G.

Let
Consider homomorphismX

Let g e G and x e Ker /, consider
figxg-'^) =■ fi^) fixg-^)

= fig) fix) fig-^) = fig) fix) ifig))-^
- fig) e' ifig))-^ = fig) ifig))-^ = e' 

gxg-^eKer/ => Ker/is a normal subgroup of G.
Theorem 22. Let f be a homomorphism of a group G to a group G'. Letlm(f) be 

the homomorphism image ofG in G'. Then Im(f) is a subgroup ofG'.
Proof. By definition, Im(/) = |/(x) : x e G)

e e G =^1 e' = fie) e Im(/)
i.e. Im(/I * ifi, we first show that Im(/) is a subgroup of G'. Let x', y' g Imif)

=> There exists x, y g G such that fix) = x', fi_y) = y'
= fix) ifiy))-^
= fix)fiy-^)
= fixy-^) G Im(/) I X, y G G and G is a group

I / is homomorphism

=s

Take

Consider

I /is a homomorphism 
xy"^ 6 G
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=> Im{/) is a subgroup of G'.
Theorem 23. Fundamental Theorem of Group Homomorphism 
Statement. Let /"; G —» G' is a homomorphism. Then G/K = G', where K = Ker f
Proof. Given/'is a homomorphism of G to G'. Also Ker/is a normal subgroup of 

G. G/Ker / is defined.
Define 0 ; G/K -> G' by 0(Kc) = fix), K = Ker /
We show 0 is well-defined, one-one and homomorphism. ■

A

0 is well-defined : Consider Kx = Ky 
xy-i e K = Ker /

/Ixy"^) = e, e 6 G' 

fix)fiy~^) = e 
fix)lfiy))-^ = i 

fix)=fiy)
0(Kx) = 0(Ky)

Disavic Mathematics =>

NOTES

Ha = Hfe«a6-iG II

Homomorphism
=>

=>
=?• 0 is well-defined. 
0 is one-one : Let 0(Ki:) = 0(Kv) 

f{x)=f{y) 

fix) ifiy))-^ = e
fix)fiy-^)=e

fixy-^) = e 
xy~^ e K = Ker / 

Kx = Ky

=>

Ha = H6 » afe ^ e H
0 is one-one.

0 is homomorphism. Consider
0(KxKy) = 0(Kxy)=Aa:.v)

= A^)/ly) = e(Kx) 0(Ky)
I HaH6 = Ha6

^ 0 is a homomorphism.
We lastly show that 0 is onto. Let y e G'. Since G' is the Image of G under /, 

there exists x e G such that/Ix) =y => 0(Kx) =y i.e., 0 is onto. Therefore, we have 
proved that 0 is homomorphism, one-one and onto

G|K=G'.
Theorem 24. Any finite cyclic group of order n is isomorphic to Z^.
Proof. Let G = <a> be a finite cyclic group, with a as its generator and let o(G)

= n
Define /; Z G by fim) = a'"
Let m, r e Z such that fim) = a'", fir) = a'

= a"‘ . a'' = fim) fir)fim + r) = a 
Thus /is a homomorphism of Z to G.

By fundamental theorem of group homomorphism. Z | Ker/=G 
But if s e Ker /, then by definition,

Consider

\
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f[s)-e,eB G 
a‘ = e

Fundamental Concepts 
and Vtclors<=>

oia)/s<=>

n/s<=> NOTES
s = nk, for some k 
s € <n>

Ker f= <n>
ZI <n> = G or G s Z^, where = Z/<n>.

<=>

<=>
Hence

EXERCISE 3

1. Let H be a subgroup of a group G and a, 6 e G. Then a e b H iff 6“' * n 6 H.
If H is a finite subgroup of a group G. Show that H and any coset Ha have the same 
number of elements.
Let /: G —» G' be a homomorphism with kernel K. Then K is a normal subgroup of G. 
Show that any infinite cyclic group is isomorphic to additive group of integers.

2.

3.
4.

1.8. RING

Let R be a non-empty set with two binary compositions, addition (+) and multi­
plication {.). Then R is called a ring iff it satisfies the following:

I. R is an abelian group under + i.e.,
(t) For a, 6eR => o-t-feeR i.e.,

R is closed under addition 
(ii) For a, b, c e R, a + (6 + c) = (a + 6) + c i.e.,

Associativity under addition holds in R.
(Hi) For each a e R, 3 0 e R such that a-t0 = a = 0 + a i.e.,

R has additive identity.
(iv) For each a e R, 3 —ae R such that a + (— a) = 0 i.e.,

R has an additive inverse.
(y) For each a, fee R, a + b = b + a i.e.,

R is additive.
II. For each o, 6 e R, a. 6 e R i.e., 
R is closed under multiplication. 

III. For a, b, c e R, a. (b . c) = (a. b) . c i.e..
Associativity under multiplication holds in R. 

rV. For a, b, c € R,
(i) a . (b + c) = a. b + a. c(Left distributive law)

(ii) (a + b) . c = a. c + b . c(Right distributive law).
Remark: The additive identity 0 of R is unique. We call it ‘zero’ of the ring. The additive 

inverse is also unique.
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A

Commutative Ring
A ring R is called a commutative ring if a . 6 = 6 . o

Ring with Unity
A ring R is called ring with unity if for each x ^ R, 3 1 e R such'that 1 . a: = a: = 

X . 1. The element T’ is called multiplicative identity of R.

Oisorte Malhemaiics

V Q, 6 e R,

NOTES

Finite and Infinite Ring
A ring R with finite number of elements, is known as finite ring, otherwise it is 

known as infinite ring.

Ring with Zero Divisors
Let R be a ring and 0 a, 6 € R. Then R is called ring with zero divisors if

a . b = 0. i.e.,
If product of two non-zero elements in a ring R is zero, then R is called ring with 

zero divisors. Also we say that the element a is a zero divisor of b or 6 is a zero divisor 
of a.

Ring without Zero Divisors
A ring R is called ring without zero divisors if whenever

0 = 0 or b = 0Va, beR.n . b = 0

ILLUSTRATIVE EXAMPLES

Example 1. Let Z be the set of integers, then (Z, +, .) is a ring. Also Z is a 
commutative ring with unity.

Sol. We know that Z is an additive group under ■*■. (See Chapter on ‘Groups’). 

Also fora, beZ => a.beZ Vc, beZ i.e.,

Z is closed under multiplication.
Fora, b, c e Z, o . (b . c) =' (a. b) . c 
Associativity under multiplication holds in Z.
For a, b, c e Z, a . ib + c) = a. b + a . c

ia + b).c = a.c + b.c'd a,b,c e Z 

Hence we can say that Z is a ring.

Further, for o, b e Z, a . b = b . a 
Z is commutative also.

Also for a e Z, 3 1 e Z such that
l.Q = a = a.l VaeZ.

Z is a ring with unity (multiplicative identity).

V o, b, c € Z i.e.,

V a, b e Z

20 Self-Infiructional Material



Fiiiiilcinienial Coiiccpis 
aiul Vectors1.9. RING ISOMORPHISM

Let (R, +; •) and [R', +', •'] be two rings. The ring R is isomorphic to the ring R'iff 
there exists a mapping /: R ^ R' such that 

(i) fis one-one and onto 
(ii)f(a-\-b) = i{a)+'f{b) V a, fo g R 

Uii) f {a . b) = f{a) ■'fib) Va,feeR.
The mapping : R —» R' satisfying the conditions (i), {ii) and (fit) is called ring 

isomorphism.
Remarks: To check whether the two rings are isomorphic, we should check the following ; 
In) Both rings should have same cardinality. 
ih) Both rings should be commutative.
(c) Both rings should have unity.
(d) If there exists an equation which is solvable in one ring, but not solvable in another 

ring, then two rings cannot be isomorphic.
Example 2. Consider the rings \Z, + , •] and \2Z, ■¥ , •] and define 

f: Z2Z by fin) = 2n V! n^Z 
Is fa group homomorphism ? Is fa ring isomorphism ?
Sol. Z and 2Z are groups under addition.
Consider/: Z -» 2Z defined by fin) = 2n V ti e Z 
For m, n £ Z, consider

NOTES

fim + n) = 2{m + n)
= 2m + 2n = fim) + fin) V m, n € Z 

Hence /: Z —» 2Z is a group homomorphism.
To check whether f is a ring homomorphism.
For m, n s Z, consider fimn) = 2 mn

fim) fin) = 2m .2n = i mn. 
fimn) * fim) fin)'d m, n e Z 

/: Z —» 2Z cannot be a ring isomorphism.

and

1.10. SUBRING

Let [R, + , •] be a ring and S be a subset of R. Then S is called a subring of R iff 
S is itself a ring under the operations of R-

Theorem 25. A non-empty subset of a ring R is a subring ofR iff.
(i) a, AeS=>a-6eSVa, 6gS

(ii) o, 6 G S ^ a6 G S V a, 6 G S.
Proof. Let S be a subring of R. We prove ii) and (ii).
As S is a subring of R, S is itself a ring under the operations of R.
Hence S is additive group under +. that is, S is closed under addition, i.e.,
For a, b G S, a -t- be S V a, 6 g S
Also for each b G S, there exists - b g S such that-b is the additive inverse of b.

a G S, - b e S => a -i- (- b) g S 
o. - b G S, which proves (i)

Now
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Discrete Mathemaiics Further, as S is a subring of R, it must b6 a ring under the operations of R. 
Thus, S is closed under multiplication i.e.;

For a, 6 e S o-deSVa, & eS, which proves Hi)=>
Converse. Let (i) and (ti) hold. We show S is a subring of R under,the opcra-

NOTES tions of R.
For

i.e., S has additive identity. 
Again

i.e., S has additive inverse. 
For
From (i),

a, aeS => a-aeS ^ OeS I Using (i)

OsS,a€S => 0-asS => -osS I Using (i)

aeS, 6eS => —feeS 
Q - (- 6) € S 

a + beS V o, beS

(Proved above)

i.e., S is closed under addition.
Since S c R,^ elements of S are also in R 
.-. Associativity under addition holds in S

a, b 6 R 
a + b = b + o

Hence we can say that S is an additive group.
From (ii), a, b e S

i.e., S is closed under multiplication.
a, b,c e S c R 

d. (b + c) = a . b + a . c 
(a'+ b).c = a.c + b.c 

i.e., left distributive law and right distributive law holds in S.
Hence S is a ring under the operations of R.
Example 3. The set of integers Z is subring of Q.
SoL We know that “A non-empty subset S of a ring R is a subring of R 
(i)'a, bsS => a-beS V a, b £ S 

(ti)a, bsS => o.beS V a, bcS.
Since Z c Q i.e., Z is a subset of Q.

a, beZ ^ a — beZ V a, beZis true, 
a, beZ => a.beZ V o, beZ.

For a, b c S c R
R is additive group

a. beS V a, bsS

\Finally, a, b, c e R

Distributive laws hold In R

iff

For
Also for 
Hence Z is a subring of Q.

Theorem II

EXERCISE 4

1. Consider the following sets. The operations involved are the usual operations defined on 
the sets.
(a) [Z, + , •] 
id) [M

+g, x«l
ij) [Zj-l .•!

(b) fQ, + , -] 
(e) [Z2, +2, X2I 
(70 |Z„ +„ X,]

(c) fC, + . •] 
if) [Zp, +„ x^] 
(0 [Z X Z, + , •)

(R), + , •]2+2
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(j) Which of the above seta are rings ?
(ii) Which of the above rings are commutative ? Are they rings with unity? Determine 

the unity of the above rings.
2. Perform the indicated operations on the |Zj,; +g, x^]:

(j) 2xr (- 4)
(Hi) (- 2) (- 4)

3. For any ring [R; + , ■], simplify 
(i) (a + b) (c + d) for a, 6, c, <f e R

(ii) If R is commutative, show that (a + b)^ = d‘' + 2ab + V n, b s R 
(Hi) Simplify (a + b)® in Z^.

4. Suppose d^ = a for every a e R (such a ring is called a Boolean ring.) Prove that R is 
commutative given that a; + y = 0 => a: = y for all i, y e R.

5. Let G be any additive group. Define a multiplication in G by a.b = 0 for every a, b e G. 
Show that this makes G into a ring.

6. Let R be a ring with a unity element. Show that R*, the set of units in R is a group under 
multiplication.

Fundamemat Concepts 
and Vectors

NOTES(ii) (- 3) XgS
(iv) (-3) +g{-3) xg (- 5)

1.11. FIELD

A commutative ring F with unity such that each non-zero element has a multi­
plicative inverse i.e., E a'^ e F such thatoo"^ = 1 = a“'a, is called field. It is denoted by 
F. Alternatively, F is a field if its non-zero elements form a group under multiplica­
tion.

ILLUSTRATIVE EXAMPLES

/ t \
Example 1. Consider the set M of all 2 X 2 matrices of the type — _

{-b a)

a, b “'■6 the conjugates of a and b.IsM a field ? Justify your answer.

where

1'2 S'!
U 2)Sol. Consider A, B e M where A = ,B = -1 \)

(2 3V 1 1)
U 2JI-I l)-[ 1 5
^ 1 l]f2 S')
1-1 lJU 2)

-1 5Then AB =

f5
1 -1Also BA =

Hence M is not commutative and therefore cannot be field. 
Example 2. Consider = [0, 1, 2, 3, 6, +y, x^]. Show that is a field.

\
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Sol. Consider the addition modulo 7 table as shown in Table I.
Table I

Oiscic.tf Mathemcilk'S

64 52 3:0 1+7

NOTES 65. 2 3 40 10
064 52 31 1

5 0 163 42 2
26 0 153 3 4

2 30 14 5 64
2 3 40 15 65
3 4 526 0 16

We first show that Z, is a ring under addition modulo 7 and multiplication
modulo 7.

From Table I, we observe that each element inside the table is also in Z^. It 
means that Z is closed under +

Addition modulo is always associative
The first row inside the table coincides with the top most row of Table 1. It 

means 0 is the additive identity.
Each element of Z^ has additive inverse.
For example, Inverse of 1 is 6. Inverse of 2 is 5 etc. 11+.^6 = 7 = 0 

2 +7-5 = 7 = 0
Also Table I is symmetrical w.r.t. +^. It means Z, is additive w.r.t. +.j i.c., 
For a, b e Zj, a b = b a, b e Zy.

Zy is an additive group w.r.t +y.
Now consider the multiplication modulo 7 table as shown in Table II.

Table II

4 5 62 30 1X7S

00 0 00 00 0
5 62 3 41 0 1

1 3 562 0 2 4
42 5 13 0 3 6

2 6 354 0 4 1
6 4 23 15 0 5
3 2 146 0 6' 5

From Table II, we observe that each element inside the table is also in Zy. It
ay-yb G Z7 V a, 6 e Z7means Zy is closed w.r.t. x^. i.e., for a,beZy 

Finally, For a, b,c e Z7’

a Xy ib+y c) = axyb +ya x^ c
(a +yb ) XyC = a XyC +y 6xy c is true for all a, b, c e Zy.

Hence Zy is a ring w.r.t. addition modulo 7 and multiplication modulo 7.
Also the Table II is symmetrical w.r.t. Xy. It means that Zy is commutative i.c., 

aXyb = bxy a V a, b e Zy
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Further, the second row inside the table coincides with the topmost row of Ta- Fiiiulcinifiildl Ciinct'/H.y 
tmd Vectorsble II. It means 1 is the multiplicative identity of Z^.

Hence, we have shown that Z- is a commutative ring with unity. To show 7j^ is a 
field, we show each non-zero element of Z.^ has multiplicative inverse.

The units of Z.^ are those elements which are relative primes to 7. (See Topic on NOTES

‘units’}
The elements which are prime to 7 are 1, 2, 3, 4, 5, 6. Hence the units of Zj are 

1, 2, 3, 4, 5, 6. We can also check the elements which are units as below.
Ix7l = l;2x.7 4 = l;3x.j5 = l;
4x^2 = 1;5x73 = 1;6x^6 = 1.

Hence, each non-zero element of Zy has multiplicative inverse. Therefore Zy is a
field.

1.12. VECTOR SPACES

So far, we have studied algebraic structures such as groups, rings or fields which 
involve only internal binary operations, i.e., binary operations in which the element 
associated to an ordered pair of elements of the underlying set is an element of the set. 
Now, we are going to introduce a new algebraic structure called Vector Space, which 
involves an external binary operation. The motivation for this algebraic system is the 
set of vectors, where vectors can be added and can be multiplied by scalars (reals or 
complex) to produce vectors.

We now, define the concept of a vector space over a field F.

Definition
Let (F, +,.) be a field. Then, a non-empty set V together with two binary operations 

called vector addition ‘+’ (internal composition in V) and scalar multiplication (ex­
ternal composition) is called a vector space over the field F if the following conditions 
are satisfied:

1. (V, +) is an abelian group i.e.,
(i) V is closed w.r.t. “+’ i.e., «, v e V 

Hi) Addition is commutative ; u + i; = o + u, Vm, a e V 
iiU) Addition is associative :

n + (f + w) = (u + e) -h w, V «, 0, 10 e V 
(iv) Existence of identity ; There is a unique vector 0 in V, called the zero vector, 

such that it-t-0 = u = 0 + w VueV 
(o) Existence of inverse :

u -I- u g V

For each vector u in V, there is a unique vector uinV such that u + (-u) = 0 =
f- li) + u.

2. The scalar multiplication,which associates for each 
u € V and a s F, a unique vector au e V satisfies : 
ii) .1. u = u,

(ii) a(u + v) = au + av,
(Hi) ia + b)u = au ■¥ bu,
(iv) (ab)(u) = a(bu),

V u g V
y u, V e V, a e F 

.V u g Vand a, b s F
V u E V and a, b s F.
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Elements of F are called scalars and those of V are called vectors.
Thus, a vector space is a composite of ‘a field’, ‘a set of vectors’ and two opera­

tions with certain properties.
We say Vis a vector space over the field F and is denoted by V(F) but whSh there 

is no chance of confusion, we just refer to the vector space as V.
Vector space is also called the linear space.

Disaeie Maiheinaiics

NOTES

A Plane Vector is an Ordered Pair (A^, AJ of Real Numbers

A space vector is an ordered triplet (a,, a3) of real numbers.
We do not make any distinction between the plane vector (oj, 02) and the di­

rected line segment OP> where 0 is the origin and P is the point whose cartesian

coordinates are (a^, Og)- In fact, we write (Oj, Oj) = OP •

In this case the vector (a p a^) is also called the position vector of P. Similarly, in 

the case of space vectors, we write (q,, Cg, a^) = OP- The vector (0, 0, 0) is the zero 
vector is space.

The set of all plane vectors (i.e., the set of all ordered pairs of real numbers) is 
denoted by Vj. The set of all space vectors (i.e., the set of all ordered triplets of re.al 
numbers) is denoted by V3. Since Vg is cartesian product R x R, we also denote Vg by 
R2. Similarly, !

V3 = R X R X R = R3.

Two plane vectors (Oj, Ug) and (fej, fcg) are equal iff Qj = 6jand Cg = ig.

Two space vectors (Cj, Og, a^) and (6j, 62, 63) are equal iffCj = 6^,02 = feg, = b^.

Addition of vectors in Vg is defined by (Oj, Og) + (bj, bg) = (a^ + bp Og + bg) for all 
vectors (Oj, Og), (bp bg) s Vg.

Multiplication of vectors in Vg by a real number X is defined as 
Moj, Og) = Xog), for (Oj, Og) e Vg and X e R.

Likewise, we define addition and scalar multiplication in Vg.
Proceeding exactly as in the above example, we see that Vg and Vg arc 

vector spaces over R.

Visualisation of a Vector Space involves the Following Five Steps

(i) Consider a non-empty set V.
Hi) Define a biliary operation on V and call it vector addition.

{Hi) Define scalar multiplication on V.
(iu) Define equality in V.
(0) Check that V forms an abelian group w.r.t. vector addition and that scalar 

multiplication satisfies the four properties mentioned in the definition of vector space.

Proceeding on the lines of Vg, and Vg, we now generalize to the set of all ordered 
n-tuples in the following example.
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Fimlaweninl Coiiccpis 
and VectorsILLUSTRATIVE EXAMPLES

Example 1. Consider the set i?'‘ (also denoted by RJ of all ordered n-tuples of 
real numbers defined by NOTES

R’' - {X = (xp x^, xj I X' is real, i = 1, 2, 3,
Prove that i?" is a vector space over R w.r.t. usual addition and scalar multipli-

, n}.

cation defined in R’'.
Sol. The n-tuple X = (Xj, ......, is called-an n-vector, a:- is called the tth

coordinate or component of X. 0 = (0, 0,.... , 0) is called the null vector.
We define addition and scalar multiplication among n-tuples as follows :
IfX = Uj, x^......... ,xj and Y = ......,y„) then we define

X + Y = Uj +yj, .t2 +3-2........ +y„);
This (coordinate-wise) addition is called vector addition.
If Xis a real number, we define XK = (^j, ^2>     called (coordinate

wise) scalar multiplication {X is called a scalar).
Two vectors X and Y are equal iffx; =y., t = 1, 2, 3,......., n.
Now, we check that the set R" of all ordered n-tuples of real numbers is 

a vector space over R under coordinate-wise vector addition and scalar mul­
tiplication :

Now, (1) R" forms an abelian group under vector addition.
For, (i) X + Y = Y -f X (commutative law of addition)
(fi) X + (Y + Z) = (X + Y) + Z (associative law of addition)

iiii) There is an n-tuple 0 = (0, 0,......, 0) called the zero vector such that
X-f0 = X= 0 + X, VXeR".

iiv) For each X in R”, there exists a unique Y in R" such that 
X+Y=0=Y+X

Y is denoted by — X and is the vector
-X = (--a;^) if X= {x^,X2,

(2) The scalar multiplication satisfies the following properties :
V X e R"

.X,).

U)1.X = X,
lii) a(X + Y) = aX + oY, V X, Y e R" and a e R 

iiii) [a + 6)X = aX + 6X, V X e R" and a, 6 e R 
iiv) (ab)X = a(bX), V X s R" and a, 6 e R 
Hence R" is a vector space over R.
Note that R" is a vector space over R but R" is not a vector space over C, 

■ the field of complex numbers. For, suppose X is a complex number, then XX
slXXj.Xx^,....... )iXj,) is not in R" because the numbers Xxj are complex and
R" contains only n-tuples of real numbers.

The special cases n = 2 and n = 3, give the vector spaces 
R2 = V2 and R3 = V3.

The special case n = 1 gives the vector space V^, which is nothing but the space 
of real numbers, where addition is the ordinary addition of real numbers and scalar 
multiplication is the ordinary multiplication of real numbers.
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Example 2. Show that any field forms a vector space over itself 
Sol. Let F be any field.

Discrete Mcitlteiiicilics

V = F.Let
Since F is a field, F has two binary compositions defined in it say addition (+) 

and multiplication ( . ).NOTES

Addition composition of F is vector addition in V and multiplication composition 
in F is scalar multiplication.

Now (1), (V, +) is an abelian ^oup 
(ID From the field properties of F, it follows that scalar multiplication satisfies :
(i) 1 - u = u

(ii) a(u + v) =au + av 
(Hi) (a + b) ii = an + bu

( V V = P is a field).

V a € V
V (i, 0 G V, cr e F
V u e V and a, fc e F
V « G V and a, 6 g F.(iu) (ab) u = a(bu)

Hence, V is a vector space over F.

Some General Properties of a Vector Space

If V is a vector space over a field F and 0 is the zero of V and 0 is the zero of the
field F, then

« aO = 0,
(ii) Ou = 0,

(Hi) (- 1) u = — u,
(iv) a(- u) = - (au) = (- a) u,
(v) a(u - v) = au- av, 

ivi) If a u = 0, then a = 0 or u = 0.
u G V.

au = a(u + 0) = au + aO 
aO = 0

0 + 0=0, OgF 
(0 + 0) = « = Ou, V u G V 

Ou + Ou = Ou 
Ou = 0

V a G F
V u G V
Vug -V-
V 0 G F, u e V
V a G F, u, u G V

Proof, (t) Let
Then

(ii)

=>
=3

(- 1) u + 1. u = (- 1 + 1) zi = Ou = 0(Hi) {- 1) u + u
(- 1) u = - u.

Proofs of others are left to the reader as an exercise.

EXERCISE 5

■V ,y
- y X

space over C w.r.t. matrix addition and scalar multiplication. 
Show that
(i) C is a vector space over C 

(iit) R is not a vector space over C 
under usual operations of addition and scalar multiplication.

where x, y s C, is a vectorShow that the set of all matrices of the form1.

2.
(ii) C is a vector space over R 
(io) Q is not a vector space over R
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3. Which of the following sets form vector spaces over reals ? 
Explain
(i) All polynomials over R with constant term zero.

Hi) All polynomials over R with constant term 1.
(Hi) Set of all ordered pairs (a, b) of integers.
(iv) All polynomials with positive coefficients..

4. Show that the set Q(V2) = {a + b-j2 
compositions :

Fiindamenlal Concepts 
wid Vectors

NOTES
\

a, b s Q1 is a vector space over Q w.r.t. the
\

(a + 6^2 ) + (c + d^f2 ) = (a + c + (fe + d)V2 )

a(n + b-j2 ) = act + feaV2 
where a, b, c, d and a are all rational numbers.
and

\
\
\

1.13. LINEAR COMBINATION OF VECTORS

For a vector space V(F), if u, u e V and a, 6 e F, then 
au + bv € V.

In general, tijUj + 0^02 + ...... + s V, for e V and a,- € F, (f = 1, 2......... n).
This leads to the following definition :

Definition. A vector v e Vis said to be a linear combination (L.C.) of the vectors 
, v^€ V if there exist scalars Op Cg,....... a^ e F such that v = Oj Vj + OgOg

Examples, (t) If i/j = (1, 1, 1), Wg = d. 0.1). £^3 = (1, 0, 0), then the vector i; = (8, 3, 7) 
is a linear combination of the vectors Oj, Og and ££3 as is clear from v = 3tij + 403 + 1^3.

(ti) Zero vector 0 is always a linear combination of any finite number of vectors 
, v^, because

+

fi. ££2-

0 = Ooj + Oi^g +
(Hi) If i)j = (1, 0, 0), Dg = (0, 1, 0), D3 = (0, 0, 1), then any vector in space v^ can be 

expressed'as a linear combination of Uj, Og and 1)3. For instance, the vector v - (4, 5, 7) 
can be written as

+ 0i?„.

/
=. 4Uj + SOg + 703

Oj, Vg, 1^3 are called unit vectors in V3.
In the space o„(R), then n vectors (1, 0, 0,

0, 1) are unit vectors.
(iv) If Wj = (1, 0, 0), Hg = (1, 2, 0) and v = (2, - 1, 1), then v is not a linear 

combination of Oj and Ug since any linear combination of Uj and Og must have its last 
component zero. |

,0), (0, 1,0, ,0), ,(0,0.

3Example 3. Write the vector ^ i in the vector space of 2 x 2 matrices
Z K

as a linear combination of

1 1 .
0 -1 ’^2= -i 0

1 1 1 '-1
-^3= 0 0 ■

Sol. Let ...(1)0 = OjHj + OgOg + O3D3 ; Qj, Og, Og e R
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Disrrcie Miilliemalics 1 -1 
3 0 0

11
= Oj Q +02 Q

1 13 -1 
1 -2

+ a=>

O] + Ct2 “ ^3 
-Ol

Oj + 02 ^3
= [ -02

By definition of equality of two matrices, we have 
Oj + 02 + Og = 3,
01 + 02-03 = -!,

- Og = 1, Oj = 2.
Solving these, we get Oj = 2, 02 = - 1, Og = 2. 
Putting these values of Oi, Og, Og in eqn. (1),

V = 2Di - Og + 2v^.

NOTES

• y

1.14. INTERSECTION AND SUM OF VECTOR SPACES

Theorem 26. The intersection of two subspaces of a vector space V(F) is a subspace
■s ofV.

Proof. Let Wj and Wg be two subspaces of V(F)..
Wj n.Wg ^ as zero vector of V belongs to both Wj and W2. 
Let u,VB Wj Pi Wg and o e F. /
Now, => u, V € Wj and u, v e Wg. 

=> au + 0 e W
u, 0 e Wj n W2 
u, 0 e Wj ; o € F 
u, y e Wg ; o e F 

au + V € Wj, on + 0 6 Wg 
u, V € Wj n Wg, a € F

f'-' Wj is a subspace] 
[•.• Wg is a subspace]

1
^ ou + 0 e Wg 
=> au + V e Wj n Wg. 
=> ow + 0 e Wj n

and

Thus,
Hence, Wj n W2 is a subspace of V(F).
The result can be generalized to any number of subspaces. More prccisclj', if 

, W,^ are n-subspaces of V, then their intersection W j n Wg n n W,Wj, W2,
is also a subspace of V.

Linear Sum of Two Subspaces

Let Wj and W2 be two subspaces of the vector space V(F). Then, the linear sum 
of Wj and Wg is denoted by Wj + Wg and is the set of all possible sums « + u where u 
€ Wj and V e Wg. 
i.e., and V e Wgl-Wj + Wg = (« + 0 I n e W

a h 
c d

Then clearly V is a vector space of all 2 x 2 matrices over R w.r.t. usual vector 
addition and scalar multiplication defined in matrices.

1
/

o, fe, c, d s R [■.For Example : Let V =

a 0
a,c,de R| ,Let Wj =

c d

a b a, h e R[- .W2H 0 0
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Then, one can easily see that Wj, Wj are two subspaces of V.

f2a b)
^ a, b,c,deR

Fimdamental Coiicri>i> 
iiDil Verlors

W, + Wg =

Wj E Wj + Wg
li e W^, 0 e W2 fi + 0 = M e Wj + W2, V u G Wj) 

W2CWJ+W2.
■ WiUWgCW^ + Wg.

Theorem 27. Linear sum Wj + of two subspaces Wj and IVg of a vector space 
V(F) is a subspace of V(F).

Proof. Let u, v s Wj + W2 and a any arbitrary scalar in F.
Then, 3 Uj, e Wj and u^, e Wj such that

u = Uj + ^2 and v = + v^.
au + V = a{u^ + Ug) + (1^1 + ^^2) ^iaUj + Dj) + (au2 + 

oUj + [;j e Wj and awg + 1^2 ^ ^2

Obviously, NOTES
(-,•

Similarly,
Hence,

Since
/ Wj and Wj are subspaces)

(auj + iJj) + (auj + ^2^ e Wj + W2 
a(uj + Uj) + (v^ + Uj) e Wj + Wj 

an + u e Wj + Wg 
au + i; s Wj + Wj.Thus, u, u a Wj + Wj, a e F 

Hence, Wj + Wj is a subspace of V.
Remark. One can show that ifWj, Wj,

+ W,, is also a subspace of V.'
Theorem 28. If Wj and Wj are two subspaces of a vector space V(F), then 

■ Wj + Wj = •< Wj u Wg >
linear sum ofWj and Wj is the subspace generated by the union ofW^ and Wj, 

Wj e Wj + Wj and Wj c Wj + Wj 
WjuW2sWj + W2

Since < Wj u W2 > is the smallest subspace containing Wj u Wg, therefore,
< Wj U Wg > £ Wj + Wg

Conversely, let u + u € Wj + Wg where u e Wj, v e Wg.
l.u + 1.0 = u + y G < Wj u Wg >
Wj + Wg E < Wj u Wg >

=>

, W„ are subspaces of V(F), then Wj + Wg +

i.e;.

Proof. Clearly,

...{!)

...(2)/
.-. From (1) and (2),

Wj + Wg = < Wj U Wg >.
Remarks, (i) If W^ and are two subspaces ofV(F) then W, n W.j is a subspace ofV 

and is the. largest suhspiice contained in I as well as W
(it) W, + W, contains W, as well as W, and is the smallest suhspace ofV that cottioins 

bothW,and-W.^.
(iii) W, + Wj = Wj and if Wj cWj'ithen W, + Wg = Wg.

.'/// L,
/

(to) The operations of forming the sum of subspaces is associative and commutative. If
W,, Wg.
might be inserted and irrespective of the order of the summands, the set of all vectors in V 
expressible as (a vector in Wf + (a vector in Wj,) +

, W„ are subspaces ofV then Wj + Wg + + W,j is, irrespective of any bracketing that

+ (a vector in WJ.
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Direct Sum of SubspaceDiscrete Moiiiettialics

Let V be a vector space over a field F. Let Wj, Wg, be subspaces of V.
+ can be expressed in atleast one wayThen, each vector in the sum Wj + W2 + 

in the formNOTES
+ (a vector in W ). In most of the cases, 

+ in more than one way. In case we can 
+ in exactly one way as :

, + (a vector in W^), then we call the sum 
, as the direct sum of subspaces Wj,

(a vector in Wj) + (a vector in Wg) +
we can express a vector of Wj + Wg +......
express each vector in + Wj +

(a vector in Wj) + (a vector in W2) +
Wj + Wg +.... + of subspaces Wj, W
Wg....... . and we write it as Wj © Wj ©.....© W^.

Theorem 29. Let Wj, Wg,..... , be n subspaces ofV(F). Suppose that the only
way to express 0 in the form Wj + W2 + + with w- € W. for each i, is to take every
w- = 0. Then the sum Wj + Wg + + is a direct sum.

2 ’

Proof. Let w be an arbitrary vector in Wj + +
Let, if possible, w can be written in two different forms :

+ W,.

...d)+ U„ = 0l + 02 + + VU) = Uj + Ug +
where, for each i, u- s and 0, e W-.

The two expressions for w are identical. 
From (1), + K-v„) = o(Uj - Oj) + (U2 - v^) +

= ^22-02 = 0. ....... =0
(by given hypothesis)

for i = 1, 2
The two expressions for w are identical.

Hence, the sum of subspaces is the direct sum.
Following theorem gives a very simple criterion for the sum of two subspaces 

only to be the direct sum.

,n.u. = 0,

1.15. LINEAR INDEPENDENCE OF VECTORS

DeHnition. Let Vbea vector space over F. Vectors v,, v^, 
be linearly dependent (L.D.) over F if there exist scalars Oj, ag,.. 
such that

e V, are said to 
, a,, in F, tiot all zero

+ a u = 0.n n+ 0-2^2
Here, 0 on the right hand side indicates the null vector.
Vectors which are not linearly dependent are called linearly independent (L.I.).

In fact, vectors Dj, 02,.......^re linearly independent if-and only if

+ = 0, 0.,. e FCjOj +0202 +
implies = a,. = 0.Oj = Og =
i.e., zero solution is the only solution.

lfS = {Vj, Vg,......, then we say thatthc set S is L.l. or L.D. according as the
vectors Vj, Vg,......, are L.l. or L.D.

An infinite subset S ofV is said to be L.L if every finite subset ofS is L.L
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, X^. is a linearly independent system ofnxl column
AX’,, are lin-

Fimdammtal Concepts 
and Vcctovs

Example 4. IfXj, X. 
vectors and A is an n ^ n non-singular matrix, show that AXj, AX^, 
early independent.

2’

+ o,AX,. = 0 for'some scalars Oj, a^, 
+ A(a,,X,.) = O 
... + a,,X,.) = O

' Sol. Suppose OjAXj + 02^2
=> ACojXj) + ACcgXg) + ...

A(g^Xj + (Z2X2 +

,a,..
NOTES

...(1)
Since A is non-singular, A ^ exists.
Prermultiplying both sides of (1) by A we have

A"^A(ajXj + OjXj +
(A'JAXaiXj + 02X2.....

OjXj + 02^2 + ...
. = a,, = 0, since Xj, X2,

+ a X,) = A-lO 
+ o,,X,,) = O 
. + a,X, = O 
....., X,. are linearly independent.

=>
(., AA-i = I)

Cj = Oj =
Hence, AXj, AX2,......, AX,, are linearly independent.
Theorem 30. Any set which contains the null vector 0 is linearly dependent.

, V,.] be a set of vector containing the null vector 0 overProof. Let (fj, v^, 
V. Let c. = 0.

Then, Ouj, + Oiig +.......+ +......+ Od,, = 0 is a linear combina­
tion of vectors with not all coefficients zero. Hence, the set is linearly dependent.

Theorem 31. Every subset of a linearly independent set is linearly independent. 
Proof. Let fuj, v^, ...
Let, if possible, v

, vj be a linearly independent set,
, y^l, ^ < n, be a linearly dependent subset of v^,2>

Then there exist scalars Oj, a2> , a^, not all zero, such that 
+ 0^04 = 0.

.. + Ov. = 0.
CjUj + a,^V2 + ..

+ +
.......0 are not all zero.

are linearly dependent. But, this contradicts the 
, are linearly independent.

, is a linearly independent set.
, is linearly independent.

and the scalars Cj, O2,
^ the vectors Uj, Ug, 

given hypothesis that the vectorsD^Og.

, 0,

Hence, the set {Uj, Og.
Similarly, any other subset of (Uj, Ug,

EXERCISE 6

1. Examine for linear independence or dependence of the following sets of vectors in Vg(R)
(«) 1(1, 2,3), (3,-2,1), (1,-6,-5)1 
(ii;) 1(1, 1,1), a. 2, 3). (2, 3, 8)1.

(0 1(1, 2, 3), (2,-2, 0)1
(iii) S{l, 3. 2>, (5. - 2, 1), (- 7, 13, 4)1 

(a) K3, 0, - 3), (-1, 1, 2). (4. 2, - 2), (2, 1, 1)1.
2. In the vector space of polynomials of degrees < 4, which of the following sets are linearly 

independent ?
(i) a: + 1, - X + 1, + 2a; + 1

(Hi) 1 + X, X + x^, x'^ -r x^, x^ + x^, X'* - 1.
3. A set of vectors is linearly dependent. Show that at least one member of the set is a 

linear combination of the remaining ones.

(ii) a:^ + l,r’- l,x, a;^-3;
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4. If u, V, w are L.I, in V(F) where F is any subfleld of C, then show that the vectors
(i) u + u, a + w, w + u

(ii) u + V, V — w, u - 2v + w are L.I.
[Hint, (i) For scalars a, b, c

a(u + v) + b(v + w) + c(w 4 u) = 0
(a + c)u + (a + b)v 4 (6 4 c)w = 0

DisciT.w Maihcmaiics

NOTES

Since u, v, w are L.I.
a4c = 0, a4fe = 0, i4c = 0

a = 6 = c = 0is the only solution. 
U4a,a4u)4!i are L.I.=5

a
5. Find a if the vectors - 1 , 2 , 0 are linearly dependent.

3 -3 1

1.16. BASIS AND DIMENSION OF A VECTOR SPACE

BASIS

Definition. Let V be a vector space. A set of vectors Vj, Wg, 
o basis ofV if

, c V is called

, are linearly independent(i) the vectors Hj, Ugi 

{«) yj, Ug.

(i.e., any vector d e V can be expressed as a linear combination of the vectors
v^span V

.v„)-
The space V is finite dimensional if it has a finite basis. If V is not finite dimen­

sional, it is called infinite dimensional.
The vector space Vg = (0} is zero dimensional.

Dimension of a Vector Space

Definition. The number of vectors in a basis of a finitely generated vector space 
is called the dimension of the vector space V and is denoted by dim V.

The dimension of a null vector space V i.e., V = (0) is defined to be zero. 
Dimension of a non-zero vector space is a natural number greater than dr equal

to 1.
If dim V is n, then we say that V is an n-dimensional vector space. The dimen­

sions of the spaces R, and R" are 1, 2 and n respectively. That is why we call 
R" an n-dimensional vector space. The dimension of the vector space of polynomials of 
degree < n is n + 1 because 1, x, x^,

Vector space of all polynomials with coefficients in F is an infinite dimensional
, x'‘ is a basis of the vector space.

vector space.
A, vector space of dimension r consisting of n-vectors is generally denoted by 

„V,^''(F). When r = n, we denote by V^(F) for V„'(F).
Remark. Since we can choose a basis of a vector space V from a given generating set, 

dimension of V is less than or equal to the number of elements in any generating set. Further, 
since any maximal set of linearly independent elements of V farms a basis ofV, we see that any 
linearly independent set has at the most n elements if dim V is n.
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Theorem 32. (Extension Theorem). If V is a finitely generated vector space,
, 0,. in V, can be extended to a

Fiinikimenlal Ciiiicepis 
imil Vi’i'lorxthen any set of linearly independent vectors Vj, V2, 

basis of V.
Proof. Let V(F) be a finitely generated vector space over F. 

V has finite dimension n (say).
, be a basis of V.

be any L.I. set of vectors in V.

NOTES

Let B = {u^, u 
Let A=|o,, Dg,
We shall show that A can be extended to form a basis for V,

2’

Bj = Au B = {oj, Og, 
Since Bj 2 B, and B is a basis.

B, is L.D.

Write .“J■ “1- “2-

I
there exists a vector in Bj, which is a linear combination of the preceding 

vectors and that vector cannot be any one of the ’s (A is L.I.). Therefore, that
must be one of the ufs. Let that u- be Then Uj. is a linear combination of Oj, v^, ,
"m' “i-“2- - “*-r

After removing Uj from the set Bj, we denote the remaining set by Bg. 
Bg = {Oj, l'2> “2- ’ “*-i> “i+i’

and Bg spans V.
/if u e V, can be expressed as a linear combination of elements of Bj and in

“1-
(v

this linear combination, can be written as a linear combination of Vj, Og, 
, Uj_j, so u can be written as a linear combination of Oj, v

If Bg is L.L, then Bg is a basis of V.

- “i> “2-«2, 2’

If Bg is L.D., then we repeat the same procedure as we have done for B^ to get a 
new set. We continue this process till we get a set B’ containing vectors Oj, i^g, 
such that B'is L.L and spans V.

Thus, B' is an extended set of A and is a basis ofV. Thus, any linearly independ­
ent set in V can be extended to form a basis of V.

-I'm

1.17. LINEAR TRANSFORMATION

Definition. Let U and V be any two vector spaces over the same field F. Then, a 
function (map or mapping) T.-U-^Vis called a linear transformation (written asL.T.)
if

■ (i) TXUj + Ug) = r(Uj) + T{uf), 
and (ii) T(au) = aT(u),

Here, plus in Uj + Ug denotes addition in U and plus in T(Uj) + Tiug) denotes 
addition in V. Similar is the case for scalar multiplications in (ii).

Thus, a linear transformation is a function from U to V which preserves vector 
addition and scalar multiplication.

V u U2S U 
'd u e U and a e F.

1'

Its domain and range are vector spaces, i.e., the variables as well as the values
are vectors.

if T : U V such that T{n) = v, then U and V are taken as vector spaces over the 
same field. The vector space U is called.the domain o/'tfte linear transformation Tand
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V is called the codomain ofT.ve V, is called the image ofu under T and u is 
called the pre-image of v under T.

The set T(U), = {T(u) \ u s U] of images of elements of U is called the range of T 
and is a subset ofV. It is denoted by R(T). Linear transformation is also called vector 
space homomorphism.

Theorem 33. If U and V are two vector spaces over the same field F, then a 
function T: U Vis a linear transformation if and only if

T(au + bv) = aT(u) + bT(v), ^ a, b e F and u, v s U.
Proof, (i) Let T be a L.T. from U to V.

T(u + v) = Tiu) + T((;) V u, d e U 
T(au) = aT(u), V u s U, a s F 

T(au + bv) = T(au) + T(fci;)
= oT(u) + 6T(d)

Disci-<-ii' Mailteinaiics

NOTES

...(1)Then,

...(2)and
, (Byd)] 

IBy (2)]
Now,

(ii) Conversely, let
T(au + bv) = aT(u) + 6T(i;), V u, u € U ; o, 6 e F 

To show that T is a L.T., take o = 1, 6 = 1 in (3), we have 
T(u + i;) = T(u) + T(i;), V u, i; e U.

...(3)

Again, take 6 = 0 in (3), we have 
T(au) = aT(u),

Hence, T is a L.T.
Note. The result of above theorem can be used as an alternative def. of linear transfor­

mation.
Def. A linear transformation T: U —* U is also called a linear operator, i.e. a 

L.T. from a vector space U into itself is called a linear operator.
Def. We know that a field F can be regarded as a vector space over itself. A L. T. 

T from a vector space F(F) to F(F) is called a linear functional.

ILLUSTRATIVE EXAMPLESA-

Example 1. Show that the function T: R^ defined by
T(xj, X2, x^) = (Xj, X2, 0)

is a linear transformation.
{This function is also called the projection ofR^ on Xj X2-plane) '. 

Sol. To show that T is a L.T., we have to show that
T(X + Y) = T(X) + T(Y) and T(aX) = aT(X)

for all X, Y e and all scalars a. 
Let 

Now,
X={x^,X2,x^) and Y = (yj, y2. ^3) 

X +Y = (Xj +yj_,X2 + ,V2. ^3 + .y3' 
aX = (aXj, 0X2, oXg). \and

By definition of T,
T(X + Y) = T(Xj + yj, Xg + yj, Xg + yg) 

= (xj+yi,X2+y2, 0) {By rule of given mapping)
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= (x^,x^, 0) + (yp^-g, 0)
= T(X) + T(Y),

T(aX) = T(aXj, ax^-

= (axj, 0X2, 0)
= a(Xj, X2, 0) = aT(X).

(By rule of given mapping)

and
NOTES(By rule of given mapping)

Hence, T is a L.T.

1.18. EQUALITY OF TWO LINEAR TRANSFORMATIONS

Two linear transformations T and S from U —*V are said, to be equal iffT(u) = 
S(u) for all u e U.

Theorem 34. If B = [Uj, U2, «„) is a basis for U and Vj, Ug, o,, be any n
vectors (not necessarily different) in V, then there exists a unique linear transformation 
T: U -*V such that''

...(1)T(U;) = v-. for i = 1,2, n. 
Proof. Let u be any element of U.
Then, u can be uniquely expressed as

u = a^u^ +O2U2 + -•
for some scalars Oj, Og, 0,1- 

Define ,„(2)T(u) = + OgOg + - +

We shall show that T is the required linear transformation, i.e., we shall show
that

(i) T is a L.T. (ii) T satisfies (1) and (iit) T is unique. /
To prove (i), let u, u be any two vectors of U and a, b be any scalars. 
Then, U = OjUj + OgUg •••

V = 6jUj + 62^2 +
au + bv = (ooj + + (aa^ + 662^^2

Tiau + bv) = T((aoj + 66j) Uj + (aa^ + bb^) u^ + ... + (oa„ + bb ^)) v^ 
= (oQj + 66j)yj + (aog + bb^^v^ + — + (aa^ + bbjv,^
= aCojOj + OgOg + - + a J + b( 6jUj + b2V2 + -■ + b^vj 
= a Tiu) + b TCo)

and

[By (2)]

T is a L.T. 
To prove (ii), 

and therefore,
+ lu- + ... + Ou 
+ lo, +

u- = 0«j + ... + Ou 
T(up = Ooj + 0^2 + - 
T(«;) = lo,. = V., V i 

To prove (iit), let S : U -> V be another L.T. such that.

i-i

+ Oo

S(u,.) = V. for i = 1, 2,
S(u) = S(ajUj +'02^2 •••

= Cj S(Uj) + Og 3(1/2) + ®^“n)

= UjOj '+ OgOg + ••• °n.^n “ ^(it), V U 6 U. 
S = T.

, n
Then,

Hence
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Remark. The above theorem can be used to define a L.T. Ton a basis (Uj, uj of a 
vector space U and then the value of T on a general u is obtained as follows ;

u = n,u, 4 + ... + then
T(u) = a, TCUj) 4 n.^ T(u^) 4 ... 4 T(u„).

The following example illustrates how to define a L.T. T by specifying its values

DisrreU' Mntliemaiic.s

If

NOTES
on a basis.

EXERCISE?

1. Which.of the following functions are linear transformations ?
(j) T : ^ R'^ defined by

(a) T(.r, y) = (x, a: 4y)
(c) T(A:,y) = (y, x)

(ii) T : R2 -» R^ defined by 
(a) T(x, y) = {x + 2y, 3.* - 5y, y)

(iii) T •. R^ R defined by .

TU, y, z) = X 4 2y - 5z.
(id) T : R'^ ^ R2 defined by 

(a)T(x,y, 2) = (| X 1,0)

(c) T(z, y, 2) = (x - z, y)

(e) T(x, y, z) = (x 4 y 4 z, 0)'.
(o) T : R* -4 'R^ defined by 

T(x,,v, z) = (y, -X, -z).
2. Find a L.T. in the following cases :

(i)T : R2->R2 such that T(l. 2) = (3, 0) and T(2, 1) = (1. 2)
(ii) T ; R2 R2 such that

(6) T(x,y) = (l4x.y) 
(rf) T(x,y) = (x2,y).

/
(6) T(x.y) = (2x --y, x -y, - 2x).

(6) T(x,y, 2) = (2x - .3y, 7y 4 22) 
(d) T(x,y, 2) = (x,,y)

T(0, 1) = (3. 4), T(3,1) = (2, 2) and T(3, 2) = (5, 7) 

(Hi) T : l^(x) -4 Jgtx) such that T(1 4 x) = 1 4 .r,

T(2 4x)=X4 3x^ and T(x^) = 0.
3. Show that

T ; R2 —4 R2 such that
T(0, 1) = (3, 4), T(3, 1) = (2, 2)
T(3, 2) = (5, 7) is not a L.T.

4. Find a L.T. T in each of the following cases, which transforms
(i) the vectors. (1, 1, 1), (1, 1. 0), (1, 0, 0) in R'* to (2, 1), (2, 1), (2, 1) in R^,

(ii) (2, 3), (3. 2) in R2 to (1, 2), (2. 3) in R".
(Hi) (3, - 1, - 2), (1,1, 0), (- 2, 0, 2) in R’* to twice the elementary vectors 2c,, 2c.„ 2c., in

and

R3.
(iv) (1, L, 1), (- 1,1, - 1), (1, L, 2) in to (1,1), (1,1), (1,0) in R^.

1.19. ONE-TO-ONE AND ONTO TRANSFORMATION

A linear transformation T : U ^ V is said to be one to one (or just.one-one) if 
different elements ofU have different images i.e., if Uj, e Uand Uj * u^, then T<u,) *
T(u^.

\
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A linear transformation T :U —^V is said to be onto if for each v a V, there exists 
at least one u a Usuch that T(u) = v.

A linear transformation T which is onto is also called surjective, a one-to-one 
transformation is called injective and the one which is both one to one and onto is 
called bijective. A bijective linear transformation is also called- an isomorphism.

Example 2. Show that the funetion T : defined by T(Xj, x.^) = (Xj - x.^,
Xj + x.^. for (xj, x^) e R^ is bijective (i.e., an isomorphism).

Sol. T : defined by T( Xj^, x^) = {Xj- jSj. ^ •’•2^ ^ R^ is a L.T.

NOTES

( Prove it!)
T is one-to-one
Let Uy = {x.^, x^) and u^ = (Vp .V2) b® two elements of R^(= U). 

T(Ui) = T(u2)
(Xj -Xg.STj -i-x^) = (v

Then,
ya-.Vi + >'2'

^1 =yi “^2- *1 *2 =^1 ■'■^2

1

^1 = .yi'*2 = ^2 
Uj = n2

T is one-to-one.
To show T is onto.
Let (y^, yj) ^ V) be any element.
T is onto if there exists (Xj, Xg) e R^ = U such that

T(Xj,X2) = (Vp.Vs)
(xj-X2, Xj-(-X2) = (ypy2)

^i-^2=.yi-^i + *2 = y2
= jCyi +^2). ^2 = 2 ^2 “3'i)

ifI.e.,
ifI.e..
ifI.e,, .

Thus, (yj, yfi is the image of (^(Vj ^-yg), |ly, -yj))- 

T is onto.
T is bijective.

1.20. NULL SPACE OR KERNEL OF A LINEAR 
TRANSFORMATION

The null space (or Kernel) of L.T. T: U(F) V(F) is the set of those elements ofU 
whose image under T is the zero element ofV, and is denoted by N(T).

N(T) = {n I Its UandTai) = Ol.
Let us find R{T) and N(T) of some linear transformations.
1. Consider T : R^ R'* defined by 

T(Xj, X2, X3) = (Xj, X2, 0).

Here, R(T) = ({x,, Xg, 0) | Xj, Xg e R) which is nothing but the XjXg-plane in R^. 
To find N(T), we want those vectors (Xp Xg, X3) for which .

T(Xp Xg, X3) = 0.
=> (Xj, Xg, 0) = (0, 0, 0) => Xj = 0, X2 = 0,
Thus, every element of the form (0, 0, X3) will be mapped by T into (0, 0, 0) and 

no other element is so mapped. Hence.

I.e..
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N(T) = {(0, 0, 1 *3^ RlDiscrete Mathematics
and is nothing but Xg-axis of R^.

2. Consider T ; R^ defined by
T(Xj, Xg, Xg) = (Xj - Xg, Xj + Xg)

R(T) = |(Xj -Xg, Xj +X3) I 
We are to find vectors (a, h) c R^ such that 

■ a =Xj-Xg, 6 =Xj +X3 
Xj — Q, Xg = — Xj

NOTES
Xp Xg, Xg e R1i Here

Xg

Hence, T(Xj, Xj — o, 6 — Xj) = (a, 6).
Thus, every vector (a, 6) of R^ is in R(T)

R(T) = R^- T is infact, onto.
To find N(T), we want those vectors (Xj, Xg, Xg) e R'* for which 

T(Xj, Xg, Xg) = 0.
(Xj - Xg, Xj + Xg) = (0, 0)

Xg - Xg = 0 and Xj + Xg = 0

i.e.,

=>
Xj=X2 = -Xg

N(T)= {(Xi,Xj,-Xg) I Xj g Rl.
- N(T) is the subspace of R^ generated by < (1, 1, - 1) >.

=>
--Thus

i.e.,
3. Consider the zero map T : U —» V defined by 

T(u) = 0, V zi e U.
R(T) = (0) and N(T) = U.Here,

T is not onto.
4. Consider the identity map T : U -» U defined by . 

T(u) = li, V z/ e U.
R(T) = U and N(T) = (0)Here,

T is onto.
5. Consider the L.T. T : R^ -» R^ defined by

T(xj, Xg) = (xj, - Xg).

R(T) = R^ and N(T) = ((0, 0)}.Here,
Here, T is onto.
Theorem 35. Let T: V —^W be a linear transformation. Then, T is onto iffp(T)

= dim W
Proof, (i) Let p(T) = dim W 

dim R(T) = dim W
R{T) = W => T is onto

Hi) Conversely, let T be onto
R(T) = W p(T) = dimW.

Theorem 36. Let T be a L.T. of the finite dimensional vector space V to itself. 
Then if we know that either T is one-one or that T is onto, then we can always conclude 
that T is both one-one and onto (i.e. bijective).

Proof. It will suffice to show that each of the statements ‘ T is one-one’ and ‘ T 
is onto’ implies the other.
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Now, T is one-one iff H(T) = 0 
p(T) = dim Viffi.e.,

.•v

iff T is onto.I.e.,

NOTES
EXERCISES

1. Which of the following L.T.’s are one-to-one, onto or both one-to-one and onto ?
(i) T(X], Xj, X3) = (x 

(it) T(Xj, x^.Xg) = (x, -X2, Xg -X.,) (Hi) T(x,, Xj, X3) = (x, -X2,Xj). 
2. Find R(T) and N(T) of tlie following linear transformations :

(i) T : -» defined by T{x,, x^) '= (x, + .t2, x,)
(it) T : R^ -» R"* defined by T(xj, X2) = (x■^, Xj + X2, X2)

(Hi) T : R^ defined by T(Xj, X2, Xj) = (Xj, X2, Xg)
(iv) T : I J defined by T (p(x)) =xp(x).

The images of a linearly independent set of vectors by a linear transformation 
may not form a linearly independent set. However, the following theorem says that a 
one-to-one linear transformation preserves linear independence and under any linear 
transformation, the set of pre-images of a linearly independent set of vectors is lin­
early independent.

1.21. RANK AND NULLITY

If T is a linear transformation from a occfor space U to a vector space V,\then the 
dimension of range space R(T) ofT is called the rank of T and is denoted by p\t). The 
dimension of null space N(T)ofT is called the nullity of T and is denoted by pCD.

Theorem 37 (Sylvestor’s Law). IfT: U(F) V(F) is a linear transformation 
on an n-dimensional vector space U, then

. Rank (T) + Nullity (T) = Dimension U.
Proof. Since null space N(T) is a subspace of finite dimensional vector space U,

let the set
A= (Uj, U2. , Ujl, (k < n)

be a.basis set of N(T),
Nullity of

Now, extend the set A to a basis of U(F). 
tret B = {wj, Ug,

T = )x(T) = k ...d)

, u^, ...., uj be a basis of U
(•-■ U is nth dimensional vector space). 

We claim. The set C = {T(aj,^j), T(a^^2'-......> T{u,,)l is a basis of R(T).
Firstly, we show that the set C is L.I.

T(a„) - 0
= 0
^ N(T).

Let '...(2)

Since A is a basis set of N(T),

can be expressed as a linear combination of elements of A.
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6jUj + 62^2 + - + b^u,^ - - ... - o„ri,. = 0

6j = fcg = ... = b,^ = 0 and a . = a =0i,*i “ -•

(■•■ B is a basis of U)NOTES
From (2), C is L.I.

Secondly, we show that C spans R(T).
Let V be any element of R(T).

There exists an element u e U such that 
T(u) =,a

Since B is a basis of U, therefore ii can be expressed as a linear combination of 
elements of B-

...(3)

Let u = OjU, + <22fi2 + - +
T(u) = T(OjUj + OgUj + ... + + ... + <!„»„)

=:Oj T(aj) + a^TiUo) + ... + + ... + a^T(u^^)
, 6 N(T), we have

T(u,.) = 0 for i = 1, 2, 3 
o=a^^jT(u^,,) +

...(4)

Since Uj, u^,
, k

From (4),

The set C spans R(T).
Hence, the set C is a basis of R(T).

Dimension of R(T) = number of elements in a basis set C.

+ a„T(«„)

= n - k 
p(T) = n- k 

p{T) + |i(T) = n.
Example 3. If T: -* is a L.T. defined by T(xj, XgJ = (xj - x^, x.^ - x,, - x f,

then find a basis and dimension for its R(T) and N(T).
Also verify that p(7^ + \i{T) = 2(= dimension ofR^).
Sol. We know that

=>
(v n(T) = A-)

N(T) = {xj,X2) I T(XpX2) = 0e R^}.
Let (Xj, Xg) be any element of N(T).

T(Xp X2) = 0
(Xj - X2, Xg - Xj, - Xj) = (0, 0, 0)

Xj -Xj = 0, X2 - Xj = 0, -Xj = 0

=>

Solving, we have 
.'. (0, 0) is the only member of N(T). i.c., N(T)=(0). 
.-. Nullity of T = dimension of N(T) = 0.

Xj = X2 = 0.

To find R{T) and its dimension
Since T(Xj, X2) = (Xj, X2, Xj - Xj, - Xj)

R(T) = |(Xj-X2, Xj-Xj,-x^ I (Xj,X2)e R^l. ...(1)
Let V be any element'of R(T).

There exists (xj, x^) e R^ such that 
T(Xj, X2) = 0. '

(XpXj) =Xj(l, 0) +X2 (0, 1) =x,ej + X2e2
V = T(xj, X2) = Tlx^C] + X2e2) = XjT(Cj) + X2T(e2)

Now,

...(2)
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T(c2) = T( 0,1) = (0-1,1-0,0) = (-1,1,0) IBy(l)]

Substituting values of T(ej) and Tie^) in (2), we have
V = T(a:p x^) = x^^ (1, - 1, - 1) + x^i- 1, 1, 6) 

Therefore every vector v of R(T) is a linear combination of vectors (1, 
and (- 1, 1, 0).

NOTES

l.-l)

Moreover, (1, - 1,- 1) and (-1,1, 0) are L.I. because neither vector is a multiple
of the other.

Hence, |(1, - 1, - 1), (- 1, 1, 0)) is a basis of R(T) 
Dimension of R(T) = 2.

Since dimension of R^ is 2.
Rank T + Nullity T = Dimension of R^.

1.22. OPERATIONS ON A LINEAR TRANSFORMATION

Addition of Linear Transformations

Let L(R", R"") be the set of all linear transformations from R" to R'". If T, S e L 
(R". R”‘), we denote the sum of T and S by T + S and is defined by (T + S)(X) = T(X) 
S(X).

+

Now,
For,

T + S c L (R", R"-)
(T + S)(X + Y) = T(X + Y) + S(X + Y)

= (T(X) + T(Y)) + (S(X) + S(Y))
= (T{X) + S(X)) + (T(Y) + S(Y))
= (T + S)(X) + (T + SKY)

(T + S)(LX) = T(X.X) + S(K.X) = ;t,T(X) + ^.S(X)and
\

= WT(X) + S{X)^ = W(T + S)(X))
If A = [o ••], B = [6;^], C = [c,y] are the matrices associated with the linear transfor­

mations T, S and T + S, then the natural question is : What is the relationship be­
tween A, B and C ?

IfX = (Xj, ^^2,
\

Y=(yj,y2. 
TOC) = Y and S(X) = Z, then we have

\ ,yj andZ = (2j, 22. , 2„,) are such that

yi = '^a;jxj,i=l2. ,m
./ = i

V
and m

./ = ! I--:
Now, (T + S)(X) = T(X) + S(X) = (yj,,y2, 

= (yi+2i,>'2 + -22>......
■]. ?2’

-.(2)
From (1) and (2),

= X + b^)xj, i = 1, 2, m •
./ = 1
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Thus, the matrix associated toT + SisC=[a ■■ + b ,y], 1 < i< m, 1 < j <n which 
is the sum of the matrices A and B.

Scalar Multiplication

Discrete Mathematics

NOTES For a transformation'T e L(R'', R'") and X e R, we define the function X T : R" —»
R"‘ by (XT)(X) = XT(X) = (Xy^ Xy2,

T(X) = (yj,.V2,...- 
One can verify that XT e L (R'‘, R'")
If A = [a,^] is the matrix associated with T, then

y,=o,iXi + a,^2 +....
Xv; = XajjXj + Xa.j *2

Thus, the matrix associated to XT is [Xa,^].

if

+ a;„x,„i = l,2,......
.... + Xa,„ x„,i = l, 2,

m

so that , m

EXERCISES

1. For each of the following linear transformations, find a basis and the dimension of:
(it) its null space.(t) its range space 

Also verify that rank (T) + Nullity (T) = dim. U
(a) T : -» such that Kxj, = (a;, + -v, - x.^, Xj)
(b) T : R^ -» R^ such that T(x, y, z) = (x + y, y + z).

2. Find a linear transformation T : R'^ -» R'’ whose range is spanned by the vectors 
(1,2, 0,-4) and (2, 0,-1,-3).

3. Let T| and T2 be two linear operators defined on as
T,(x,y) = (x+y, 0) and T^ix, y) = (-y, x).

Find a formulae defining the operators
(it) Tj o T,

(
(iti) T,2(=T,oT,).(OTjO Tg

1.23. ISOMORPHISM

Two vector spaces U(F) and VCF) are said to be isomorphic vector spaces if there 
exists a one-one and onto linear transformation T from U(F) to V(F) and we write U(F) 
= V(F). The one-one and onto linear transformation T is called an isomorphism of U 
onto V.

Theorem 38. Every n-dimensional vector space U(F) is isomorphic to F".
be a basis of U.Proof. Let |Uj, u^,

Then, each u s U,,can be written as :
+ aji^ for scalars o,, a^.U = AjUj + OgUj +

Define a function T : U -» F" by
T(it)"= (a,, a^,......

We shall show that T is an isomorphism.

o...
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ii) To show T is one-one. 
Let u, y 6 U.

Fundameiilcil Crmre/n.'i 
and Vvdors

+ for some scalars Cj, Og,
+ for some scalars 6j, b^,

a^) and T(i;) = (6j, b.^,

U = OjUj + Qjiij +
V = + b^u^ + ..

T(u) = (a,, a^,
T(«) = T{t;)

•••■’ ^2’ 
aj -6j = 0,02-ftg = 0-

and .V NOTES

Now,

(flp Og,=>

(■•■ fi], ^2- , are L.I.)
a- = b-, for i = 1, 2, ,n.

=> u = V.
Hence T is one one.
Hi) To show : T is onto
If (Oj, ......

that + 02*^2
Hence, T is onto.
(lii) To show :T is a L.T

, o,^) is any element of F", then OjUj + <^2^2 "*■ 
......+ = (“i- 02-

+ 0,^0^, e U such
,a„)

Let u, u e U and a, b scalars. 
Then, u = + 02^2 + + for some scalars Oj, 02, 

+ for some scalars b^, b2, 
au + bv = (ooj + 6bj)Uj +

and V = + 62^2
+ (oo,, + bbju„

-
a„) + Mftj, 62,

T(au + 60) = (aOj + 66j, 
aT(u) + 6T(o) = oioj, 02,...Also,

= (oOj + ocg + bb^, 
T(aH-+ bv) = aT(u) + 6T(i;).

, oa„ + bb,)

.-. T is a L.T.
Hence, T is an isomorphism 

U = F-'.or

1.24. EIGEN VALUES AND EIGEN VECTORS IN A LINEAR 
TRANSFORMATION

Definition. Let T :V ^Vbea linear operator on an n-dimensional vector space 
over the field F. A scalar Xa F is called the eigen value ofTif there exists a non-zero 
vector u & Vsuch that T(v) = Xv and any v *OofVsuch that T(v) = Xv is called an eigen 
vector ofT associated with the eigen value X.

Note, (i) Eigen value is also known as proper value, characteristic value, spectral value 
or latent value. Similarly, Eigen vector is also called proper vector, characteristic vector, spec­
tral vector or latent vector.

(a) If V is an eigen vector of T corresponding to the eigen value A., then every scalar 
multiple kv (k *0) ofv is also an eigen vector corresponding to X, because 

T(kv) = AT(u) = HXv) = X(kv)
(tit) The set of all eigen values ofT is called the spectrum of T.
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(iu) If A is an n-square matrix associated with the linear operator T : V -» V fclini V = ;i 
say), then we can define eigen value as a root of (A - A.I) X = 0 and the non-zero 
solution X as the eigen vector. This concept, the students have already studied in 
B.A./B.SC. I.

OiscK'k' Malhemaiics

■ Theorem 39. Let T: V be a linear operator on a finite dimensional vector 
space V(F). If v 6 V is an eigen vector ofT, then v cannot be associated with more than 
one eigen value of T.

NOTES

Proof. Let, if possible, v corresponds to two different eigen value.s ^2 of T.
Tfo) =

= X2V 
0 = 0

and T(o) = Xg" 
^ (X, - X2) p = 0

X, * Xj)(v=>
which is not possible as v being an eigen vector must be non-zero.

Hence, v cannot be associated with more than one eigen value of T.
Theorem 40. Let X be an eigen value of a linear operator T on a vector space 

V(F). Then, the set of all eigen vectors of T corresponding to eigen value X, is a 
subspace of V(Fj.

Proof. Here, = (u € V V is an eigen vector of T corresponding to XI

= In € V j T{v) = Xv]

Since X is an eigen value ofT, there exists a non-zero vector v' such that 
T(o') = Xi;'.

Let Op O2 e and a, h e F.
Oj, 02 s Vj^ ^ Tfoj) = Xoj and T(o2) = Xv^

T(aOj + io2) = T(aOj) + T(6o2)
= aT(0]) + tTiog)
= q(Xo^) + fciXtig) = X(ao, -t- boj) 

ooj -t 602 eigen vector corresponding to X.

» aOj -t 6u2 6 ^x- 
Hence, is a subspace of V.
Note. This subspace is called tHe eigen space or the charnelerislic space of the eigen

TisaL.T.) 
T is a L.T.)

Now, (v
(v

value X.

EXERCISEJO

1. Find all the eigen values and basis for eigen space if the linear operator T : —» R'^ is
given by T(x, y) = (x + 2y, 3x + 2y).

2. For each of the following operator T : Ri* -» R-’, find the eigen values and a basis for each 
eigen space.

(а) T(x. y, 2) = (2x + y, y - 3, 2y + 42)

(б) T(x, y, 2) = (x + y + z, 2y + z, 2y + 82).

3. Find all the eigen values and basis for each eigen space of linear operator 
T ; R'* defined by

T(x, y, r) = (3x + y + 42, 2y + 6z, 5i).
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Fiiiulainciilal Conrciils 
and Vrcion1.25. BILINEAR FORMS

Bilinear Forms. Let y,J=R"') and (= R") be two vector spaces over the same 
field F. Let X and Y be any two arbitrary vectors ofV^^^ and respectively. Then, a 
bilinear form over F is a function f of two vector variables X, Y and satisfying the 
following properties.

(i) /(qXj + X2, Y) = Y> + /IX2. Y) V Xj, X2 G V,„ Y e V„, a e F 
and (it)/{X, aYj + Yj) = qAX, Yj)+/(X, Y2), V X e U,„, Y^, Y2 s V,,, a e F.

For a fixed Y s V,^, /(X, Y) defines a linear function from V „ -» F and for a fixed 
X, /{X, Y) defines a linear function from —» F,

Because of this linear .function properties w.r.t. two vector spaces and V^, 
when considered separately, /(X, Y) is called a bilinear form.

For example, (i) Consider a function /■: R® x -» R defined by

/(X, Y) =a:,yj + 2a:jy2+^3y2 3a;3Vj, .
X = (jTj.Xg, x^),Y = (yj,y2^.

Then /{X, Y) defines a bilinear form.
For, let

NOTES

where

“ ^^11’ ^12> ■*'13^’ ^ “ ^^21’ ^22’ -^23*

Yi = (yii,3'i2' ^nd Y2 = (y2i. .y22)
(We are using double suffix notation to denote elements of vectors where the 

first suffix indicates the vector and second suffix indicates its element).

Let (Xj, Yj), (X2. Y2) e R3 X R2 such that (Xj, Y^) = (X2, Y2)
and

and

...(1)=> JJjj ATgj, Xj2 - *22’ ^13 ^ ^23

/(Xj, Yj) = *ij ^11 + 2*jj yi2 + *i2 3'i2
-^11 ~.>'2J’-^12 “(^22

Now,

= *21 3'21 + 2*21 y22 * *22 >'22 + 3*23 >'21 = ^^2-
=> image under/'is unique. ■-

To show that f satisfies the linearity conditions (i) and (ii) of the definition.

/(oXj + X2, Yj) = (axji + X21) yji + 2(a*jj + yjg

+ (axj2 +*22).>'i2 + 3(a*j3 + X2^).yii
- + 2x,jyj2 + *i3yi2 +

+ {a^gjyji + 2x2iyi2 + *22>'i2 + 3*23yn^ 
= a/(X,.Yi)+/(X2,Y/), VaeR

Similarly, we can show that

AXi,aY, + Y2) = a/(Xi,Yi)+/i:X2,Yi), VaeR. 
Hence, /is a bilinear form.

Ui) Consider a function /: R^ x R^ -» R defined by 
/(X, Y) = Xjyj + j^gyg + 1

X = (xj,:c2) and Y = (yi,y2).where
Then, /is not a bilinear form

Infact/does not satisfy the linearity property as shown below.

Xj = (*jj, *22), ^2 = ^^21’ *22^ and Y = (yj, y^)
aXj + Xg = a(*ji, *12) = (*2i’ *22)

= (cuTjj + 3:21, a*j2 + *22^’ V. a e R

Let
Then,
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AaXj + X2, Y) = (ox,i + + (0Xj2 + ^22^>'2 ■*■ ^
a/lXj, Y) + /(Xg, Y) = aix^^y^ + +'!> + <^21^1 + -W2 +

f[aX, + X2, Y) ^ aflX^, Y) + /(X2, Y)
Hence f is not a bilinear form.

Effect of Linear Transformations on a Bilinear Form

Now,Discrete Maihcmaiics
and

NOTES

/H

Let the m x’s of the bilinear form X'AY = ^ X changed to new

variables u’s using the linear transformation
- 1 - 1

= ^ b-j Uf, a = 1, 2, m) or X = BU 
j = 1 ■

and the n be replaced by new variables o’s using the linear transformation

2] Cj, Vj. a = 1, 2,
.1 = 1

X'AY = (BU)' A(CV) = U'(B'AC)V = U'DV where 

D = B'AC.
Thus, a bilinearform remains a bilinear farm when subjected to linear transfor-

:,n) orY = CV.3'.=

Then,

mations. t

Applying the linear transformations U = IX and V = lY, we obtain a new bilinear 
form (IX)'(B'AC) (lY) = X'(B'AC)Y = X'DY in the original variables.

EXERCISE11

1. * Express the following bilinear forms in the matrix notation and find the matrix of the
bilinear form : ,
(t) x,yj + 2x^y.^ - ijy., + 7x^v, - + '3x.^y.^ *■ i.,v, - 5.r.jy^

in) 2x■^y^ + Xjy, - 2X2^, + Ix.jy^ - 2x.^y.^
I

' (iti) 2ijyj-x,,r2+ x._jy2-x.^2
(iv) - 2ir,y, - x^y^ + 2x.^ - x^y, + 3x.y.^
(v) 3x,y, + .x,y2 + - 2X2V2 - 4xaV;, -- 4.r.jy;| + 3x.^Vr,
which of the above forms are symmetric ?

2. Write the bilinear forms corresponding to the matrix A in the variables X and Y when
2 3 5'

-2 1 7(0A = X = (X,, X^). Y = (.V,,.V2'3':t)

'0 5 -1
(ti) A = 7 0 9 .X = (x,,x2,X,,), Y =

1 3 1

1 5
(iii)A= -2 1 , X = (x,, x^, x.j), Y = (Vj.yjt 

3 5
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Fimtianii-nial Coiict’ius 
iiiuJ VitJio'sSUMMARY

• An algebraic system (G, *) is said to be a group if it satisfies the following properties.
(i) The operation * is a closed operation.

(ii) The operation * is an associative operation.
(Hi) There exists an identity element w.r.t. the operation *.
(in) For every a s G, there exist an element a"’ s G such that a’' a = a n"’

• A group (G, *) is called a finite group if G is a finite set.
• The order of the group G is the number of elements in the group G.
• A homomorphism which is one-one and onto is called isomorphism and the groups G 

and G' are called isomorphic.
• A ring R with finite number of elements is known as finite ring, otherwi.se it is known as 

infinite ring.
• A commutative ring F with unity such that each non-zero element has a multiplicative 

inverse i.e., Ea"' e F such that aa"‘ = 1 = a~^a is called field.
• Vector space is also called the linear space.
• The number of vectors in a basis of a finitely generated vector space is called the dimen­

sion of the vector space V and is denoted by dim V.
• Two vector spaces Vj and Vj are called identical spaces if and only if every vector of V, is 

a vector of Vj and conversely, i.e., if and only if each is a subspace of the other.
• Let U and V be any two vector spaces over the same field F. Then a function (map or 

mapping) T : U -+ V is called a linear transformation (Written as L.T.) if
(i) T (u, + Wj) = T (u,) + T(u2) Vp,,p2eU 

and (ii) T (au) = aT (u) VpeUandaeF,
• A linear transformation T which is onto is called surjective.
• Eigen value is also known as proper value, characteristic valud, spectral value or latent 

value.
• A bilinear form is a special type of function involving two different real or complex vec­

tor variables having the value of the function in a real or complex field F.

NOTES

= e

TEST YOURSELF

Let S = N X N, the set of ordered pairs of positive integers with the operation ''' defined1.
by
(a, b) » (c, d) = (ad + be, bd)
(a) Find (3, 4) » (I, 5) and (2, 1) * (4, 7)
(b) Is S a semi-group ? Is S commutative ?
Prove that if H, Rare subgroups of a group G and H uK = G. Then either H = G or K = G. 
Show that the intersection of any number of subgroups of G is a subgroup of G.
Let G be a group and a, 6 s G. Then the equation x » n = 6 has a unique solution given by 
.r = b ” a“*.

Prove that ifx^ = 1 in an integral domain D, then x = 0 or x = 1.
If R is a ring with unity, then this unity is unique.
Prove that the ring x is commutative and has unity.
If J and K are ideals in a ring R, then J + K and J n K are also ideals in R.
(n) Define a vector space and give one example of a vector space over the field of reals, 
(b) Define vector space and show that the set C of all complex numbers is a vector space 

over the set R of all reals w.r.t. usual addition and scalar multiplication.

2.
3.
4.

5.
6.
7.
8.
9.
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10. Prove that R is a vector space over the field Q of rationals where vector addition is 
defined by

Disri f.ir- Miiiheimitics

u + V = u + v,'^ u, V e R and scalar multiplication is defined by : 
a. u = au where a e Q, w s R. '

11. Show that the set |r*-* + 1, r’ + 2^; + 1, .v + II is L.I. in the vector space of all polynomi­
als over the field of reals.

NOTES

a,^ ) and ( fe,, 6^ ) in (F) are L.D. if n, - n.^b = 0.12.. Prove that the vectors (a 
13. Show that the L.T. T : ^ defined by.

1p

= (xj cos 0 +x^ sin 0, - x, sin 6 + x^ cos 0) • 
is a bijective (i.e., an isomorphism).

14. (a) Show that the L.T. T : R^ ^ R defined by T(Xj, x^) = x, is onto but not one to one. 
(6) Show that the L.T. T : -♦ defined by

T(x,y,z) = (x,ay,z)
where a is a fixed real number is an isomorphism.

110
2 3 lx, show that ( i) it is singular (ii) the 

_-2 3 Sj
images of the linearly independent vectors X, = (1, 1, 1), = (2, 1, 2) and X,, = {1, 2. 3'
are linearly dependent.

16. Show that T ; R^ -»R^ defined by T( x, y, z) = (x cos 0 - y sin 0, x sin 0 + y co.s 0, zl i.s 
non-singular for all values of 0.

17. Let P and Q be two n x n matrices over a field F and X an eigen vector of both the 
matrices P and Q. Show that X is also an eigen vector of the matrix aP + flQ where u, 
Ps F.

18. Obtain the linear transformation which reduce each of the following bilinear forms to 
the canonical form:

(i) Xjyj + 2x,y2 - Xjy, + 2x3V, + - x.y, + 3x,y.^ + x^y.

15. Given the linear transformation Y =

/

.12 3
-21 3
11-2 
3 7 0

1-510 
115 
2 3 0

3 2-1 
3 2 3

-13 1
Y (io) X'iiU) X' 4 

- 5 •
(ii) X’ Y

v
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Fiiiulcimaiiieil Conccpls. 
• Alsorilhins iiiul 

AppliailiimsBlock—2 

Graph Theory NOTES

UNIT

1
FUNDAMENTAL CONCEPTS, 

ALGORITHMS AND APPLICATIONS

STRUCTURE

1.1. Objectives
1.2. Introduction
1.3. Graph Terminology
1.4. Enumeration of Graphs
1.5. Paths and Circuit
1.6. Subgraph
1.7. Cutset
1.8. Weighted Graphs
1.9. Multigraph

1.10. Representation of Graphs
1.11. Planar Graph
1.12. Non Planar Graph
1.13. Graph Colouring
1.14. Covering, Independence and Domination
1.15. Shortest Path in Weighted Graphs
1.16. Dijkstra’s Algorithm
1.17. Tree
1.18. Rooted Trees
1.19. Binary Tree
1.20. Tree Terminology
1.21. Spanning Tree
1.22. Minimum Spanning Tree
1.23. Kruskal’s Algorithm
1.24. Prim’s Algorithm
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Discivie Mathematics 1.25 Applications of Graph Theory
• Summary
• Test Yourself

NOTES

1.1. OBJECTIVES

After going through this unit, you will be able to discuss about graphs, 
multigraphs, weighted graphs, planar graphs, directed and undirected graphs, graph 
colouring and covering, trees and rooted trees and various algorithms related to graphs 
and trees.

1.2. INTRODUCTION

In many problems dealing discrete objects and binary relations, a graphical 
representation of the objects and the binary relations on them is a very convenient 
form of representation. This leads us naturally to a study of the theory of graphs.

Also, we will discuss about special class of graphs, called trees. It is essential to 
know the various common types of trees, their basic properties and applications.

1.3. GRAPH TERMINOLOGY

The graphs consist of points or nodes called vertices which are connected to 
each other by way of lines called edges. These lines may be directed or undirected.

1.4. ENUMERATION OF GRAPHS

Directed Graph
A directed graph is defined as an ordered pair (V, E) where V is a set and E is a 

binary relation on V. A directed graph can be represented geometrically as a set of 
marked points V with a set of arrows E between pairs of points. Also,

The elements in V are called vertices.
The ordered pairs in E are called edges.
For e.g., consider the Fig. 1 given below. It is a directed graph.

d V >

Loop'b

. Directed graph

Fig. 2Fig. 1
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Here, the vertices are a, b, d and the edges are (a; b), (b. a), (b, d), (d, a).
An edge is said to be incident with the vertices it joins. For example, the edge 

(n, 6) is incident with the vertices a and b. Also, we say that the edge (a, 6) is incident 
from vertex a and incident into vertex b.

The vertex a is called the initial vertex and the vertex b is called the terminal 
vertex of the edge (a, b).

An edge that is incident from and into the same vertexes called a loop or self­
loop. (Fig. 2). .

Degree of a self-loop is two as it is twice incident on a vertex.
Corresponding to an edge (a, b), the vertex a is said to be 

adjacent to the vertex b and the vertex b is said to be adjacent 
from the vertex a.

A vertex is said to be an isolated vertex if there is no, 
edge incident with it.

For example, consi’der the following graph (Fig. 3)
The vertex‘a’has a self-loop. .-. dega = 4
The vertex 'b' is a Pendent vertex since only one edge is 

incident on it.
The vertex ‘e’is an isolated vertex as it has no edge incident on it. Also deg e = 0.

Fiindaint’iUcil Concepts, 
Algorithms and 

Applications

NOTES

d

Fig. 3

Undirected Graph
An undirected graph G consists of a set of vertices, V and a set of edges E. The 

edge set contains the unordered pair of vertices. If (u, o) € E then we say u and v are 
connected by an edge where u and v are vertices in the set V.

For example, let V = II, 2, 3, 4} and E = 1(1, 2), (1, 4), (3, 4), (2, 3)}. Draw the
graph.

The graph can be drawn in several ways.
Two of which are as follows (Fig. 4 and Fig. 5). These are directed graphs.

(D O

(D 0
Fig. 4

Consider the graph shown in Fig. 6. Determine the edge set and the vertex set of 
this undirected graph.

Fig. 5

1
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Discrete Mathemaiics The edge set is 
The vertex set is

E = i(l,2),(l,4), (2, 3), (2,4)J3,4)| ' 
V = a, 2, 3, 4).

Mixed Graph
A graph G = |V, E| in which some edges are directed and 

some are undirected is called a mixed graph. The graph shown 
in Fig. 7 is a mixed graph.

a

NOTES

Finite graph
A graph G = [V, E] is said to be finite if V and E are finite

b c

Fig. 7
sets.

Linear graph
A graph G = (V, E) is said to be a linear graph if its edges joining vertices lie

is a linear graph.along a line. For example, »

Discrete or null graph
A graph containing only vertices and no edge is called a discrete or null graph. 

The set E of edges in a graph G = [V, E] is empty'in a discrete graph. Also each vertex 
in a discrete graph is an isolated vertex.

Simple Graph
A simple graph is one for which there is no more one edge directed from any one 

vertex to any other vertex. All other graphs are called multigraphs, (see Figs. 8, 9)

A e D
A D

Sae* ®5.

ei Sa

64
^2B C B C65Simple graph

Multigraph

Fig. 8

In Fig. 9, the edges and Cj are called multi edges.

Complement Graph
The complement of a graph is defined to be a graph which has the same number 

of vertices as in graph G and has two vertices connected iff they are not connected in the 
graph G.

Degree

Fig. 9

Let i; be a vertex of an undirected graph. The degree of u, denoted by div), is the 
number of edges that connect v to the other vertices in the graph. The degree of a 
graph cannot be negative.
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InDegree and OutDegree
If i; is a vertex of a directed graph, then the outdegree of 

denoted by outless iv), is the number of edges of the graph 
that initiate v. The indegree of v, denoted by indegCe), is the 
number of edges that terminate at v. For e.g., consider the 
graph shown in Fig. 10. The degrees of A, B, C, D are 3, 3, 5, 
and 3 respectively.

NOTKS

Multigraph

Fig. 10
-<•

Source and Sink
A vertex with indegree 0 is called a source and a vertex 

with outdegree 0 is called a sink.
For example, consider the graph shown'in Fig. 11. Here u^

u

Fig. 11
is a sink.

For example, consider the graph shown below {Fig. 12) 
The graph shown in Fig. 12 has 7 edges.
Indegree of‘a’ = 3, Indegree of‘b’ = 2;
Indegree of‘c’ = 1, Indegree of‘d’ = 1 
Also, outdegree of‘a’ = 1, 

outdegree of‘c’ = 0, 
outdegree of‘d’ = 3.

outdegree of‘6’ = 3
c is a sink.

Fig. 12
Even and Odd Vertex

DAA vertex is said to be even vertex if its degree is 
.an even number.

A vertex is said to be an odd vertex if its degree 
is an odd number.

For example, consider the graph, as shown in
C3e

Fig. 13.
The vertices A and D are even vertices since 

deg(A) = 2, deg(D) = 2
The vertices B and C are odd vertices since 

deg(B) = 3, deg(C) = 3
A vertex of degree zero is called isolated vertex.
A vertex with degree one is called a pendent vertex. The only edge which is 

incident with a pendent vertex is called the pendent edge.

cB

Fig. 13

Adjacent Vertices
Two vertices are called adjacent if they are connected by an edge. If there is an 

edge (c j, Cg). then we say that vertex Cj is adjacent to vertex Cj and vertex e.o is adj acent 
to vertex e,.1

Theorem 1. Show that the sum of degree of all the vertices in a graph G, is even.

Proof. Each edge contribute two degrees in a graph. Also, each edge contrib­
utes one degree to each of the vertices on which it is incident.
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Hence, if there are N edges in G, then we have 
2N = + (Hv.^) +......+

Dixci'i’lf Mdihemalws

Thus, 2N is always even.
Another statement. The sum of the degrees of the vertices of a graph G is 

equal to twice the number of edges in G.
Theorem,2. Prove that in any graph, there are an even number of vertices of odd

NOTES

degree.
Proof. Consider a graph having vertices of degree even and odd. Now, make 

two groups of vertices. One with even degree of vertices Uj, Oj, •••> and other with odd , 
degree of vertices Uj, (<2, ..., u,^-'

Suppose,
V = + d{vf\ + ... + div,)
U = d(Uj) + dZiUj) + ... + d(u„).

Now, we know that sum of degree of all the vertices is even (Theorem I). So, 
V + U is even.

Since, V is the sum of K even numbers. Hence, it is even. But U is the sum of n 
odd numbers. So, to be U an even number, n must be even. Hence proved.

ILLUSTRATIVE EXAMPLES

Example 1. Verify that the sum of the degree of all the vertices is even for the 
graph shown in Fig. 14.

Fig. 14

Sol. The sum of degree of all the vertices is
= divf) + div.f) + + d.{v^) + divr) + d(u^) + div,^) + d(v^)
= 2 + 3 + 3 + 3 + 3 + 4 + 2 + 2 = 22, which is oven.

Example 2. Verify that there are an even number of vertices of odd degree in the 
graph shown in Fig. 15.
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g

Fig. 15

Sol. The number of vertices of degree odd are 8 and each have degree three in 
the above graph. Hence, we have even number of vertices of odd degree.

1.5. PATHS AND CIRCUIT

A path oflengthn is a sequence of n + 1 vertices of a graph in which each pair of 
vertices is an edge of the graph.

1. A Simple Path. The path is called simple one if no edge is repeated in the 
path i.e., all the vertices are distinct except that first vertex equal to last vertex.

2. An Elementary Path. The path is called elementary one if no vertex is 
repeated in the path i.e., all the vertices are distinct.

3. Circuit or Closed Path. The circuit or closed path is a path which starts
and ends at the same vertex i.e., = v^.

4. Simple Circuit Path. The simple circuit is a simple path which is a circuit. 
Theorem 3 (a). Suppose a graph G contains two distinct paths from a vertex ii

to a vertex v. Show that G has a cycle.
Proof. Consider two distinct paths from u to u be Pj = (cj, e^, e.,, ,c,,)and,P^

= (e,', C2',C3', -
Now delete from the paths Pj and P2 all the initial edges which are identical i.e.,

of we have Cj = ef, e^ = Cg = e^,......, but h*v delete all the
first k edges of both the paths Pj and Pg.

Now, after deleting the k edges both the paths start from the same vertex, 
(let uf) and end at v.

Now, to construct a cycle, start from vertex u, and follow the left over path of P 
until we first meet any vertex of the left over path of Pg.

If this vertex is Ug- then the remaining cycle is computed by following the left 
over path of Pg which starts from and ends at v.

Theorem 3 (6). If a graph has n vertices and. vertex v is connected, to vertex w, 
then there exists a path from v to w of length no more than n.

Proof. We prove this theorem by method of contradiction. Let us assume that v 
is connected to w, and the shortest path from v to w has length m, where in is greater 
than n.

1

We know that, a vertex list for a path of length /n will have m + 1 vertices. This 
path can be represented as Ug, Uj, Vg ... 0^,, where Uq = 0 and 0,^^ = w.
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Now since there are only n distinct vertices and m vertices are listed in the path 
after Uq, thus there must be same duplicated vertices in the last m vertices of the 
vertex list, that represents a circuit in the path. Thus our assumption is not true and 
the minimum path length can be reduced, which is a contradiction.

'Example 3.Consider the graph shown inFig. 16. Give 
an example of the following:

(i) A simple path from to Vg.
Hi) An elementary path from to Vg.

{Hi) A simple path which is not elementary from Vj to

DHcreie Malliemalic.'!

NOTES

(iv) A path which is not simple and starting from V^. 
iv) A simple circuit starting from V^.

(vi) A circuit which is not simple and starting from V,. 
Sol. ii) A simple path from Vj to Vg is 

V V V V V V• jj *2^ *3^ *4’ *5’
(ii) An elementary path from V, to Vg is

Vj.Vg, Vg.Vg, V^.Vg.
(Hi) A simple path which is not elementary from to Fig. 16

Vg is
V V V V V V V

(iv) A path which is not simple and starting from is 
Vg.Vg, V^, Vg, Vg, V^.Vg.

(v) A simple circuit starting from V^ is
Vp V^, V^, Vg, Vg, Vg.V,.

(vi) A circuit which is not simple and starting from V^ is
Vj, Vg, Vj, Vg, Vg, V^, V,_,.

Undirected Complete Graph
An undirected complete graph G = (V, E) of/i vertices is a graph in which each 

vertex is connected to every other vertex i.e., and edge .exists between every p.iir 
of distinct vertices. It is denoted by K„. A complete graph with n vertices will h.avi; 
n(n - l)/2 edges.

The complete graph for n = 1, 2, 3, 4, 5, 6 are shown below:

/

k

><5

Fig. 17
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Example 4. Draw undirected complete graphs and ifg.
Sol. The undirected complete graph of is shown in Fig. 17(a) and that of Kg 

is shown in Fig. 18.

NOTES

FJg. 17.(a)

Connected Graph
A graph is called connected if there is a path from any vertex u to v or vice-

versa.

Disconnected Graph
A graph is called disconnected if there is no path between any two of its verti­

ces.

Connected Component
A subgraph of graph G is called the connected component of G, if it is not con­

tained in any bigger subgraph of G, which is connected. It is defined by listing its 
vertices.

Example 5. Consider the graph shown in Fig': 19. Determine its connected
components.

{

Fig. 19

Sol. The connected components of this graph is [a, b, c], [d, e,f\, [g, h, t) and ly). 
Theorem 4. Let Gbe a connected graph with at least two vertices. If the number 

of edges in G is less than the number of vertices, then prove that G has a vertex of 
degree 1.

\

■ \
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Proof. Let G be a connected graph with n > 2 vertices. Because graph G is 
connected, G has no isolated vertices. Suppose G has no vertex of degree 1. Then the 
degree of each vertex is at least 2. This implies that the sum of the degrees of vertices 
of G is at least 2n. Hence, it follows that the number of edges is at least n (v the sum 
of the degrees of vertices in any graph is twice the number of edges), which is a contra­
diction. This implies that G contains at least one vertex of degree 1.

Diicrcle Matliemalics

NOTES

1.6. SUBGRAPH

A subgraph of a graph G = (V, E) is^a graph G' = (V', E') in which V' c V and E' 
c E and each edge of G' has the same end vertices in G' as in graph G.

Note. A single vertex is a subgraph.
Example 6. Consider the graph G shown in Fig. 20. Show the different subgraphs

of this graph.
B

CA'

*01

/

/
Fig. 20

Sol. The following are all subgraphs of the above graph {shown in Figs. 21, 22, 
23, 24). There may be another subgraphs of this graph.

fCA

D

Fig. 22

B

CA'CA'
S

DD

E
\Fig. 24Fig. 23

1
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Example 7. Consider the multigraph shown in Fig. 25. Show tiuo different 
subgraphs of this multigraph which are itself multigraphs.

NOTES

Fig. 25
Sol. The two different subgraphs of this multigraph which are itself multigraphs 

are shown in Figs. 26 and 27. There may be another subgraphs of this multigraph.

a

d c

•;
Fig. 26 Fig. 27

Spanning Subgraph
A graph Gj = (Vj, E^) is called a spanning subgraph of G = (V, E) if Gj contains 

all the vertices of G and E Ej.
For example : The Fig. 28 is the spanning subgraph of the graph shown in

Fig. 29.
B

A' C

F* D

E
Fig. 28. Spanning Subgraph.

Complement of a graph

Let G = (V, E) be a given graph. A graph G = (V, E) is said to be

complement of G = (V, E) If V = V and E does not contain edges of E. 
i.e., edges in E are join of those pairs of vertices which are not joined 
in G. ' i Fig. 29
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Consider the graph shown in Fig. 29.
The complement graph is shown in Fig. 30.
Note that a graph and its complement graph have same vertices. 
If a graph G has n vertices .and is a complete graph with n 

vertices, then '

Discrete Mullienyatics

NOTES Fig. 30

G=K„-G
Consider K^. Then

.G

Consider Kg. Then

V
Q

Complement of a Graph
Let G = (V, E) be a graph and S be a subgraph of G. If edges of S be deleted from 

the graph G, the graph so obtained is complement of subgraph S. It is denoted by g •

.-. S = G - S

Then theand its subgraphConsider the graph

complement of subgraph S is

. S =

Note that in a complement of a subgraph, the number of vertices do not change.

1.7. CUT SET

Consider a connected graph G = (V, E). A cut set for G is a smallest set of edges 
such that removal of the set, disconnects the graph whereas the removal of any proper 
subset of this set, left a connected subgraph.

For example, consider the graph shown in Fig. 31. We determine the cut set for
this graph.
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Fig. 31 '

For this graph, the edge set {(Vj, Vg), (V^, Vg)l is a cut set. After the removal of 
this set, we have left with a disconnected subgraph. While after the removal of any of 
its proper subset, we have left with a connected subgraph.

Cut Points or Cut Vertices
Consider a graph G = (V, E). A cut point for a graph G, is a vertex v such that 

G—0 has more connected components than G or disconnected.
The subgraph G-o is obtained by deleting the vertex v from the graph G and 

also deleting all the edges incident on v.

EXERCISE 1

1. (a) If V.= II, 2, 3, 4, 51 and E = 1(1, 2), (2, 3), (3, 3), (3, 4), (4, 5)1. Find the number of edges
and size of graph G = (V, E)

(b) Find the order and size of the graph G shown in the figure below :

/
d

(i)

a

2. (a) A graph G has 16 edges and all vertices of G are of degree 2. Find the numlwr of
vertices.

(5) A graph G has 21 edges, 3 vertices of degree 4 and other vertices are of degree 3. Find 
the number of vertices in G.

(c) A graph G has 5 vertices, 2 of degree 3 and 3 of degree 2. Find the number of edges.
3. (o) How many nodes (vertices) are required to constnict a graph with exactly 6 edges in

which each node is of degree 2.
(b> Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 

respectively.
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(c) Can there be a graph with 8 vertices and 29 edges?
(d) How many vertices are there is a graph with 10 edges if each vertex has degree 2?
(e) Does there exist a graph with two vortices each of degree 4? If so, draw it.
(a) Draw a simple graph with 3 vertices
(b) Draw a simple graph with 4 vertices 
Consider the graph G shown below:

Discrcle frloihcnialic.':

4.
NOTES

5.

(a) Is G simple?
(fa) What is order and size of incidence matrix for G. 
(c) Find minimum and maximum degree for G.

1.8. WEIGHTED GRAPHS

A graph G = (V, E) is called a weighted graph if each edge of graph G is as.signed 
a positive number w called the weight 'of the edge e. For example,

The graph shown in Figs. 32 and 33 is a weighted graph.

7
A' 'B

8' ■ ..n
7

iFD'
g

Fig. 33

Multiple Edges
Two edges Cj and e^' which are distinct are said to be multiple edges if they 

connect che end points i.e., if Cj = iu, v) and c^'.= (u, v) then Cj and e^' are multiple 
edges.

1.9. MULTIGRAPH

A multigraph G = (V, E) consists of a set of vertices V and a set of edges E such 
that edge set E may contain multiple edges and self loops. For e.g.,
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NOTES

Fig. 34. Undirected Multigraph;

In the above Fig. 35, and are multiple edges, Cg is a self-loop.

' Fig. 35. Directed Multigraph.

■ In the graph shown in Fig. 35, the edges Cj, 63 and are multiple edges is
a loop.

1.10. REPRESENTATION OF GRAPHS

There are two important ways to represent a graph G with the matrices i.e.,
I. Adjacency matrix representation.

II. Incidence matrix representation.

(a) Representation of Undirected Graph

(i) Adjacency matrix representation. If an undirected graph G consists of n 
vertices, then the adjacency matrix of graph is an n y n matrix A = and defined by

l,if is an edge i.c., i), is adjacent to u,
0, if there is no edge between v, and Vj

If there exists an edge between vertex v- and Vj, where i is a row andj is a 
column then value of a -=1.

If there is no edge between vertex p. and Vj, then value of a,-■ = 0.
Note that adjacency matrix of G is a symmetric matrix. Since simple graph does 

not contain any self loop, so diagonal entries of adjacency matrix are all zero. Further, 
as adjacency matrix contains 0 or 1, so it is also known as Boolean matrix.

Note. Degree of a vertex ti,. in G is equal-to sum of entries in the ith row or ith column of 
the adjacency matrix.

% =
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For example, we find the adjacency matrix of graph G shown in Fig.36.Disable Maihematics

NOTES

Fig. 36

Since the graph G consists of four vertices. Therefore, the adjacency matrix will 
be a 4 X 4 matrix. The adjacency matrix is as follows in Fig. 37,

A B C D
ato 1 1 t
B 1 0 1 1

-c 1 10 1
D 1 1 1 0

degree of vertex ‘ c’ is 3 
’ which is equal to sum of 
entries in third row 6/4 mm 
of adjacency matrix.

Fig. 37

Adjacency List. In a adjacency list of a graph, we list each vertex 
followed by the vertices adjacent to it. First write vertices of graph in a 
vertical column, then after each vertex, write the vertices adjacent to
it. /

Consider the graph shown in Fig. 38 the adjacency list is given
Fig. 38below :

^2’^3

I'a! ‘'1-

\

. '^4:^3 .
(ii) Incidence matrix or Binary matrix representation. If an undirected 

graph consists of n vertices and m edges, then the incidence matrix is an n x ni matrix 
C = [c,^] defined by

1, if the vertex y, incident by edge Cj 
*'‘i ~ 0, otherwise

There is a row for every vertex and a column for every edge in the incidence
matrix./

Note that incidence matrix of a graph need not be a square matrix. Entries in a 
row are added to give degree of corresponding vertex.

For example;
Consider the graph G=[V, E,]

Vi

V = lOj, 1^2, fj, 1^4), E = [e,.e 2- ^3]where
shown in Fig. 39.

Fig. 3il
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The incidence matrix Mj for G is shown below ;
Cj eg 63
1 1 1I*

Og 1 0 0
Mj = Dg 0 1 0 

0 0 1_
Since each edge in the graph is incident on Oj, 

first row for i;j has all entries 1.
. degree l'j = 1 + 1 + 1 = 3

Also Og, Og, are pendant vertices.
In incidence matrix of a graph, sum of entries in column is not degree of vertex. 

As an edge is incident on two vertices in a graph, therefore, each column of incidence 
matrix will have two I’s.

•The number of one’s in an incidence matrix of undirected graph (without loops) 
is equal to the sum of degrees of all the vertices of the graph.

For example : Consider the undirected graph G as shown in Fig. 40. We find its 
incidence matrix Mj.

Fundamental Concepts, 
■ Algorithms and 

Applications

NOTES

<^4

Fig. 40

Sol. The undirected graph consists of four vertices and five edges.' Therefore, 
the incidence matrix is a 4 x 5 matrix, which is shown below :

Cl Cg eg 65
10 0 10*
0 110 0 
1-10 0 1 
0 0 111

I'l

^ >^3

Fig. 40(a)

(6) Representation of Directed Graph
(i) Adjacency matrix representation. If a directed graph G consists of n ver­

tices, then the adjacency matrix of ^aph is an n x n matrix A = [Oj^] defined by /

[1, if u,-, Vi is an edge i.e., if is initial vertex'and Vj is final vertex 
“ |o, if there is no edge between d, and Vj >

If there exists an edge between vertex i^, and.Oj..with.o,-as.mitial-vertex;^d,c....as^ 
final vertex, then value of a^j =1.

If there is no edge between vertex 0, and Vj then value ofa. ^ 0.
The number of one’s in the adjacency matrix of a directed graph is equal to the 

number of edges.
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For example : Consider the directed graph shown in Fig. 41. We determine its 
adjacency matrix

Di.screic Maihemaiics

NOTES

Fig. 41
, \

Sol. Since the directed graph G consists of five vertices. Therefore, the adja­
cency matrix will be a 5 x 5 matrix. The adjacency matrix of the directed graph is as 
follows in Fig. 42.

^2 *^3 ‘^4 ^5

'0 1 1 0 O'
02 0' 0 0 1 0
03 0 1 0 1 1

0 0 0 0 1
O5 [0 0 0 0 0
Fig. 42

<^1

\Ma =

(ii) Incidence matrix representation. If a directed graph consists of n verti­
ces and m edges then the incidence matrix is an n x m matrix C = defined by

1, if Vj is initial vertex of edge Cj 
c.:= ' -1, if 0^ is final vertex of edge

0, if Vj is not incident on edge Cj

The number of one’s in the incidence matrix is 
equal to the number of edges in the ^aph.

For example, Consider the directed graph G 
shown in Fig. 43. Find its incidence matrix Mj.

Sol. The directed graph consists of four verti­
ces and five edges. Therefore, the incidence matrix 
is a 4 X 5 matrix which is shown in Fig. 43.

Fig. 43

^2 63 C4 Cg

-1 0 0 0 -T 
1 10-10 
o’.-l 10 0
0 0-1 11

I ''3

^4

Fig. 44
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(c) Representation of Multigraph
Represented only by adjacency matrix representation.
(i) Adjacency matrix representation of multigraph. If a multigraph G con­

sists of n vertices, then the adjacency matrix.of graph is an n x n matrix A = [o^^] and 
is defined by NOTES

N, If there are one or more than one edges between vertex o, and where
N is the number of edges.• a- =

'I
0, otherwise.

If there exists one or more than one edges between vertex d, and Vj then a,-| = N, 
where N is the number of edges between o, and Vj.

If there is no edge between vertex v- and Vj then value of = 0. For e.g.,

For example : Consider the multigraph shown in Fig. 45. We determine its 
adjacency matrix.

V4A

V3

Fig. 45

Sol. Since the multigraph consists of five vertices. Therefore, the adjacency 
matrix will be an 5 x 5 matrix. The adjacency matrix of the multigraph is as follows in 
Fig. 46.

Oi O3

'0 3 0 0 1' 
3 0 0 0 2 
0 0 0, 1 1 
10 110 
0 2 10 1

^1

^2
■ M^ = 03

'^4

1^5

Fig. 46

ILLUSTRATIVE EXAMPLES

Example 1. Draw the urtdirected graph represented by adjacency matrix 
shown in Fig. 47. . >-

^2 ^3 ^4 '^5 
0 110 0'
10 10 0
110 10 
0 0 10 1
b 0 0 1 i_

Fig. 47

‘'7
’^2

M^= V3
^4
^5
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Discrete MafhenHtiics Sol. The graph represented by adjacency matrix is shown in Fig, 48.

NOTES

Fig. 48

Example 2. Dmu; </ic directed graph G whose incidence matrix Mj is shown
in Fig. 49.

ej <^3 ^4 ^5 «7 ^8 ^9

a\~l -1 0 1 1 0 0 0 0]
blO 1000 -1 00

Mj=c 0 4-1 -1 0 0 -1 0 0 1
dOOO-10 11 10
e [ 0 0 0 0 -1 0 0 -1 -1

Fig. 49

Sol. The directed graph corresponding to the incidence matrix Mj is shown in
Fig. 50.

a

i

Fig. 50

1.11. PLANAR GRAPH

A graph is said to.be planar if it can be drawn-in a plane so that no edges cross.

For e.g., the graph is a planar graphis a planar graph: Also =

because it can be re-drawn as ~i in which edges do not cross each other.
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For example: The graphs shown in Fig. 51 and Fig. 52 are planar graphs. Fimilameitlal Conccpis. 
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NOTES

Vs

Vj 'V.

Fig. 52

Theorem 6. A planar and connected graph has a vertex of degree less than or
equal to 5.

Proof. Let G be connected and planar and suppose, if possible, degree of each 
vertex a: e G is greater than 5.

deg a: >5 =0 dega:>6 i.e., sum of degree of all vertices > 61;
2e >6y, where e and y are the number ofedges and vertices respectively, 

which contradicts 
deg a: < 5.

I.C.,
I

e > 3y, e < 3u - 6 < 3y.
Hence

Region of a Graph
Consider a planar graph G = {V, E). A region is defined to be an area of the 

plane that is bounded by edges and cannot be further subdivided. A planar graph 
divides the plane into one or more regions. One of these regions will be infinite.

(a) Finite Region. If the area of the region is finite, then that region is 'called
finite region.

(6) Infinite Region. If the area of the region is infinite,, that region is called 
infinite region. A planar graph has only one infinite region. •

Example 3i Consider the graph shown in Fig. 53. Determine the number of 
regions, finite regions_and an infinite region.

V,

. V,

Sol. There are five regions in the above graph i.e., Tj, f.^, r^ r^ and r^^. 
There are four finite regions in the graph i.e., r^, r^, r_, and r^
There is only one infinite region i.e., rV
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Properties of Planar Graphs
Theorem I. If a connected planar graph G has e edges and r regio?is, then

Discrete Malliemtilirs,

2
r < —e.

3NOTES Theorem II. If a connected planar graph G has e edges and v vertices, then
3v - e>6.

Theorem'III. A complete graph is planar if and only ifn<5.
I. Proof. In a connected planar graph, each region is bounded by at least

3 regions
r regions are bounded by minimum 3r edges 

=> Number of edges in graph > 3r
But number of edge in the graph = 2e (as each edge belongs to two regions)

2e > 3r
2e

r < 3
II. Let r be the no. of regions in a planar representation of G. By Euler

formula
V + r - e = 2

Now sum of degrees of the regions = 2e, But each region has degree 3 or more.
...(1)

2e2c > 3r => r <
3

2e cFrom (1) we get 2 = v + r-e<v +------ e = it-----
3 3

6 < 3u - e

e £ 3o - 6 Hence proved.
III. If G has one or two vertices, then the result is true. If G has at least 3 

vertices then- '

e < 30 - 6 or 2c i 6o - 12 ...(1)

If degree of every vertex were at least 6, then using 2e =' Z deg v, we would
veV

have 2e 2 So, which contradicts the inequality (1), Hence there must be a vertex with 
degree not greater than 5.

Example 4. Prove that complete graph Kj is planar.
Sol. The complete graph contains 4 vertices and 6 edges.
We know that for a connected planar graph 3o - e > 6. Hence for K,, we have 

3 X 4 - 6 = 6 which satisfies the property (3).
Tbus is a planar graph. Hence proved. •

State and Prove Euler’s Theorem

Statement. Consider any connected planar graph G = (V, E) having R regions, 
V vertices and E edges. Then

V + R-E^2.
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Proof. Use induction on the number of edges to prove this theorem.
Assume that the edges e = 1'. Then we have two cases, graphs of which are 

shown in Figs. 54 and 55.

NOTES

Fig. 55

In Fig. 54 we have V = 2 and R = 1. Thus 2 + 1 - 1 = 2
In Fig. 55 we have V = 1 and R = 2. Thus 1 + 2 - 1 = 2. Hence, the result holds for

e = 1.
Let us assume that the formula holds for connected planar graphs with K edges.
Let G be a graph with K + 1 edges.
Firstly, we suppose that G contains no circuits. Now, take a vertex v and find a 

path starting at v. Since G is circuit free, whenever we find an edge, we have a new 
vertex. At last we will reach a vertex v with degree 1. So we cannot move further as 
shown in Fig. 56. ,

Now remove vertex i; and the corresponding edge incident on v. So, we are left 
with a graph G* having K edges as shown in Fig. 57.

V

e

Q

Fig. 57. G*.

Hence, by inductive assumption, Euler’s formula holds for G”’.
Now, since G has onehiore edge than G”', one more vertex than G* with same 

number of regions as in G*. Hence, the formula also holds for G.
Secondly, we assume that G contains a circuit and e is an edge in the circuit 

shown in Fig. 58.

Fig. 56. G.
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NOTES

4V,V3

Fig. 59

Now, as e is the part of a boundary for two regions. So, we only remove the edge 
and we are left with graph G* having K edges (Fig. 59).

Hence, by inductive assumption, Euler’s formula holds for G*.

Now, since G has one more edge than G'^ one more region than G”’ with same 
number of vertices as G*. Hence the formula also holds for G whicK,^ verifies the 
inductive step and hence proves the theorem.

Example 5. iS/iow that'V-E + R=2 for the connected planar graphs shown 
in Figs. 60 and 61.

Ia e

b d

Fig. 61

Sol. (i) The graph shown in Fig, 60 contains vertices V = 10, edges E = 9 and 
regions R = 1. Putting the values, we have 10 — 9 + 1 = 2. Hence proved.

Hi) The graph shown in Fig. 61 contains vertices V = 8, edges E = 15 and regions 
R = 9. Putting the values, we have 8 - 15 + 9 = 2. Hence proved.

Fig. 60

1.12. NON PLANAR GRAPHS

A graph is said to be non planar if it cannot be drawn in a plane so that no edges
cross.

I.

■ 1
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For example : The graphs shown in Figs. 62 and 63 are non planar graphs. Fliiulciiiicnlal Cr>nci'i)ls. 
' Algoriilwis anil 

Applicaiions

NOTES
c

Fig. 62 Fig. 63

These graphs cannot be drawn in a plane so that no edges cross hence they are 
non planar graphs.

Properties of Non Planar Graphs
A graph is non-planar if and only if it contains a subgraph homcomorphic to Kg 

[KURATOWSKI’S THEOREM],
Example 6. Show that is non-planar. Fig. 64.

or K.3, 3
V,

Sol. Clearly Kg is a connected. Also we show'Kg is non
planar. For,

0 = 5, e = 10 
e < 3o - 6 

10.< 3(5)-6 
10< 15-6

If, Kg is planar then,

=>
V3 V4

10 < 9, a contradiction Fig. 64
.-. The graph Kg is non planar.
Remark. If e < Sti - 6 does not hold, then G is always non planar. But if this condition 
holds, then we cannot conclude that G is planar.

Theorem 6. Prove that every planar'graph has at least one vertex of degree 5 or
less than 5.

Proof. Consider a graph G, whose all vertices are of degree 6 or more, then the 
of the degrees of all the vertices would be greater than or equal to 6u. We know 

that the sum of the degrees of the vertices is twice the number of edges. Therefore, we 
have

sum

6v < 2e

e
u < - ...d)or

3
But, any planar graph have the property,

2e
,.,(2)r < 3

Also, from Euler’s formula, we have 
2 = V-e + r ...(3)
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Now, putting the value of v and r from (1) and (2) in (3), we haveDiscreia Mailiemnlics

2ee
:

Since, the statement 2 < 0 is not true, hence we conclude that there mxist exist 
some vertex in G with degree 5 or less than 5.

2 < — -e +
3

NOTES

EXERCISE 2

1. Find the adjacency matrix A = la,^l of the graphs shown below ;

. V, V,' V4V4 1

'^3

(6)in)

2. Draw the graph G corresponding to each adjacency matrix.

0 ]. 0 1 o' 
10 0 11 
0 0 0 1 1 
1110 1 
0 1110

13 0 0 
3 0 11 
0 12 2 
0 12 0

(6) A =(a) A =

3. (a) Consider the graph (Fig. I) G show in the given figure. Verify Euler Theorem i.c., V 4
R-E = 2.

A C DB

E G

\
Fig. II.Fig. I.

(6) Verify Euler Theorem i.e., V 4 R - E = 2 for the graph Fig. II. 
4. (a) Verify Euler’s formula for the following graphs ;

u
'(b) Show that if G is a bipartite simple graph with u vertical and e edges, then e = —.

■ (a) (l» (c)

Show that a connected graph G with n vertices must have atleast (n - 1) edges.5.
I
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1.13. GRAPH COLOURING

Suppose that G = (V, E) is a graph with no multiple edges. A vertex colouring of 
G is an assignment of colours to the vertices of G such that adjacent vertices have 
different colours. A graph G is M-colourable if there exists a colouring of G which uses 
M-colours.

NOTES

Proper Colouring. A colouring is proper if any two adjacent vertices u and v 
have different colours otherwise it is Called improper colouring.

A graph can be coloured by assigning a different colour to each of its vertices. 
However, for most graphs a colouring can be found that uses fewer colours than the 
number of vertices in the graph.

Chromatic number of G
The minimum number of colours needed to produce a 

proper colouring of a graph G is called the chromatic number 
of G and is denoted by x(G).

The graph shown in Fig. 65 is minimum S-colourable, 
hence x(G) = 3.

Similarly, for the complete graph Kg we need six colours 
to colour Kg since every vertex is adjacentto every other vertex 
and we need a different colour for each vertex. .-. The chro­
matic number for Kg is x^Kgl = Similarly, the chromatic 
number of Kj^is x(Kjq) = 10.

Fig. 65

ILLUSTRATIVE EXAMPLES

Example 1. The chromatic number ofK^^ is n.

Sol. A colouring of K,, can be constructed using n colours by assigning a differ­
ent colour to each vertex. No two vertices can be assigned the same colour, since every 
two vertices of this graph are adjacent. Hence the chromatic number of = n.

Example 2. The chromatic number of complete bipartite graph K 
and n are positive integers is two. -

Sol. The number of colours needed does not depend upon m and n. However, 
only two colours are needed to colour the set of m vertices with one colour and the set 
of n vertices with a second colour. Since, edges connect only a vertex from.the set of m 
vertices and a vertex from the set of n vertices, no two adjacent vertices have the same 
colour.

where mni. n*

Note 1. Every connected bipartite simple graph has a chromatic number of 2 or 1. 
2. Conversely, every graph with a chromatic number of 2 is bipartite.

r

Example 3. The chromatic number of graph where c^^ is the cycle with n
vertices is either 2 or 3.

Sol. Two colours are needed to colour c,,, where is even. To construct such a 
colouring, simply pick a vertex and colour it black. Then move around the graph in 
clockwise direction colouring the second vertex white, the third vertex black, and so 
on. The nth vertex can be coloured white since the two vertices adjacent to it, namely 
the (n — l)th and the first are both coloured black as shown in Fig. 66.
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White Black'

IWhiteBlackc
NOTES

BlackWhiteb g

Black White,

ha

Fig. 66

When n is odd and n > 1, the chromatic number of is 3. To construct such a 
colouring, pick an initial vertex. First use only two colours and alternate colours as 
the graph is traversed in a clockwise direction. However, the nth vertex reached is 
adjacent to two vertices of different colours, the first and (n - l)th. Hence, a third 
colour is needed. (Fig. 67)

d
White

ec BlackBlack

White White ib

Black Red,

a g
Fig. 67

Example 4. Determine the chromatic number of the graphs shown in Fig. C8.
- h24

as as a?aj

a? a„as ae

atai
(ft)(-X)

Fig. 68
Sol. The graphs shown in Fig. 68(a), has the chromatic number x(G) = 2.
The graph shown in Fig. 68(6) has the chromatic number x(G) = 2, when n is an 

even number and x(G) = 3, where n is odd.

I

\

\
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Theorem I.If an undirected graph has a subgraph K^, then its chromatic number i Fwnlamnucil Coiuvins. 
is at least three. Alfiorilliiii.v (uu!

Appliralions
Proof. Let G be an undirected graph. As G contains a complete graph K^, which 

is 3-colourable. G cannot be coloured with one or two colours 
y(G)>3,

Four Colour Theorem. Every planar graph is four colourable.

Five Colour Theorem. Every planar graph has chromatic number < 5.

NOTES

Theorem 8. The vertices of every planar graph can be properly coloured with
five colours.

Proof. We will prove this theorem by induction. All the graphs with 1, 2, 3, 4 or 
5 vertices can be properly coloured with five colours. Now let us assume that every 
planar graph with n - 1 vertices can be properly coloured with five colours. Next, if we 
prove that any planar graph G with n Vertices will require no more than five colours, 
we have done.

Consider the planar graph G with n vertices.

Since G is planar, it must have at least one vertex with degree five or less as 
shown in theorem V. Assume this vertex to be ‘u’.

Let Gj be a graph of n - 1 vertices obtained from G by deleting vertex ‘u\ The G, 
graph requires no more than five colours (Induction hypothesis). Consider that the 
vertices in Gj have been properly coloured and now add to it 'u' and all the edges 
incident on a. If the degree of u is 1, 2, 3, or 4, a proper colour to u can be easily 
assigned.

Now, we have one case left, in which the degree of u is 5, and all the 5 colours 
' have been used in colouring the vertices adjacent to u, as shown in Fig. 69.

y^^0Colour 1 Colour 2

u

Colour 5
Colour 3

Vs
Colour 4

Fig. 69

Suppose that there is a path in Gj between vertices Uq and coloured alternately 
with colours 1 and 4 as shown in Fig. 70.
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Colour 4 lio♦ Colour 1

Colour 1 Colour 2

y4NOTES
Colour 4 Colour 5

Colour 3Colour 1 Colour 4

Colour 4
Colour 1

Fig. 70

Then a similar path between and v.^, coloured alternately with colours 5 and 
3, cannot exist; otherwise, these two paths will intersect and cause G to be non-planar.

Thus, if there is no path between and v., coloured alternately with colour 5 
and 3 of all vertices connected to v,^ through vertices of alternating colours and 3. 
This interchange will colour vertex with colour 5 and yet keep G, properly coloured. 
As vertex is still with colour 5, the colour 3 is left over with which to colour vertex u 
which proves the theorem.

1.14. COVERING, INDEPENDENCE AND DOMINATION

Definitions. An edge [u, u} in a graph is termed to cover its incident vertices u
and t>.

A vertex in a graph is said to cover the edges with which it is incident.
.If G = (V, E) is a graph and E' c E, then E' is said to be an edge cover of G and , 

to cover G if for each vertex u e V, there in the sense that it covers all the edges oftlie 
graph but no proper subset of it does so. However U does not correspond to the vertex 
covering number because = lur,l is the unique minimum vertex cover and thus (x,, = I,, 
Also Cj = 4 because the set of edges |Cj, e^, Cj, c^l is the minimum edge cover.

In general, the edges (vertices) of any spanning tree, Hamiltonian path or 
unicursal path of any connected graph G, constitute an edge (vertex) cover of G.

Let G be a graph with vertex set V. We can make some remarks about edge 
coverings in G.

C(l) An edge covering of G can always be found so long as G does not contain 
an isolated vertex.

C(2) If I V I = n, where {n > 1), then any edge covering of G will contain at 
least nl2 edges. If G = K^, then o, = [(n + l)/2].

C(3) Every edge covering includes every pendant edge.
C(4) It is possible to remove a subset of edges (possibly empty) from any edge 

covering of G in order to create a minimal (but not necessarily minimum) 
edge covering of G.

C(5) • Minimal edge coverings are acyclic.
The similar remarks are about vertex coverings.

C(6) A vertex covering exists for any graph G.
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C(7) IfG = K,, thenao = n-l.
A vertex covering may have only a single clement. This is true for any 
star. A graph which possesses a unique vertex called the centre with which 
every edge is incident. Figure 71(a) depicts a star with centre v^.

C(8) It is possible to remove a subset of vertices (possibly empty) from any 
vertex covering in order to create a minimal (but not necessarily minimum) 
vertex covering.

NOTES

(c)

Fig. 71. (a) Cover, Independence and Dominance (b) Colouring (c) Matching.

Theorem 9. An edge covering in a graph docs not contain a path of at least three 
edges if and only if it is minimal.

Proof. Let us consider an edge covering containing a path of at least three 
edges. The second edge of the path can be removed, leaving an edge covering. Hence 

■ the original covering is not minimal.
Suppose now that there exists an edge covering which does not contain a path of 

at least three edges. In this case, each component of the graph is a star. Hence it is 
impossible to remove an edge from an edge covering of a star, the edge covering is 
minimal.

We now consider the concept of independence.
Definitions. If G = (V, E) is a graph and E' c E, then E' is said to be an edge 

independent if no two edges of E' are adjacent.
If G = (V, E) is a graph and U c V, then U is said to be an vertex independent if 

no two edges of U are adjacent.
For a given graph G, the cardinality of the set of edges of G which is the largest 

vertex-independent set of G is said to be the edge dependence number of G and is 
denoted by'3j(G) or P

For a given graph G, the cardinality of the set of edges of G which is the largest 
vertex-independent set of G is called the vertex dependence number of G and is denoted 
by Po(G)orpo.

r

I
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An independent set is termed maximal if none of its proper supersets is 
independent. An independent set in a graph G is called m'aximum if there is no 
independent set in G with a greater number of clements.

We demonstrate these ideas with the graph in figure 71(a ). Any one of the edges 
ofthe graph constitutes an edge-independent set. Such a singleton set is at once maximal 
and maximum.

The set (Ogl is a maximal vertex-independent set. However it is not maximum 
because ofthe existence ofthe loj, v^, Thus in this graph Pq = 4 and P, = 1.

We make some remarks about edge-independent sets in any graph G.
1(1) An edge-independent set can always be found in G contains at least one 

edge. Any single edge of G constitutes such a set.
1(2) If G = K„, the complete graph on n vertices, then p, = [n/2], the integer part 

ofn/2.
1(3) Every pendant edge in G belongs to at least one maximal edge- 

independent set.
1(4) It is possible to add a subset of edges (possibly empty) to any edge- 

independent set in G in order to create a maximal (but not necessarily 
maximum) edge-independent set in G.
We can make similar observations about vertex-independent sets in G.-

1(5) A vertex-independent set exists for G. (Any single vertex of G constitutes 
such a_set)^ - -''

'1(6) IfG = K„thenpo = l.
1(7) Every pendant vortex in G belongs to at least one maximal vertex- 

independent set.
1(8) • It is possible to add a .subset of vertices (possibly empty) to any vertex- 

independent set in G in order to create a maximal (but not necessarily 
maximum) vertex-independent set in G.

We now give theorems linking the concepts of covering and independence.

DisrreU' Maihcmalics

NOTES

1.15. SHORTEST PATH IN WEIGHTED GRAPHS

, Weighted graphs can be used to represent highways connecting the different 
cities- The weighted edges represent the distance between different cities and the 
vertices represent the cities. A common problem with this type of graph is to find the 
shortest path from one city to another city. There are many ways to tackle thi.s problem 
one of which is as follows :

Shortest Paths from Single Source. We will find shortest paths from a single 
vertek to all other vertices ofthe graph. The first algorithm was proposed by E.Dijkstra 
in 1959. Some common terms related with this algorithm are as follows :

Path Length. The length of a path is the sum of the weights of the edges on
that path.

Source. The starting vertex of the graph from which we have to start to find 
the shortest path.

Destination. The terminal or last vertex upto which we have to find the path.
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This algorithm maintains a set of vertices whose shortest path from source is 
already known. The graph is represented by its cost adjacency matrix, where cost 
being the weight of the edge- In the cost adjacency matrix of the graph, all the diagonal 
values are zero. If there is no path from source vertex V,,. to any other vertex V., then it 
is represented by + In this algorithm, we have assumed all weights are positive.

1. Initially there is no vertex in sets.
2. Include the source vertex in S. Determine all the paths from to all other 

vertices without going through any other vertex.
3. Now, include that vertex in S which is nearest to V,, and find shortest paths to 

all the vertices through this vertex and update the values.
4. Repeat the step 3 ,until n - 1 vertices are not included in S if there are n 

vertices in the graph.
After completion of the process, we get the shortest paths to all the vertices 

from the source vertex.

Example 5. Find the shortest path between K and L in the graph shown in 
Fig. 72 by using Dijkstra’s Algorithm.

NO'FES

Fig. 72

Sol. Step I. Include the vertex K in S and determine all the direct paths from K 
to all other vertices without going through any other vertex.

Distance to all other verticesS
K b d La c

K 4(K)0 2(K) 20(K)
Step II. Include the vertex in S which is nearest to K and determine shortest 

paths to all vertices through this vertex and update the values. The nearest vertex

oo oo

IS C.

s Distance to all other vertices
K b d La c

3(K, c) 7(K, c) 2(K) 8(K,c) 1S(K, c)
Step III. The vertex which is 2nd,nearest to K is o, included in S.

Distance to all other vertices

K, c 0

s
K b d La c

K, c, o 0 3(K,c) 7(K,c) 2(K) 7(K, c, a) 18(K, c)
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step IV. The vertex which is 3rd nearest to K is b, is included in S.
Distance to all other vertices

Discrete Mtiilumalics
s

b c! LK a c
3(K, c) 7(K,c) 2(K) 7(K, c, a) 8(K, c, 6)K, c, a, b

Step V. The vertex which is next nearest to K is d, is included in S.
0

NOTES

Distance to all other verticesS
d LbK ca

3(K, c) 7(K, c)
Since, n - 1 vertices included in S. Hence we have found the shortest distance 

from K to all other vertices.
Thus, the shortest distance between K and L is 8 and the .shortest path is K, c,

2(K) 7(K, c, a) 8(K, c, h).K, c, a, b, d 0

b, L.

Example 6. Show that e > 3 V - 6 for the connected planar graphs shown in 
Figs. 73 and 74.

Fig. 73

• Sol. (i) The graph shown in Fig. 73 contains vertices V = 8 and edges e = 17. 
Putting the values we have e'= 3 x 8 - 6 = 18 > 17. Hence proved.

(«) The graph shown in Fig. 74 contains vertices V = f) and edges e = 6. Putting 
the values, we have 3x5-6 = 11 >6. Hence proved.

EXERCISE 3

1. Find the chromatic numbers of the following graphs.

(/>)(n)

(c)
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(e) ^

NOTES
2. Find the shortest path and its length from s to < by using Dijkstra's algorithm in the 

following graph.
(at

t

I46

(b)
7a b

I

c 4 d

1.17. TREE

A graph which has no cycle is called an acyclic graph. A tree is an acyclic graph 
or graph having no cycles.

A tree or general tree is defined as a non-empty finite set of elements called 
vertices or nodes having the property that each node can have minimum degree 1 and 
maximum degree n. It can be partitioned into n-t 1 disjoint subsets such that the first 
subset contains the root of the tree and the remaining n subsets contains the elements 
of the n subtree. (Fig. 75)

Fig. 75. General Tree.

I
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Discreic Maihematica Directed Trees
A directed tree is an acyclic directed graph. It has one node with indegree 1, 

while all other nodes have indegree 1 as shown in Figs. 76 and 77.

NOTES

Directed trees

Fig. 77

The node which has outdegree 0 is called an external node or a terminal node or 
a leaf. The nodes which has outdegree greater than or equal to one are called internal 
nodes or branch nodes.

Ordered Trees
If in a tree at each level, an ordering is defined, then such a tree is called an

ordered tree.
e.g., the trees shown in Figs. 78 and 79 represent the same tree but have dift'erent 
orders.

© © © © © © •
Fig. 78 Fig. 79

86 Self-Instructional Material



FliiiihimenUil Concviilx, 
Al^oriihin.'i mill 

Apiiliaiiimis
1.18. ROOTED TREES

If a directed tree has exactly one node or vertex called root whose incoming 
degree is 0 and all other vertices have incoming degree one, then the tree is called 
rooted tree.

NOTES

* A tree with no nodes is a rooted tree (the empty tree). 
A single node with no children is a rooted tree.

1.19. BINARY TREE

If the outdegree of every node is less than or equal to 2, in a directed tree then 
the tree is called a binary tree. A tree consisting of no nodes (empty tree) is also a 
binary tree.

1.20. TREE TERMINOLOGY

(o) Root. A binary tree has a unique node called the root of the tree. 
ib) Left Child. The node to the left of the root is called its left child.
(c) Right Child. The node to the right of the root is called its right child.
(d) Parent. Anode having left child or right child or both is called parent of the

nodes.
(e) Siblings. Two nodes having the same parent are called siblings.
(/) Leaf. A node with no children is called a leaf. The number of leaves in a 

binary tree can vary from one (minimum) to half the number of vertices (maximum) in 
a tree.

(g) Ancestor. If a node is the parent of another node, then it is called ancestor 
of that node. The root is an ancestor of every other node in the tree.

(h) Descendent. Anode is called descendant of another node if it is the child of 
the node or child of some other descendent of that node. All the nodes in the tree are 
descendants of the root,

(i) Left Subtree. The subtree whose root is the left child of some node is called 
the left subtree of that node.

(J) Right Subtree. The subtree whose root is the right child of some node is 
called the right subtree of that node.

(k) Level of a Node. The level of a node is its distance from the root. The level 
of root is defined as zero. The level of all other nodes is one more than its parent node. 
The maximum number of nodes at any level N is 2'^.

(l) Depth or Height of a Tree. The depth or height of a tree is defined as the 
maximum number of nodes in a branch of tree. This is one more than the maximum 
level of the tree i.e., the depth of root is one. The maximum number of nodes in a 
binary tree of depth d is 2“^ - 1, where d > 1.

(ni) External Nodes. The nodes which has no children are called external nodes 
or terminal nodes.

(n) Internal Nodes. The nodes which has one or more than one children are 
called internal nodes or non-terminal nodes.
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Discrete Malliemalics Theorem 10. Let G be a graph with more than one vertex. Then the following 
are equivalent:

(i) G is a tree.

(ii) Each pair of vertices is connected by exactly one simple path.

(Hi) G is connected, but if any edge is deleted then the resulting graph is not con-
NOTES

nected.

(ii?) G is cycle tree, but if any edge is added to the graph then the resulting graph 
has exactly one cycle. ■

Proof. To prove this theorem, we prove that (i) (ii), (ii) => (tii), (Hi) => (iv) and
finally (iv) => (i). The complete proof is as follows :

(i) => (ii) Let us assume two vertices u and v in G. Since G is a tree, so G is 
connected and there is at least one path between u and v. More over, there can be only 
one path between u and v, otherwise G will contain a cycle.

(ii) ^ (Hi) Let us delete an edge e = (u, v) from G. It means e is a path from u to 
V. Suppose the graph result from G — e has a pathp from u to i;. Then P and e are two 
distinct paths from u to v, which is a contradiction of our assumption. Thus, there does 
not exist a path between u and 0 in G - e, so G-e is disconnected. .

(Hi) (iv) Let us suppose that G contains a cycle c which contains an edge c = 
{u, y). By hypothesis, G is connected but G’ = G - e is disconnected with u and v 
belonging to different components of G'. This'cdhtradicts the fact that u and v arc 
connected by the path P = C-e, which lies in G'. Hence G is cycle free.

Now, Let us take two vertices x and y of G and lot H be . 
the graph obtained by adjoining the edge e = U, y) to G. Since G 
is connected, there is a path P from x to y in G ; hence C = Pe 
forms a cycle in H. Now suppose H contains another cycle Cj.
Since G is cycle free, Cj must contain the edge e, say C, = PjC.

Then P and Pj are two paths in G from x to y as shown in 
Fig. 80. Thus, G contains a cycle, which contradicts the fact that 
G is cycle free. Hence H contains only one cycle.

(iy) => (i) By adding any edge C = (x, y) to G produces a cycle, the vertices x and 
y must be connected already in G. Tims, G is connected and is cycle is free i.e., G is a 
tree. ~ "

p

c
yX' •

Fig. 80

ILLUSTRATIVE EXAMPLES
Example 1. For the tree as shown in Fig. 81. 
(i) Which node is the root ?

(ii) Which nodes are leaves ?
(Hi) Name the parent node of each node.
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Fig. 81
\Sol. (t) The node A is the root node.

Hi) The nodes G, H, I, L, M, N, O are leaves. 
HU) Nodes Parent

B,C A
D, E B

CF
G,H D
I.J E
K F
L, M J
N, O K

Example 2. For the tree as shown in Fig. 82.

H) List the children of each node.
HU) Find the depth of each node.
Sol. H) The children of each node is as follows : 

1 Node

Hi) List the siblings.
Hv) Find the level of each node.

Children
A B,C
B D,E
C F

G, H'D
E I.J
F K
K L, M

Self-huiniciional Mciii-riol K9



{«) The siblings are as follows :

Siblings
B and C 

D and E

Dixcicif Millhenwiics

NOTES
GandH
I and J
L and M are all siblings. 

(.Hi) Node Depth or Height
1A
2B,C

D,E,F 
G, H, I, J, K

3
4
5L, M

Level(iw) Node
0A

B,C 1
2D, E,F 

G, 3
L, M

Example 3. (a) How will you differentiate between a general tree and a binary

4

tree ?
lb) Define a rooted tree with an example and show how it may be viewed os 

directed graph.

Sol. (a)

Binary TreeGeneral Tree
I. There may be an empty binary tree.1. There is ho such tree having zero nodes 

or an empty general tree.
2. If some node has a child, then there is no 

such distinction.
2. If some nodes has a child, then it is dis­

tinguished as a left child or a right 
child.

3. The trees shown in figure are distinct, 
when we consider them as binary trees, 
because in (i), 4 is right child of 2 while 
in ((f), 4 is left child of 2.

3. The trees shown in figure are same, when 
we consider them as general trees.

1
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ffe),Rooted tree: We first define the term ‘directed tree’. A directed graph is 
said to be a directed tree if it becomes a tree when the directions of the edges are 
ignored. For example, the Fig. 83 is a directed tree.

NOTES

Directed tree

Fig. 83

A directed tree is called a rooted tree if there is exactly one vertex whose incoming 
degree is 0 and incoming degree of all other vertices are 1. The vertex with incoming 
degree 0 is called the roof of the rooted tree. The Fig. 84 is an example of a rooted tree.

Rooted tree 
Fig. 84

In a rooted tree, a vertex whose outgoing degree is 0 is called a leaf or a terminal 
code and a vertex whose outgoing degree is non zero, is called a branch node or an 
internal node.

Rooted tree may be viewed as directed graph. We know that a tree is a 
graph which is connected and without afty cycles. A rooted tree T i.s a tree with a 
designated vertex r, called the root of the tree. Since there is a unique simple path 
from the root r to any other vertex v in T, this determines a direction to the edges of T. 
Thus T may be viewed as a directed graph.

1.21. SPANNING TREE

Consider a connected graph G = (V, E). A spanning tree T is defined as a sub­
graph of G if T is a tree and T includes all the vertices of G.

Example 4. Draw all the spanning trees of the graph G sh oiun in Fig. g.5.

Fig. 85. Graph G.
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Sol. All the spanning trees of graph G is as shown in Fig. 86.Mtillieincuics

A E A

NOTES

c F B C 0B D
(i) (iii)(ii)

Fig. 86

1.22. MINIMUM SPANNING TREE

Consider a connected weighted graph G = (V, E). A minimal spanning tree T of 
the graph G is a tree whose total weight is smallest among all the spanning trees of 
the graph G. The total weight of the spanning tree is the sum of the weights of the 
edges of the spanning trees.

The minimum weight of the spanning tree is unique but the spanning tree may 
not be unique because more than one spanning tree are possible when more than one 
edges exist having the same weight.

1.23.KRUSKAL’S ALGORITHM

This algorithm finds the minimum spanning tree T of the given connected 
weighted graph G.

1. Input the given connected weighted graph G with n vertices whoso minimum 
spanning tree T, we want to find.

2. Order all the edges of the graph G according to increasing weights.
3. Initialise T with all vertices but do not include any edge.

4. Add each of the graph G in T which does riot form a cycle until a - 1 odgc.s are
added.

Example 5. Determine the miniminyi spanning tree of the ivcigh ted graph fihomn
in Fig. 87.

CA 66 5

3.

44

Pig. 87
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Sol. Using Kruskal’s algorithm, arrange all the edges of the weighted graph in 
increasing order and initialise spanning tree T with all the six vertices of G. Now start 
adding the edges of G in. T which do not form a cycle and having minimum weights 
until five edges are not added as there are six vertices. (Fig. 88).

Weights
NOTES

Added or Not
Added 
Added 
Added 
Added 
Added 
Not added 
Not added 
Not added 
Not added-

Minimum Spanning TreeEdges
(B,E) 
(C, D) 
(A,D) 
(C,F) 
(B, C) 
(E,F) 
(A. B) 
(D,E) 
(A, F)

2
A

3
4
4 4

5 2

5 I

D6
6 Fig. 88
7

Example 6. Find a minimum spanning tree of the labelled connected graph 
shown in Fig. 89.

Fig. 89

Sol. Using KRUSKAL’S ALGORITHM, arrange all the edges of the graph in 
increasing order and initialize spanning tree with all the vertices of G. Now, add the 
edges of G in T which do not form a cycle and have minimum weight until n - 1 edges 
are not added, where n is the number of vertices. The spanning tree is shown in Fig. 90.

WeightsEdges
(B, D)
(A, E)
(D, F)
(B, F)
(C, E)
(A. C)
(B, C)
('A, F)
(E, B)

The minimum weight of spanning tree is = 24.

Added or Not 
Added 
Added 
Added 
Not added 
Added 
Not added 
Added

Minimum Spanning Tree
3
4
4
5
6
7
7
8 Not added 

Not added9

Example 7. Find all the spanning trees of graph G and find iohich is the mini­
mal spanning tree ofG shown in Fig. 91. '
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NOTES 2 1

Fig. 91

Sol. There are total three spanning trees of the graph G which are as shown in
Fig. 92.

d d da e a e a e3 3 3
I ■

6 62 1 2 1I2 2 2

3 3b f b f bc c c

(i) (ii) . (iii)

Fig. 92

To find the minimal .spanning tree, use the KRUSKAL’S ALGORITHM. The 
minimal spanning tree is shown in Fig. 9.3.

Weights

V

Edges Minimal Spanning, TreeAdded or Not
da e3(E, F) 

(A,B) . 
(C,D) ' 
(B, C) 
(D.E)- 
(B, D)

Added 
Added 
Added 
Added 
Added 
Not added.

1
2
2

■. 3 2 12

3
6

3b f.c

Fig. 93

The first one is the minimal spanning having the minimum weight =11.

Example 8. What are the properties of minimum spanning tree.
Sol. Properties of Minimum spanning tree .
A minimum spanning tree T of a graph G is a tree whose total weight is the 

smallest among all the spanning trees of the graph G. It has the following propertie.s.
(i)The total weight of the spanning tree is the sum of the weights of the edges of 

the spanning trees.
(if) The minimum weight of the spanning tree is unique.

94 Self-l/wnictional Material



Ftllli/lKIICHIdf C(»l(

Alinirilliiiis Ill’ll 
Aiipliriiliiiiis

1.24. PRIM’S ALGORITHM

Let G be a graph with n vertices and e edges.
Step 1. First assign a label for all vertices of G
Step 2. Form a matrix such that whose elements are the weight of the edges of 

G (as keep the incidenshipe of end vertices).
Step 3. Set the weight of non existent edge as «.
Step 4. Select the smallest entry from first row of the matrix, (that is to a 

vertex other than V. and Vj has smallest entry in the row 1 and column J) let this new 
vertex be V^-. Step 4: Next regard Vj, V. and as one sub graph and repeat the process 
until all the n vertices have been connected by n - 1 edges.

NOTES

ILLUSTRATIVE EXAMPLES

Example 1. Find the minimal spanning tree for the following graph by using 
Prim’s algorithm

I

1

Fig. 94

Sol.

V V, y. V4 v.1

V 9 10QC e<1

v„ 9 13 15 6

V„ 13 18 9 (5

V, 10 15 18 11 12

V. 9 11 8

6 6 812
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Disa de Mdilicnuiiics The edges are in the minimal spanning tree arc
(Vj, v,p ^ (V^, Vg) ^ (V^, V.,] ^ (V„ V,,) ^ (V,,, V,) ^ (V,, V,1

The minimal spanning tree

NOTES V

9 V,

Fig. 95

Example 2. Find the minimum spanning tree by using Prim’s algorithm.

V,V,

22

4

11

Fig. 96

Sol.

V.V V, V. .V4 V,; V Vs1 7

V 2 4 11 fin (1aI

V2 2 106 a a a. a.

V, • 4' 6 4 2a n a

V4 4 fi 2 3a a (X

V. (> 2 410a a a

V,; 2 G11 n (X a. (/

GV7 2 4o a ft

Vs 6 2 4a (X (X
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The edges are selected
(Vj, V,) ^ (V„ V3) -4 (V3, vp ^ (Vg, V,) ^ (V,, V,) ^ (V,, V,) 

The minimal spanning tree is

Funilommial Cnnci’ixs. 
Alftoriiluiis ant! 

Ai>plicaiinii.s

V4 VsVj Va NOTES6

2
2 2

V Ve V7 Vs

Fig. 97

1.25. APPLICATIONS OF GRAPH THEORY

Graph theory is playing an increasingly important role in the design, analysis, 
and testing of computer programs. Its importance is derived from the fact that flow of 
control and flow of data for any program can be expressed in terms of directed graphs. 
From the graph-representing the flow of control, called the program graph, many other 
can be derived that either partially or completely preserve the program control struc­
ture. Ono derived graph known as a cyclomatic tree is of particular value in program 
testing. It is so named because the number of leaves of the tree is equal to the cyclomatic 
number of the program graph.

Graph theory is becoming increasingly significant as it is applied to other areas 
of mathematics, science and technology. It is being actively used in fields as varied as 
biochemistry (genomics), electrical engineering (communication networks and coding 
theory), computer science (algorithms and computation) and operations research (sched­
uling). The powerful combinatorial methods found in graph theory have also been 
used to prove fundamental results in other areas of pure mathematics.

The best known of these methods are related to a part of graph theory called 
matchings, and the result from this area are used to prove Dilworth’s chain decompo­
sition theorem for finite partially ordered sets. An application of matching in graph 
theory shows that there is a common set of left and right coset representatives of a 
subgroup in a finite group. This result played an important role in Dharwadker’s 2000 
proof of the four-colour theorem. The existence of matching in certain infinite bipar- 
tite^aphs played an important role in Laczkovich’s affirmative answer to Tarski’s 
1925 problem of whether a circle i piecewise congruent to a square. The proof of the 
existence of a subset of the real numbers R that is non-measurable in the Lebesgue 
sense is due to Thomas. Surprisingly, the theorem can be proved using only discrete 
mathematics (bipartite graphs). There are many such example of applications of graphs 
to other parts of mathematics.

Applications of graphs theory are primarily, but not exclusively, concerned with 
labelled graphs and various specializations of these. Structures that can be repre­
sented, as graphs are ubiquitous, and many problems of practical interest can be rep­
resented by graphs. The link structure of a website could be represented by a directed 
graph: the vertices are the web pages available at the website and directed edge from 
page A to page B exists if and only if A contains a link to B. A similar approach can be 
taken to problems in travel, biology, computer chip design, and many other fields. The 
development of algorithms to handle graphs is therefore of major interest in computer 
science.
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Assigning a weight to each of the graph can extend a graph structure. Graphs 
with weights, or weighted values. For example if a graph represents a road network, 
the weights could represent the length of each road. A digraph with weighted edge in 
the context of graph theory is called a network.

Networks have many uses in the practical side of graph theory, network analy­
sis (for example, to model and analy2e traffic networks). Within network analysis, the 
definition of the term “network” varies, and may often refer to a simple graph.

Many applications of graph theory exist in the form of network analysis. These 
split broadly into three categories. Firstly, analysis to determine of the graph. A vast 
number of graph measures exist, and the production of useful ones for various do­
mains remains an active area of research. Secondly, analysis to find a measurable 
quantity within the network, for example, for transportation networks, the level of 
vehicular flow within any portion of it. Thirdly, analysis of dynamical properties of 
networks.

Diicrcle Mathematics

NOTES

Graph theory is also used to study molecules in chemistry and physics. In con­
densed matter physics, the three dimensional structure of complicated simulated atomic 
structures can be studied quantitatively by gathering statistics on graph-theoretic 
properties related to the topology of the atoms. For example, Franzblau’s shortest- 
path (SP) rings. In chemistry a graph makes a natural model for a molecule, where 
vertices represent atoms and edge bonds. This approach is especially used in com­
puter processing of molecular structures, ranging from chemical editors to database 
searching. ^

Graph theory is also widely used in sociology as a way, for example, to measure 
actors’ prestige or to explore diffusion mechanism, notably through the use of social 
network analysis software.

Graphs in Computer Science
In computer science, graphs are used in many areas such as in computer ile- 

signing, scheduling problems in operating system, file management in database man­
agement system, data-flow control between networks, network of interconnected net­
works etc. In day-to-day applications, graphs find their importance as representations 
of many kinds of physical structure.

The structure of digital computer is shown in figure 98.

Alu

Control
unit *• OutputIriput

Main
memory

Secondary 
auxiiliary memory

Fig. 98
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Fig. 99

We may use the cutset to show the different main components of computer such 
as input device, output device, CPU and auxilliary secondary memory.

The theoretical or mathematical concepts of graphs siich as connectedness, 
bioconnected, bipartite, planarity, duality etc..are used for designing the circuits and 
simulate the effects of implementation before actual implementation.

• Concept of planar graph is used for designing the internal architecture of 
computer in chip (Motherboard).

• The edges i.e., links/buses used to connect the components/nodes may be 
directed or undirected. Normally all the properties of digraphs can be used 
to handle the problem of data transmission.

• In case of multiprocessor systems, components may be partitions into a num­
ber ofseparate modules without loss of integrity of system by the help of cut­
set theory.

• Maximum ^Id^of data through links can be determined by the concept of 
network flow with the help of weights, where weights arc nothing but the 
storage capacity of each bus.

• Minimal spanning tree help us to determine the path from processor to a 
memory module in multistage interconnection networks of processors and 
memories.

, • Concept of connectivity, separability and vulnerability is applicable on con­
nected graphs such the' after the separation of the remaining components 

'' (multiprocessor) can still continue to “communicate” the data.

Miscellaneous Applications
This is virtually no end to the list of problems that can be solved with graph 

theory.

/

i

y

In a modern information retrieval system each document carries a number of 
index terms (also called descriptors). The index terms are represented as vertices and 
if two index terms v. and are closely related (such as “graph” and “tree”) they are 
joined with an edge (u,, Vj). The simple, undirected large graph thus produced is called 
similarity graph. For retrieval, one specifies some relevant index terms, and the maxi­
mal complete subgraph that includes the corresponding vertices will give the complete 
list of index terms which specify the needed documents.
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IGraphs have been used in linguistics to depict parsing diagrams. The vertices 
represent words and word strings and the edges represent certain syntactical rela­
tionships between them.

Digraphs under the name sociograms have been used to represent relationships 
among individuals in a society. Members are represented by vortices and the relation­
ship by -directed edge conneetdness, separability, complete subdigraphs, size of frag­
ments and so forth, in a sociogram can be given immediate significance.

Graph theory has also been used in economics, logistic cybernetics, artificial 
intelligence, pattern recognition, genetics theory, fault diagnosis in computers.

Discrcic Miiihrinaiics

*.

NOTES

EXERCISE 4

1. Find all spanning trees of the graph shown below :

a
r

2. Find all spanning trees of the graph shown in the following figure. r

j

t

3. Find the minimal spanning tree of the following graph r

>

(b)

(c) Find the minimal spanning tree T for the weighted graph shown holow :

2 1

2 2 1
t-

3 3 J

3 3

4. Show that the sum of the degrees of the vertices of a tree with n vertices i.s '2ii - 2. t

r
f'1

L1
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Fundamental Concepts, 
~Algo'nihms and 

Applications
SUMMARYm

i ' •^The gi'aph consist of points or nodes called vertices which are connected to each other by 
way of lines called edges. • '

• A. graph eontaiuing only vertices and no edge is called a'discrete or null graph.
• Two vertices are called adjacent if they are connected by on edge.
• The path is called simple one if no edge is repeated in the path.
• A gi-aph G is said to be planar if it can be drawn in a plane so that no edges cr'oss.
• ' A graph G is said to be non-planar if it cannot be drawn in a planeso that no edges cross.
• A colouring is proper if any two adjacent vertices u and v have different colours other­

wise it is called improper colouring. ■

• The minimum number of colours needed to produce a proper colouring of a graph G is 
called the chromatic number of a graph G.

• .A vertex in a graph is said to cover the edges with which it is incident.

is called to dominate those other edges in G with which it is

iI NOTES

■d

\• An ed^eMn a' graph G 
. adjacferit. ''

• Dijlc^a’s'algorithm maintains a set of vertices whose shortest path from source is already 
known.

• A tree is an acyclic graph or graph having no cycles.
• A directed tree is an acyclic directed graph.
• If the ontdegree of every node is less than or equal to 2, in a directed tree then the tree 

is called a binary tree.
• Kriiskai’s algorithm finds the minimum spanning tree T of the connected weighted graph 1

It

G. /

TEST YOURSELF

1. What is the difference between directed and undirected graph?
2. Differentiate between paths and Circuits.
3. Let G be a finite connected planner graph with at least three vertices. Show that G has 

at least'one vertex of degree 5 or less.

4. (a) Suppose a graph G contains two distinct paths from a vertex a to vertex b. Show that 
G has a cycle.

(bl If a graph^Grbas more than two verticals of odd degree, then prove that there can be 
no Euler l^ath.

5. Draw the following graphs
(n) K, - ' _
(c) K '

G. If'G is" a simple, connected and planner graph with more than one edge, then 
b)2 ] E I >3 I R I
Hi) I E'I <3 j V ]-6,where | E | denotes the number edges, |'R |, the number of 
regions and | V [, the number of .vertices:

7. Show that K, is non-planar graph.

(6)K,\
2. H

\ ■

\
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8. Find the shortest path, by usinfe' either Breadth first search or Di.jkstra’s altrorithm, 
from P to Q in the followintr weiRhted tifaph. __ ‘ •

A, 3 A, 6 A,

Dixciric Malhcmaiics

1

INOTES

A4 As Ac

9. Find the chromatic number of the followint; graphs.

\

10. Draw all trees with exactly six verticcs.
11. Draw all trees with five or fewer vertices,
12. Find the number of trees with seven vertices.
13. Find a minimum spanning tree of the weighted graph shown below:

i
14. Dis,cuss the various applications of graph in computer science in detail.
15. Draw graphs of the following chemical compounds:

(a) CH,.
(c) C,H,,

16. Name 10 situations that con be represent by means of graphs. Explain what the vertice.s 
and the edge denote.

(.b) C,H,, 
(rf) N,0,,

\

\
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