1. Sequences 1-24
2. Infinite Series 25-51
3- Uniform Convergence 52-65
3. Riemann Integral 66-88
4. Convergence of Improper Integrals 89-105
5. Functions of a Complex Variable 106-128

B. Sc. (Part III) Mathematics MATHEMATICS-I

(SC-127)

CHAPTERI

Sequence, Theorems on limits of sequences, Bounded and monotonic sequences,' Cauchy's convergence criterion. Series of non-negative terms, Comparison tests, Cauchy integral test, Ratio test, Raabe's, logarithmic, De-Morgon and Bertrand's tests. Alternating series, Leibnitz's theorem, Absolute and conditional, uniform convergence.

CHAPTER II

Reimann integral, Integrability of continuous and monotonic function. The fundamental theorem of integral calculus. Meán.value theorems of integral calculus.

CHAPTER III

Improper integrals and their convergence, Comparison tests, Abel's and Dirichlet's test, Series of arbitrary terms, Convergence, divergence and oscillation, Abel's and Dirichlet's tests.

CHAPTER IV

Complex numbers as ordered pairs, Geometric representation of complex numbers, Continuity and differentiability of a complex functions. Analytic function, Cauchy-Riemann equations, Harmonic function.

SEQUENCES

STRUCTURE

- Introduction
- Sequences
- Bounded Sequences.
- Limit Superior and Limit Inferior
- Convergent Sequences
- Subsequences
- Divergent Sequences
- Oscillatory Sequences
- Cauchy Sequences
\square Summary
- Student Activity
- Test Yourself

LEARNING OBJECTIVES

After going through this unit you will learn :

- What is meant by sequences ?
- How to classify the convergent, divergent and oscillatory sequences.

- 1.1. INTODUCTION

George Cantor (1845-1918) is known as the creater of the set theory. He made a considerable contribution to the development of the theory of real sequence, and found a firm base for most of the fundamental concepts of real analysis in the sequence of rational numbers. Though his lay-outs are not convenient in the initial stages, they are quite advantageous while making advanced investigations. The study of many important and advanced concepts becomes easy if the notion of the sequence is employed.

Set of Numbers

We shalll be using capital latters $\mathbf{N}, \mathbf{I}, \mathbf{Q}$ and $\dot{\mathbf{R}}$ for the set of numbers as specified below :
$\mathrm{N}=\{n: n=1,2,3, \ldots\}$, the set of natural numbers,
$\mathbf{I}=\{x: x=\ldots-2,-1,0,1,2, \ldots\}$, the set of integers,
$\mathbf{Q}=\{x: x$ is a rational numbers $\}$, the set of rational numbers
and
$\mathbf{R}=\{x: x$ is a real numbers $\}$, the set of real numbers.

- 1.1. SEQUENCES

Let \mathbf{N} be the set of all natural numbers and S be any set of real numbers. A function whose domain is the set of natural numbers and range is a subset of S, is called a sequence in S.

Symbolically, if we define a function $f: \mathbf{N} \rightarrow S$, then f is a sequence. As in the case of function, we shall denote a sequence in a number of ways:
(i) Usually a sequence is denoted by its images. For a sequence f, the image corresponding to $n \in N$ is denote by f_{n} or $f\langle n\rangle$ and is called the $n^{\text {th }}$ term of the sequence f. For example $\langle 1,4,9, \ldots\rangle$ is the sequence whose $i^{\text {th }}$ term is n^{2}.
(ii) Using in order, the first few elements of a sequence, till the rule for writing down different elements becomes clear. For example $\langle 1,2,3, \ldots\rangle$ is the sequence whose $n^{t h}$ term is n.
(iii) Defining a sequence by a recurrence formula i.e., by a rule which expresses the $n^{\text {th }}$ term by the $(n-1)^{\text {th }}$ term. For example, let

$$
a_{1}=1, a_{n+1}=2 a_{n}, \text { for all } n \geq 1
$$

These above relations define a sequene whose $n^{t h}$ term is 2^{n-1}.
Examples :
(i) $\left\langle\frac{1}{n}\right\rangle$ is the sequence $\left\langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots, \frac{1}{n} \ldots\right\rangle$
(ii) $\left\langle\frac{1}{n^{3}}\right\rangle$ is the sequence $\left\langle 1, \frac{1}{2^{3}}, \frac{1}{3^{3}}, \frac{1}{4^{3}}, \ldots \frac{1}{n^{3}}, \ldots\right\rangle$
(iii) $\langle-2 n\rangle$ is the sequence $\langle-2,-4,-6, \ldots-2 n, \ldots\rangle$
(iv) $\left\langle\frac{n}{n+1}\right\rangle$ is the sequence $\left\langle\frac{1}{2}, \frac{2}{3}, \frac{3}{4} \ldots, \frac{n}{n+1}, \ldots\right\rangle$.

Range of a sequences. The set of all distinct terms of a sequence is known as its range.
Constant sequence. A sequence $\left\langle s_{n}\right\rangle$ defined by $s_{n}=a$ for all $n \dot{N}$, is called a constant sequence.

Equality of two sequences. Two sequences $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ are said to be equal, if $s_{n}=t_{n}$ $\forall n \in \mathbf{N}$.

Operations on sequences. Since the sequences are real valued functions, therefore, the sum, difference, product etc. of two sequences are defined as follows :
(i) If $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ be any two sequences, then the sequences whose $n^{\text {th }}$ terms are $s_{n}+t_{n}$, $s_{n}-t_{n}$ and $s_{n} \cdot t_{n}$ are respectively known as the sum, difference and product of the sequences $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ and are denoted by $\left\langle s_{n}+t_{n}\right\rangle,\left\langle s_{n}-t_{n}\right\rangle$ and $\left\langle s_{n} t_{n}\right\rangle$ respectively.
(ii) If $s_{n} \neq 0, \forall n \in \mathbf{N}$, then the sequence whose $n^{\text {th }}$ term is $\frac{1}{s_{n}}$ is called the reciprocal of the sequence $\left\langle s_{n}\right\rangle$ and is denoted by $\left\langle\frac{1}{s_{n}}\right\rangle$.
(iii) The sequence whose $n^{\text {th }}$ term is $s_{n} / t_{n}\left(t_{n} \neq 0, \forall n \in \mathrm{~N}\right)$ is known as the quotient of the sequence $\left\langle s_{n}\right\rangle$ by the sequence $\left\langle t_{n}\right\rangle$ and is denoted by $\left\langle\frac{1}{s_{n}}\right\rangle$.
(iv) The sequence whose $n^{t h}$ term is $k s_{n}$, where $k \in \mathbf{R}$ is known as the scalar multiple of the sequence $\left\langle s_{n}\right\rangle$ by k and is denoted by $\left\langle k s_{n}\right\rangle$.

- 1.2. BOUNDED SEQUENCES

(i) Bounded below sequence. A sequence $\left\langle s_{n}\right\rangle$ is said to be bounded below if there exists a real number l such that $s_{n} \geq l \forall \cdot n \in \mathbf{N}$.

The number l is known as the lower bound of the sequence $\left\langle s_{n}\right\rangle$.
(ii) Bounded above sequence. A sequence $\left\langle s_{n}\right\rangle$ is said to be bounded above if there exists a real number u such that $s_{n} \leq u \forall n \in \mathbf{N}$.

The number \boldsymbol{u} is said to be upper bound of the sequence $\left\langle s_{n}\right\rangle$.
(iii) Bounded sequence. A sequence $\left\langle s_{n}\right\rangle$ is said to be bounded if it is bounded above as well as bounded below.

Or

A sequence $\left\langle s_{n}\right\rangle$ is bounded if there exist two real numbers l and $u(l \leq u)$ such that $l \leq s_{n} \leq u \forall n \in \mathbf{N}$.

Equivalently, a sequence is bounded iff there exists a real number $k>0$ such that

$$
\left|s_{n}\right| \leq k \quad \forall n \in \mathbf{N} .
$$

(iv) Unbounded sequence. A sequence $\left\langle s_{n}\right\rangle$ is said to be unbounded if it is not bounded.

In sequences, terms with equal values can occur. Therefore, a sequence may have more than one term with the smallest value. In such a case any of those is taken for the smallest value. In fact while talking about the smallest value we are interested in the value of the term rather than the position of the term in the sequence. Similar explanation holds for the greatest value. Note that, like sets of real numbers, a sequence bounded below or above may or may not have a smallest or
a greatest member accordingly. Clearly, an unbounded sequence can not have a smallest or a greatest member.
(v) Least upper bound. If a sequence $\left\langle s_{n}\right\rangle$ is bounded above, then there exists a number u_{1} such that

$$
\begin{equation*}
s_{n} \leq u_{1} \quad \forall n \in N \tag{1}
\end{equation*}
$$

This number u_{1} is called an upper bound of the sequence $\left\langle s_{n}\right\rangle$. If $u_{1}<u_{2}$, then from (1) we find that

$$
s_{n}<u_{2} \quad \forall n \in \mathbf{N}
$$

which implies, u_{2} is also an upper bound of the sequence $\left\langle s_{n}\right\rangle$. Hence, we can say any number greater than u_{1} is an upper bound of $\left\langle s_{n}\right\rangle$.

Hence, a sequence has an infinite number of upper bounds if it is bounded above. Let u is the least of all the upper bounds of the sequence $\left\langle s_{n}\right\rangle$. Then u is defined as the least upper bound (I.u.b.) or supremum of the sequence $\left\langle s_{n}\right\rangle$.
(vi) Greatest lower bound. If a sequence $\left\langle s_{n}\right\rangle$ is bound below then there exists a number $l_{1} \in R$ such that

$$
\begin{equation*}
l_{1} \leq s_{n} \quad \forall n \in \mathbf{N} . \tag{ii}
\end{equation*}
$$

This number l_{1} is known as the lower bound of $\left\langle s_{n}\right\rangle$. If $l_{2}<l_{1}$, then from (ii) we have

$$
l_{2}<s_{n} \quad \forall n \in \mathbf{N}
$$

which implies, l_{2} is also a lower bound of the sequence $\left\langle s_{n}\right\rangle$. Hence, we can say any number less than l_{1} is a lower bound of $\left\langle s_{n}\right\rangle$.

Hence, a sequence has infinite number of lower bounds, if it is bounded below. Let l is the greatest of all the lower bounds of the sequence $\left\langle s_{n}\right\rangle$. Then l is known as greatest lower bound (g.l.b.) or infimum of the sequence $\left\langle s_{n}\right\rangle$.

Examples :

(i) The sequence $\left\langle n^{2}\right\rangle$ is bounded below by 1 but not bounded above.
(ii) The sequence $\left\langle\frac{n}{n+1}\right\rangle$ is bounded as $\frac{1}{2} \leq \frac{n}{n+1}<1 \quad \forall n \in \mathbf{N}$.
(iii) The sequence $\left\langle-n^{2}\right\rangle$ is bounded above by -1 but not bounded below.
(iv) The sequence $\left\langle\frac{1}{n}\right\rangle$ is bounded since $\left|\frac{1}{n}\right| \leq 1 \quad \forall n \in \mathbf{N}$.
(v) The sequence $\left\langle(-1)^{n}\right\rangle$ is bounded since $\left|(-1)^{n}\right| \leq 1 \forall n \in \mathbf{N}$.

$$
\left(\because\left|(-1)^{n}\right|=1 \forall n \in \mathbf{N}\right)
$$

(vi) The sequence $\left\langle s_{n}\right\rangle$ defined by $s_{n}=1+(-1)^{n}$ for all $n \in \mathbf{N}$ is bounded since the range set of the sequence is $\{0,2\}$, which is a finite set.
(vii) The sequence $\left\langle(-1)^{n} / n\right\rangle$ is bounded since $\left|(-1)^{n} / n\right| \leq 1$ for all $n \in \mathbf{N}$.
(viii) The sequence $\left\langle 2^{n}\right\rangle$ is bounded below and has smallest term as 2 . Every member of $]-\infty, 2]$ is a lower bound of the sequence and the sequence is unbounded above.

Theorem 1. A sequence $\left\langle s_{n}\right\rangle$ is bounded iff there exists a positive integer m and $l \in \mathbf{R}, a<0$ such that

$$
\left|s_{n}-l\right|<a \quad \forall n \geq m .
$$

Proof. Let $\left\langle s_{n}\right\rangle$ be a bounded sequence. Then there exist two real numbers c_{1} and c_{2} such that

$$
\begin{aligned}
& c_{1}<s_{n}<c_{2} \forall n \in \mathbf{N} \\
&\left(c_{1}-\frac{c_{1}+c_{2}}{2}\right)<\left(s_{n}-\frac{c_{1}+c_{2}}{2}\right)<\left(c_{2}-\frac{\dot{c}_{1}+c_{2}}{2}\right) \forall n \in \mathbf{N} \\
& \frac{c_{1}-c_{2}}{2}<\left(s_{n}-\frac{c_{1}+c_{2}}{2}\right)<\frac{c_{2}-c_{1}}{2} \quad \forall n \in \mathbf{N} \\
&-a<\left(s_{n}-l\right)<a \quad \forall n \in \mathbf{N} \text { where, } a=\frac{c_{2}-c_{1}}{2} \text { and } l=\frac{c_{1}+c_{2}}{2}
\end{aligned}
$$

or
or
or
or

$$
\left|s_{n}-l\right|<a \quad \forall n \in \mathbf{N} \text { where } m=1 \in N, l \in \mathbf{R} \text { and } a>0 .
$$

Conversly, let there exists $l \in \mathbf{R}, a>0$ and $m \in \mathbf{N}$ such that

$$
\left|s_{n}-l\right|<a \quad \forall n \geq m
$$

This gives

$$
l-a<s_{n}<l+a \quad \forall n \geq m
$$

Let
$k_{2}=\max \left\{s_{1}, s_{2}, \ldots s_{m-1}, l+a\right\}$
Hence, $\left\langle\left(s_{n}\right)\right.$ is bounded sequence.
Limit point of the sequence. A real number l is called a limit point of a sequence $\left\langle s_{n}\right\rangle$ if every $n b d$ of l contains infinite number of terms of the sequence.

Thus $l \in \mathbf{R}$ is a limit point of the sequence $\left\langle s_{n}\right\rangle$ if for given $\left.\varepsilon>0 s_{n} \in\right] l-\varepsilon, l+\varepsilon[$, for infinitely many points.

The limit points of a sequence may be classified in two types :
(i) those for which $l=s_{n}$ for infinitely many values of $n \in \mathbf{N}$.
(ii) those for which $l=s_{n}$ for only a finite number of values of $n \in \mathbf{N}$.

But this distinction is not very much needed. As such we do not distinguish the above mentioned two types of limit points of sequences by different titles.

Examples on Limit Points :

(i) The sequence $\left\langle\frac{1}{n}\right\rangle$ has one limit point namely 0 .
(ii) The sequence $\left\langle(-1)^{n}\right\rangle$ has two limit points 1 and -1 .
(iii) The sequence $\langle n\rangle$ has no limit point.
(iv) The sequence $\left\langle 1+\frac{(-1)^{n}}{n}\right\rangle$ has one limit point i.e., 1 .
(v) The sequence $\left\langle 1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4} \ldots\right\rangle$ has one limit point i.e., 1 .
(vi) The sequence $\langle n+1\rangle$ has no limit point.

Sufficient Conditions for number l to be or not to be a limit point of the Sequence $\left\langle s_{n}\right\rangle$.
(i) If for every $\varepsilon>0, \exists m \in \mathbf{N}$ such that $\left.s_{n} \in\right] l-\varepsilon, l+\varepsilon[\forall n \geq m$ or equivelently $\left|s_{n}-l\right|<\varepsilon \forall n \geq m$, then l is the limit point of the sequence $\left\langle s_{n}\right\rangle$.
(ii) If for any $\left.\varepsilon>0, s_{n} \in\right] l-\varepsilon, l+\varepsilon[$ for only a finite number of values of n, then l is not a limit point of the sequnece $\left\langle s_{n}\right\rangle$. Such a condition is also necessary for a number l not to be a limit point of the sequence $\left\langle s_{n}\right\rangle$.

Theorem 1. (Bolzano-Weierstrass Theorem for sequence).
Every bounded sequence has at least one limit points.
Proof. Let $S=\left\{s_{n}: n \in \mathbf{N}\right\}$ be the range set of the bounded sequence $\left\langle s_{n}\right\rangle$. Then S is bounded set. Now there may be two cases :

Case I. Let S be a finite set. Then $s_{n}=p$ for infinitely many indices n. Here $p \in \mathbf{R}$. Obviously p is a limit point of $\left\langle s_{n}\right\rangle$.

Case II. Let S be an infinite set. Since S is bounded, then by Bolzano- Weierstrass theorem for sets of real numbers, S has a limits point, say p. Therefore every nbd of p contains infinitely many distinct point of Si.e., infinitely many term of $\left\langle s_{n}\right\rangle$ and hence p is a limit point of the sequence $\left\langle s_{n}\right\rangle$.

- 1.3. LIMIT SUPERIOR AND LIMIT INFERIOR

The greatest limit point of a bounded sequence is called the upper limit or limit superior and is denoted by $\overline{\lim } s_{n}$ and the smallest limit point of a bounded sequence is called the lower limit or limit inferior and is denoted by $\lim s_{n}$.

- A bounded sequence $\left\langle s_{n}\right\rangle$ for which the upper limit and lower limit coincide with real number l is said to converge to l.

Limit of sequence. A sequence $\left\langle s_{n}\right\rangle$ is said to havé á limit lif for a'given $\varepsilon>0 \exists$, a positive
integer m such that

$$
\left|s_{n}-l\right|<\varepsilon, \quad \forall n \geq-m .
$$

- 1.4. CONVERGENT SEQUENCES

Definition (1) : A sequence $\left\langle s_{n}\right\rangle$ is said to converge to a numberl, if for a given, $\varepsilon>0$ there exists a positive integer m such that

$$
\left|s_{n}-l\right|<\varepsilon, \quad \forall n \geq m .
$$

The number l is called the limit of the sequence $\left\langle s_{n}\right\rangle$ and can be written as

$$
s_{n} \rightarrow l \text { as } n \rightarrow \infty \text { or } \lim _{n \rightarrow \infty} s_{n}=l \text { or } \lim s_{n}=l
$$

Definition (2) : A sequence $\left\langle s_{n}\right\rangle$ is said to be convergent iff it is bounded and has one and only one limitt point.

In such a case the sequence is said to converge to this limit point l.

- 1.5. SUBSEQUENCES

Let $\left\langle s_{n}\right\rangle$ be any sequence. If $\left\langle n_{1}, n_{2}, \ldots, n_{k} \ldots\right\rangle$ be a strictly increasing sequence of positive integers i.e., $i>j \Rightarrow n_{i}>n_{j}$, then the sequence

$$
\left\langle s_{n_{1}}, s_{n_{2}}, \ldots, s_{n_{k}} \ldots\right\rangle
$$

is called a subsequence of $\left\langle s_{n}\right\rangle$.

SOME IMPORTANT THEOREMS

Theorem 1. If $\left\langle s_{n}\right\rangle$ is a sequence of non-negative numbers such that $\lim s_{n}=l$, then $l \geq 0$.
Proof. Let, if possible $l<0$ then $-l>0$. Now $\lim s_{n}=l$, therefore, for $\varepsilon=-\frac{l}{2}>0$, there exists a positive integer m such that

$$
\left|s_{n}-l\right|<-\frac{l}{2}, \quad \forall n \geq m .
$$

In particular

$$
\begin{array}{cc}
& \left|s_{m}-l\right|<-\frac{l}{2} \\
\Rightarrow \quad & l+\frac{l}{2}<s_{m}<l-\frac{l}{2} \\
\Rightarrow \quad & s_{m}<\frac{l}{2}<0 .
\end{array}
$$

which is a contradiction, because $s_{m} \geq 0$. Therefore our assumption is wrong. Hence, we must have $l \geq 0$.

Theorem 2. A sequence can not converge to more than one limit point.

$$
\mathrm{Or}
$$

Limit of a sequence is unique.
Proof. Let if possible, a sequence $\left\langle s_{n}\right\rangle$ converges to two distinct numbers l_{1} and l_{2}.
Now

$$
\begin{aligned}
l_{1} \neq l_{2} & \Rightarrow l_{1}-l_{2} \neq 0 \\
& \Rightarrow\left|l_{1}-l_{2}\right|>0
\end{aligned}
$$

Let $\varepsilon=\frac{1}{2}\left|l_{1}-l_{2}\right|$; then $\varepsilon>0$.
Since $\left\langle s_{n}\right\rangle$ converges to l_{1}, there must exists a positive integer m_{1} such that

$$
\begin{equation*}
\left|s_{n}-l_{1}\right|<\varepsilon, \quad \forall n \geq m_{1} \tag{1}
\end{equation*}
$$

Similarly $\left\langle s_{n}\right\rangle$ converges to l_{2}, there must exists a positive integer m_{2} such that

$$
\begin{equation*}
\left|s_{n}-l_{2}\right|<\varepsilon \quad \forall n \geq m_{2} \tag{2}
\end{equation*}
$$

Now, let $\quad m=\max \left\{m_{1}, m_{2}\right\}$.
Then result (1) and (2) hold for all $n \geq m$. So for all $n \geq m$ we have

$$
\begin{aligned}
\left|l_{1}-l_{2}\right| & =\left|\left(s_{n}-l_{1}\right)-\left(s_{n}-l_{2}\right)\right| \\
& \leq\left|s_{n}-l_{1}\right|+\left|s_{n}-l_{2}\right|
\end{aligned}
$$

$$
\begin{aligned}
&<\varepsilon+\varepsilon \\
&=2 \varepsilon \\
&=\left|l_{1}-l_{2}\right| \\
& \Rightarrow \quad\left|l_{1 .}-l_{2}\right|<\left|l_{1}-l_{2}\right|
\end{aligned}
$$

[Using (1) and (2)]
which is absurd, hence we must have $l_{1}=l_{2}$ i.e., the limit of the sequence is unique.
Theorem 3. Every convergent sequence is bounded.
Proof. Let $\left\langle s_{n}\right\rangle$ be a sequence which converges to l. Take $\varepsilon=1$. Then there exists a positive integer m such that
i.e.,

$$
\begin{aligned}
\left|s_{n}-l\right| & <1, \quad \forall n \geq m \\
(l-1) & <s_{n}<(l+1), \quad \forall n \geq m . \\
k_{1} & =\min \left\{s_{1}, s_{2}, \ldots, s_{m-1}, l-1\right\} \\
k_{2} & =\max \left\{s_{1}, s_{2}, \ldots, s_{m-1}, l+1\right\} \\
k_{1} & \leq s_{n} \leq k_{2} \quad \forall n \in \mathbf{N} .
\end{aligned}
$$

and
therefore
Hence the sequence $\left\langle s_{n}\right\rangle$ is bounded.
Note. The converse of the above theorem is not necessarily triue. i.e.; a bounded sequence need not be convergent. For example $\left\langle(-1)^{n}\right\rangle$ is bounded but not convergent.

Theorem 4. If $\left\langle s_{n}\right\rangle$ converges to l, then any subsequence of $\left\langle s_{n}\right\rangle$ also converges to l.
Proof. Let $\left\langle s_{n_{k}}\right\rangle$ be any subsequence of $\left\langle s_{n}\right\rangle$. Then by definition of subsequence $n_{1}, n_{2}, \ldots, n_{k}, \ldots$ are positive integers such that

$$
\begin{align*}
& n_{1}<n_{2}<\ldots<n_{k}<\ldots \\
& n_{1} \geq 1 \Rightarrow n_{k} \geq k . \tag{Byinduction}
\end{align*}
$$

Now
Since $\left\langle s_{n}\right\rangle$ converges to l, so given $\varepsilon>0$, there exists a positive integer m such that

$$
\left|s_{k}-l\right|<\varepsilon, \forall k \geq m
$$

for $k \geq m$, we have

$$
n_{k} \geq k \geq m
$$

therefore

$$
\left|s_{n_{k}}-l\right|<\varepsilon, \text { for all } n_{k} \geq m
$$

$\therefore\left\langle s_{n_{k}}\right\rangle$ converges to l.
Theorem 5. The limit of the sum of two convergent sequences is the sum of their limits.
Proof. Let $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ be the two given sequences such that

$$
\begin{align*}
\lim s_{n} & =l_{1} \tag{1}\\
\lim t_{n} & =l_{2} . \tag{2}
\end{align*}
$$

Since, $\lim s_{n}=l_{1}$, therefore for a given $\varepsilon>0$, there exists a positive integer m_{1} such that

$$
\left|s_{n}-l_{1}\right|<\varepsilon / 2, \forall n \geq m .
$$

Similarly, $\lim t_{n}=l_{2}$, therefore, for a given $\varepsilon>0$, there must exists a positive integer m_{2} such that

$$
\left|t_{n}-l_{2}\right|<\varepsilon / 2, \forall n \geq m_{2} .
$$

Let

$$
m=\max \left\{m_{1}, m_{2}\right\} .
$$

Therefore

$$
\begin{aligned}
& \left|s_{n}-l_{1}\right|<\varepsilon / 2, \quad \forall n \geq m \\
& \left|t_{n}-l_{2}\right|<\varepsilon / 2, \quad \forall n \geq m .
\end{aligned}
$$

Now, consider

$$
\begin{aligned}
& \left|\left(s_{n}+t_{n}\right)-\left(l_{1}+l_{2}\right)\right|=\left|\left(s_{n}-l_{1}\right)+\left(t_{n}-l_{2}\right)\right|, \quad \forall n \geq m \\
& \quad \leq\left|s_{n}-l_{1}\right|+\left|t_{n}-l_{2}\right|, \quad \forall n \geq m \\
& \quad<\varepsilon / 2+\varepsilon / 2=\varepsilon, \forall n \geq m .
\end{aligned}
$$

Therefore, the sequence $\left\langle s_{n}+t_{n}\right\rangle$ is convergent and

$$
\lim \left(s_{n}+t_{n}\right)=l_{1}+l_{2}=\lim s_{n}+\lim t_{n} .
$$

Theorem 6. If lim $s_{n}=l_{1}$ and $\lim t_{n}=l_{2}$, then $\lim \left(s_{n} t_{n}\right)=l_{1} \cdot l_{2}$.
Proof. We have

$$
\begin{align*}
\left|s_{n} t_{n}-l_{1} l_{2}\right| & =\left|s_{n} t_{n}-l_{1} t_{n}+l_{1} t_{n}-l_{1} l_{2}\right| \\
& =\left|t_{n}\left(s_{n}-l_{1}\right)+l_{1}\left(t_{n}-l_{2}\right)\right| \\
\leq\left|t_{n}\right| \mid s_{n} & -l_{1}\left|+\left|l_{1}\right|\right| t_{n}-l_{2} \mid . \tag{1}
\end{align*}
$$

The sequence $\left\langle t_{n}\right\rangle$ is convergent, therefore it is bounded, (\because Every convergent sequence is bounded) so there must exists a positive real no c such that

$$
\begin{equation*}
\left|t_{n}\right| \leq c, \forall n \in \mathbf{N} \tag{2}
\end{equation*}
$$

Since the sequences $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ both are convergent, there must exist, positive integers m_{1} and m_{2} suich that

$$
\begin{equation*}
\left|s_{n}-l_{1}\right|<\varepsilon / 2 c, \quad \forall n \geq m_{1} \tag{3}
\end{equation*}
$$

and

$$
\left|t_{n}-l_{2}\right|<\varepsilon / 2 c, \quad \forall n \geq m_{2} .
$$

Let

$$
m=\max \left\{m_{1}, m_{2}\right\}
$$

From (1). (2), (3) and (4) we have

$$
\begin{gathered}
\left|s_{n} t_{n}-l_{1} l_{2}\right|<c \cdot \frac{\varepsilon}{2 c}+|c| \cdot \frac{\varepsilon}{2|c|}, \forall n \geq m \\
<\varepsilon / 2+\varepsilon / 2=\varepsilon, \forall n \geq m .
\end{gathered}
$$

Therefore $\quad \lim \left(s_{n} t_{n}\right)=l_{1} l_{2}$.
Theorem 7. If lim $s_{n}=l_{1}, l_{1} \neq 0$ and $s_{n} \neq 0, \forall n \in \mathbf{N}$ then

$$
\lim \left(\frac{1}{s_{n}}\right)=\frac{1}{l_{1}}
$$

Proof. Since $l_{1} \neq 0$, there exists a positive number c and positive integer m_{1} such that

$$
\left|s_{n}\right|>c, \forall n \geq m_{1} .
$$

Also $\lim s_{n}=l_{1}$, therefore, for a given $\varepsilon>0$, there must exists a positive integer m_{2} such that

$$
\begin{equation*}
\left|s_{n}-l_{1}\right|<c\left|l_{1}\right| \varepsilon, \forall n \geq m_{2} \tag{2}
\end{equation*}
$$

Let $m=\max \left\{m_{1}, m_{2}\right\}$. Then

$$
\begin{aligned}
\left|\frac{1}{s_{n}}-\frac{1}{l_{1}}\right| & =\left|\frac{s_{n}-l_{1}}{\left|s_{n}\right|\left|l_{1}\right|}\right|<\frac{c\left|l_{1}\right|}{c\left|l_{1}\right|} \varepsilon, \forall n \geq m \\
& =\varepsilon, \quad \forall n \geq m .
\end{aligned}
$$

Therefore, $\quad \lim \frac{1}{s_{n}}=\frac{1}{l_{1}}$.
Theorem 8. If lim $s_{n}=l_{1}$ and $\lim t_{n}=l_{2}\left(l_{2} \neq 0\right), t_{n} \neq 0, \forall n \in \mathbf{N}$ then

$$
\lim \frac{s_{n}}{t_{n}}=\frac{l_{1}}{l_{2}} .
$$

Proof. We have

$$
\begin{aligned}
\lim \left|\frac{s_{n}}{t_{n}}\right| & =\lim \left(s_{n} \frac{1}{t_{n}}\right) \\
& =\lim \left(s_{n}\right) \cdot \lim \left(\frac{1}{t_{n}}\right)
\end{aligned}
$$

$[\because$ limit of the product of two sequence is equal to the product of the limits]

$$
=l_{1} \cdot \frac{1}{l_{2}}
$$

[By previous theorem]
$\Rightarrow \quad \lim _{n \rightarrow \infty} \frac{s_{n}}{t_{n}}=\frac{l_{1}}{l_{2}}$.

- 1.6. DIVERGENT SEQUENCES

Definition (i) A sequence $\left\langle s_{n}\right\rangle$ is said to diverge to $+\infty$, iffor every real number $k>0$, there exists a positive integer m such that
$s_{n}>k, \forall n \geq m$.
Definition (ii) A sequence $\left\langle s_{n}\right\rangle$ is said to diverge to $-\infty$, iffor every real number $k<0$, there exists a positive integer m such that
$s_{n}<k, \forall n \geq m$.
Definition (iii) A sequerice is said to be divergent sequence, if it diverges to either $+\infty$ or $-\infty$.

Definition (iv) A sequence, which is not convergent, is known as divergent sequence.

- Examples :

(i) $\left\langle 3,3^{2}, 3^{3}, \ldots\right\rangle$ diverges to $+\infty$.
(ii) $\left\langle-2,-2^{2},-2^{3}, \ldots\right\rangle$ diverges to $-\infty$.
(iii) $\langle 2,4,6, \ldots, 2 n, \ldots\rangle$ diverges to $+\infty$.
(iv) $\langle-2,-4,-6, \ldots,-2 n, \ldots\rangle$ diverges to $-\infty$.

- 1.7. OSCILLATORY SEQUENCE

A sequence $\left\langle s_{n}\right\rangle$ is said to be an oscillatory sequence if it is neither convergent nor divergent.
An oscillatory sequence is said to oscillate finitely or infinitely according as it is bounded or unbounded.

In other words, we can say
(i) A bounded sequence, which is not convergent is said to oscillate finitely.
(ii) An unbounded sequene which does not diverge, is said to oscillate infinitely.
(iii) A bounded sequence which does not converge and has at least two limit points, is said to be oscillate finitely.

Examples:

(i) $\left\langle 1+(-1)^{n}\right\rangle$ oscillate finitely.
(ii) $\left\langle(-1)^{n}\right\rangle$ oscillate finitely.
(iii) $\left\langle(-1)^{n}\left(1+\frac{1}{n}\right)\right\rangle$ oscillate finitely.
(iv) $\left\langle n(-1)^{n}\right\rangle$ oscillate infinitely.

SOME IMPORTANT THEOREMS

Theorem 1. If a sequence $\left\langle s_{n}\right\rangle$ diverges to infinitely, then any subsequence of $\left\langle s_{n}\right\rangle$ also diverges to infinitely.

Proof. Let $\left\langle s_{n_{k}}\right\rangle$ be any subsequence of the sequence $\left\langle s_{n}\right\rangle$. Then by the definition of subsequence $\left\langle n_{1}, n_{2}, \ldots, n_{k}, \ldots\right\rangle$ is a strictly increasing sequence of positive integers
\Rightarrow

$$
n_{1} \geq 1 \Rightarrow n_{k} \geq k
$$

(By induction)
Take any positive real number c_{1}.
Now $\left\langle s_{n}\right\rangle$ diverges to $\infty \Rightarrow$ for $c_{1}>0 \exists m \in N$ such that $s_{n}>c_{1}$ for all $n \geq m$ i.e., $s_{k}>c_{1}$, $\forall k \geq m$ for $k \geq m$, we have $n_{k} \geq k \geq m$ i.e., $n_{k} \geq m$.
$\therefore \quad s_{n_{1}}>c_{1}$ for all $c_{k} \geq m$.
$\Rightarrow\left\langle s_{n_{k}}\right\rangle$ diverges to ∞.
Theorem 2. If the sequence $\left\langle s_{n}\right\rangle$ diverges to infinity and the sequence $\left\langle t_{n}\right\rangle$ is bounded, then $\left\langle s_{n}+t_{n}\right\rangle$ diverges to infinity.

Proof. The sequence $\left\langle t_{n}\right\rangle$ is bounded; therefore for arbitrary positive number k_{1} such that

$$
\left|t_{n}\right|<k_{1}
$$

Also, the sequence $\left\langle s_{n}\right\rangle$ diverges to infinity. Therefore for arbitrary positive number k there must exists a positive integer m such that

$$
s_{n}>k+k_{1}, \quad \forall n \geq m
$$

Now, for all $n \geq m$, we have

$$
s_{n}+t_{n} \geq s_{n}-\left|t_{n}\right|>k+k_{1}-k_{1}=k .
$$

Thus for $k>0, \exists$ a positive integer m such that

$$
s_{n}+t_{n}>k, \quad \forall n \geq m .
$$

\Rightarrow The sequence $\left\langle s_{n}+t_{n}\right\rangle$ diverges to infinity.
Theorem 3. If the sequences $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ both diverges to infinity, then the sequences $\left\langle s_{n}+t_{n}\right\rangle$ and $\left\langle s_{n} . t_{n}\right\rangle$ diverges to infinity.

Proof. Since, the sequence $\left\langle s_{n}\right\rangle$ diverges to infinity, therefore for $k_{1}>0$, there must exists a positive, integer m_{1} such that $\left.s_{n}\right\rangle k_{1} \forall n \geq m_{1}$. Similarly, the sequence $\left\langle t_{n}\right\rangle$ diverges to infinity, therefore for $k_{2}>0$, there must exists a positive integer m_{2} such that

$$
t_{n}>k_{2}, \quad \forall n \geq m_{2}
$$

Let $m=\max \left\{m_{1}, m_{2}\right\}$. Then

$$
\begin{aligned}
s_{n}+t_{n} & >k_{1}+k_{2}=l_{1} \text { (say) } \\
s_{n} t_{n} & >k_{1}, k_{2}=l_{2} \text { (say). }
\end{aligned}
$$

Therefore, sequences $\left\langle s_{n}+t_{n}\right\rangle$ and $\left\langle s_{n} t_{n}\right\rangle$ diverges to infinity.

SOLVED EXAMPLES

Example 1. Show that the sequence $\left\langle\frac{1}{n}\right\rangle$ converges to 0 .
Solution. Let $\quad\left\langle s_{n}\right\rangle=\left\langle\frac{1}{n}\right\rangle$.
Now

$$
\lim _{n \rightarrow \infty} s_{2 n}=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

and
Therefore

$$
\lim _{n \rightarrow \infty} s_{2 n+1}=\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0
$$

$\Rightarrow \quad \lim _{n \rightarrow \infty} s_{n}=0, \forall n \in \mathbf{N}$.
Since 0 is a finite quantity. Hence, the sequence $\left\langle s_{n}\right\rangle$ is convergent and converges to 0 .
Example 2. Show that the sequence $\left\langle(-1)^{n} / n\right\rangle$ is convergent.
Solution. Let

$$
\left\langle s_{n}\right\rangle=\left\langle(-1)^{n} / n\right\rangle
$$

Here

$$
\lim _{n \rightarrow \infty} s_{2 n}=\lim _{n \rightarrow \infty} \frac{(-1)^{2 n}}{2 n}=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

and

$$
\lim _{n \rightarrow \infty} s_{2 n+1}=\lim _{n \rightarrow \infty} \frac{(-1)^{2 n+1}}{2 n+1}=\lim _{n \rightarrow \infty} \frac{-1}{2 n+1}=0
$$

which gives,

$$
\lim _{n \rightarrow \infty} s_{2 n}=\lim _{n \rightarrow \infty} s_{2 n+1}=0
$$

\Rightarrow

$$
\lim _{n \rightarrow \infty} s_{n}=0, \quad \forall n \in \mathbf{N}
$$

Since 0 is a finite quantity. Hence, the given sequence $\left\langle s_{n}\right\rangle$ is a convergent sequence.
Example 3. Discuss the convergence of the sequence $\left\langle\frac{1}{3^{n}}\right\rangle$.
Solution. Let $\quad\left\langle s_{n}\right\rangle=\left\langle\frac{1}{3^{n}}\right\rangle$.
Then

$$
\lim _{n \rightarrow \infty} s_{2 n}=\lim _{n \rightarrow \infty} \frac{1}{3^{2 n}}=0
$$

and

$$
\lim _{n \rightarrow \infty} s_{2 n+1}=\lim _{n \rightarrow \infty} \frac{1}{3^{2 n+1}}=0
$$

which implies $\quad \lim _{n \rightarrow \infty} \dot{s}_{2 n}=\lim _{n \rightarrow \infty} s_{2 n+1}=0$
Therefore, $\quad \lim _{n \rightarrow \infty} s_{n}=0, \forall n \in \mathbf{N}$.
Since 0 is a finite quantity, hence, the given sequence $\left\langle s_{n}\right\rangle$ is a convergent sequence.
Example 4. Show that the sequence $\left\langle s_{n}\right\rangle$ defined by

$$
s_{n}=\langle(\sqrt{n+1}-\sqrt{n})\rangle, \quad \forall n \in \mathbf{N}
$$

is convergent.
Solution. We have

$$
s_{n}=\sqrt{n+1}-\sqrt{n}
$$

For any $\varepsilon>0, \quad\left|s_{n}-0\right|=\sqrt{n+1}-\sqrt{n}<\varepsilon$
$\Rightarrow \quad \sqrt{n+1}<(\varepsilon+\sqrt{n})$.
$\Rightarrow \quad n+1<\varepsilon^{2}+2 \varepsilon \sqrt{n}+n$.
$\Rightarrow \quad 1<\varepsilon^{2}+2 \varepsilon \sqrt{n}$
i.e. if

$$
\frac{1}{4 \varepsilon^{2}}<n
$$

Thuš, for any given $\varepsilon>0, \exists m\left(>\frac{1}{4 \varepsilon^{2}}\right) \in \mathbf{N}$ such that

$$
\left|s_{n}-0\right|<\varepsilon, \quad \forall n \geq m
$$

Therefore, $\lim s_{n}=0$.
Since, 0 is a finite quantity. Hence, the given sequence $\left\langle s_{n}\right\rangle$ is convergent.
Example 5. Show that the sequence $\left\langle s_{n}\right\rangle$ defined by $. s_{n}=r^{n}$ converges to 0 if $|r|<1$.
Solution. If $|r|<1$. Then

$$
|r|=\frac{1}{1+h}, \text { where } h>0
$$

Since,

$$
\begin{aligned}
(1+h)^{n} & =1+n h+\frac{n(n-1)}{2!} h^{2}+\ldots+h^{n} \\
& >1+n h \forall n .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|s_{n}-0\right| & =\left|r^{n}\right| \\
& =|r|^{n}=\frac{1_{1}}{(1+h)^{n}} \\
& <\frac{1}{1+n h} \forall n .
\end{aligned}
$$

Let $\varepsilon>0$. Then

$$
\left|s_{n}-0\right|<\varepsilon \text { if } \frac{1}{1+n h}<\varepsilon \text { or } n>\left(\frac{1}{\varepsilon}-1\right) / h
$$

Now, if we take a positive integer m such that $m>\left(\frac{1}{\varepsilon}-1\right) / h$, then, for all $n \geq m$ $\left|s_{n}-0\right|<\varepsilon$.
Hence, the sequence $\left\langle s_{n}\right\rangle$ converges to 0 .
Example 6. Show that the sequence $\left\langle s_{n}\right\rangle=\frac{3 n}{n+5 n^{1 / 2}}$ has the limit 3 .
Solution. Let ε be any positive number.
Consider, $\quad\left|\frac{3 n}{n+5 n^{1 / 2}}-3\right|=\frac{15 n^{1 / 2}}{n+5 n^{1 / 2}}<\frac{15}{n^{1 / 2}}$.
Therefore, $\left|\frac{3 n}{n+5 n^{1 / 2}}-3\right|=\varepsilon$ if $\frac{15}{n^{1 / 2}}<\varepsilon$ or $n>\frac{225}{\varepsilon^{2}}$.
If we choose a positive integer $m>\frac{225}{\varepsilon^{2}}$, then, we get

$$
\left|s_{n}-3\right|<\varepsilon, \forall n \geq m
$$

Hence

$$
\lim _{n \rightarrow \infty} s_{n}=3
$$

Example 7. Show that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
Solution. Let $\sqrt[n]{n}=1+h$, where $h \geq 0$

$$
\begin{aligned}
\Rightarrow & & n=(1+h)^{n} \\
& & =1+n h+\frac{n(n-1)}{2!} h^{2}+\ldots+h^{n} \\
\Rightarrow & & n>\frac{n(n-1)}{2} h^{2}, \quad \forall n \quad(\because h \geq 0) \\
\Rightarrow & & h^{2}<\frac{2}{n-1}, \quad \text { for } n \geq 2 \\
\Rightarrow & & |h|<\sqrt{\left(\frac{2}{n-1}\right)}, \text { for } n \geq 2 .
\end{aligned}
$$

Let $\varepsilon>0$ (any positive number, however small) then

$$
|h|<\sqrt{\left(\frac{2}{n-1}\right)}<\varepsilon \text { provided, } \frac{2}{n-1}<\varepsilon^{2} \text { or } n>\frac{2}{\varepsilon^{2}}+1
$$

If we take $m \in \mathbf{N}$ such that $m>\frac{2}{\varepsilon^{2}}+1$
then

$$
|h|<\varepsilon \quad \forall n \geq m
$$

or

$$
|\sqrt[n]{n}-1|<\varepsilon \quad \forall n \geq m \Rightarrow \lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

Example 8. If $\left\langle s_{n}\right\rangle$ be a sequence such that $s_{n} \neq 0$ for any $n \in \mathbf{N}$, and $\frac{s_{n+1}}{s_{n}}=l$. Then prove that if $|l|<1$, then $s_{n} \rightarrow 0$.

Solution. Since $|l|<1$. Hence there exist $\varepsilon_{1}>0$ such that

$$
|l|+\varepsilon_{1}=h<1 .
$$

Now $\frac{s_{n+1}}{s_{n}} \rightarrow l \Rightarrow$ there exists a positive integer m such that

$$
\left|\frac{s_{n+1}}{s_{n}}-l\right|<\varepsilon, \quad \forall n \geq m .
$$

We have

$$
\begin{aligned}
&\left|\frac{s_{n+1}}{s_{n}}\right|=\left|\left(\frac{s_{n+1}}{s_{n}}-l\right)+l\right| \leq\left|\frac{s_{n+1}}{s_{n}}-l\right|+|l| \\
&<\varepsilon_{1}+|l|, \forall n \geq m \\
&\left|\frac{s_{n+1}}{s_{n}}\right|<h, \forall n \geq m .
\end{aligned}
$$

i.e.,

Replacing n by, $m, m+1, \ldots, n-1$ successively in the above equation and multiplying the corresponding sides of the resulting $(n-m)$ inequalities, we get

$$
\begin{array}{ll}
& \left|\frac{s_{m+1}}{s_{m}}\right| \cdot\left|\frac{s_{m+2}}{s_{m+1}}\right| \cdots\left|\frac{s_{n}}{s_{n-1}}\right|<h^{n-m}, \\
\Rightarrow & \left|\frac{s_{m+1}}{s_{m}} \cdot \frac{s_{m+2}}{s_{m+1}} \cdots \frac{s_{n}}{s_{n-1}}\right|<h^{n-m}, \\
\Rightarrow \quad & \left|s_{n}\right|<h^{n}\left(\frac{\left|s_{m}\right|}{h^{m}}\right), \text { for all } n>m . \tag{1}
\end{array}
$$

Since, $0<h<1$, therefore $h^{n} \rightarrow 0$ and hence, given $\varepsilon>0$, there exists a positive integer m_{1} such that

$$
\begin{equation*}
\left|h^{n}\right|<\frac{h^{m} \varepsilon}{\left|s_{m}\right|}, \quad \forall n \geq m_{1} . \tag{2}
\end{equation*}
$$

Now, let us choose a positive integer p such that

$$
p>\max \left\{m_{1}, m_{2}\right\} .
$$

From (1) and (2), we get

$$
\left|s_{n}\right|<\varepsilon \forall n \geq p .
$$

Hence $s_{n} \rightarrow 0$.

- 1.8. CAUCHY SEQUENCES

A sequence $\left\langle s_{n}\right\rangle$ is said to be Cauchy sequence if, given $\varepsilon>0$ there exist $m \in \mathbf{N}$ such that

$$
\left|s_{n}-s_{m}\right|<\varepsilon, \quad \forall n \geq m
$$

or

$$
\left|s_{p}-s_{q}\right|<\varepsilon, \quad \forall p, q \geq m
$$

or

$$
\left|s_{n+p}-s_{n}\right|<\varepsilon, \quad \forall n \geq m \text { and } p>0 .
$$

Examples:

(i) The sequence $\left\langle\frac{1}{2^{n}}\right\rangle$ is a Cauchy sequence.
(ii) The sequence $\left\langle\frac{1}{n}\right\rangle$ is a Cauchy sequence.
(iii) The sequence $\left\langle\frac{1}{n^{2}}\right\rangle$ is not a Cauchy sequence.
(iv) The sequence $\left\langle(-1)^{n}\right\rangle$ is not a Cauchy sequence.

SOME IMPORTANT THEOREMS

Theorem 1. Every Cauchy sequence is bounded.
Proof. Let $\left\langle s_{n}\right\rangle$ be a Cauchy sequence.
Taking $\varepsilon=1$, there exists a positive integer m such that

$$
\left|s_{n}-s_{m}\right|<1, \quad \forall n \geq m
$$

$\Rightarrow \quad\left(s_{m}-1\right)<s_{n}<\left(s_{m}+1\right) \quad \forall n \geq m$.
Let . $\quad k=\min \left[s_{m}-1, s_{1}, s_{2}, \ldots, s_{m-1}\right]$
and

$$
K=\max \left[s_{m}+1, s_{1}, s_{2}, \ldots, s_{m-1}\right]
$$

Then $\quad k \leq s_{n} \leq K, \forall n$.
\Rightarrow The sequence $\left\langle s_{n}\right\rangle$ is bounded.
Note. Converse of the above theorem is not necessarily true, i.e., a bounded sequence need not be a Cauchy sequence, for example, the sequence $\left\langle(-1)^{n}\right\rangle$ is bounded, but is not a Cauchy sequence.

Theorem 2. (Cauchy's General Principle of Convergence). A sequence is convergent if and only if it is a Cauchy sequence.

Proof. Let us first suppose $\left\langle s_{n}\right\rangle$ be a convergent sequence. Let, this sequence converges to l.
\therefore for a given $\varepsilon>0$ these exists a positive integer m such that

$$
\begin{equation*}
\left|s_{n}-l\right|<\varepsilon / 2, \quad \forall n \geq m . \tag{1}
\end{equation*}
$$

In particular, for $n=m$

$$
\begin{equation*}
\left|s_{m}-l\right|<\varepsilon / 2 . \tag{2}
\end{equation*}
$$

Now, consider

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & =\left|s_{n}-l+l-s_{m}\right| \\
& \leq\left|s_{n}-l\right|+\left|s_{m}-l\right| \\
& <\varepsilon / 2+\varepsilon / 2, \forall n \geq m \\
& =\varepsilon, \quad \forall n \geq m \\
\left|s_{n}-s_{m}\right| & <\varepsilon, \forall n \geq m
\end{aligned}
$$

i.e.,
$\Rightarrow\left\langle s_{n}\right\rangle$ is a Cauchy sequence.
Conversely, let $\left\langle s_{n}\right\rangle$ be a Cauchy sequence.
$\Rightarrow\left\langle s_{n}\right\rangle$ is a bounded sequence
[By Theorem 1]
\Rightarrow By Bolzano-Weierstress theorem $\left\langle s_{n}\right\rangle$ has at least one limit point, say l. We shall show that the sequence $\left\langle s_{n}\right\rangle$ converges to l.
Let $\varepsilon>0$ be given.
Since, $\left\langle s_{n}\right\rangle$ is a Cauchy sequence
$\therefore \quad \exists$ a positive integer m such that

$$
\begin{equation*}
\left|s_{n}-s_{m}\right|<\varepsilon / 3, \quad \forall n \geq m . \tag{3}
\end{equation*}
$$

Since, l is the limit point of $\left\langle s_{n}\right\rangle$.
\therefore for above choice of ε and m, \exists a positive integer $k>m$ such that

$$
\begin{equation*}
\left|s_{k}-l\right|<\varepsilon / 3 \tag{4}
\end{equation*}
$$

Since, $k>m$, therefore from (3)

$$
\begin{equation*}
\left|s_{k}-s_{m}\right|<\varepsilon / 3 \tag{5}
\end{equation*}
$$

Now, consider

$$
\begin{aligned}
\left|s_{n}-l\right| & =\left|s_{n}-s_{m}+s_{m}-s_{k}+s_{k}-l\right| \\
& \leq\left|s_{n}-s_{m}\right|+\left|s_{m}-s_{k}\right|+\left|s_{k}-l\right| \\
& <\varepsilon / 3+\varepsilon / 3+\varepsilon / 3 \\
& =\varepsilon \\
\left|s_{n}-l\right| & <\varepsilon, \quad \forall n \geq m .
\end{aligned}
$$

$\Rightarrow\left\langle s_{n}\right\rangle$ is convergent.

SOLVED EXAMPLES

Example 1. If $\left\langle s_{n}\right\rangle$ is a sequence in \mathbf{R}, where

$$
s_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}
$$

evaluate, $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|$. Verify, if this sequence satisfy the Caüchy criterion.
Solution. Here

$$
s_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}
$$

$\Rightarrow \quad s_{n+1}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\frac{1}{n+1}$.
$\therefore \quad s_{n+1}-s_{n}=\frac{1}{n+1}$
$\Rightarrow \quad \lim _{n \rightarrow \infty}\left|s_{n+1}-s_{n}\right|=0$.
Also, here we have

$$
\begin{aligned}
s_{2 n}-s_{n} & =\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right) \\
& =\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n} \\
& \geq n\left(\frac{1}{2 n}\right) .
\end{aligned}
$$

$\Rightarrow \quad\left|s_{2 n}-s_{n}\right|>\frac{1}{2} \quad \forall n \in \mathbf{N}$.
\Rightarrow there exists a positive integer k such that $\left|s_{n}-s_{k}\right| \geq \frac{1}{2}$ whenever $n \geq k$
\Rightarrow Cauchy criterion is not satisfied.
Example 2. Show by applying Cauchy's convergent criterion that the sequence $\left\langle s_{n}\right\rangle$ given by

$$
s_{n}=1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1} \text { diverges. }
$$

Solution. Here, we have

$$
\begin{aligned}
s_{n+1} & =1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}+\frac{1}{2(n+1)-1} \\
& =1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}+\frac{1}{2 n+1} \ldots-1 \\
\therefore \quad s_{n+1}-s_{n} & =\left[1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}+\frac{1}{2 n+1}\right]-\left[1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}\right] \\
& =\frac{1}{2 n+1}>0, \forall n \in \mathbf{N} .
\end{aligned}
$$

$\therefore \quad s_{n+1}>s_{n}, \forall n \in \mathbf{N}$.
\Rightarrow The sequence $\left\langle s_{n}\right\rangle$ is increasing sequence.
Also, we have

$$
\begin{aligned}
& \quad s_{2 n}=1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}+\frac{1}{2 n+1}+\ldots+\frac{1}{4 n-1} \\
& \therefore \quad s_{2 n}-s_{n}=\left[1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}+\frac{1}{2 n+1}+\ldots+\frac{1}{4 n-1}\right] \\
& \quad=\frac{1}{2 n+1}+\frac{1}{2 n+3}+\ldots+\frac{1}{4 n-1} \\
& \Rightarrow \quad s_{2 n}-s_{n}>n\left(\frac{1}{4 n}\right) \\
& \Rightarrow \quad\left|s_{2 n}-s_{n}\right|>\frac{1}{4}: \quad \forall n \in \mathbf{N} \\
& \Rightarrow \\
& \Rightarrow \text { there exists a positive integer } k \text { such that }\left|s_{n}-s_{k}\right|>\frac{1}{4} \text { whenever } n \geq k \\
& \Rightarrow \text { Cauchy criterion is not satisfied. } \\
& \Rightarrow \text { The sequence }\left\langle s_{n}\right\rangle \text { can not converge. } \\
& \Rightarrow \text { The sequence }\left\langle s_{n}\right\rangle \text { diverges to }+\infty .
\end{aligned}
$$

SOME IMPORTANT THEOREMS

Theorem 1. (Squeeze Principle). If $\left\langle s_{n}\right\rangle,\left\langle t_{n}\right\rangle$ and $\left\langle u_{n}\right\rangle$ are three sequences such that
(i) $s_{n} \leq t_{n} \leq u_{n} \quad \forall n$
and (ii) $\left\langle s_{n}\right\rangle$ converges to l and $\left\langle u_{n}\right\rangle$ also converges to l, then $\left\langle t_{n}\right\rangle$ also converges to l.
Proof. Let $\varepsilon>0$ be given. Since the sequences $\left\langle s_{n}\right\rangle$ and $\left\langle u_{n}\right\rangle$ converges to l, there must exist positive integers m_{1} and m_{2} such that

$$
\begin{align*}
& \left|s_{n}-l\right|<\varepsilon, \quad \forall n \geq m_{1} \tag{1}\\
& \left|u_{n}-l\right|<\varepsilon, \quad \forall n \geq m_{2} . \tag{2}
\end{align*}
$$

Let $m=\max \left\{m_{1}, m_{2}\right\}$. Then for $n>m$, we have

$$
\begin{gathered}
l-\varepsilon<s_{n} \leq t_{n} \leq u_{n}<l+\varepsilon \\
l-\varepsilon<t_{n}<l+\varepsilon \\
\left|t_{n}-l\right|<\varepsilon, \quad \forall n \geq m .
\end{gathered}
$$

\Rightarrow Hence $\lim t_{n}=l$
$\Rightarrow\left\langle t_{n}\right\rangle$ converges to l.
Theorem 2. (Cauchy's first theorem on limits). If $\lim _{n \rightarrow \infty} s_{n}=l$, then

$$
\lim _{n \rightarrow \infty} \frac{s_{1}+s_{2}+\ldots+s_{n}}{n}=l
$$

Proof. Let us define a sequence $\left\langle t_{n}\right\rangle$ in such a way that

$$
t_{n}=s_{n}-l
$$

then $\quad \lim t_{n}=\lim \left(s_{n}-l\right)=\lim s_{n}-l=l-l=0$
and $\quad \frac{s_{1}+s_{2}+\ldots+s_{n}}{n}=l+\frac{t_{1}+t_{2}+\ldots+t_{n}}{n}$.
In order to prove this theorem, we have to show that

$$
\lim \frac{t_{1}+t_{2}+\ldots+t_{n}}{n}=0
$$

Now, sequence $\left\langle t_{n}\right\rangle$ is convergent $\left(\because\left\langle s_{n}\right\rangle\right.$ is convergent), therefore it is bounded and hence there must exists a positive number k such that

$$
\left|t_{n}\right|<k, \quad \forall n \in \mathbf{N}
$$

Also, $\left\langle t_{n}\right\rangle$ converges to zero. Therefore for a given $\varepsilon>0$ there must exists a positive integer m such that

$$
\left|t_{n}\right|<\varepsilon / 2, \quad \forall n \geq m
$$

Now, consider

$$
\begin{aligned}
\left|\frac{t_{1}+t_{2}+\ldots+t_{n}}{n}\right| & =\left|\frac{t_{1}+t_{2}+\ldots+t_{m}}{n}+\frac{t_{m+1}+\ldots+t_{n}}{n}\right| \\
& \leq \frac{\left|t_{1}\right|\left|t_{2}\right|+\ldots+\left|t_{m}\right|}{n}+\frac{\left|t_{m+1}\right|+\ldots\left|t_{n}\right|}{n} \\
& <\frac{m k}{n}+\frac{\varepsilon}{2}(n-m), \quad \forall n \geq m .
\end{aligned}
$$

Keeping m fixed, we have

$$
\frac{m k}{n}<\varepsilon / 2 \text { if } n>\frac{2 m k}{\varepsilon}
$$

Let, μ be any positive integer $>\frac{2 m k}{\varepsilon}$, so that $n \geq \mu$ we have

$$
\frac{m k}{n} \leq \frac{\varepsilon}{2}
$$

$$
\text { Let } \quad \lambda=\max \{m, \mu\}
$$

Therefore, for each $n \geq \lambda$, we have

$$
\left|\frac{t_{1}+t_{2}+\ldots+t_{n}}{n}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

This gives

$$
\lim _{n \rightarrow \infty} \frac{t_{1}+t_{2}+\ldots+t_{n}}{n}=0 .
$$

Hence, we have

$$
\lim _{n \rightarrow \infty} \frac{s_{1}+s_{2}+\ldots+s_{n}}{n}=l .
$$

Theorem 3. (Cauchy's second theorem on limits). If $\left\langle s_{n}\right\rangle$ is a sequence of positive terms and $\lim s_{n}=l$, then $n \rightarrow \infty$

$$
\lim \left(s_{1}, s_{2}, \ldots, s_{n}\right)^{1 / n}=l
$$

Proof. Let $\left\langle t_{n}\right\rangle$ be a sequence, such that

$$
t_{n}=\log s_{n}, \forall n \in \mathbf{N} .
$$

Now

$$
\lim s_{n}=l \Rightarrow \lim t_{n}=\lim \log s_{n}=\log l
$$

$$
\left(\because \lim s_{n}=l \Leftrightarrow \lim \log s_{n}=\log l \text { provided } s_{n}>0, \forall n \text { and } l>0\right)
$$

Then, by Cauchy first theorem on limits, we have

$$
\begin{aligned}
& \\
\Rightarrow & \lim _{n \rightarrow \infty} \frac{t_{1}+t_{2}+\ldots+t_{n}}{n}=\lim t_{n}
\end{aligned}=\log l .
$$

Theorem 4. If $\left\langle s_{n}\right\rangle$ is a sequence such that

$$
\lim _{n \rightarrow \infty} \frac{s_{n+1}}{s_{n}}=l \text { where }|l|<1
$$

then

$$
\lim _{n \rightarrow \infty} s_{n}=0
$$

Proof. Since $|l|<1$, let us choose a positive small number ε such that

$$
|l|+\varepsilon<1
$$

Now, $\lim \frac{s_{n+1}}{s_{n}}=l$, therefore for $\varepsilon>0$ there must exists a positive ineger m such that, for all $n \geq m$

$$
\begin{array}{rlrl}
& & \left|\frac{s_{n+1}}{s_{n}}-l\right|<\varepsilon \\
\Rightarrow & \left|\frac{s_{n+1}}{s_{n}}\right|-|l| \leq\left|\frac{s_{n+1}}{s_{n}}-l\right|<\varepsilon \\
\Rightarrow & \left|\frac{s_{n+1}}{s_{n}}\right|<|l|+\varepsilon=k \text { (say). }
\end{array}
$$

Now, putting $n=m, m+1, \ldots, n-1$ in the above inequality and multiplying them, we get
or

$$
\begin{aligned}
& \left|\frac{s_{n}}{s_{m}}\right|<k^{n-m} \\
& \left|s_{n}\right|<\frac{\left|s_{m}\right|}{k^{m}} \cdot k^{n} .
\end{aligned}
$$

But $k<1 \Rightarrow k^{n} \rightarrow 0$ as $n \rightarrow \infty$, which gives $\lim s_{n}=0$.
Theorem 5. If $\left\langle s_{n}\right\rangle$ is a sequence such that $s_{n}>0$ and $\lim \frac{s_{n+1}}{s_{n}}=l$, then $\lim ^{n} \sqrt{s_{n}}=l$.
Proof. Let us define a sequence $\left\langle t_{n}\right\rangle$ such that

$$
t_{1}=s_{1}, t_{2}=\frac{s_{2}}{s_{1}}, \ldots, t_{n}=\frac{s_{n}}{s_{n-1}} .
$$

Then $t_{1} \cdot t_{2} \ldots t_{n}=s_{n}$.
Also

$$
\begin{aligned}
\lim \frac{s_{n+1}}{s_{n}} & =l \Rightarrow \lim \frac{s_{n}}{s_{n-1}}=l \Rightarrow \lim t_{n}=l \\
& =s_{n}>0 \Rightarrow t_{n}=0, \quad \forall n \in N
\end{aligned}
$$

Hence we have, the sequence $\left\langle t_{n}\right\rangle$ of positive terms and $\lim \dot{t}_{n}=l$.

Now, Cauchy's second theorem on limits we have

$$
\begin{aligned}
\lim \left(t_{1}, t_{2}, \ldots, t_{n}\right)^{1 / n} & =l \\
\lim \left(s_{n}\right)^{1 / n} & =l .
\end{aligned}
$$

Theorem 6. (Cesaro's Theorem). If lim $s_{n}=l_{1}$ and lim $t_{n}=l_{2}$. Then

$$
\lim \frac{s_{1} t_{n}+s_{2} t_{n-1}+\ldots+s_{n} t_{1}}{n}=l_{1} l_{2}
$$

Proof. Let us define $s_{n}=l_{1}+u_{n}$ and $\left|u_{n}\right|=U_{n}$.
Then $\lim u_{n}=0$ and therefore $\lim U_{n}=0$.
Now, by Cauchy's first theorem on limits, we have

$$
\begin{equation*}
\lim \frac{1}{n}\left[U_{1}+U_{2}+\ldots+U_{n}\right]=0 \tag{1}
\end{equation*}
$$

Consider,

$$
\begin{equation*}
\frac{1}{n}\left[s_{1} t_{n}+s_{2} t_{n-1}+\ldots+s_{n} t_{1}\right]=\frac{1}{n}\left[t_{1}+t_{2}+\ldots+t_{n}\right]+\frac{1}{n}\left[u_{1} t_{n}+u_{2} t_{n-1}+\ldots+u_{n} t_{1}\right] \tag{2}
\end{equation*}
$$

Since, the sequence $\left\langle t_{n}\right\rangle$ is convergent. Therefore, it is bounded. Hence, there must exists a positive real number k such that

$$
\left|t_{n}\right|<k, \forall n \in \mathbf{N} .
$$

Therefore,

$$
\begin{aligned}
& \qquad \begin{array}{c}
\left\lvert\, \frac{1}{n}\left(u_{1} t_{n}+u_{2} t_{n-1}+\ldots+u_{n} t_{1} \mid\right.\right.
\end{array} \geq 0 \\
& \quad \begin{array}{c}
\frac{1}{n}\left[\left|u_{1}\right|\left|t_{n}\right|+\left|u_{2}\right|\left|t_{n-1}\right|+\ldots+\left|u_{n}\right|\left|t_{1}\right|\right] \geq 0 \\
\frac{k}{n}\left[\left|u_{1}\right|+\left|u_{2}\right|+\ldots+\left|u_{n}\right|\right]>0 \\
\frac{k}{n}\left[u_{1}+u_{2}+\ldots+u_{n}\right]>0
\end{array} \\
& \Rightarrow \quad \text { Thus } \quad \\
& \quad \begin{array}{l}
\frac{k}{n}\left[u_{1}+u_{2}+\ldots+u_{n}\right] \rightarrow 0 \text { as } n \rightarrow \infty \\
\lim \frac{1}{n}\left[u_{1} t_{n}+u_{2} t_{n-1}+\ldots+u_{n} t_{1}\right]=0 .
\end{array}
\end{aligned}
$$

Since, $\lim t_{n}=l_{2}$, therefore

$$
\lim \frac{t_{1}+t_{2}+\ldots+t_{n}}{n}=l_{2} .
$$

Now, from (2), we have

$$
\lim \frac{1}{n}\left(s_{1} t_{n}+s_{2} t_{n-1}+\ldots+s_{n} t_{1}\right)=l_{1} l_{2}
$$

SOLVED EXAMPLES

Example 1. Prove that $\lim _{n \rightarrow \infty} s_{n}=1$, where $s_{n}=n^{1 / n}$.
Solution. For $n=1, \quad s_{n}=1$
For $\quad n \geq 2, \quad s_{n}>1$.
Let $\quad s_{n}=1+t_{n}, t_{n}>0, \forall n \geq 2$

$$
n=s_{n}^{n}=\left(1+t_{n}\right)^{n}
$$

$$
=1+n t_{n}+\frac{n(n-1)}{2!} t_{n}^{2}+\ldots+t_{n}^{n}
$$

Since $\sqrt{\frac{2}{n-1}} \rightarrow 0$ as $n \rightarrow \infty$

$$
t_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

[By Sandwitch Theorem]
\cdots Hence $s_{n} \rightarrow 1$ as $n \rightarrow \infty$.
Example 2. If

$$
s_{n}=\left[\left(\frac{2}{1}\right)^{1}\left(\frac{3}{2}\right)^{2}\left(\frac{4}{3}\right)^{3} \cdot \cdots\left(\frac{n+1}{n}\right)^{n}\right]^{1 / n}
$$

then $s_{n} \rightarrow$. Hence show that

$$
\lim _{n \rightarrow \infty}\left[\frac{n^{n}}{n!}\right]^{1 / n}=e
$$

Solution. Let

$$
t_{n}=\left(\frac{2}{1}\right)^{1}\left(\frac{3}{2}\right)^{2}\left(\frac{4}{3}\right)^{3} \ldots\left(\frac{n+1}{n}\right)^{n}
$$

so that

$$
s_{n}=t_{n}^{1 / n}
$$

Also,

$$
\frac{t_{n+1}}{t_{n}}=\left(\frac{n+2}{n+1}\right)^{n+1}=\left(1+\frac{1}{n+1}\right)^{n+1}
$$

Now $\quad \lim _{n \rightarrow \infty} \frac{t_{n+1}}{t_{n}}=e$.
Hence, by Cauchy's second theorem on limits, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s_{n} & =\lim _{n \rightarrow \infty} t_{n}^{1 / n}=e \\
\text { Also } & =\left[2 \cdot\left(\frac{3}{2}\right)^{2}:\left(\frac{4}{3}\right)^{3} \cdots\left(\frac{n+1}{n}\right)^{n}\right]^{1 / n} \\
& =\left[\frac{(n+1)^{n}}{n!}\right]^{1 / n}=\left[\frac{(n+1)^{n}}{n^{n}} \cdot \frac{n^{n}}{n!}\right]^{1 / n} \\
& =\frac{n+1}{n}\left(\frac{n^{n}}{n!}\right)^{1 / n} \\
\therefore \quad & =\lim _{n \rightarrow \infty} \frac{n+1}{n} \lim _{n \rightarrow \infty}\left[\frac{n^{n}}{n!}\right]^{1 / n} \\
\lim _{n \rightarrow \infty} s_{n} & =\lim _{n \rightarrow \infty}\left[\left(\frac{n+1}{n}\right)\left(\frac{n^{n}}{n!}\right)^{1 / n}\right] \\
e & =1 . \lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)^{1 / n} \\
\Rightarrow \quad \lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)^{1 / n} & =e .
\end{aligned}
$$

Example 3. Show that the sequence $\left\langle s_{n}\right\rangle$ where

$$
s_{n}=\left\{\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+1}}+\ldots+\frac{1}{\sqrt{n^{2}+1}}\right\}
$$

converges to 1 .
Solution. Here, we have

$$
\begin{aligned}
& \frac{n}{\sqrt{n^{2}+n}} \leq s_{n} \leq \frac{n}{\sqrt{n^{2}}} \\
\Rightarrow \quad & \frac{1}{\sqrt{1+(1 / n)}} \leq s_{n} \leq 1
\end{aligned}
$$

Now the sequence $\left\langle t_{n}\right\rangle,\left\langle u_{n}\right\rangle$ are such that
(i) $t_{n} \leq s_{n} \leq u_{n}$,
and (ii) $\lim t_{n}=\lim u_{n}=1$
where,

$$
t_{n}=\frac{1}{\sqrt{1+\left(\frac{1}{n}\right)}} \text { and } u_{n}=1
$$

From (i) and (ii), we have

$$
\lim s_{n}=1
$$

Example 4. Prove that

$$
\lim _{n \rightarrow \infty}\left[\frac{(n+1)(n+2)(n+3) \ldots(n+n)}{n^{n}}\right]=\frac{4}{e}
$$

Solution. Let $s_{n}=\frac{(n+1)(n+2) \ldots(n+n)}{n^{n}}=\frac{(2 n)!}{n^{n}(n!)}$.
Then $\quad s_{n+1}=\frac{(2 n+2)!}{(n+1)^{n+1}(n+1)!}$.
Therefore, $\quad \frac{s_{n+1}}{s_{n}}=\frac{(2 n+2)!n^{n}(n!)}{(n+1)^{n+1}(n+1)(2 n)!}=\frac{(2 n+2)(2 n+1)}{(n+1)^{n+2}}$

$$
=\frac{(2 n+2)(2 n+1) n^{n}}{(n+1)^{n+2}}=\frac{2(2 n+1) n^{n}}{(n+1)^{n+1}}
$$

$$
=\frac{2 \times 2 n\left[1+\frac{1}{2 n}\right] n^{n}}{(n+1)(n+1)^{n}}=\frac{4 n\left[1+\frac{1}{2 n}\right] n^{n}}{n\left[1+\frac{1}{n}\right](n+1)^{n}}
$$

$$
=\frac{4\left(1+\frac{1}{2 n}\right)}{\left(1+\frac{1}{n}\right)} \cdot\left[\frac{n}{n+1}\right]^{n}
$$

$$
=\frac{4 n\left[1+\frac{1}{2 n}\right]}{\left[1+\frac{1}{n}\right]} \cdot \frac{1}{\left[1+\frac{1}{n}\right]^{n}} .
$$

Now, taking lim $n \rightarrow \infty$; we have

$$
\lim _{n \rightarrow \infty} \frac{s_{n+1}}{s_{n}}=\lim _{n \rightarrow \infty}\left[\frac{4\left[1+\frac{1}{2 n}\right]}{1+\frac{1}{n}} \cdot \frac{1}{\left[1+\frac{1}{n}\right]^{n}}\right]=\frac{4}{e}
$$

Now By Cauchy's second theorem on limits, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(s_{n}\right)^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{s_{n+1}}{s_{n}}\right)=\frac{4}{e} \\
\Rightarrow \quad & \lim _{n \rightarrow \infty}\left[\frac{(n+1)(n+2) \ldots(n+n)}{n^{n}}\right]=\frac{4}{e} .
\end{aligned}
$$

Example 5. Prove that

$$
\lim \frac{1}{n}\left[1+2^{1 / 2}+3^{1 / 3}+\ldots+n^{1 / n}\right]=1
$$

Solution. Lets $s_{n}=n^{1 / n}$

$$
\lim s_{n}=\lim n^{1 / n}=1
$$

Then, by Cauchy's first theorem on limits, we have $: ;$,

$$
\begin{aligned}
\lim \frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right) & =1 \\
\Rightarrow \quad-\quad \lim \frac{1}{n}\left[1+2^{1 / 2}+3^{1 / 3}+\ldots+n^{1 / n}\right] & =1
\end{aligned}
$$

- 1.10. MONOTONIC SEQUENCES

(i) A sequence $\left\langle s_{n}\right\rangle$ is said to be monotonically increasing (or non-decreasing) if

$$
\begin{aligned}
& s_{n} \leq s_{n+1}, \forall n . \\
& s_{n} \leq s_{m}, \forall n>m .
\end{aligned}
$$

(ii) A sequence $\left\langle s_{n}\right\rangle$ is said to be strictly increasing if

$$
s_{n}<s_{n+1}, \quad \forall n \in \mathbf{N}
$$

(iii) A sequence $\left\langle s_{n}\right\rangle$ is said to be monotonically decreasing (or non- increasing) if

$$
s_{n} \geq s_{n+1}, \quad \forall n
$$

$$
\text { or } \quad s_{n} \geq s_{m}, \forall n<m
$$

(iv) A sequence $\left\langle s_{n}\right\rangle$ is said to be strictly decreasing if

$$
s_{n}>s_{n+1}, \quad \forall n \in \mathbf{N} .
$$

(v) A sequence $\left\langle s_{n}\right\rangle$ is said to be monotonic if it is either monotonically increasing or monotonically decreasing.

Examples:

(i) $\langle 2,2,4,4,6, \ldots\rangle$ is monotonically increasing.
(ii) $\langle 1,2,3, \ldots n\rangle$ is strictly increasing.
(iii) $\left\langle 1,1, \frac{1}{3}, \frac{1}{5}, \frac{1}{5} \ldots\right\rangle$ is monotonically decreasing.
(iv) $\langle-2,-4,-6,-8, \ldots\rangle$ is strictly decreasing.
(v) $\langle 0,1,0,1, \ldots\rangle$ is not monotonic.

Theorem 1. (Monotone Convergence Theorem). Every bounded monotonically increasing sequence converges.

Proof. Let us suppose $\left\langle s_{n}\right\rangle$ be a bounded monotonically increasing sequence. Let

$$
S=\left\{s_{n}: n \in \mathbf{N}\right\}
$$

denotes its range. Then, obviously S is a non-empty set, which is bounded above. Therefore there exists a number l, which is the supremum of S. We shall show that the sequence $\left\langle s_{n}\right\rangle$ converges to l.

Let $\varepsilon>0$ be a given number. Since $l-\varepsilon<l$, therefore $l-\varepsilon$ is not an upper bound of S. Hence, there exists a positive integer m such that $s_{n}>l-\varepsilon$.

Now, since $\left\langle s_{n}\right\rangle$ is monotonically increasing sequence. Therefore

$$
\begin{gather*}
s_{n} \geq s_{m}>l-\varepsilon, \quad \forall n \geq m . \tag{1}\\
\text { Sup. } S=l \Rightarrow s_{n}<l<l+\varepsilon, \quad \forall n . \tag{2}
\end{gather*}
$$

From (1) and (2), we have

$$
l-\varepsilon<s_{n}<l+\varepsilon, \quad \forall n \geq m
$$

$\Rightarrow \quad\left|s_{n}-l\right|<\varepsilon, \forall n \geq m$
$\Rightarrow\left\langle s_{n}\right\rangle$ converges to l.
Theorem 2. Every bounded monotonically decreasing sequence converges.
Proof. Let $\left\langle s_{n}\right\rangle$ be a bounded monotonically decreasing sequence. Consider a sequence $\left\langle t_{n}\right\rangle$ such that

$$
t_{n}=-s_{n}, \quad \forall n \in \mathbf{N}
$$

Then, $\left\langle t_{n}\right\rangle$ is bounded monotonically increasing sequence and therefore it converges [By Theorem 1]

If $\lim t_{n}=l$, then $\lim s_{n}=\lim \left(-t_{n}\right)=-l$.
Theorem 3. A non-decreasing sequence (increasing), which is not bounded above diverges $t o \infty$.

Proof. Let $\left\langle s_{n}\right\rangle$ be a monotonic non-decreasing sequence, which is not bounded above. Let c be any positive number. Since, the sequence $\left\langle s_{n}\right\rangle$ is unbounded and monotonically increasing, therefore, there must exists a positive integer m such that

$$
\begin{array}{ll}
\quad & s_{n} \geq s_{m}>c, \forall n>m \\
\Rightarrow \quad & s_{n}>c, \forall n>m .
\end{array}
$$

Hence, the sequence $\left\langle s_{n}\right\rangle$ diverges to ∞.
Theorem 4. A non-increasing sequence (decreasing), which is not bounded below diverges to $-\infty$.

Proof. Proof is exactly on same lines and left as an exercise for the students.

SOLVED EXAMPLES

Example 1. Show that the sequence $\left\langle s_{n}\right\rangle$ defined by

$$
s_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}
$$

converges.
Solution. Since, the sequence $\left\langle s_{n}\right\rangle$ is defined by

$$
\begin{aligned}
s_{n} & =\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n} \\
\Rightarrow \quad s_{n+1} & =\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n+2} . \\
& \\
s_{n+1}-s_{n} & =\left(\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n+2}\right)-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}\right) \\
& =\frac{1}{2 n+1}+\frac{1}{2 n+2}-\frac{1}{n+1} \\
& =\frac{1}{2 n+1}-\frac{1}{2 n+2}
\end{aligned}
$$

$$
>0, \forall n .
$$

Hence, the sequence $\left\langle s_{n}\right\rangle$ is monotonically increasing.
Now

$$
\begin{aligned}
\left|s_{n}\right| & =\left|\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}\right| \\
& <\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n} \\
& =n \cdot \frac{1}{n}=1
\end{aligned}
$$

i.e., $\quad\left|s_{n}\right|<1, \forall n$.
\Rightarrow sequence $\left\langle s_{n}\right\rangle$ is bounded.
Then, by monotonic convergence criterion, the sequence $\left\langle s_{n}\right\rangle$ converges.
Example 2. Show that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ exists and lies between 2 and 3.
$\begin{array}{ll}\text { Solution. Let } s_{n}=\left(1+\frac{1}{n}\right)^{n} \\ \therefore & \therefore s_{1}=2\end{array}$

$$
s_{n}=1+n \frac{1}{n}+\frac{n(n-1)}{2!} \frac{1}{n^{2}}+\ldots+\frac{n(n-1) \ldots 1}{n!} \cdot \frac{1}{n^{n}}
$$

[By binomial theorem for positive integral index]

$$
\begin{equation*}
=1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\ldots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{n-1}{n}\right) \tag{1}
\end{equation*}
$$

Similarly

$$
s_{n+1}=1+1+\frac{1}{2!}\left(1-\frac{1}{n+1}\right)+\ldots+\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)
$$

$$
\ldots\left(1-\frac{n}{n+1}\right)
$$

Comparing (1) and (2), we see that $s_{n+1} \geq s_{n}, \forall n$.
\Rightarrow The sequence $\left\langle s_{n}\right\rangle$ is monotonically increasing.

Now from (1), we have

$$
\begin{aligned}
2 & <s_{n}<1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!} \\
& \leq 1+1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}}, \text { which is a G.P. } \\
& =1+\frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}} \\
& =3-\frac{1}{2^{n-1}}<3, \forall n
\end{aligned}
$$

\Rightarrow The sequence $\left\langle s_{n}\right\rangle$ is bounded.
Thus, the sequence $\left\langle s_{n}\right\rangle$, being a monotonically increasing sequence bounded above by 3 , is convergent.

```
Since \(\quad 2<s_{n}<3, \forall n\)
\(\Rightarrow \quad 2 \leq \lim _{n \rightarrow \infty} s_{n} \leq 3, \forall n\).
```

\Rightarrow limit of the sequence $\left\langle s_{n}\right\rangle$ lies between 2 and 3 .
Example 3. Show that the sequence $\left\langle s_{n}\right\rangle$ defined by

$$
s_{1}=\sqrt{2}, s_{n+1}=\sqrt{\left(2 s_{n}\right)}
$$

converges to 2.
Solution. We have $s_{n+1}=\sqrt{\left(2 s_{n}\right)}$
For $n=1$

$$
\begin{aligned}
& s_{2}=\sqrt{\left(2 s_{1}\right)} \\
& s_{2}=\sqrt{(2 \sqrt{2})} .
\end{aligned}
$$

Since $\quad 1<\sqrt{2} \Rightarrow 2<2 \sqrt{2} \Rightarrow \sqrt{2}<\sqrt{(2 \sqrt{2})}$

$$
\Rightarrow s_{1}<s_{2} .
$$

Now, let us suppose that $s_{m}<s_{m+1}$
then

$$
\sqrt{\left(2 s_{m}\right)}<\sqrt{\left(2 s_{m+1}\right)}
$$

$\Rightarrow \quad s_{m+1}<s_{m+2}$.
How, by the method of Mathematical induction, we have

$$
s_{n}<s_{n+1}, \forall n \in \mathbf{N}
$$

i.e., $\left\langle s_{n}\right\rangle$ is monotonically increasing sequence.

Now, we shall show that $\left\langle s_{n}\right\rangle$ is bounded.
Since $\quad s_{1}=\sqrt{2}<2$.
Let us suppose that $s_{m}<2$. Then $\sqrt{\left(2 s_{m}\right)}<\sqrt{(2.2)}=2$

$$
\Rightarrow \quad s_{m+1}<2
$$

By the method of mathematical induction, we have

$$
s_{n}<2, \forall n \in \mathbf{N}
$$

$\Rightarrow\left\langle s_{n}\right\rangle$ is bounded abeve by 2 .
$\Rightarrow\left\langle s_{n}\right\rangle$ is monotonically increasing sequence which is bounded above.
Then, by monotone convergent criterion $\left\langle s_{n}\right\rangle$ is convergent.
Now, let $\quad \lim _{n \rightarrow \infty} s_{n}=l \Rightarrow \lim _{n \rightarrow \infty} s_{n+1}=l$
given that

$$
s_{n+1}=\sqrt{\left(2 s_{n}\right)}
$$

$\Rightarrow \quad \lim s_{n+1}=\lim \sqrt{2 s_{n}}$
\Rightarrow
which gives
$l=\sqrt{2 l} \Rightarrow l(l-2)=0$
$l=2, l=0$.
But, since $\left\langle s_{n}\right\rangle$ is positive terms sequence with first term $=\sqrt{2}$. Hence l can not be equal to 0

$$
\Rightarrow \quad l=2 .
$$

Example 4. Prove that the sequence $\left\langle a_{n}\right\rangle$ is convergent where :

$$
a_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots
$$

Solution. Since

$$
a_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots
$$

and

$$
a_{n+1}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\frac{1}{(n+1)!}
$$

then

$$
a_{n+1}-a_{n}=\frac{1}{(n+1)!}>0, \quad \forall n \in \mathbf{N}
$$

Thus $\left\langle a_{n}\right\rangle$ is monotonically increasing.
Further,

$$
\begin{array}{ll}
& a_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots \\
\Rightarrow & 2<a_{n}<1+1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{2^{n-1}} \\
\Rightarrow & 2<a_{n} \leq 1+\frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}}=3-\frac{1}{2^{n-1}}<3, \forall n
\end{array}
$$

$\Rightarrow\left\langle a_{n}\right\rangle$ is bounded.
Hence, $\left\langle a_{n}\right\rangle$ is convergent.

- SUMMARY

- A function $f: N \rightarrow S$ is known as a sequence.
- A sequence $\left\langle s_{n}\right\rangle$ is bounded iff $\left|s_{n}\right|<k \forall n$.
- Every bounded sequence has at least one limit point.
- A sequence $\left\langle s_{n}\right\rangle$ converges to l if for given $\varepsilon>0 m \in N$ such that $\left|s_{n}-l\right|<\varepsilon \forall n \geq m$.
- A sequence $\left\langle s_{n}\right\rangle$ is a Cauchy sequence \exists for given $\varepsilon>0 \exists m, n$ in N such that $\left|s_{n}-s_{m}\right|<\in \forall n \geq m$.
- Cauchy's first theorem on limit : If $\lim _{n \rightarrow \infty} s_{n}=l$, then $\lim _{n \rightarrow \infty} \frac{s_{1}+s_{2}+\ldots \ldots s_{n}}{n}=l$.
- Cauchy's second theorem on limit : If $\lim _{n \rightarrow \infty} s_{n}=l$, then $\lim _{n \rightarrow \infty}\left(s_{1} s_{2} \ldots \ldots s_{n}\right)^{1 / n}=l$.
- A sequence $\left\langle s_{n}\right\rangle$ is monotonic if either $s_{n} \geq s_{m}$ or $s_{n} \leq s_{m} \forall n>m$.

STUDENT ACTIVITY

1. Prove that every convergent sequence is bounded.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Prove that every Cauchy sequence is convergent.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- TEST YOURSELF

1. Discuss the boundedness of the following sequence $\left\langle s_{n}\right\rangle$ where $\left\langle s_{n}\right\rangle$ is given by
(i) $s_{n}=6$
(ii) $s_{n}=(-1)^{n} \cdot 4$
(iii) $s_{n}=\frac{2 n+3}{3 n+4}$
(iv) $s_{n}=\left(1+\frac{1}{n}\right)^{n}$.
(v) $s_{n}=\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\ldots+\frac{1}{(2 n)^{2}}$
(vi) $s_{n}=n^{3} \quad$ (vii) $s_{n}=1+(-1)^{n}$.
2. Discuss the convergence and divergence of sequences in Ques. 1.
3. Give examples of sequence $\left\langle s_{n}\right\rangle$ for which

$$
\lim _{n \rightarrow \infty} \frac{s_{n+1}}{s_{n}}=1
$$

and (i) $s_{n} \rightarrow \infty$
(ii) $s_{n} \rightarrow 2$
(iii) $s_{n} \rightarrow 0$.
4. Verify the following :
(i) $\lim _{n \rightarrow \infty} \frac{3 n-5}{4-2 n}=-\frac{3}{2}$
(ii) $\lim _{n \rightarrow \infty}\left[\left(n^{2}+1\right)^{1 / 8}-(n+1)^{1 / 4}\right]=0$
(iii) $\lim _{n \rightarrow \infty}\left[\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\ldots+\frac{1}{(2 n)^{2}}\right]=0$
(iv) $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{-n}=e$
(v) $\lim _{n \rightarrow \infty} \frac{n}{[n!]^{1 / n}}=e$
(vi) $\lim _{x \rightarrow \infty} \frac{e^{1 / x}}{e^{1 / x}+1}=1$.
5. Show that the sequences $\left\langle s_{n}\right\rangle$ defined by $s_{1}=\frac{1}{2}, s_{n+1}=\frac{2 s_{n}+1}{3} \forall n \in \mathbf{N}$ is convergent. Also find its limit.

ANSWERS

1. (i), (ii), (iii), (iv), (v), (vii) bounded (vi) unbounded.
2. (i), (iii), (iv), (v) converges (ii), (vii) oscillate (vi) diverges to ∞
3.

(i) $s_{n}=n$
(ii) $s_{n}=\frac{2 n+1}{n}$
(iii) $s_{n}=\frac{1}{n}$
5. $l=1$

Fill in the Blanks :

1. Every convergent sequence is \qquad .
2. Every bounded sequence is \qquad convergent.
3. The limit of a positive term sequence is always \qquad .
4. Limit of the sequence is \qquad . .
5. A sequence is-Cauchy if and only if it is \qquad
6. Every Cauchy sequence is \qquad

True or False :

Write T for true and F for false statement :

1. Every convergent sequence is bounded:
2. Every bounded monotonically increasing sequence is convergent.
3. If $\left\langle s_{n+1}-s_{n}\right\rangle$ oscillate finitely, then $\left\langle s_{n}\right\rangle$ oscillate.
4. If given k (however large) we can find m for which $a_{m}>k$ then $s_{n} \rightarrow \infty$.
5. If $\left\langle s_{n+1}-s_{n}\right\rangle$ oscillate infinitely, then $\left\langle s_{n}\right\rangle$ oscillate.

Multiple Choice Questions :

Choose the most appropriate one :

1. An oscillatory sequence is :
(a) always bounded
(b) may or may not be bounded
(c) never bounded
(d) none of these.
2. Formula for s_{n}, for the given sequences $1,-1,1,-1, \ldots$ is :
(a) $s_{n}=(-1)^{n} \downarrow n \in N$
(b) $s_{n}=(-1)^{n+1} \forall n \in N$
(c) $s_{n}=1$ if n is even
(d) none of these.
3. If the sequence $\left\langle s_{n}\right\rangle$ converges to l then the sequence $\langle | s_{n}| \rangle$ converges to :
(a) l
(b) $|l|$
(c) -1
(d) none of these.
4. A sequence of $\left\langle s_{n}\right\rangle$ of real numbers such that $\langle | s_{n}| \rangle$ converges but $\left\langle s_{n}\right\rangle$ does not. is given by :
(a) $\left\langle(-1)^{n}\right\rangle$
(b) $\left\langle\frac{1}{n}\right\rangle$
(c) $\left\langle\frac{n}{n+1}\right\rangle$
(d) none of these.

ANSWERS

Fill in the Blanks :

1. Bounded
2. not necessarily
3. non-negative
4. unique
5. convergent
6. convergent
True and False :
$\begin{array}{lllll}\text { 1. } \mathrm{T} & \text { 2. T } & \text { 3. F } & \text { 4.F } & \text { 5.F }\end{array}$
Multiple Choice Questions :
7. (b) 2. (a) 3. (b) 4. (a)

2

INFINITE SERIES

STRUCTURE

- Definitions
- Sequence of Partial Sums
- Convergence, divergence or oscillation of a series
- Comparison tests
- Cauchy's Root test
- D'Alembert Ratio Test
- Raabe's Test
- Logarithmic test
- Cauchy's integral test
- Leibnitz Test
- Summary
- Student Activity
- Test Yourself

LEARNING OBJECTIVES

After going through this unit you will learn :

- What is an infinite series ?
- How to distinguishe the sequence and series.
- How to check whether a given series is convergent or divergent using the said tests.

- 2.1. DEFINITIONS

Let $\left\langle u_{n}\right\rangle$ be a sequence of real numbers, then an expression of the form

$$
\begin{equation*}
u_{1}+u_{2}+\ldots+u_{n}+\ldots \tag{1}
\end{equation*}
$$

is called an infinite series. In symbols it is generally written as

$$
\sum_{n=1}^{\infty} u_{n} \text { or } \sum u_{n}
$$

If all the terms of $\left\langle u_{n}\right\rangle$ after a certain number are zero then the expression $u_{1}+u_{2}+\ldots+u_{m}$, written as $\sum_{n=1}^{m} u_{n}$ is called a finite series.

The term u_{n} is called the : $n^{\text {th }}$ term or general term of the series (1). The sum of first n terms of the series is denoted by s_{n}. Thus,

$$
s_{n}=u_{1}+u_{2}+\ldots .+u_{n}
$$

- 2.2. SEQUENCE OF PARTIAL SUM OF AN INFINITE SERIES

An expression of the form $u_{1}+u_{2}+\ldots+u_{n}+\ldots$ which involves addition of infinitely many terms has in itself no meaning. In order to give a meaning to the value of such an infinite sum, we form a sequence of partial sums. It is the limit of such a sequence which gives meaning to the infinite series.

Let us associate to the infinite series $u_{1}+u_{2}+\ldots+u_{n}+\ldots$, a sequence $\left\langle s_{n}\right.$) defined by

$$
S_{n}=u_{1}+u_{2}+\ldots+u_{n}
$$

Then the sequence $\left\langle s_{n}\right\rangle$ is called the sequence of partial sums of the given series

$$
u_{1}+u_{2}+\ldots+u_{n}+\ldots
$$

- 2.3. CONVERGENCE, DIVERGENCE OR OSCILLATION OF A SERIES

An infinite series $\sum_{n=1}^{\infty} u_{n}$ is said to be :
(i) Convergent if the sequence $\left\langle s_{n}\right\rangle$ of its partial sums converges to a real number S and in that case S is called the sum of the series $\sum_{n=1}^{\infty} u_{n}$ and we write $\sum_{n=1}^{m} u_{n}=S$. In this case, we also say that the series is convergent to S.
(ii) Converges absolutely, if $\sum_{n=1}^{\infty}\left|u_{n}\right|$ converges.
(iii) Converges conditionally, if $\sum_{n=1}^{\infty} u_{n}$ converges but $\sum_{n=1}^{\infty}\left|u_{n}\right|$ does not converge.
(iv) Diverges to $\infty\left(\right.$ or $-\infty$) if the sequence $\left\langle s_{n}\right\rangle$ diverges to ∞ (or $-\infty$) and in that case $\sum_{n=1}^{\infty} u_{n}=\infty\left(\right.$ or $\left.\sum_{n=1}^{\infty} u_{n}=-\infty\right)$.
(v) Oscillate finitely, if the sequence $\left\langle s_{n}\right\rangle$ oscillate finitely.
(vi) Oscillate infinitely, if the sequence $\left\langle s_{n}\right\rangle$ oscillate infinitely.
(vii) Oscillatory if S_{n}, the sum of its first n terms, neither tends to a definite finite limit nor to $+\infty$ or $-\infty$ as $n \rightarrow \infty$.

Examples :

(1) The series $1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\ldots+\left(\frac{2}{3}\right)^{n}+\ldots$ is convergent
(2) The series $\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots$ is convergent.
(3) The series $1+2+3+\ldots+n+\ldots$ is divergent.
(4) The series $3-3+3-3+\ldots$ is oscillatory.

SOME IMPORTANT THEOREM

Theorem 1. (Necessary condition for convergencê). For a series $\sum u_{n}$ to be convergent, it is necessary that

$$
\lim u_{n}=0 . \quad \text { Or }
$$

For every convergent series $\sum u_{n}$, we must have lim $u_{n}=0$.
Proof. Let us suppose, the series $\sum u_{n}$ be convergent. Let S_{n} denote the sum of n terms of the series $\sum u_{n}$.

$$
\left.\begin{array}{cc}
\Rightarrow & S_{n}=u_{1}+u_{2}+\ldots+u_{n} \tag{1}\\
\Rightarrow & S_{n-1}=u_{1}+u_{2}+\ldots+u_{n-1}
\end{array}\right] \Rightarrow u_{n}=S_{n}-S_{n-1}
$$

The series $\sum u_{n}$ is convergent, therefore S_{n} and S_{n-1} both will tend to the same finite limit, say l as $n \rightarrow \infty$.

Now, from (1)

$$
\lim u_{n}=\lim S_{n}-\lim S_{n-1}=l-l=0 .
$$

Hence, for a convergent series, it is necessary that $\lim u_{n}=0$.
Theorem 2. (Cauchy's General principle of convergence for series). A necessary and sufficient condition for a series $\sum u_{n}$ to be convergent is that to each $\varepsilon>0$, there exists a positive integer m such that

$$
\left|u_{n+1}+u_{n+2}+\ldots+u_{n+p}\right|<\varepsilon, \text { whenever } n \geq m \text { and } p \geq 1 \text {. }
$$

Proof. Let $\left\langle s_{n}\right\rangle$ be the sequence of partial sums of the series $\sum u_{n}$. The series $\sum u_{n}$ will converge if and only if the sequence $\left\langle s_{n}\right\rangle$ of its partial sums converges. But by Cauchy's general principle
of convergence for sequences, we know that a necessary and sufficient condition for the convergence of $\left\langle s_{n}\right\rangle$ is that for each $\varepsilon>0$, there exists $m \in \mathbf{N}$ such that

$$
\begin{gathered}
\left|s_{n}-s_{m}\right|<\varepsilon, \forall n>m \\
\Rightarrow\left|u_{n+1}+u_{n+2}+\ldots+u_{n+p}\right|<\varepsilon, \forall n>m \text { and } p \geq 1 .
\end{gathered}
$$

Theorem 3. A series of positive terms is convergent if S_{n}, the sum of n terms, is less than a fixed number for all values of n.

Proof. Let $u_{1}+u_{2}+\ldots+u_{n}+\ldots$ be the series of positive terms.
Then $\quad S_{n}=u_{1}+u_{2}+\ldots+u_{n}$.
Obviously if n increases, then S_{n} increases and may tend to a finite limit or to $+\infty$. The series can not oscillate.

If S_{n} remains less than a fixed number for all values of n it can not tend to infinity and so it must tend to a finite limit. Hence the series is convergent.

Theorem 4. A series of positive term $\sum u_{n}$ is convergent if and only if the sequence $\left\langle s_{n}\right\rangle$ (where $s_{n}=u_{1}+u_{2}+\ldots+u_{n}$) of its partial sum is bounded above.

Proof. Since, $u_{n}>0, \forall n$, the sequence $\left\langle s_{n}\right\rangle$ of partial sums of the series is monotonically increasing.

Now the series $\sum u_{n}$ is convergent iff the sequence $\left\langle s_{n}\right\rangle$ is convergent. i.e., iff the sequence $\left\langle s_{n}\right\rangle$ is bounded above.
(\because a monotonically increasing sequence is convergent iff it is bounded above)
Theorem 5. (Convergence of geometric series). The geometric series

$$
1+r+r^{2}+\ldots+r^{n-1}+\ldots \text { is }
$$

(i) Converges to $\frac{1}{1-r}$ if $|r|<1$.
(ii) Diverges to $+\infty$ if $r \geq 1$.
(iii) Oscillate finitely if $r=-1$.
and (iv) Oscillate infinitely if $r<-1$:
Proof. Here

$$
\begin{aligned}
S_{n} & =1+r+r^{2}+\ldots+r^{n-1} \\
& =\left\{\begin{array}{cll}
\frac{1-r^{n}}{1-r} & \text { if } & r \neq 1 \\
n & \text { if } & r=1
\end{array}\right.
\end{aligned}
$$

Now, there are following cases :
Case (i). If $|r|<1$.
Then

$$
\lim _{n \rightarrow \infty} r^{n}=0
$$

so that

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{1}{1-r}
$$

which gives, the series is convergent to $\frac{1}{1-r}$.
Case (ii). If $r>1$.
Then

$$
\lim r^{n}=\infty
$$

$$
S_{n}=\frac{1-r^{n}}{1-r}=\frac{1}{1 \cdots r}+\frac{r^{n}}{r-1} \rightarrow \infty \text { as } n \rightarrow \infty
$$

Hence, the series is divergent to ∞.
If $r=1$, then $S_{n}=1+1+\ldots+1+\ldots$ to n times $=n$
Thus, the sequence $\left\langle s_{n}\right\rangle$ diverges and hence the series diverges.
Case (iii). If $r=-1$.
Then, $\quad S_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}$
therefore the sequence $\left\langle s_{n}\right\rangle$ oscillate between 0 and 1 .
\Rightarrow The series oscillate finitely between 0 and 1 .
Case (iv). If $r<-1$.
Let $r=-a$ where $a>1$.

Then

$$
S_{n}=\frac{1}{1+a}-\frac{(-1)^{n} \cdot a^{n}}{1+a}
$$

so that $\quad S_{2 n} \rightarrow-\infty$ and $S_{2 n+1} \rightarrow \infty$.
Therefore, the sequence $\left\langle s_{n}\right\rangle$ oscillate infinitely between $-\infty$ and $+\infty$.
Hence, the series oscillate infinitely.
Theorem 6. A positive terms series $\sum u_{n}$ either converges to a finite limit or diverges to ∞.
Proof. Let

$$
\begin{array}{cc}
& S_{n}=u_{1}+u_{2}+\ldots+u_{n} \\
\Rightarrow & S_{n+1}=u_{1}+u_{2}+\ldots+u_{n+1}^{\prime} \\
\Rightarrow & S_{n+1}-S_{n}=u_{n+1}>0 \\
\Rightarrow & S_{n+1}>S_{n}, \forall n \\
\Rightarrow & \left\langle S_{n}\right\rangle \text { is monotonically increasing sequence. }
\end{array}
$$

Since, a monotonically increasing sequence is either convergent to a finite limit or divergent to ∞, the sequence $\left\langle S_{n}\right\rangle$ of partial sums of the series $\sum u_{n}$ is either convergent to a finite limit or divergent to ∞.

Hence, the series $\sum u_{n}$ is either converges or diverges to ∞.
Theorem 7. (The Auxiliary series $\Sigma \frac{1}{n^{p}}$) The infinite series

$$
\Sigma\left(\frac{1}{n^{p}}\right)=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}+\ldots
$$

is convergent if $p>1$ and divergent if $p \leq 1$.
Proof. Case (i). $p>1$.
We have $\quad \frac{1}{1^{p}}=1$.
Also,

$$
\frac{1}{2^{p}}+\frac{1}{3^{p}}<\frac{1}{2^{p}}+\frac{1}{2^{p}}=\frac{2}{2^{p}}=2^{1-p}
$$

and

$$
\begin{aligned}
& \frac{1}{4^{p}}+\frac{1}{5^{p}}+\frac{1}{6^{p}}+\frac{1}{7^{p}}<\frac{1}{4^{p}}+\frac{1}{4^{p}}+\frac{1}{4^{p}}+\frac{1}{4^{p}}=\frac{4}{4^{p}}=4^{1-p} \\
& =\left(2^{1-p}\right)^{2} \\
& \begin{array}{ccccccc}
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\cdots & \cdots & \ldots & \cdots & \cdots & \ldots & \ldots \\
\frac{1}{\left(2^{n}\right)^{p}}+\frac{1}{\left(2^{n}+1\right)^{p}}+\ldots+\frac{1}{\left(2^{n+1}-1\right)^{p}}<\left(2^{n}\right)^{1-p}=\left(2^{1-p}\right)^{n} .
\end{array}
\end{aligned}
$$

Adding, all the above inequalities, we have

$$
\begin{aligned}
S_{2^{n+1}-1} & =1+\left(\frac{1}{2^{p}}+\frac{1}{3^{p}}\right)+\left(\frac{1}{4^{p}}+\frac{1}{5^{p}}+\frac{1}{6^{p}}+\frac{1}{7^{p}}\right)+\ldots+\left(\frac{1}{\left(2^{n}\right)^{p}}+\frac{1}{\left(2^{n}+1\right)^{p}}+\ldots+\frac{1}{\left(2^{n+1}-1\right)^{p}}\right) \\
& <1+2^{1-p}+2^{(1-p)^{2}}+\ldots+2^{(1-p)^{n}}
\end{aligned}
$$

This is a geometric series of n terms with common ratio

$$
\begin{aligned}
2^{1-p} & =\frac{1}{2^{p-1}}(<1 \text { as } p>1) \\
& =\frac{1-\left(2^{1-p}\right)^{n+1}}{1-2^{1-p}}=\frac{1}{1-2^{1-p}}-\frac{\left(2^{1-p}\right)^{n+1}}{1-2^{1-p}} \\
& <\frac{1}{1-2^{1-p}}=C \text { (say). }
\end{aligned}
$$

Now, since the series is of positive terms and

$$
2^{n+1}-1>2^{n}>n, \forall n
$$

We have

$$
S_{n}<S_{2^{n+1}-1}<C, \forall n .
$$

\Rightarrow the sequence $\left\langle S_{n}\right\rangle$ of partial sums of the series $\sum \frac{1}{n^{p}}$ is bounded above.
Hence, the given series is convergent.
Case (ii). When $\boldsymbol{p}=1$. Then the given series becomes

$$
\sum \frac{1}{n^{p}}=1+\frac{1}{2}+\frac{1}{3}+\ldots .
$$

Now, this series may be written as follows

$$
\begin{aligned}
\sum \frac{1}{n^{p}} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\ldots \\
& >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\ldots \\
& =1+\frac{1}{2}+\frac{2}{4}+\ldots \\
& =1+\frac{1}{2}+\frac{1}{2} \ldots
\end{aligned}
$$

Now since $\lim u_{n}=\frac{1}{2} \neq 0$, the series is divergent.
Case (iii). When $p<1$. Then
$2^{p}<2,3^{p}<3,4^{p}<4$ and so on.
Hence, the given series reduces to

$$
\sum \frac{1}{n^{p}}>1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots
$$

Clearly, the series on the right hand side is divergent. [By case (ii)]
Hence, the given series is divergent when $p<1$.

- 2.4. COMPARISON TESTS

The most important technique for deciding whether a series is convergent or not is to compare it with another suitable chosen series which is already known to be convergent or divergent.

First form. Let Σu_{n} and Σv_{n} be two series of positive terms such that

$$
u_{n}<k v_{n}, \forall n
$$

Then,
(i) Σv_{n} converges $\Rightarrow \Sigma u_{n}$ converges
(ii) $\sum u_{n}$ diverges $\Rightarrow \Sigma v_{n}$ diverges.

Proof. Firstly we shall prove (i) Σv_{n} convergent $\Rightarrow u_{n}$ is convergent
Now,

$$
\begin{equation*}
u_{n}<k v_{n}, \forall n \in \mathbf{N} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad\left(u_{1}+u_{2}+\ldots+u_{n}\right)<k\left(v_{1}+v_{2}+\ldots+v_{n}\right)$.
But the series $\sum v_{n}$ is given to be convergent.
$\Rightarrow \mathrm{By}$ the fundamental result for positive term series, \exists a positive number M such that

$$
v_{1}+v_{2}+\ldots+v_{n}<M, \forall n \in \mathbf{N}
$$

From (1) and (2), we have

$$
u_{1}+u_{2}+\ldots+u_{n}<k . M=k_{1} \text { (say), } \forall n \in \mathbf{N}
$$

$\Rightarrow u_{1}+u_{2}+\ldots+u_{n}<k_{1} \forall n \in \mathbf{N}$, where $k_{1}=m k>0$
$\Rightarrow \exists$ a positive number k such that

$$
u_{1}+u_{2}+\ldots+u_{n}<k_{1}, \quad \forall n \in \mathbf{N}
$$

\Rightarrow by the fundamental result for the positive terms series, Σu_{n} is also convergent.
We shall now prove that if Σu_{n} is divergent, then Σv_{n} is also divergent.
Since, we are given $\sum u_{n}$ to be divergent.
\Rightarrow The sequence $\left\langle s_{n}\right\rangle$ of its partial sums is also divergent.
$\Rightarrow \exists$ a positive number k_{2} (however large) and positive integer $m \in \mathbf{N}$ such that

$$
s_{n}>k_{2}, \forall n>m
$$

i.e.,

$$
\begin{equation*}
u_{1}+u_{2}+\ldots+u_{n}>k_{2}, \quad \forall n>m \tag{3}
\end{equation*}
$$

From (1) and (3), we have

$$
\begin{array}{ll}
& k_{2}<u_{1}+u_{2}+\ldots+u_{n}<k\left(v_{1}+v_{2}+\ldots+v_{n}\right), \forall n>m \\
\Rightarrow & v_{1}+v_{2}+\ldots+v_{n}>\frac{k_{2}}{k}\left(=k_{3}\right), \forall n>m \\
\Rightarrow & T_{n}>k_{3}, \forall n>m
\end{array}
$$

where

$$
k_{3}=\frac{k_{2}}{k} \text { and } T_{n}=v_{1}+v_{2}+\ldots+v_{n}
$$

$\Rightarrow \exists$ a positive number k_{3} (however large) and a positive integer m such that $T_{n}>k_{3}$, $\forall n>m$ and thus T_{n} is divergent and cosequently Σv_{n} is divergent.

Second form. Let $\sum u_{n}$ and $\sum v_{n}$ be two series of positive terms and let k_{1} and k_{2} be positive real number such that

$$
k_{1} v_{n} \leq u_{n} \leq k_{2} v_{n}, \quad \forall n
$$

Then, the series $\sum u_{n}$ and $\sum v_{n}$ converge or diverge together.
Proof. We have

$$
\begin{equation*}
k_{1} v_{n} \leq u_{n} \leq k_{2} v_{n}, \quad \forall n . \tag{1}
\end{equation*}
$$

(i) If the series Σv_{n} is convergent, then $\Sigma k_{2} v_{n}$ is convergent and hence, from second part of the (i) the series Σu_{n} is convergent.
(ii) If the series $\sum u_{n}$ is convergent, then from first part of the inequality (1), $\sum k_{1} v_{n}$ is.convergent and hence $\sum v_{n}\left(=\frac{1}{k_{1}} \sum k_{1} v_{n}\right)$ is convergent.
(iii) If the series $\sum u_{n}$ is divergent, then from second part of inequality (1) $\Sigma k_{2} v_{n}$ is divergent and hence $\sum v_{n}$ is divergent.
(iv) If the series Σv_{n} is divergent, then $\Sigma k_{1} v_{n}$ is divergent and hence from first part of the inequality (1), Σu_{n} is divergent.

Third form. If $\sum u_{n}$ and $\sum v_{n}$ be two given positive term series such that

$$
u_{n} \leq k v_{n}, \quad \forall n>m, k>0 \text { and } m \in \mathbf{N}
$$

Then,
(i) Σv_{n} is convergent $\Rightarrow \sum u_{n}$ is convergent
(ii) Σu_{n} is divergent $\Rightarrow \Sigma v_{n}$ is also divergent.

Proof. (i) Let us suppose $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ be two sequences of partial sums of the two given positive terms series $\sum u_{n}$ and $\sum v_{n}$ respectively.

Therefore, $s_{n}=u_{1}+u_{2}+\ldots+u_{n}, \forall n \in \mathbf{N}$
and $\quad t_{n}=v_{1}+v_{2}+\ldots+v_{n}, \quad \forall n \in \mathbf{N}$
since $\quad u_{n} \leq k v_{n} \forall n \geq m \Rightarrow s_{n} \leq k t_{n}, \forall n \geq m$
$\Rightarrow \quad s_{n}-s_{m} \leq k\left(t_{n}-t_{m}\right)=k t_{n}-k t_{m}$
$\Rightarrow \quad s_{n} \leq k t_{n}+\left(s_{m}-k t_{m}\right)=k t_{n}+M$
where $\quad M=s_{m}-k t_{m}$, a fixed quantity.
Now, if $\sum v_{n}$ is convergent $\Rightarrow\left\langle t_{n}\right\rangle$ is convergent and thus it is bounded above
$\Rightarrow \quad 3$ a number A such that $t_{n} \leq A, \forall n \in \mathbf{N}$.
Now from (1) and (2), we have

$$
\begin{equation*}
s_{n}<k \cdot A+M=k_{1}, \forall n \in \mathbf{N} \tag{2}
\end{equation*}
$$

and therefore $\left\langle s_{n}\right\rangle$ is bounded above.
Moreover, $\left\langle s_{n}\right\rangle$ is a monotonically increasing sequence, therefore, $\left\langle s_{n}\right\rangle$ is monotonically increasing sequence which is bounded above and thus, it is convergent and hence Σv_{n} is convergent.
(ii) Now if Σu_{n} is divergent $\Rightarrow\left\langle s_{n}\right\rangle$ is divergent and therefore \exists a positive number $\varepsilon>0$ and $m^{\prime} \in s_{n}$

$$
s_{n}>B, \forall n \geq m^{\prime} .
$$

Let $m^{*}=\max \left\{m, m^{\prime}\right\}$ so that $s_{n}>B, \forall n \geq m^{*}$.
Now from (i)

$$
t_{n}>\frac{1}{k}\left(s_{n}-M\right)>\frac{1}{k}(B-M)=C, \quad \forall n \geq m_{*}^{*}, C \neq 0 .
$$

$\Rightarrow\left\langle t_{n}\right\rangle$ is divergent and hence $\sum v_{n}$ is divergent.
Fourth form. Let $\sum u_{n}$ and Σv_{n} be two series of positive terms and let k_{1} and k_{2} be positive real numbers such that $k_{1} v_{n}<u_{n}<k_{2} v_{n}, \forall n>m$; m'being a fixed positive integer. Then the series $\sum u_{n}$ and $\Sigma \nu_{n}$ converge or diverge together.

Proof. Proof immediately follows from the second form of comparison test.

Fifth form. Let $\sum u_{n}$ and $\sum v_{n}$ be two series of positive terms such that

$$
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=l, \quad(\text { finite and non-zero })
$$

then both the series converge or diverge together.
Proof. Since $\quad \frac{u_{n}}{v_{n}}>0, \forall n$

$$
\therefore \quad \lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}} \geq 0 \text { i.e., } l \geq 0 .
$$

But $l \neq 0$ (by assumption) : therefore $l>0$.
Now, let $\varepsilon>0$ be choosen in such a way that $l-\varepsilon>0$.
Since $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=l$, therefore \exists a positive integer m such that

$$
\begin{equation*}
l-\varepsilon<\frac{u_{n}}{v_{n}}<l+\varepsilon, \quad \forall n>m . \tag{1}
\end{equation*}
$$

Since, $v_{n}>0 \forall n$, therefore, multiplying (1) by v_{n}, we obtain

$$
(l-\varepsilon) v_{n}<u_{n}<(l+\varepsilon) v_{n}, \forall n>m
$$

Since $l-\varepsilon$ and $l+\varepsilon$ are both positive, therefore applying the fourth form of comparison test, we find that the series $\sum u_{n}$ and $\sum v_{n}$ converge or diverge together.

Sixth form. Let $\sum u_{n}$ and $\sum v_{n}$ are two series of positive terms and \exists a positive integer m such that

$$
\frac{u_{n}}{u_{n+1}} \geq \frac{v_{n}}{v_{n+1}}, \quad \forall n \geq m
$$

then $\sum u_{n}$ and $\sum v_{n}$ both converge or diverge together.
Proof. Let us suppose $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ are two sequences of partial sum of the series $\sum u_{n}$ and $\sum v_{n}$ respectively, such that

$$
\begin{aligned}
& s_{n}=u_{1}+u_{2}+\ldots+u_{n} \\
& t_{n}=v_{1}+v_{2}+\ldots+v_{n} \quad \forall n .
\end{aligned}
$$

Now for $n \geq m$, we have

$$
\begin{aligned}
& \frac{u_{m}}{u_{n}}=\frac{u_{m}}{u_{m+1}} \cdot \frac{u_{m+1}}{u_{m+2}} \ldots \frac{u_{n-1}}{u_{n}} \\
& \geq \frac{v_{m}}{v_{m+1}} \cdot \frac{v_{m+1}}{v_{m+2}} \ldots \frac{v_{n-1}}{v_{n}} \\
&=\frac{v_{m}}{v_{n}} \\
& \Rightarrow \quad
\end{aligned}
$$

Since, m is fixed positive integer, $\frac{u_{m}}{v_{n}}$ is a fixed number say k. Thus for $n \geq m$, we have

$$
u_{n} \leq k v_{n}
$$

$\Rightarrow \quad \sum u_{n}$ and Σv_{n} both converge or diverge together.

SOLVED EXAMPLES

Example 1. Test the convergence of the series

$$
\frac{2}{1}+\frac{3}{4}+\frac{4}{9}+\ldots+\frac{n+1}{n^{2}}+\ldots
$$

Solution. Here $u_{n}=\frac{n+1}{n^{2}}$. Take $v_{n}=\frac{n}{n^{2}}=\frac{1}{n}$
Then

$$
\frac{u_{n}}{v_{n}}=\frac{n+1}{n^{2}} / \frac{1}{n}=\frac{n+1}{n^{2}} \cdot \frac{n}{1}=\frac{n+1}{n}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)
$$

Thus, by the comparison test the two series are either both convergent or both divergent. But, the auxiliary series $\sum v_{n}=\frac{1}{n}$ is divergent. Hence, the given $\sum u_{n}$ is also divergent.

Example 2. Test the convergence of the series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}+\ldots
$$

Solution. Here $u_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
If s_{n} is the partial sum of n terms of the series $\sum u_{n}$, then

$$
\begin{aligned}
s_{n} & =u_{1}+u_{2}+\ldots+\ldots+u_{n} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1} .
\end{aligned}
$$

Now, $\quad \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left[1-\frac{1}{n+1}\right]$

$$
=1, \text { which is finite and non-zero. }
$$

Hence, the given series is convergent.
Example 3. Show that the series

$$
1+\frac{1}{2!}+\frac{1}{3!}+\ldots
$$

is convergent.
Solution. Since, we have $\frac{1}{2!}=\frac{1}{2}$

$$
\begin{aligned}
& \frac{1}{3!}<\frac{1}{2^{2}} \\
& \ldots . . \\
& \ldots \\
& \cdots \\
& \frac{1}{n!}<
\end{aligned} \frac{1}{2^{n-1}} .
$$

Therefore, $\quad 1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots<1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots$.
The series on the right hand side is a geometric series with common ratio $\frac{1}{2}$ and hence convergent. So the series on the left hand side will also be convergent.

Example 4. Test for convergence the series whose general term is

$$
\left[\left(n^{3}+1\right)^{1 / 3}-n\right] .
$$

Solution. Here, we have

$$
\begin{aligned}
u_{n} & =\left(n^{3}+1\right)^{1 / 3}-n \\
& =n\left[\left(1+\frac{1}{n^{3}}\right)^{1 / 3}-1\right] \\
& =n\left[\left(1+\frac{1}{3 n^{3}}+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2!} \cdot \frac{1}{n^{6}}+\ldots\right)-1\right] \\
& =\frac{1}{n^{2}}\left[\frac{1}{3}-\frac{1}{9 n^{3}}+\ldots\right] .
\end{aligned}
$$

Let $v_{n}=\frac{1}{n^{2}}$, then the auxiliary series $\sum v_{n}=\sum \frac{1}{n^{2}}$.
Now $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\frac{1}{3}-\frac{1}{9 n^{3}}+\ldots=\frac{1}{3}$, which is finite and non-zero.

Since the series $\sum v_{n}=\sum \frac{1}{n^{2}}$ is convergent $(p=2>1)$, therefore, the given series is also convegent.

Example 5. Test for convergence the series whose $n^{\text {th }}$ term is

$$
\left[\sqrt{\left(n^{4}+1\right)}-\sqrt{\left(n^{4}-1\right)}\right]
$$

Solution. Here, we have

$$
\begin{aligned}
& u_{n}=\sqrt{\left(n^{4}+1\right)}-\sqrt{\left(n^{4}-1\right)} \\
& =n^{2}\left[\left(1+\frac{1}{n^{4}}\right)^{1 / 2}-\left(1-\frac{1}{n^{4}}\right)^{1 / 2}\right] \\
& =n^{2}\left[\left(1+\frac{1}{2 n^{4}}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} \cdot \frac{1}{n^{8}}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-1\right)}{3!} \cdot \frac{1}{n^{12}}+\ldots\right)\right. \\
& \left.\qquad-\left(1-\frac{1}{2 n^{4}}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} \cdot \frac{1}{n^{8}}-\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-1\right)}{3!} \cdot \frac{1}{n^{12}}+\ldots\right)\right] \\
& =n^{2}\left[\frac{1}{n^{4}}+\frac{1}{8 n^{12}}+\ldots\right] \\
& =\frac{1}{n^{2}}+\frac{1}{8 n^{10}}+\ldots
\end{aligned}
$$

Let $v_{n}=\frac{1}{n^{2}}$, then the auxiliary series is $\sum v_{n}=\sum \frac{1}{n^{2}}$, which is convergent.
Now

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}} & =\lim _{n \rightarrow \infty}\left[\frac{1}{n^{2}}+\frac{1}{8 n^{10}}+\ldots\right] / \frac{1}{n^{2}} \\
& =\lim _{n \rightarrow \infty}\left[1+\frac{1}{8 n^{8}}+\ldots\right]
\end{aligned}
$$

$$
=1 \text {, which is finite and non-zero. }
$$

Therefore, by comparison test, the given series is also convergent.
Example 6. Test for convergence the series whose $n^{\text {th }}$ term is

$$
\sqrt{n^{3}+1}-\sqrt{n^{3}}
$$

Solution. Here, we have

$$
\begin{aligned}
u_{n} & =\sqrt{n^{3}+1}-\sqrt{n^{3}}=n^{3 / 2}\left[1+\frac{1}{n^{3}}\right]^{1 / 2}-n^{3 / 2} \\
& =n^{3 / 2}\left[1+\frac{1}{2 n^{3}}-\frac{1}{8 n^{6}}+\ldots\right]-n^{3 / 2} \\
& =\frac{1}{2 n^{3 / 2}}-\frac{1}{8 n^{9 / 2}}+\ldots
\end{aligned}
$$

Let us take $v_{n}=\frac{1}{n^{3 / 2}}$ (since, we know that, when u_{n} is in the form of series in powers of $1 / n, v_{n}$ is taken as the term of lowest power of $1 / n$, by ignoring the numerical factor).

Then, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}} & =\lim _{n \rightarrow \infty}\left[\frac{1}{2 n^{3 / 2}}-\frac{1}{8 n^{9 / 2}}+\ldots\right] \times \frac{n^{3 / 2}}{1} \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{2}-\frac{1}{8 n^{3}}+\ldots\right] \\
& =\frac{1}{2}, \text { which is finite and non-zero. }
\end{aligned}
$$

But the auxiliary series $\sum v_{n}=\sum \frac{1}{n^{3 / 2}}$ is convergent $(p=3 / 2>1)$. Hence, the given series is also convergent.

EXERCISE 1

Test the convergence or divergence of the following series :

1. $\sum u_{n}=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots$.
2. $\sum u_{n}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\ldots$.
3. $\Sigma u_{n}=1+\frac{4}{5}+\frac{6}{10}+\frac{8}{17}+\ldots+\frac{2 n}{n^{2}+1} \ldots$.
4. $\Sigma u_{n}=\sqrt{\frac{1}{2^{3}}}+\sqrt{\frac{2}{3^{3}}}+\sqrt{\frac{3}{4^{3}}}+\ldots$.
5. $\sum u_{n}=\frac{1}{2}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{10}+\ldots+\frac{\sqrt{n}}{n^{2}+1}+\ldots$.
6. $\Sigma u_{n}=\frac{\sqrt{1}}{1+\sqrt{1}}+\frac{\sqrt{2}}{2+\sqrt{2}}+\frac{\sqrt{3}}{3+\sqrt{3}}+\ldots$.
7. $u_{n}=\frac{n}{n^{2}+\sqrt{n}}$.
8. $u_{n}=\frac{n}{(a+n b)^{2}}$.
9. $u_{n}=\frac{\sqrt{n+1}+\sqrt{n-1}}{n}$.

ANSWERS

1. Divergent
2. Divergent
3. Divergent
4.Divergent
4. Convergent
5. Divergent
6. Divergent
8.Divergent
7. Convergent

- 2.5. CAUCHY'S ROOT TEST

Let $\sum u_{n}$ be a series of positive terms and let

$$
\lim _{n \rightarrow \infty} u_{n}^{1 / n}=l .
$$

Then if,
(i) $l<1, \sum u_{n}$ converges;
(ii) $l>1, \sum u_{n}$ diverges;
(iii) $l=1$, the test fails and the series may either converge or diverge.

Proof. Case (i) Let $u_{n}^{1 / n}=l<1$.
Since $l<1$, we can choose an $\varepsilon>0$ such that

$$
l+\varepsilon<1 .
$$

Let $l+\varepsilon=r$ then $0<r<1$.
Since $\lim _{n \rightarrow \infty} u_{n}^{1 / n}=l$, therefore, there exists a positive integer m_{1} such that

$$
\begin{array}{ll}
& \left|u_{n}^{1 / n}-l\right|<\varepsilon ; \forall n>m_{1} \\
\Rightarrow & l-\varepsilon<u_{n}^{1 / n}<l+\varepsilon, \forall n>m_{1} \\
\Rightarrow & (l-\varepsilon)^{n}<u_{n}<(l+\varepsilon)^{n}, \forall n>m_{1} .
\end{array}
$$

Since $u_{n}<r^{n}, \forall n>m_{1}$ and since $\sum r^{n}$ converges (being a geometric series with common ratio less than one). Then by comparison test, Σu_{n} converges.

Case (ii) Let $u_{n}^{1 / n}=l>1$
Since $l>1$, we can choose $\varepsilon>0$ such that

$$
l-\varepsilon>1
$$

Let $\quad l-\varepsilon=R$ then $R>1$.
Since $R^{n}<u_{n}, \forall n>m_{2}$, and since ΣR^{n} diverges (being a G.P. with common ratio greater thạn one). Then, by comparison test; $\sum u_{n}$ 'diverges.

Case (iii) Let $u_{n}=\frac{1}{n}$.
Then $\quad=u_{n}^{1 / n}=\left(\frac{1}{n}\right)^{1 / n}$
Then . $\quad \lim _{n \rightarrow \infty} u_{n}^{1 / n}=1$.
Since $\sum\left(\frac{1}{n}\right)$ diverges, therefore we find that if

$$
\lim _{n \rightarrow \infty} u_{n}^{1 / n}=1, \text { then the series } \sum u_{n} \text { may diverge. }
$$

Again, let $u_{n}=\frac{1}{n^{2}}$. In this case also

$$
\lim _{n \rightarrow \infty} u_{n}^{1 / n}=1
$$

but the series $\sum u_{n}$ converges. Thus we find that if $\lim _{n \rightarrow \infty} u_{n}^{1 / n}=1$, then the serjes $\sum u_{n}$ may converge. The above two examples show that if

$$
\lim _{n \rightarrow \infty}\left(u_{n}\right)^{1 / n}=1
$$

Then the test fails.

- 2.6. D'ALEMBERT RATIO TEST

If $\sum u_{n}$ be a series of positive terms such that
(a) $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=l$.

Then, if
(i) $l>1$, the serics converges;
(ii) $l<1$, the series diverges;
(iii) $l=1$, the series may converge or diverge and therefore the test fails.
(b) $\frac{\boldsymbol{u}_{n}}{u_{n+1}} \rightarrow+\infty$ as $n \rightarrow \infty$. Then Σu_{n} converges.

Proof. (a) Case (i) When $l>1$, Let $\varepsilon>0$ be a positive number such that $l-\varepsilon>1$.
Now, since $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=l$, therefore, \exists a positive integer m such that

$$
l-\varepsilon<\frac{u_{n}}{u_{n+1}}<l+\varepsilon, \text { whenever } n>m .
$$

Now, putting $n=m+1, m+2, \ldots, p-1$, in succession in the above inequality, we get

$$
\begin{aligned}
& l-\varepsilon<\frac{u_{m+1}}{u_{m+2}}<l+\varepsilon, \\
& l-\varepsilon<\frac{u_{m+2}}{u_{m+3}}<l+\varepsilon, \\
& \ldots \quad \ldots \quad . \quad . \\
& l-\varepsilon<\frac{u_{p-1}}{u_{p}}<l+\varepsilon .
\end{aligned}
$$

Multiplying the corresponding sides of the first part of the above inequalities, we get

$$
\begin{array}{ll}
& (l-\varepsilon)^{p-1-m}<\frac{u_{m+1}}{u_{m+2}} \cdot \frac{u_{m+2}}{u_{m+3}} \ldots \frac{u_{p-1}}{u_{p}} \\
\Rightarrow \quad & (l-\varepsilon)^{p-1-m}<\frac{u_{m+1}}{u_{p}} \\
\Rightarrow \quad & u_{p}<u_{m+1}(l-\varepsilon)^{m+1} \cdot(l-\varepsilon)^{-p} \\
\Rightarrow \quad & u_{p}<k(l-\varepsilon)^{-p}, \forall p \geq m+2 \text { and } k=u_{m+1}(l-\varepsilon)^{m+1}
\end{array}
$$

Since, the series $\Sigma(l-\varepsilon)^{-p}$ converges (being a geometric series with common ratio $(l-\varepsilon)^{-1}$, which is certainly less than unity), then by comparison test it follows that $\sum u_{n}$ converges.

Case (ii) When $l<1$, let $\varepsilon>0$ be a positive number such that $l+\varepsilon<1$.

Now since $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=l$, therefore, \exists a positive integer m such that

$$
l-\varepsilon<\frac{u_{n}}{u_{n+1}}<l+\varepsilon, \quad \forall n>m .
$$

Putting $n=m+1, m+2, \ldots, p-1$ in succession in the second part of the above inequality, we get

$$
\begin{aligned}
& \frac{u_{m+1}}{u_{m+2}}<l+\varepsilon, \\
& \frac{u_{m+2}}{u_{m+3}}<l+\varepsilon, \\
& \cdots \cdots \quad \cdots \quad \cdots \\
& \frac{u_{p-1}}{u_{p}}<l+\varepsilon .
\end{aligned}
$$

Multiplying the corresponding sides of the above inequalities, we have

$$
\begin{array}{ll}
& \frac{u_{m+1}}{u_{p}}<(l+\varepsilon)^{p-1-m} \\
\Rightarrow \quad & u_{p}>u_{m+1}(l+\varepsilon)^{m+1}(l+\varepsilon)^{-p} \\
\Rightarrow \quad & u_{p}>A(l+\varepsilon)^{-p}, \forall p \geq m+2 \text { and } A=u_{m+1}(l+\varepsilon)^{m+1}
\end{array}
$$

Since, $\Sigma(l+\varepsilon)^{-p}$ is a divergent series (being a geometric series with common ratio $(l+\varepsilon)^{-1}$, which is certainly greater than unity), then by comparison test, it follows that $\sum u_{n}$ diverges.

Case (iii) Let $l=1$.

Now, first consider the harmonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots
$$

Then

$$
\frac{u_{n}}{u_{n+1}}=\frac{n+1}{n}=1+\frac{1}{n} \Rightarrow \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=1 .
$$

Since, the harmonic series is divergent, we find that if $l=1$, a series may diverge.
Now, consider the series

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}+\ldots
$$

Then

$$
\frac{u_{n}}{u_{n+1}}=\frac{(n+1)^{2}}{n^{2}}=\left(1+\frac{1}{n}\right)^{2} \Rightarrow \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=1
$$

Since, the series $\sum \frac{1}{n^{2}}$ converges, we find that if $l=1$, a series may converge.
(b) Let us suppose $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=+\infty$ then there exist positive integers m and p such that

$$
\frac{u_{n}}{u_{n+1}}>p \nsim n \geq m, p>1 .
$$

Replacing n by $m, m+1, m+2, \ldots, n-1$, we have

$$
\begin{aligned}
& \frac{u_{m}}{u_{m+1}}>p \\
& \frac{u_{m+1}}{u_{m+2}}>p \\
& \cdots \quad \cdots \\
& \frac{u_{n-1}}{u_{n}}>p
\end{aligned}
$$

Multiplying the corresponding sides of the above inequalities, we have

$$
\begin{array}{ll}
& \frac{u_{m}}{u_{n}}>p^{n-m} \\
\Rightarrow \quad & u_{n}<p^{m-n} \cdot u_{m}, \\
\Rightarrow \quad & u_{n}<A \cdot p^{-n} \forall n>m \text { and } A=p^{m} u_{m} .
\end{array}
$$

Since Σp^{-n} is convergent, then by comparison test the series Σu_{n} is convergent.

- 2.7. RAABE'S TEST

If $\sum u_{n}$ be a series of positive terms is such that

$$
\lim _{n \rightarrow \infty}\left\{n\left(\frac{u_{n}}{u_{n+1}}-1\right)\right\}=l
$$

Then, if
(i) $l>1$, the series converges,
(ii) $l<1$, the series diverges,
(iii) $l=1$, the series may either converge or diverge and therefore the test fails.

Proof. Case (i) When $l>1$. We can write $l=1+r$, where $r>0$ choosing $\varepsilon=r / 2$, we can find a positive integer m such that

$$
l-\varepsilon<n\left(\frac{u_{n}}{u_{n+1}}-1\right)<l+\varepsilon, \forall n \geq m .
$$

Now, from the first part of the above inequality, we have

$$
\begin{align*}
& (1+r)-\frac{1}{2} r<n\left(\frac{u_{n}}{u_{n+1}}-1\right), \forall n \geq m \\
\Rightarrow \quad & \frac{1}{2} r u_{n+1}<n u_{n}-(n+1) u_{n+1}, \forall n \geq m . \tag{1}
\end{align*}
$$

Putting $n=m+1, m+2, \ldots, p-1$ in sū̄cession in (1), we have

$$
\begin{aligned}
& \frac{1}{2} r u_{m+2}<(m+1) u_{m+1}-(m+2) u_{m+2} \\
& \ldots \quad \ldots \quad \ldots . \quad \ldots \quad \ldots \\
& \frac{1}{2} r u_{p}<(p-1) u_{p-1}-p u_{p} .
\end{aligned}
$$

Now, adding the corresponding sides of the above inequalities, we have

$$
\begin{array}{ll}
\quad & \frac{1}{2} r\left[u_{m+2}+u_{m+3}+\ldots+u_{p}\right]<(m+1) u_{m+1}-p u_{p}, \\
\Rightarrow \quad & \frac{1}{2} r\left(u_{m+2}+\ldots+u_{p}\right]<(m+1) u_{m+1}
\end{array}
$$

or

$$
u_{1}+u_{2}+\ldots+u_{p}<\frac{2(m+1)}{r} u_{m+1}+u_{1}+u_{2}+\ldots+u_{m+1}, \quad \forall p \geq m+2 .
$$

The above inequality shows that the sequence $\left\langle s_{n}\right\rangle$ of the partial sums of the series $\sum u_{n}$ is bounded and therefore $\sum u_{n}$ converges.

Case (ii) When $l<1$. Let us choose $\varepsilon=1-l$, then we can find a positive integer m such that

$$
\quad l-\varepsilon<n\left(\frac{u_{n}}{u_{n+1}}-1\right)<1(=l+\varepsilon), \forall n \geq m
$$

or

$$
n u_{n}<(n+1) u_{n+1}, \forall n \geq m .
$$

Putting $n=m+1, m+2, \ldots, p-1 \quad(p \geq m+2)$, in succession, we get

$$
\begin{aligned}
& (m+1) u_{m+1}<(m+2) u_{m+2}, \\
& (m+2) u_{m+2}<(m+3) u_{m+3}, \\
& \cdots \cdots \\
& \cdots \\
& (p-1) u_{p-1}<p u_{p} .
\end{aligned}
$$

From the above inequality, we have by transitivity

$$
\begin{aligned}
(m+1) u_{m+1} & <p u_{p}, \forall p \geq m+2 \\
u_{p} & >k(1 / p), \quad \forall p \geq m+2 \text { and } k=(m+1) u_{m+1} .
\end{aligned}
$$

Now, since the series $\Sigma\left(\frac{1}{p}\right)$ diverges, then by comparison test the given series diverges.
Case (iii) When $l=1$. In this case the test fails to give any definite information.
For example, consider the series $\sum \frac{1}{n}$ and $\sum \frac{1}{n(\log n)^{2}}$ then, we have

$$
\lim _{n \rightarrow \infty} n\left[\frac{u_{n}}{u_{n+1}}-1\right]=1
$$

But the former series is divergent, while the latter is convegent

- 2.8. LOGARITHMIC TEST

If $\sum u_{n}$ be a series of positive terms such that

$$
\lim _{n \rightarrow \infty}\left(n \log \frac{u_{n}}{u_{n+1}}\right)=l
$$

then $\sum u_{n}$ converges if $l>1$ and diverges when $l<1$.
Proof. Case (i) When $l>1$. In this case, we can choose $\varepsilon>0$ such that $l-\varepsilon>1$. Let $l-\varepsilon=p$ (say).

Since $\quad \lim _{n \rightarrow \infty}\left(n \log \frac{u_{n}}{u_{n+1}}\right)=l$.
Therefore, we can find a positive integer m such that

$$
l-\varepsilon<n \log \frac{u_{n}}{u_{n+1}}<l+\varepsilon, \forall n \geq m .
$$

Consider the first part of the above inequality, we have

$$
\begin{align*}
n \log \frac{u_{n}}{u_{n+1}}>p, \quad \forall n \geq m \\
\frac{u_{n}}{u_{n+1}}>e^{p / n}, \forall n \geq m . \tag{l}
\end{align*}
$$

Since, $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ defines a monotonically increasing sequence converging to e, therefore,

$$
\begin{equation*}
e \geq\left(1+\frac{1}{n}\right)^{n}, \quad \forall n \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\begin{align*}
& \quad \frac{u_{n}}{u_{n+1}}>\left(1+\frac{1}{n}\right)^{p}, \forall n \geq m \\
\Rightarrow \quad & \frac{u_{n}}{u_{n+1}}>\frac{v_{n}}{v_{n+1}}, \forall n \geq m, \tag{3}
\end{align*}
$$

where

$$
v_{n}=\frac{1}{n^{p}}
$$

Now since $p>1$, therefore $\sum v_{n}$ converges and from (3) it then follows by comparison test that $\sum u_{n}$ converges.

Case (ii) When $l<1$. Let the comparison series $\Sigma v_{n}=\sum \frac{1}{n^{p}}$ be divergent, i.e., $p<1$.
$\therefore \quad \sum u_{n}$ will be divergent if $\frac{v_{n}}{v_{n+1}}>\frac{u_{n}}{u_{n+1}}$
$\Rightarrow \quad \frac{u_{n}}{u_{n+1}}<\left(1+\frac{1}{n}\right)^{p} \Rightarrow \log \left(\frac{u_{n}}{u_{n+1}}\right)<p \log \left(1+\frac{1}{n}\right)=p\left[\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{3}}+\ldots\right]$
$\therefore \quad n \log \left(\frac{u_{n}}{u_{n+1}}\right)=p\left[1-\frac{1}{2 n}+\frac{1}{3 n^{3}} \cdots\right]$
$\therefore \quad \lim _{n \rightarrow \infty}\left[n \log \frac{u_{n}}{u_{n+1}}\right]=p<1$
$\therefore \quad \sum u_{n}$ will be divergent if $l<1$.
(i) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$
(ii) $\lim _{n \rightarrow \infty} n^{1 / n}=1$
(iii) $\lim _{n \rightarrow \infty} \frac{\log n}{n}=0$
(iv) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{D}=1$ if p is finite
(v) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n+p}=e^{x}$, if p is finite.

Some Other Important Test :

(1) De Morgan's and Bertrand's test :

The series $\sum u_{n}$ of positive terms is convergent or divergent according as

$$
\lim \left[\left\{n\left(\frac{u_{n}}{u_{n+1}}-1\right)\right\} \log n\right]>1 \text { or }<1
$$

(2) Alternative to Bertrand's test :

The series Σu_{n} of positive terms is convergent.or divergent according as

$$
\lim \left[\left(n \log \frac{u_{n}}{u_{n+1}}-1\right) \log n\right]>1 \text { or }<1 \ldots \text { ? }
$$

SOLVED EXAMPLE

(i) Based on D'Alembert's Ratio Test.

Example 1. Test for convergence the series

$$
1+\frac{2^{p}}{2!}+\frac{3^{p}}{3!}+\frac{4^{p}}{4!}+\ldots
$$

Solution. Here, we have

$$
u_{n}=\frac{n^{p}}{n!} \Rightarrow u_{n+1}=\frac{(n+1)^{p}}{(n+1)!}
$$

Now

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{p}}{(n+1)!} \frac{n!}{n^{p}}=\lim _{n \rightarrow \infty}\left[1+\frac{1}{n}\right]^{p} \cdot \frac{1}{(n+1)} .
$$

Hence, by Ratio test the series $\sum u_{n}$ is convergent.
Example 2. Test for convergence the series

$$
\frac{2!}{3}+\frac{3!}{3^{2}}+\frac{4!}{3^{3}}+\ldots+\frac{(n+1)!}{3^{n}}+\ldots
$$

Solution. Here, we have

$$
u_{n}=\frac{(n+1)!}{3^{n}} \Rightarrow u_{n+1}=\frac{(n+2)!}{3^{n+1}} .
$$

Now

$$
\lim _{n \rightarrow \ldots} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{3}{n+2}=0
$$

Hence, by ratio test. the given series is divergent.
Example 3. Test the series

$$
x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots
$$

for convergence. for all posititice valuc of x.
Solution. Since x ぃ positive. Hence the giver series is of positive term series
Here $\quad u_{n}=\frac{r^{2 n-1}}{(2 n-1)!} \cdot u_{n+1}=\frac{x^{2 n+1}}{(2 n+1)!}$
$\Rightarrow \quad \lim _{n \rightarrow 0} u_{n} u_{n+1}=\lim _{n \rightarrow \infty} \frac{v^{2 n-1}}{(-n-1)!} \cdot \frac{(2 n+1)!}{s^{2 n+1}}=\lim _{n \rightarrow \infty} \frac{2 n(2 n+1)}{x^{2}}$.

$$
=+\infty . \quad \forall \text { prsitive values of } x \text {. }
$$

Then, by ratio lest the giten serics converges for all positive values of x.
Example 4. Test for convergence the series

$$
1+\frac{x}{2^{2}}+\frac{x^{2}}{3^{2}}+\frac{x^{3}}{4^{2}}+\ldots
$$

Solution. Here we have

$$
\begin{array}{ll}
& u_{n}=\frac{x^{n-1}}{n^{2}} \\
\Rightarrow \quad & u_{n+1}=\frac{x^{n}}{(n+1)^{2}} \\
\Rightarrow \quad & \frac{u_{n}}{u_{n+1}}=\frac{x^{n-1}(n+1)^{2}}{n^{2} \cdot x^{n}}=\frac{1}{x} \cdot\left(1+\frac{1}{n}\right)^{2} \\
\Rightarrow \quad & \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{1}{x}\left(1+\frac{1}{n}\right)^{2}=\frac{1}{x} .
\end{array}
$$

Hence, by ratio test the series converges if $\frac{1}{x}>1$ i.e., $x<1$ diverges if $x>1$ and the test fails if $x=1$.

For $\boldsymbol{x}=1, u_{n}=\frac{1}{n^{2}}$. Therefore in the case the series $\sum u_{n}=\sum \frac{1}{n^{2}}$ is convergent.
(ii) Based on Cauchy's Root Test :

Example 5. Test the convergence of the series $x+2 x^{2}+3 x^{3}+4 x^{4}+\ldots$.
Solution. Here, we have

$$
\begin{array}{rlrl}
u_{n} & =n x^{n} \\
\Rightarrow \quad\left(u_{n}\right)^{1 / n} & =n^{1 / n} \cdot x \\
\Rightarrow \quad \lim _{n \rightarrow \infty}\left(u_{n}\right)^{1 / n} & =\lim _{n \rightarrow \infty}\left(x \cdot n^{12 n}\right)=x \cdot 1=x \\
& =x \cdot 1=x & & \ddots
\end{array}
$$

Then, by Cauchy's root test, $\sum u_{n}$ is convergent if $x<1$ and is divergent if $x>1$.
For $x=1$, the Cauchy's root test fails.
In this case, the given series becomes

$$
1+2+3+\ldots
$$

$s_{n}=$ sum. of n terms of the series $=\frac{1}{2} n(n+1)$.
Thus the given series is convergent if $x<1$ and is divergent if $x \geq 1$.
Example 6. Test the convergence of the series

$$
\frac{1}{2}+\left(\frac{2}{3}\right) x+\left(\frac{3}{4}\right)^{2} x^{2}+\left(\frac{4}{5}\right)^{3} x^{3}+\ldots \infty, x>0
$$

Solution. Omitting the first term of the series (because it will not affect the convergence or divergence of the series), we have

$$
u_{n}=\left(\frac{n+1}{n+2}\right)^{n} \cdot x^{n}
$$

Therefore $\lim _{n \rightarrow \infty} u_{n}^{1 / n}=\lim _{n \rightarrow \infty}\left[\frac{\left(1+\frac{1}{n}\right) x}{1+\left(\frac{2}{n}\right)}\right]=x$.
Therefore, by Cauchy's root test, the given series $\sum u_{n}$ converges if $x<1$, divergent if $x>1$.
For $\boldsymbol{x}=1$, test fails
$\therefore \quad \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{n}}{\left(1+\frac{2}{n}\right)^{n}}=\frac{e}{e^{2}}=\frac{1}{e}>0$.
\therefore The series $\sum u_{n}$ diverges if $x=1$.

Hence, the given series is convergent if $x<1$ and divergent if $x \geq 1$.
Exmaple 7. Test the series for convergence

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\ldots
$$

Solution. Here, we have

$$
\begin{aligned}
u_{n} & =\frac{1}{n^{n}} \\
\Rightarrow \quad . \quad \lim _{n \rightarrow \infty}\left(u_{n}\right)^{1 / n} & =\lim _{n \rightarrow \infty} \frac{1}{n}=0<1 .
\end{aligned}
$$

Hence by Cauchy's root test the given series is convergent.

(iii) Based on Raabe's Test.

Example 8. Test the convergence of the series

$$
1+\frac{3}{7} x+\frac{3 \cdot 6}{7 \cdot 10} x^{2}+\frac{3 \cdot 6 \cdot 9}{7 \cdot 10 \cdot 13} x^{3}+\ldots
$$

Solution. After leaving the first term we have

$$
\begin{aligned}
u_{n} & =\frac{3 \cdot 6 \cdot 9 \ldots 3 n}{7 \cdot 10 \cdot 13 \ldots(3 n+4)} x^{n} \\
\Rightarrow \quad u_{n+1} & =\frac{3 \cdot 6 \cdot 9 \ldots 3 n(3 n+3)}{7 \cdot 10 \cdot 13 \ldots(3 n+4)(3 n+7)} x^{n+1}
\end{aligned}
$$

Now, $\quad \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty}\left(\frac{3 n+3}{3 n+7}\right) x$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{3+3 / n}{3+7 / n}\right) x \\
& =x .
\end{aligned}
$$

Then, by D'Alembert ratio test the series is convergent if $x<1$, divergent if $x>1$ and the test fails if $x=1$.

For $x=1$, we have
or

$$
\begin{aligned}
\frac{u_{n}}{u_{n+7}} & =\frac{3 n+7}{3 n+3} \\
n\left(\frac{u_{n}}{u_{n+1}}-1\right) & =n\left(\frac{3 n+7}{3 n+3}-1\right)=\frac{4}{3 n+3} \\
\Rightarrow \quad \lim _{n \rightarrow \infty}\left[\left(\frac{u_{n}}{u_{n+1}}-1\right)\right] & =\lim _{n \rightarrow \infty} \frac{4}{3 n+3}=\lim _{n \rightarrow \infty} \frac{4}{3+3 / n} \\
& =\frac{4}{3}>1 .
\end{aligned}
$$

Therefore, by Raabe's test the series is convergent when $x=1$.
Hence, the given series is convergent when $x \leq 1$ and divergent when $x>1$.
Example 9. Test the convergence of the series

$$
\frac{a}{b}+\frac{(1+a)}{(1+b)}+\frac{(1+a)(2+a)}{(1+b)(2+b)} \cdots
$$

Solution. Here, we have

$$
\begin{aligned}
& \\
\Rightarrow \quad u_{n} & =\frac{(1+a)(2+a) \ldots(n-1+a)}{(1+b)(2+b) \ldots(n-1+b)} \\
\therefore \quad u_{n+1} & =\frac{(1+a)(2+a) \ldots(n+a)}{(1+b)(2+b) \ldots(n+b)} \\
\therefore \quad \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}} & =\lim _{n \rightarrow \infty}\left[\frac{n+b}{n+a}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{1+\frac{b}{n}}{1+\frac{a}{n}}\right] \\
& =1 .
\end{aligned}
$$

Hence, the D'Alembert ratio test fails.
Now, consider

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n\left[\frac{u_{n}}{u_{n+1}}-1\right] & =\lim _{n \rightarrow \infty} n\left[\frac{n+b}{n+a}-1\right] \\
& =\lim _{n \rightarrow \infty} n\left[\frac{b-a}{n+b}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{b-a}{1+b / n}\right] \\
& =(b-a)
\end{aligned}
$$

Then by Raabe's test the given series is convergent if $b-a>1$ i. e., $b>a+1$ and divergent if $b<a+1$.

The test fails for $b=a+1$.
Now for $b=a+1$, the given series becomes

$$
\frac{a}{a+1}+\frac{1+a}{2+a}+\ldots=\sum \frac{1+a}{n+a}
$$

Taking $v_{n}=\frac{1}{n}$, by comparison test, we can easily show that the series is divergent.
Hence, the given series is convergent if $b>a+1$ and divergent if $b \leq a+1$.
(iv) Based on Logarithmic Test.

Example 10. Test the convergence of the series

$$
1+\frac{1}{2} x+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{3}} x^{3}+\ldots
$$

Solution. Here, we have

$$
\begin{aligned}
u_{n} & =\frac{(n-1)!}{n^{n-1}} x^{n-1} \\
\Rightarrow \quad u_{n+1} & =\frac{n!}{(n+1)^{n}} x^{n} . \\
\therefore \quad \therefore \quad \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}} & =\lim _{n \rightarrow \infty} \frac{(n+1)^{n}(n-1)!x^{n-1}}{n!x^{n} \cdot n^{n-1}} \\
& =\lim _{n \rightarrow \infty}\left[1+\frac{1}{n}\right] \cdot \frac{1}{x} \\
& =\frac{e}{x} .
\end{aligned}
$$

Hence, the given series is convergent if $\frac{e}{x}>1$ i.e., if $x<e$, divergent if $x>e$ and the test fails if $x=e$. In this case

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[n \log \frac{u_{n}}{u_{n+1}}\right] & =\lim _{n \rightarrow \infty}\left[n \log \frac{\left.\left(1+\frac{1}{n}\right)^{n}\right]}{e}\right] \\
& =\lim _{n \rightarrow \infty}\left[n^{2}\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{3}}+\ldots\right)-n\right] \\
& =\lim _{n \rightarrow \infty}\left[-\frac{1}{2}+\frac{1}{3 n}-\cdots\right] \\
& =-\frac{1}{2}<1
\end{aligned}
$$

Hence, by \log test the series $\sum u_{n}$ is diverget if $x=e$.
Thus the given series $\sum u_{n}$ is convergent if $x<e$ and divergent if $x \geq e$.
Example 11. Test the convergence of the series

$$
x+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!}+\ldots
$$

Solution. Here, we have

$$
\begin{aligned}
u_{n} & =\frac{n^{n} x^{n}}{n!} \\
\Rightarrow \quad u_{n+1} & =\frac{(n+1)^{n+1} \cdot x^{n+1}}{(n+1)!}
\end{aligned}
$$

Therefore, $\quad \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1)!n^{n} x^{n}}{(n+1)^{n+1} x^{n+1} \cdot n!}$.

$$
=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n} x}=\frac{1}{e x}
$$

Thus, by D'Alembert's ratio test the series is convergent if $e x<1$ i.e., $x<\frac{1}{e}$, divergent if $x>\frac{1}{e}$ and the test fails if $\frac{1}{e x}=1$ i.e., $x=\frac{1}{e}$.

In this case

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n\left[\log \frac{u_{n}}{u_{n+1}}\right] & =\lim _{n \rightarrow \infty} n \log \left[\frac{e}{\left(1+\frac{1}{n}\right)^{n}}\right] \\
& =\lim _{n \rightarrow \infty} n\left[\log e-n \log \left(1+\frac{1}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} n\left[1-n\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{2}}-\ldots\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{2}-\frac{1}{3 n}+\ldots\right]=\frac{1}{2}<1 .
\end{aligned}
$$

Hence, by Logarithmic test, the series is divergent if $x=\frac{1}{e}$. Thus the given series $\sum u_{n}$ is convergent if $x<\frac{1}{e}$ and divergent if $x \geq \frac{1}{e}$.

Example 12. Test the convergence of the series

$$
\frac{(a+x)}{1!}+\frac{(a+2 x)^{2}}{2!}+\frac{(a+3 x)^{3}}{3!}+\ldots
$$

Solution. Here, we have

$$
\begin{array}{cc}
u_{n}=\frac{(a+n x)^{n}}{n!} \\
\Rightarrow \quad u_{n+1}= & \frac{[a+(n+1) x]^{n+1}}{(n+1)!} \\
\Rightarrow \quad \frac{u_{n}}{u_{n+1}}=\frac{\left[1+\frac{a / x}{n}\right]^{n}}{\left[1+\frac{1}{n}\right]^{n}\left[1+\frac{a / x}{n+1}\right]^{n+1} \cdot \frac{1}{x}} \\
\Rightarrow \quad \lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}= & \lim _{n \rightarrow \infty}\left[\frac{\left[\because \frac{a / x}{n}\right]^{n}}{\left[1+\frac{1}{n}\right]^{n}}\left[1+\frac{a / x}{n+1}\right]^{n+1}: \frac{1}{x}\right] \\
& =\frac{e^{n / x}}{x \cdot e \cdot e^{n / x}}=\frac{1}{e x} .
\end{array}
$$

Hence, by D'Alembert's ratio test the given series is convergent if $\frac{1}{e x}>1$ i.e., $x<\frac{1}{e}$ and divergent if $x>\frac{1}{e}$ and the test fails if $x=\frac{1}{e}$.

In this case

$$
\begin{array}{rl}
\lim _{n \rightarrow \infty} n & n \log \left(\frac{u_{n}}{u_{n+1}}\right)=\lim _{n \rightarrow \infty} n \log \left[\frac{\left[1+\frac{a e}{n}\right]^{n} e}{\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{a e}{n+1}\right)^{n+1}}\right] \\
& =\lim _{n \rightarrow \infty} n\left[n \log \left(1+\frac{a e}{n}\right)+\log e-n \log \left(1+\frac{1}{n}\right)-(n+1) \log \left(1+\frac{a e}{n+1}\right)\right] \\
& =\lim _{n \rightarrow \infty} n\left[n\left(\frac{a e}{n}-\frac{a^{2} e^{2}}{2 n^{2}}+\frac{a^{3} e^{3}}{3 n^{3}} \cdots\right)+1-n\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{3}}\right)\right. \\
\left.\quad-(n+1)\left(\frac{a e}{n+1}-\frac{a^{2} e^{2}}{2(n+1)^{2}}+\frac{a^{3} e^{3}}{3(n+1)^{3}}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[-\frac{a^{2} e^{2}}{2}+\frac{1}{2}+\frac{a^{2} e^{2}}{2\left(1+\frac{1}{n}\right)}+\text { terms containing } n \text { in the denominator }\right] \\
& =-\frac{a^{2} e^{2}}{2}+\frac{1}{2}+\frac{a^{2} e^{2}}{2} \\
& =\frac{1}{2}<1 .
\end{array}
$$

Hence, by logarithmic test, the series is divergent.
Thus the given series is convergent if $x<\frac{1}{e}$ and divergent if $x \geq \frac{1}{e}$.

EXERCISE 2

Test the convergence of the following series :
i. $\frac{1}{1+2}+\frac{2}{1+2^{2}}+\frac{3}{1+2^{3}}+\ldots$.
2. $1+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\ldots+\frac{n^{2}}{n!}+\ldots$.
3. $1+\frac{2!}{2^{2}}+\frac{3!}{3^{2}}+\frac{4!}{4^{2}}+\ldots+\frac{n!}{n^{2}}+\ldots$.
5. $\frac{1^{2} \cdot 2^{2}}{1!}+\frac{2^{2} \cdot 3^{2}}{2!}+\frac{3^{2} \cdot 4^{2}}{3!}+\ldots$.
6. $\Sigma\left(\frac{\sqrt{n}}{n^{2}+1}\right)$.
7. $1+\frac{2}{3}\left(\frac{1}{4}\right)+\frac{2.4}{3.5}\left(\frac{1}{6}\right)+\frac{2.4 \cdot 6}{3.5 \cdot 7}\left(\frac{1}{8}\right)+\ldots$.

ANSWERS

1. Convergent
2. Convergent
3. Convergent
4. Convergent
5. Convergent
6. Convergent

- 2.10. CAUCHY'S INTEGRAL TEST

Let $f(x)$ is a non-negative monotonically decreasing integrable function on $[1, \infty[$ then the series $\sum_{n=1}^{\infty} f(n)$ and the improper integral $\int_{1}^{\infty} f(x) d x$ converge or diverge together.

Proof. Let $f(x)$ is a monotonically decreasing on $[1, \infty[$.
Then we have

$$
f(n) \geq f(x) \geq f(n+1), \text { where } n \leq x \leq n+1
$$

Also, $f(x)$ is non-negative and integrable, we have

$$
\int_{n}^{n+1} f(n) d x \geq \int_{n}^{n+1} f(x) d x \geq \int_{n}^{n+1} f(n+1) d x
$$

or

$$
\begin{equation*}
f(n) \geq \int_{n}^{n+1} f(x) d x \geq f(n+1) \tag{1}
\end{equation*}
$$

Now, putting $n=1,2, \ldots(n-1)$ in (1) and adding all these, we get

$$
\begin{align*}
f(1)+f(2)+\ldots+f(n-1) \geq & \int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\ldots \\
& +\int_{n-1}^{n} f(x) d x \geq f(2)+f(3)+\ldots+f(n) \tag{2}
\end{align*}
$$

Let us suppose
and

$$
\begin{aligned}
& S_{n}=f(1)+f(2)+\ldots+f(n) \\
& I_{n}=\int_{1}^{n} f(x) d x .
\end{aligned}
$$

Then (2) can be written as
or

$$
S_{n}-f(x) \geq I_{n} \geq S_{n}-f(1)
$$

Let $\quad u_{n}=S_{n}-I_{n} \quad \forall n \in N$.
Then

$$
\begin{aligned}
u_{n+1}-u_{n} & =\left(S_{n+1}-I_{n+1}\right)-\left(S_{n}-I_{n}\right) \\
& =\left(S_{n+1}-S_{n}\right)-\left(I_{n+1}-I_{n}\right) \\
& =f(n+1)-\int_{n}^{n+1} f(x) d x
\end{aligned}
$$

$$
\leq 0
$$

[By using (1)]
Hence, we have $\left\langle u_{n}\right\rangle$ is monotonically decreasing sequence.
Now, from (3) $u_{n} \geq f(n) \geq 0, \forall n \in \mathbf{N}$. Therefore sequence $\left\langle u_{n}\right\rangle$ is bounded below. Hence $\left\langle u_{n}\right\rangle$ is a convergent sequence and it has a finite limit.

Now, since $S_{n}=u_{n}+I_{n}$, the sequence $\left\langle S_{n}\right\rangle$ and $\left\langle I_{n}\right\rangle$ converge or diverge together. Hence, the series $\Sigma f(n)$ and the integral $\int_{1}^{\infty} f(x) d x$ converge or diverge together.

Alternating Series. A series, whose terms are alternatively positive and negative is called an alternating series.

Thus, a series of the form

$$
u_{1}-u_{2}+u_{3}-u_{4}+\ldots+(-1)^{n-1} u_{n}+\ldots
$$

where $u_{n}>0 \forall n$, is an alternating series.
Absolute Convergence. A series Σu_{n} is said to be absolutely convergent if the series $\Sigma\left|u_{n}\right|$ is convergent.

Conditional Convergence. A series $\sum u_{n}$ is said to be conditionally convergent if $\sum u_{n}$ is convergent but $\Sigma\left|u_{n}\right|$ is divergent.

REMARK

- The conditional convergence of a series is also known as semi-convergent or non-absolutely convergent.

SOME IMPORTANT THEOREMS

Theorem 1. An absolutely convergent series is convergent.
Proof. Let us suppose, the series $\sum u_{n}$ is absolutely convergent. Then by definition. $\sum\left|u_{n}\right|$ is convergent.

Now $\quad u_{n}+\left|u_{n}\right|=\left\{\begin{aligned} 2 u_{n} & , \text { if } u_{n} \text { is positive } \\ 0 & , \text { if } u_{n} \text { is negative } .\end{aligned}\right.$

Therefore, every terın of the series $\Sigma\left(u_{n}+\left|u_{n}\right|\right)$ is ≥ 0 and less than equal to the corresponding term of the convergent series $\Sigma 2\left|u_{n}\right|$.

Hence $\sum\left(u_{n}+\left|u_{n}\right|\right)$ is convergent. Hence $\sum u_{n}$ is convergent.
Theorem 2. If the terms of a convergent series of positive terms are rearranged, the series remains convergent and its sum is unaltered.

Proof. Let us suppose Σu_{n} be a convergent series, and let the terms be rearranged in any manner. Denote the new series by Σv_{n}, so that every u is a v and every v is $a u$.

Let

$$
\begin{aligned}
& s_{n}=u_{1}+u_{2}+\ldots+u_{n} \\
& t_{n}=v_{1}+v_{2}+\ldots+v_{n} .
\end{aligned}
$$

Then, for any definite value of n, s_{n} contains n terms each of which occurs, sooner or later, in the v series and so we can find a corresponding m such that t_{m} contains all the terms of s_{n} (and possibly other not contained in s_{n}).

Now, since each term is positive,

$$
s_{n} \leq t_{m} .
$$

Also, suppose that the first m terms of $\sum v_{n}$ are among the first $(n+p)$ terms of $\sum u_{n}$. Therefore,

$$
s_{n} \leq t_{m} \leq s_{n+p}
$$

and m tends to infinity with n.
Let $\sum u_{n}$ converges to s, so that

$$
\lim s_{n}=\lim s_{n+p}=s
$$

$\therefore \quad \lim t_{m}=s$.
Hence, Σv_{n} is convergent and has the same sum as $\sum u_{n}$.
Theorem 3. If the terms of an absolutely convergent series are rearragned, the series remains convergent and its sum is unaltered.

Proof. Let $\sum u_{n}$ be an absolutely convergent series, and let its terms be rearranged in a different order. Let, the new series is denoted by Σv_{n} so that every v occurs somewhere in the u series and every u occurs somewhere in the v series.

Now, we have $u_{n}+\left|u_{n}\right|=2 u_{n}$ or 0 according as u_{n} is positive or negative. Now $\Sigma\left|u_{n}\right|$ is a convergent series of positive terms, so also is the series $\sum\left(u_{n}+\left|u_{n}\right|\right)$, because its terms are less than equal to be corresponding terms of the series $\sum 2\left|u_{n}\right|$.

$$
\begin{array}{cc}
\text { Let } & \sum\left|u_{n}\right|=s \text { and } \quad \sum\left(u_{n}+\left|u_{n}\right|\right)=s^{\prime} \\
\text { so that } & \sum u_{n}=s^{\prime}-s .
\end{array}
$$

Also, since $\sum\left|u_{n}\right|$ and $\sum\left(u_{n}+\left|u_{n}\right|\right)$ are convergent series of positive terms, their sum remains unchanged by any rearragement of terms (By Theorem 2).

Accordingly,

$$
\begin{aligned}
\sum\left|v_{n}\right| & =s \\
\Sigma\left(v_{n}+\left|v_{n}\right|\right) & =s^{\prime} .
\end{aligned}
$$

Hence $\sum v_{n}=s^{\prime}-s=\Sigma u_{n}$, as asserted.

- 2.11. LEIBNITZ TEST

If the alternative series

$$
u_{1}-u_{2}+u_{3}-\ldots\left(u_{n}>0, \forall n \in \mathbf{N}\right)
$$

is such that
(i) $u_{n+1} \leq u_{n} \quad \forall n \in N$
(ii) $\lim u_{n}=0$.
, $n \rightarrow \infty$:
Then the series converges.
Proof. Let $S_{n}=u_{1}-u_{2}+u_{3}-\ldots+(-1)^{n} u_{n}$ so that $\left\langle S_{n}\right\rangle$ is a sequence of partial sums of the given series.

Now for all n

$$
\begin{equation*}
S_{2 n+2}-S_{2 n}=u_{2 n+1}-u_{2 n+2} \geq 0 \tag{1}
\end{equation*}
$$

which gives that $\left\langle S_{2 n}\right\rangle$ is a monotonically increasing sequence.
Further,

$$
\begin{aligned}
S_{2 n} & =u_{1}-u_{2}+u_{3}-. .+u_{2 n-1}-u_{2 n} \\
& =u_{1}-\left(u_{2}+u_{3}\right)-\left(u_{4}-u_{5}\right)-\ldots-u_{2 n}
\end{aligned}
$$

$$
\begin{aligned}
& =u_{1}-\left[\left(u_{2}-u_{3}\right)+\ldots+u_{2 n}\right] \\
& =u_{1}-\text { some positive number } \\
& \leq u_{1} .
\end{aligned}
$$

Therefore, the monotonically increasing sequence $\left\langle S_{2 n}\right\rangle$ is bounded above and consequently it is convergent.

Let $\quad \lim _{n \rightarrow \infty} S_{2 n}=S$.

$$
\text { Now } \begin{aligned}
S_{2 n+1} & =S_{2 n}+u_{2 n+1} \\
\therefore \quad \lim _{n \rightarrow \infty} S_{2 n+1} & =\lim _{n \rightarrow \infty} S_{2 n}+\lim _{n \rightarrow \infty} u_{2 n+1} \\
& =S+0 \\
& =S .
\end{aligned}
$$

Thus, the subsequences $\left\langle S_{2 n}\right\rangle$ and $\left\langle S_{2 n}+1\right\rangle$ both converge to the same limits. Now we shall show that the sequence $\left\langle S_{n}\right\rangle$ also converges to S.

Let $\varepsilon>0$ be given. Since, the sequenes $\left\langle S_{2 n}\right\rangle$ and $\left\langle S_{2 n+1}\right\rangle$ both converge to S, there exist positive integers m_{1}, m_{2} such that
and

$$
\left|S_{2 n}-S\right|<\varepsilon \quad \forall n \geq m_{1},
$$

$$
\left|S_{2 n+1}-S\right|<\varepsilon \quad \forall n \geq m_{2} .
$$

Let $m=\max \left(m_{1}, m_{2}\right)$.
Then

$$
\left|S_{n}-S\right|<\varepsilon \quad \forall n \geq 2 m
$$

which gives that the sequence $\left\langle S_{n}\right\rangle$ converges to S.
Hence, the given series $\Sigma(-1)^{n-1} u_{n}$ converges.

SOLVED EXAMPLES

Example 1. Show that

$$
\lim _{n \rightarrow \infty}\left[1+\frac{1}{2}+\ldots+\frac{1}{n}-\log n\right] \text { exists }
$$

Solution. Let $f(x)=\frac{1}{x}, \quad x \in[1, \infty[$.
Then $f(x)>0$ and monotonically decreasing on [1, $\infty[$.
Let

$$
S_{n}=f(1)+f(2)+\ldots+f(n)=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}
$$

and

$$
I_{n}=\int_{1}^{n} f(x) d x=\int_{1}^{n} \frac{1}{x} d x=[\log x]_{1}^{n}=\log n
$$

It can be easily shown that
or

$$
f(n) \leq S_{n}-I_{n} \leq f(1) \quad \forall n \in \mathbf{N}
$$

$$
0<\frac{1}{n} \leq S_{n}-I_{n} \leq 1 \quad \forall n \in \mathbf{N}
$$

which gives that the sequence $\left\langle u_{n}\right\rangle$, where $u_{n}=S_{n}-I_{n}$, is bounded below.
Now, it can also be shown easily that the sequence $\left\langle u_{n}\right\rangle$ is a monotonically decreasing sequence. Therefore it converges.

Hence, $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)$ exist.
Example 2. Show by integral test that $\sum \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
Solution. Let $f(x)=\frac{1}{x^{p}}, p>0$. Then $f(x)$ is positive valued and monotonically decreasing.
Therefore by Cauchy's integral test $\sum \frac{1}{n^{p}}$ and $\int_{1}^{\infty} f(x) d x$ converges and diverges together.
Let

$$
I_{n}=\int_{1}^{n} \frac{1}{x^{p}} d x=\int_{1}^{n} x^{-p} d x
$$

$$
=\left\{\begin{array}{cc}
\left(\frac{n^{1-p}}{1-p}-\frac{1}{1-p}\right), & \text { if } p \neq 1 \\
\log n & , \quad \text { if } p=1
\end{array}\right.
$$

If $n \rightarrow \infty, n^{1-p}=\frac{1}{n^{p-1}} \rightarrow 0$ as $p>1$
and tends to ∞ if $p<1$ and $\log n \rightarrow \infty$
and
$\therefore \quad \lim _{n \rightarrow \infty} I_{n}=-\frac{1}{1-p}=\frac{1}{p-1}$, if $p>1$

Hence, $\int_{1}^{\infty} f(x) d x$ converges if $p>1$ and diverges if $p \leq 1$. Then by Cauchy's integral test the series $\sum \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.

Example 3. Show that Cauchy's integral test that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ converges if $p>1$ and diverges if $0<p \leq 1$.

Solution. Let us suppose

$$
f(x)=\frac{1}{x(\log x)^{p}}, p>0
$$

and $x \in[2, \infty[$; then obviously $f(x)$ is monotonically decreasing on $[2, \infty[$ and positive valued.

Let

$$
\begin{aligned}
I_{n} & =\int_{2}^{n} \frac{d x}{x(\log x)^{p}}, \quad \\
I_{n} & =\left[\frac{(\log x)^{1-p}}{1-p}\right]_{2}^{n}, p \neq 1 \\
& =\frac{1}{(1-p)}\left[(\log n)^{1-p}-(\log 2)^{1-p}\right], p \neq 1
\end{aligned}
$$

Then
and

$$
\begin{aligned}
I_{n} & =[\log \log x]_{2}^{n}, \quad p=1 \\
& =[\log \log n-\log \log 2], \quad p=1 .
\end{aligned}
$$

Therefore, we have
and

$$
\lim _{n \rightarrow \infty} I_{n}=\lim _{n \rightarrow \infty} \int_{2}^{n} f(x) d x=\infty, \text { if } p<1
$$

$$
\lim _{n \rightarrow \infty} I_{n}=-\frac{1}{(1-p)}(\log 2)^{1-p}, \text { if } p>1
$$

Thus the integral $\int_{2}^{\infty} f(x) d x$ converges if $p>1$ and diverges if $0<p \leq 1$.
Hecce, by Cauchy's integral test, the series

$$
\sum_{n=2}^{\infty} f(x)=\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}
$$

converges if $p>1$ and diverges if $0<p \leq 1$.
Example 4. Test the convergence of the series

$$
\frac{1}{x}-\frac{1}{x+a}+\frac{1}{x+2 a} \ldots ; \quad x>0, a>0 .
$$

Solution. Since, the given series is an alternating series.
\therefore the $n^{\text {th }}$ term

$$
t_{n}=(-1)^{n-1} \frac{1}{x+(n-1) a} u_{n}, \text { where } u_{n}=\frac{1}{x+(n-1) a}>0 .
$$

Now

$$
u_{n+1}-u_{n}=\frac{1}{x+n a}-\frac{1}{x+(n-1) a}
$$

$$
\begin{aligned}
& =\frac{[x+(n-1) a]-[x+n a]}{[x+n a][x+(n-1) a]} \\
& =\frac{-a .}{[x+n a][x+(n-1) a]}<0
\end{aligned}
$$

$$
\therefore \quad u_{n+1}<u_{n} .
$$

Also, $\quad \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{x+(n-1) a}=0$.
Hence, by Leibnitz test, the given series is convergent.
Example 5. Test the convergence of the series

$$
\frac{\log 2}{2^{2}}-\frac{\log 3}{3^{2}}+\frac{\log 4}{4^{2}}-\ldots
$$

Solution. The given series is an alternating series.
Here, the $n^{\text {th }}$ term

$$
t_{n}=(-1)^{n} u_{n} \text {, where } u_{n}=\frac{\log (n+1)}{(n+1)^{2}}>0
$$

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{\log (n+1)}{(n+1)^{2}}=\lim _{n \rightarrow \infty} \frac{\log (n+1)}{(n+1)} \cdot \frac{1}{(n+1)}=0 .
$$

Now, we shall show that

$$
u_{n+1} \leq u_{n} \forall n .
$$

Let

$$
f(x)=\frac{\log x}{x^{2}} .
$$

$$
f^{\prime}(x)=\frac{x^{2} \cdot \frac{1}{x}-2 x \log x}{x^{4}}=\frac{1-2 \log x}{x^{3}}<0 \text { when } x>e^{1 / 2} .
$$

Therefore, the function $f(x)$ is monotonically decreasing for all $x>e^{1 / 2}$. We know that

$$
\begin{aligned}
& 2<e<3 \Rightarrow 2^{1 / 2}<e^{1 / 2}<3^{1 / 2} \\
& \Rightarrow 1<e^{1 / 2}<2
\end{aligned}
$$

so $f(n+2) \leq f(n+1)$ for all n
i.e., $\quad u_{n+1} \leq u_{n} \forall n$.

Hence, by Leibnitz test the given series is convergent.
Example 6. Show that the series

$$
\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\ldots
$$

is conditionally convergent.
Solution. The given series is an alternating series.
\therefore the $n^{\text {th }}$ term

$$
t_{n}=(-1)^{n-1} u_{n} \quad \text { where } u_{n}=\frac{1}{\sqrt{n}}>0 .
$$

Now

$$
u_{n+1}-u_{n}=\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}
$$

$$
\begin{array}{ll}
& =\frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n} \sqrt{n+1}}<0 . \\
\therefore & u_{n+1}<u_{n} .
\end{array}
$$

Also

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0 .
$$

\therefore by Leibnitz test the given series is convergent.
But the series $\Sigma\left|\frac{(-1)^{n-1}}{\sqrt{n}}\right|=\sum \frac{1}{\sqrt{n}}$ is divergent $\left(\because p=\frac{1}{2}<1\right)$.
Hence, the given series is conditionally convergent.

- $\quad \sum_{r=1}^{n} u_{r}$ is known as the partial sum of the infinite series $\sum_{N=1}^{\infty} u_{n}$.
- If $\lim u_{n}=0$, then Σu_{n} is need not be convergent.
- If $\lim u_{n} \neq 0$ then the Σu_{n} is divergent.
- Cauchy's root test : If $\lim \left(u_{n}\right)^{1 / n}=l$, then

$$
\begin{gathered}
n \rightarrow \infty \\
f_{1}<1
\end{gathered}
$$

(i) Σu_{n} is convergent if $l<1$
(ii) $\sum u_{n}$ is divergent if $l>1$
(iii) If $l=1$, then the test fails.

- D'Alembert Ratio Test : If $\lim \frac{u_{n}}{u_{n+1}}=l$, then
(i) Σu_{n} converges if $l>1$.
(ii) Σu_{n} diverges if $l<1$.
(iii) If $l=1$, then the test fails.
- Raabe's Test : If $\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}-1}\right)=l, u_{n}>0$, then
(i) $\sum u_{n}$ converges if $l>1$.
(ii) Σu_{n} diverges if $l<1$.
(iii) If $l=1$, thn the test fails.
- Logarithmic Test : If $\lim _{n \rightarrow \infty}\left(n \log \frac{u_{n}}{u_{n+1}}\right)=l, u_{n}>0$, then
(i) Σu_{n} converges if $l>1$
(ii) $\sum u_{n}$ diverges if $l<1$
- De Morgan's and Bertrand's test : If $\lim _{n \rightarrow \infty}\left[n\left(\frac{u_{n}}{u_{n+1}}-1\right)-1\right] \log n=l, u_{n}>0$ then
(i) $\sum u_{n}$ converges if $l>1$
(ii) $\sum u_{n}$ diverges if $l<1$.

- STUDENT ACTIVITY

1. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{b}}$ is convergent if $p>1$.
\qquad
\qquad
\qquad
\qquad
2. Test the convergence of the series $\frac{1}{x}-\frac{1}{x+a}+\frac{1}{x+2 a} \ldots \ldots, x>0, a>0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- TEST YOURSELF

1. Test the convergence of the following series.

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{i}{4}+\ldots
$$

2. Prove that the following series is absolutely convergent

$$
\left(\frac{\sqrt{2}-1}{1}\right)-\left(\frac{\sqrt{3}-\sqrt{2}}{2}\right)+\left(\frac{\sqrt{4}-\sqrt{3}}{3}\right)-\ldots
$$

3. Show that the series $\sum(-1)^{n-1} \sin \frac{1}{n}$ is conditionally convergent.
4. Test for convergence the series $\Sigma\left(\frac{n^{n-1} \cdot x^{n-1}}{n!}\right)$.
5. . Show that the series

$$
\frac{2}{1^{2}}-\frac{3}{2^{2}}+\frac{4}{3^{2}}-\frac{5}{4^{2}}+\ldots
$$

converge conditionally.
6. Show that the series $\sum(-1)^{n}\left[\sqrt{n^{2}+1}-n\right]$ is conditionally convergent.
7. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{n^{2}+1}$ is not absolutely convergent.

ANSWERS

1. Convergent

4. Convergent if $x \leq \frac{1}{e}$ and divergent if $x>\frac{1}{e}$

Fill in the Blanks :

1. Every absolutely convergent series is \qquad ..
2. The sum of an absolutely convergent series is \qquad of the order of terms.
3. A series whose terms are alternatively positive and negative is called an \qquad
\qquad
4. If $\sum u_{n}$ is convergent, and $\sum\left|u_{n}\right|$ is divergent then series $\sum u_{n}$ is said to be \qquad

True or False :

Write T for true and F for false statement.

1. For every convergent series, it is necessary that lim $u_{n}=0$.
2. The series $\Sigma \frac{1}{n}$ is convergent.
3. If $\sum u_{n}$ is a series of positive terms then $u_{n}>0, \forall n \in \mathbf{N}$.
4. If $\lim u_{n}>0$ then series is convergent.
5. If lim $u_{n}=0$, then the series may or may not be convergent.
6. If $\lim u_{n}=0$, then the series is always convergent.

Multiple Choice Questions :

Choose the most appropriate one.

1. If lim $u_{n}=0$ (u_{n} is the $n^{\text {th }}$ term of the given series) then :
(a) series is necessarily convergent
(b) series is necessairly divergent
(c) may or may not be convergent
(d) none of these.
2. If $\sum u_{n}$ converges to l_{1} and $\sum v_{n}$ converges to l_{2}, then $\sum\left(u_{n}+v_{n}\right)$ converges to:
(a) l_{1}
(b) l_{2}
(c) $l_{1}+l_{2}$
(d) $l_{1}-l_{2}$.
3. If $\sum u_{n}$ and $\sum v_{n}$ are two divergent series having all positive terms, then $\sum\left(u_{n}+v_{n}\right)$ is:
(a) convergent
(b) divergent
(c) oscillatory
(d) none of these.
4. The nature of the given series will be change if :
(a) the sign of all terms are changed
(b) a finite no. of terms are added or omitted
(c) each term of the series is multiplied or divided by a non-zero number
(d) none of these.

ANSWERS

Fill in the Blanks :

1. Convergent 2. Independent
2. Alternating series
3. Conditionally or semi-convergent. ,

True or False :

$$
\begin{array}{llllll}
\text { 1. } \mathrm{T} & 2 . \mathrm{F} & \text { 3.T } & \text { 4.F } & 5 . \mathrm{T} & 6 . \mathrm{F}
\end{array}
$$

Multiple Choice Questions

1. (c) 2. (c) 3. (b) 4. (d)

3

UNIFORM CONVERGENCE

STRUCTURE

- Pointwise Convergence
- Uniform convergence of sequences of functions
- Couchy's general principle of uniform convergence
- CUniform convergence of a sequence of continuous functions
- Tests for Uniform Convergence
- Summary
a Student Activity
- Test Yourself

LEARNING OBJECTIVES

After going through this unit you will learn :

- What is pointwise convergence ?
- What is uniform convergence.
- How to determine that the given sequence or series of functions is uniformly convergent ?

- 3.1. POINTWISE CONVERGENCE

Let $\left\langle t_{n}\right\rangle$ be a sequence of real valued functions on a metric space (X, d). Let the function f_{n} be tends to a definite limit for all values of $x \in X$ as $n \rightarrow \infty$. Therefore, to each point $t \in X$, there corresponds a sequence of numbers $\left\langle f_{n}(t)\right\rangle$ with terms

$$
f_{1}(t), f_{2}(t), f_{3}(t) \ldots
$$

Let this sequence $\left\langle f_{n}(t)\right\rangle$ converges to $f(t)$. Then pointwise converges can be defined as follows:

Definition. Let (X, d) be a metric space and f be a function from X to R. Also, for each $n \in \mathbf{N}$ let $f_{n}: X \rightarrow \mathbf{R}$. Then, the sequence of functions $\left\langle f_{n}\right\rangle$ conveges pointwise to the function f, if for each $x \in X$, the sequence of real nubmers $\left\langle f_{n}(x)\right\rangle$ converges to the real number $f(x)$.

Therefore $\left\langle f_{n}\right\rangle$ converges pointwise to f if

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \forall x \in X
$$

For example :

(i) For each $n \in \mathbf{N}$. Let us define $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ by $f_{n}(x)=\frac{x}{n} \quad \forall x \in \mathbf{R}$

Then $\left\langle f_{n}(x)\right\rangle$ converges to $f(x)=0 \quad \forall x \in \mathbf{R}$.
(ii) The sequence $\left\langle f_{n}(x)\right\rangle=\left\langle x^{n}\right\rangle$ converges pointwise to the function $f:[0,1] \rightarrow \mathbf{R}$ defined by $f(x)=\left\{\begin{array}{lll}0 & \text { if } & x \in] 0,1[\\ 1 & \text { if } & x=1 .\end{array}\right.$
(iii) The sequence $\left\langle x(1-x)^{n}\right\rangle$ converges pointwise to the function f that vanish identically.
(iv) The sequence $\left\langle f_{n}=1+\frac{x}{1+n x}\right\rangle$ converges, pointwise to the function f defined by $f(x)=1 \quad \forall x \in] 0, \infty[$.
(v) The geometric series $1+x+x^{2}+x^{3}+\ldots$ converges to $\left.(1-x)^{-1} \forall x \in\right]-1,1[$.

Theorem wihout proof. Let (X, d) be a metic space and f be a function fro X to R and $f_{n}: X \rightarrow R \forall n \in N$. The sequence of function $\left\langle f_{n}\right\rangle$ converes pointwise to f if and only if for each $x \in X$ and for each positiv real number, ε, \exists a positive integer m such that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

SOLVED EXAMPLE

Example 1. Let $\left\langle f_{n}\right\rangle$ be the sequence defined by $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
f_{n}(x)=\frac{x}{n} \quad \forall x \in \mathbf{R}, n \in \mathbf{N} .
$$

Show that the sequence converges pointwise to the zero function.
Solution. Here, we want to show the given sequence converges pointwise to the zero function i.e., $f(x)=0, x \in \mathbf{R}$, then we must show that given $\varepsilon>0$, we can find $m \in \mathbf{N}$ such that

$$
\begin{equation*}
\forall n \geq m \Rightarrow\left|\frac{x}{n}-0\right|=\frac{|x|}{n} \tag{1}
\end{equation*}
$$

Leet us chtoonse $m>\frac{|x|}{\varepsilon}$.
Then (1) gives

$$
\forall n \geq m \Rightarrow \cdot\left|\frac{x}{n}-0\right|=\frac{|x|}{n}<\varepsilon
$$

Here, the given sequence converges pointwise to the zero function.

- 3.2. UNIFORM CONVERGENCE OF SEQUENCES OF FUNCTIONS

Let us suppose the sequenc $\overline{\mathrm{c}}-\left\langle f_{n}^{-}(x)\right\rangle$ converges for every point x in X. Therefore, f_{n} tends to a definite limit as $n \rightarrow \infty$ for every $x \in X$. The limit is also a function of x.

Then by definition of limit, we must have that for every $\varepsilon>0 \exists$ a positive integer m such that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

Here, it must be noted that the integer m depends upon x as well as ε.
Definition. The sequence $\left\langle f_{n}(x)\right\rangle$ of functions is said to converge, uniforml. on X to a function f, if for every $\varepsilon>0$, we can find a positive integer m such that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \forall x \in X .
$$

Some Examples :

(1) The sequence of function $\left\langle f_{n}\right\rangle$ defined on \mathbf{R} such that $f_{n}(x)=\frac{x}{n} \forall n \in \mathbf{N}$ converges pointwise to the zero function (i.e., $f(x)=0$) while, this sequence does not converges uniformly to this function.

We will prove that convergence is not uniform.
Let us suppose the sequence $\left\langle\frac{x}{n}\right\rangle$ converges uniformly to the zero function on \mathbf{R}, then there is some $m \in \mathbf{N}$ (m depending only on $\varepsilon=1$) such that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|=\frac{|x|}{n}<1 \quad \forall x \in \mathbf{R}
$$

which is not true for all $x \in \mathbf{R}$ for if $n=m$ and $x=m$, then $\frac{|x|}{m}=1$.
(2) Let $\langle f(x)\rangle=\left\langle x^{n}\right\rangle$ be the given sequence of function defined on $[0,1]$. Then we can easily verify that the given sequence $\left\langle f_{n}(x)\right\rangle$ converges pointwise to the limit function f, defined by

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq x<1 \\
1 & \text { if } & x=1
\end{array}\right.
$$

for every $x \in[0,1]$.
To check that the convergence is uniform, we consider the interval $[0,1]$. Let $\varepsilon>1$ be given.
Then, we have

$$
\begin{array}{ll}
& \left|f_{n}(x)-f(x)\right|<\varepsilon \Rightarrow\left|x^{n}-0\right|<\varepsilon \Rightarrow x^{n}<\varepsilon \\
\Rightarrow \quad & \frac{1}{x^{n}}>\frac{1}{\varepsilon} \Rightarrow n \log \frac{1}{x}>\log \frac{1}{\varepsilon}
\end{array}
$$

i.e.,

$$
\begin{equation*}
n>\frac{\log (1 / \varepsilon)}{\log (1 / x)} \tag{1}
\end{equation*}
$$

Therefore, when $x \neq 1, m \in N$, such that

$$
m>\frac{\log (1 / \varepsilon)}{\log (1 / x)}
$$

In particular, when $x=0, m=1$.
Now as x increases from 0 to 1 , it is clear from (1) that $n \rightarrow \infty$.
Therefore, it is not possible to find $m \in \mathbf{N}$ such that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

for all $x \in[0,1]$. Hence, the given sequence is not uniformly convergent on $[0,1]$.
Note. If we consider the interval $[0, k]$, where $0<k<1$, then the greatest value of $\log (1 / \varepsilon) / \log (1 / x)$ is $\log (1 / \varepsilon) / \log (1 / k)$ so that if we take $m>(\log 1 / \varepsilon) / \log (1 / k) \in N$, we have

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \forall x \in[0, k] .
$$

Therefore, $\left\langle f_{n}(x)\right\rangle$ converges uniformly on $[0, k]$.
(3) The sequence of function $\left\langle 1 /\left(1+n x^{2}\right)\right\rangle$ does not converges uniformly on \mathbf{R} to the function f defined by

$$
f(x)= \begin{cases}0, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

(4) Let a be any positive real number and for each $n \in \mathbf{N}$.

Define

$$
f_{n}(x)=\frac{1}{1+n x^{2}} \quad \forall x \in[a, \infty[.
$$

The sequence $\left\langle f_{n}(x)\right\rangle$ converges uniformly to the zero function i.e., $f(x)=0$ on $[a, b[$, because of $m \in \mathbf{N}, m>(1-\varepsilon) / a^{2}$, then

$$
\begin{aligned}
n & \geq m \Rightarrow\left|f_{n}(x)-0\right|=\frac{1}{1+n x^{2}} \\
& \leq \frac{1}{1+m x^{2}} \\
& \leq \frac{1}{1+m a^{2}} \\
& <\varepsilon \forall x \in[a, \infty[.
\end{aligned}
$$

Point of Non-uniform convergence. A point such that the sequence does not converge uniformly in any neighbourhood of it, however small, is said to be a point of non-uniform converges of the sequence.

Sum function of a series. Consider the series

$$
\sum_{n=1}^{\infty} u_{n}(x)=u_{1}(x)+u_{2}(x)+\ldots+u_{n}(x)+\ldots, x \in X
$$

of real valued function defined on a metric space (X, d). This series gives rise to a sequence of function $\left\langle f_{n}(x)\right\rangle$ where

$$
f_{n}(x)=u_{1}(x)+u_{2}(x)+\ldots+u_{n}(x) .
$$

The series $\sum u_{n}(x)$ is said to be convergent on X if the corresponding sequence $\left\langle f_{n}(x)\right\rangle$ is convergent on X and the limit function $s(x)$ of the sequence is said to the sum function or the sum of the series.

Uniform Convergence of a Series of Functions :

Definition. The series $\sum_{n=1}^{\infty} u_{n}(x)$ is said to converge uniformly on X if the sequence $\left\langle f_{n}(x)\right\rangle$, where $f_{n}(x)=u_{1}(x)+u_{2}(x)+\ldots+u_{n}(x)$, converges uniformly on X.

- 3.3. CAUCHY'S GENERAL PRINCIPLE OF UNIFORM CONVERGENCE

Theorem 1. Let $\left\langle f_{n}\right\rangle$ be a sequence of real valued function defined on X. Then $\left\langle f_{n}\right\rangle$ converges uniformly on X if and only iffor every $\varepsilon>0$, there exists a positive integer m such that

$$
\begin{equation*}
n \geq m, p \geq m, x \in X \Rightarrow\left|f_{n}(x)-f_{p}(x)\right|<\varepsilon . \tag{1}
\end{equation*}
$$

Proof. The only if part. Let us first suppose, the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to the function f on X. Then, by definition.

For given $\varepsilon>0, \exists$ a positive integer m such that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon / 2 \quad \forall n \geq m, \forall x \in X
$$

Therefore, if $p, n \geq m$, we have for any $x \in X$

$$
\begin{aligned}
\mid f_{n}(x)-f_{p}(x) & =\left|f_{n}(x)-f(x)+f(x)-f_{p}(x)\right| \\
& \leq\left|f_{n}(x)-f(x)\right|+\left|f(x)-f_{p}(x)\right| \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Hence (1) holds for this m.
The if part. Let $\left\langle f_{n}\right\rangle$ be a sequence of function from X to B such that for given $\varepsilon>0 \exists \mathrm{a}$ positive integer m such that (1) holds.

To show \exists a function f on X such that the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to f on X.
Now, for each fixed $x \in X$, (1) gives that the sequence of real numbers $\left\langle f_{n}(x)\right\rangle$ is a Cauchy sequence and therefore $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for every $x \in X$
(\because Every Cauchy sequence of real numbers is convergent)
Detine $f: X \rightarrow \mathbf{R}$ by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \forall x \in X$.
We want to show that the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to f.
If $x \in \mathbf{R}, \varepsilon>0$, then there is some $m \in \mathbf{N}$ such that

$$
n, p \geq m \Rightarrow\left|f_{n}(x)-f_{p}(x)\right|<\varepsilon / 2 \text { for ail } x \in X
$$

For any fixed $p, p \geq m$ and fixed $x \in X$, consider the sequence $\langle | f_{n}(x)-f_{p}(x)|: n \in \mathbf{N}\rangle$. Since

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \text { and }\left|f_{n}(x)-f_{p}(x)\right|<\varepsilon / 2
$$

for $n \geq m$, we have

$$
\lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{p}(x)\right|=\left|f(x)-f_{p}(x)\right|<\varepsilon / 2
$$

Therefore, if $p \geq m$, the

$$
\left|f(x)-f_{p}(x)\right|<\varepsilon \forall x \in X
$$

Hence, the sequence $\left\langle f_{n}(x)\right\rangle$ converges uniformly to f on X.
Theorem 2. The series $\sum u_{n}(x)$ converges uniformly on X if and only if for every $\varepsilon>0 \exists a$ positive integer m such that

$$
n \geq m \Rightarrow\left|u_{n+1}(x)+u_{n+2}(x)+\ldots+u_{n+p}(x)\right|<\varepsilon, p=1,2, \ldots
$$

for all $x \in X$.
Proof. Let $s_{n}(x)$ denotes the sequence of partial sum of the given series such that

$$
s_{n}(x)=u_{1}(x)+u_{2}(x)+\ldots+u_{n}(x), x \in X
$$

Then, $\quad s_{n+p}(x)-s_{n}(x)=u_{n+1}(x)+u_{n+2}(x)+\ldots+u_{n+p}(x)$.
The series $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly to $f(x)$ on X if and only if $\left\langle f_{n}\right\rangle$ converges uniformly on X.

But $\left\langle s_{n}(x)\right\rangle$ converges to $s(x)$ on X if and only if for given $\varepsilon>0 \exists$ a positive integer m such that

$$
n \geq m \Rightarrow\left|s_{n+p}(x)-s_{n}(x)\right|<\varepsilon, p=1,2, \ldots
$$

for all $x \in X$. Hence,

$$
n \geq m \Rightarrow\left|u_{n+1}(x)+u_{n+2}(x)+\ldots+u_{n+p}(x)\right|<\varepsilon p=1,2, \ldots
$$

for all $x \in X$.

- 3.4. UNIFORM CONVERGENCE OF A SEQUENCE OF CONTINUOUS FUNCTION

Theorem 3. Let $\left\langle f_{n}\right\rangle$ be a sequence of continuous real valued function defined on the compact metric space (X, d) such that

$$
\begin{equation*}
f_{1}(x) \geq f_{2}(x) \geq \ldots \geq f_{n}(x) \geq \ldots \tag{1}
\end{equation*}
$$

for every $x \in X$. If $\left\langle f_{n}\right\rangle$ pointwise converges on X to the continuous function f on X, then $\left\langle f_{n}\right\rangle$ converges uniformly to f on X.

Proof. Let $\quad g_{n}=f_{n}-$ for each $n \in \mathbf{N}$,
Then, from (1), we get

$$
\begin{equation*}
f_{1}(x) \geq g_{2}(x) \geq \ldots g_{n}(x) \geq \ldots \geq 0 \tag{2}
\end{equation*}
$$

Also, since $\left\langle f_{n}\right\rangle$ converges to f on X, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}(x)=0 \quad \forall x \in X . \tag{3}
\end{equation*}
$$

To show, $\left\langle g_{n}\right\rangle$ converges uniformly to 0 on X. Let $\varepsilon>0$ be given.
If $x \in X$, then from (3) \exists a positive integer $m(x)$ such that

$$
0 \leq g_{m}(x) \leq \varepsilon / 2
$$

Since $g_{m}(x)$ is continuous at x, therefore, \exists an open sphere $S(x, r)$ such that $y \in s(x) \Rightarrow g_{m(x)}(y)<\varepsilon$. Therefore, the collection

$$
C=\{S(x, r): x \in X, r>0\}
$$

forms an open cover of X. Since X is compat, therefore, by definition \exists a finite subcover or C i.e., \exists a finite number of open spheres $S(x, r)$ say $S\left(x_{1}, r_{1}\right), S\left(x_{2}, r_{2}\right) \ldots . S\left(x_{k}, r_{k}\right)$, which also cover X.

Now, let

$$
m=\max \left\{m\left(x_{1}\right), m\left(x_{2}\right), \ldots, m\left(x_{k}\right)\right\} .
$$

If y is any point of X, then $y \in S\left(x_{i}, r\right)$ for some $i=1,2, \ldots, k$.
Therefore,

$$
g_{m\left(x_{i}\right)}(y)<\varepsilon
$$

But since $m\left(x_{i}\right) \leq m$, therefore from (2), we have

$$
\begin{aligned}
& g_{m}(y)=g_{m\left(x_{i}\right.}(y) \\
& 0 \leq g_{m}(y)<\varepsilon \quad \forall y \in X
\end{aligned}
$$

$\Rightarrow \quad 0 \leq$
Thus, from (2), we have

$$
0 \leq g_{n}(y)<\varepsilon \quad \forall n \geq m, y \in X
$$

Hence, $\left\langle g_{n}\right\rangle$ converges uniformly to 0 on X. This implies that $\left\langle f_{n}\right\rangle$ converges uniformly on Y to the function f.

- 3.5. TESTS FOR UNIFORM CONVERGENCE

Theorem 1. (M_{n}-test). Let $\left\langle f_{n}\right\rangle$ be a sequence of function defined on a metric space X. Let lim $f_{n}(x)=f(x)$ for all $x \in X$ and let $n \rightarrow \infty$

$$
M_{n}=\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in X\right\}
$$

Then $\left\langle f_{n}\right\rangle$ converges uniformly to f if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Necessary condition. Let us suppose, the sequence $\left\langle f_{n}\right\rangle$ of functions converges uniformly to f on X. Then by definition, for a given $\varepsilon>0 \exists$ a positive integer m (independent of x) such that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \forall x \in X
$$

Also, M_{n} is the supremum of $\left|f_{n}(x)-f(x)\right|$.
Therefore

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \forall n \geq \dot{m} \quad \forall x \in X
$$

$$
\Rightarrow \quad M_{n}=\sup _{x \in X}\left|f_{n}(x)-f(x)\right|<\varepsilon \forall n \geq m
$$

$\Rightarrow \quad M_{n} \rightarrow 0$, as $n \rightarrow \infty$.
Sufficient condition. Let us assume that $M_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then for a given $\varepsilon>0 \exists$ a positive integer m such that

$$
\left|M_{n}-0\right|<\varepsilon \forall n \geq m \forall x \in X
$$

$\Rightarrow M_{n}<\varepsilon \forall n \geq m, \forall x \in X$
$\Rightarrow \sup _{x \in X}\left|f_{n}(x)-f(x)\right|=M_{n}<\varepsilon, \forall n \geq m$
$\Rightarrow\left|f_{n}(x)-f(x)\right| \leq M_{n}<\varepsilon \quad \forall n \geq m, \forall x \in X$.
$\Rightarrow\left\langle f_{n}\right\rangle$ converges uniformly to f on X.

SOLVED EXAMPLES

Example 1. Show that the sequence $\left\langle f_{n}\right\rangle$ where

$$
f_{n}(x)=n x(1-x)^{n}
$$

does not converge uniformly on $[0,1]$.
Solution. Here, we have

$$
\begin{aligned}
f(x) & =\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{n x}{(1-x)^{-n}} & & \\
& =\lim _{n \rightarrow \infty} \frac{x}{-(1-x)^{-n} \log (1-x)} . & & \\
& =\lim _{n \rightarrow \infty}-\frac{x(1-x)^{n}}{\log (1-x)} & & \\
& =0 & & {\left[\because(1-x)^{n} \rightarrow 0 \forall x \in[0,1]\right] }
\end{aligned}
$$

$\Rightarrow \quad f(x)=0 \quad \forall x \in[0,1]$.
Now $\left.\quad M_{n}=\sup \left\{\left|f_{n}(x)-f(x)\right|\right\}: x \in[0,1]\right\}$

$$
=\sup \left\{n x(1-x)^{n}: x \in[0,1]\right\}
$$

$$
=\sup (1-x)^{n} \forall x \in x[0,1]
$$

Therefore,

$$
M_{n} \geq n \cdot \frac{1}{n}\left(1-\frac{1}{n}\right)^{n}
$$

$$
\left(\text { Taking } x=\frac{1}{n} \in[0,1]\right)
$$

Hence, by M_{n}-test $\left\langle f_{n}\right\rangle$ does not converge uniformly on [0,1]. Therefore, 0 is a point of non-uniform convergence, since $x=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 2. (Weirstrass's M-test). A series $\sum_{n=1}^{\infty} u_{n}(x)$ of functions will converge uniformly
on X if there exists a convergent series $\sum_{n=1}^{\infty} M_{n}$ of positive constants such that

$$
\left|u_{n}(x)\right| \leq M_{n} \quad \forall n \text { and } \forall x \in X
$$

Proof. Since $\sum M_{n}$ is convergent, therefore, by definition for a given $\varepsilon>0$ we can find a positive integer m such that

$$
\begin{equation*}
n \geq m \Rightarrow M_{n+1}+M_{n+2}+\ldots+M_{n+p}<\varepsilon \tag{1}
\end{equation*}
$$

(for $p=1,2,3, \ldots$)
Since $\quad\left|u_{n}(x)\right| \leq M_{n} \forall n$ and $\forall x \in X$.
From (1) and (2), we conclude that

$$
\begin{gathered}
\left|u_{n+1}(x)+u_{n+2}(x)+\ldots+u_{n+p}(x)\right| \leq\left|u_{n+1}(x)\right|+\left|u_{n+2}(x)\right|+\ldots+\left|u_{n+p}(x)\right| \\
\\
\leq M_{n+1}+M_{n+2}+\ldots+M_{n+p} \\
\\
<\varepsilon, \text { for every } n \geq m \text { and } \forall x \in X .
\end{gathered}
$$

Hence, $\sum u_{n}(x)$ converges uniformly on X.

SOLVED EXAMPLES

Example 1. Show that the series

$$
\frac{\cos x}{1^{p}}+\frac{\cos 2 x}{2^{p}}+\frac{\cos 3 x}{3^{p}}+\ldots+\frac{\cos n x}{n^{p}}+\ldots
$$

converges uniformly on \mathbf{R} if $p>1$. Also give the interval of convergence.
Solution. Here, we have

$$
\left|\frac{\cos n x}{n^{p}}\right| \leq \frac{1}{n^{p}} \forall x \in \mathbf{R}
$$

Also, the series $\sum \frac{1}{n^{p}}$ is known to be convergent for $p>1$:
Hence, by Weirstrass's M-test the given series converges uniformly on \mathbf{R} for $p>1$.
Above is true for all $x \in R$.

So the interval of uniform convergence is $[a, b]$ where a, b are any finite distinct real numbers.
Theorem 3. (Abel's Test). The series $\sum u_{n}(x) v_{n}(x)$ will converges uniformly in $[a, b]$ if
(i) $\sum u_{n}(x)$ is uniformly convergent in $[a, b]$
(ii) the sequence $\left\langle v_{n}(x)\right\rangle$ is monotonic for every $x \in[a, b]$:
(iii) the sequence $\left\langle v_{n}(x)\right\rangle$ is uniformly bounded in $\{a, b]$ by k i.e.,

$$
\left|v_{n}(x)\right|<k \forall x \in[a, b] \text { and } \forall n \in \mathbf{N} .
$$

Proof. Let $R_{n, p}(x)$ be denote the partial remainder of the series $\sum u_{n}(x) v_{n}(x)$ and $r_{n, p}(x)$ that of the series $\sum u_{n}(x)$. Then

Given that $\left\langle v_{n}(x)\right\rangle$ is monotonic, therefore,

$$
\begin{equation*}
\left\{v_{n+1}(x)-v_{n+2}(x)\right\},\left\{v_{n+2}(x)-v_{n+3}(x)\right\}, \ldots,\left\{v_{n+p-1}(x)-v_{n+p}(x)\right\} \tag{A}
\end{equation*}
$$

all have the same sign for fixed value of x in $[a, b]$.
Also, given that $\left\langle v_{n}(x)\right\}$ is uniformly bounded by k, therefore

$$
\begin{equation*}
\left|v_{n}(x)\right|<k \text { for all } x \in[a, b] \text { and } \forall n \in \mathbf{N} . \tag{2}
\end{equation*}
$$

Also, since the given series $\sum u_{n}(x)$ is uniformly convergent in $[a, b]$ for a given $\varepsilon>0, \exists$ a positive integer m, independent of x such that for $n \geq m$

$$
\begin{equation*}
\left|r_{n, p}(x)\right|=\left|u_{n+1}(x)+u_{n+2}(x)+\ldots+u_{n+p}(x)\right|<\frac{\varepsilon}{3 k} . \tag{3}
\end{equation*}
$$

From (1) and (3), we have

$$
\begin{align*}
& \left|R_{n, p}(x)\right|<\frac{\varepsilon}{3 k}\left|v_{n+1}(x)-v_{n+2}(x)\right|+\frac{\varepsilon}{3 k}\left|v_{n+2}(x)-v_{n+3}(x)\right| \ldots \\
& \\
& \quad+\frac{\varepsilon}{3 k}\left|v_{n+1}(x)-v_{n+p}(x)\right|+\frac{\varepsilon}{3 k}\left|v_{n+p}(x)\right| \tag{4}\\
& =\frac{\varepsilon}{3 k}\left|v_{n+1}(x)-v_{n+p}(x)\right|+\frac{\varepsilon}{3 k}\left|v_{n+p}(x)\right| .
\end{align*}
$$

Using (A), we have

$$
\begin{aligned}
\mid v_{n+1}(x) & -v_{n+2}(x)\left|+\left|v_{n+2}(x)-v_{n+3}(x)\right|+\ldots+\left|v_{n+p-1}(x)-v_{n+p}(x)\right|\right. \\
& =\left|v_{n+1}(x)-v_{n+2}(x)+v_{n+2}(x)-v_{n+3}(x)+\ldots+v_{n+p-1}(x)-v_{n+p}(x)\right| \\
& =\left|v_{n+1}(x)-v_{n+p}(x)\right| .
\end{aligned}
$$

Now $\quad\left|v_{n+1}(x)-v_{n+p}(x)\right| \leq\left|v_{n+1}(x)\right|+\left|-v_{n+p}(x)\right|$

$$
\leq k+k
$$

$$
\begin{equation*}
<2 k \tag{5}
\end{equation*}
$$

Then (4) can be written as

$$
\begin{gather*}
\left|R_{n, p}(x)\right|<\frac{\varepsilon}{3 k}, 2 k+\frac{\varepsilon}{3 k}, k=\varepsilon \tag{6}\\
\left|u_{n+1}(x) \cdot v_{n+1}(x)\right|+\ldots+u_{n+p}(x) v_{n^{\prime}+p}(x) \mid<\varepsilon \quad \forall n \geq m \quad \forall x \in[a, b] .
\end{gather*}
$$

i.e.,

Hence, from (6), the given series $\sum u_{n}^{\prime}(x) v_{n}(x)$ converges uniformly on $[a, b]$.

SOLVED EXAMPLE

Example 1. Test the series $\sum \frac{(-1)^{n-1}}{n} \cdot x^{n}$ for uniform convergence in $[0,1]$.
Solution. Let us suppose $v_{n}(x)=x^{n}$ and $u_{n}(x)=\frac{(-1)^{n-1}}{n}$.
Clearly, the sequence $\left\langle v_{n}(x)\right\rangle$ is uniformly bounded and monotonically increasing on $[0,1]$. Also, the series $\sum u_{n}(x)=\frac{\sum(-1)^{n-1}}{n}$ is convergent. Hence, by Abel's test the series

$$
\begin{align*}
& R_{n, p}(x)=u_{n+1}(x) v_{n+1}(x)+u_{n+2}(x) v_{n+2}(x)+\ldots u_{n+p}(x) v_{n+p}(x) \\
& =r_{n, \mathrm{~S}}(x) v_{n+1}(x)+\left\{r_{n, 2}(x)-r_{n, 1}(x)\right\} v_{n+2}(x)+\left\{r_{n, 3}(x)-r_{n, 2}(x)\right\} v_{n+3}(x)+\ldots \\
& s+\left\{r_{n, p}(x)-r_{n, p-1}(x)\right\} \nu_{n+p}(x) \\
& =r_{n .1}(x)\left\{v_{n+1}(x)-v_{n+2}(x)\right\}+r_{n, 2}(x)\left\{v_{n+2}(x)-v_{n+3}(x)\right\}+\ldots \\
& +r_{n, p-1}(x)\left\{v_{n+p-1}(x)-v_{n+p}(x)\right\}+r_{n, p}(x) v_{n+p}(x) \tag{1}
\end{align*}
$$

$$
\sum u_{n}(x) v_{n}(x)=\frac{\sum(-1)^{n-1}}{n} \cdot x^{n}
$$

- is uniformly convergent on [0,1].

Theorem 4. (Dirichlet's Test). The scries $\sum u_{n}(x) v_{n}(x)$ will be uniformly convergent on $[a, b]$ if
(i) The sequence $\left\langle v_{n}(x)\right\rangle$ is a positive monotonic decreasing sequence converging uniformly to zero for all $x \in[a, b]$.
(ii) $f_{n}(x)=\sum_{r=1}^{n} u_{r}(x)$ is uniformly bounded in $[a, b]$ i.e.,

$$
\left|f_{n}(x)\right|=\left|\sum_{r=1}^{n} u_{r}(x)\right|<k
$$

for every value of x in $[a, b]$ and for all positive integral values of n, where k is a fixed number, independent of x.

Proof. Proceed as in previous theorem, we have

$$
\begin{aligned}
R_{n, p}(x)= & u_{n+1}(x) v_{n+1}(x)+u_{n+2}(x) v_{n+2}(x)+\ldots+u_{n+p}(x) v_{n+p}(x) \\
= & {\left[s_{n+1}(x)-s_{n}(x)\right] v_{n+1}(x)+\left[s_{n+2}(x)-s_{n+1}(x)\right] \cdot v_{n+2}(x)+\ldots } \\
& \quad+\left[s_{n+p}(x)-s_{n+p-1}(x)\right] v_{n+p}(x) \\
= & s_{n+1}(x)\left[v_{n+1}(x)-v_{n+2}(x)\right]+s_{n+2}(x)\left[v_{n+2}(x)-v_{n+3}(x)\right]+\ldots \\
& +s_{n+p-1}(x)\left[v_{n+p-1}(x)-v_{n+p}(x)\right]+s_{n+p}(x) v_{n+p}(x)-s_{n}(x) v_{n+1}(x) \ldots(1)
\end{aligned}
$$

Now, since $\left\langle\nu_{n}(x)\right\rangle$ is a positive monotonic decreasing sequence, therefore, $\nu_{1}(x), v_{2}(x), v_{3}(x) \ldots$ are all positive and

$$
v_{1}(x)>v_{2}(x)>v_{3}(x)>\ldots>v_{n}(x)>\ldots
$$

Also $\left|f_{n}(x)\right|<k$ for all x in $[a, b]$ and for all $n \in \mathbf{N}$.
\therefore From (1), we have

$$
\begin{align*}
\left|R_{n: p}(x)\right| \leq \mid f_{n+1}(x)\left[v_{n+1}(x)-v_{n+2}(x)\right]+\ldots & +\left|f_{n+p-1}(x)\right|\left[v_{n+p-1}(x)-v_{n+p}(x)\right] \\
& \quad+\left|f_{n+p}(x)\right| v_{n+p}(x)\left|+s_{n}(x)\right| v_{n+1}(x) \mid
\end{aligned} \quad \begin{aligned}
&<k\left[v_{n+1}(x)-v_{n+p}(x)+v_{n+p}(x)+v_{n+1}(x)\right] \\
&= 2 k v_{n+1}(x) .
\end{align*}
$$

Also, since $\left\langle v_{n+1}(x)\right\rangle$ converges to zero, we have

$$
\begin{equation*}
\left|v_{n}(x)\right|<\frac{\varepsilon}{2 k} \quad \forall n \geq m \tag{3}
\end{equation*}
$$

i.e., $\quad v_{n}(x)<\frac{\varepsilon}{2 k} \forall n \geq m$.

From (2) and (3), we conclude that

$$
\begin{array}{ll}
& \left|R_{n, p}(x)\right|<2 k \cdot \frac{\varepsilon}{2 k} \text { for } n \geq m \\
\Rightarrow \quad\left|R_{n, p}(x)\right|<\varepsilon \text { for } n \geq m \forall x \in[a, b] .
\end{array}
$$

Hence, the series $\sum u_{n}(x) v_{n}(x)$ is uniformly convergent in $[a, b]$.

SOLVED EXAMPLE

Example 1. Show that the series $\sum_{n=1}^{\infty}(-1)^{n-1} \cdot x^{n}$ converges uniformly in $0 \leq x \leq k<1$.
Solution. Let $u_{n}=(-1)^{n-1}, v_{n}(x)=x^{n}$.
Since $\quad s_{n}(x)=\sum_{r=1}^{n} u_{r}= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}$
$\Rightarrow s_{n}(x)$ is bounded for all $n \in \mathbf{N}$.
Also $\left\langle v_{n}(x)\right\rangle$ is positive monotonic decreasing sequence, converging to a zero for all values of x in $0 \leq x \leq k<1$.

Hence, by Dirichlet's test, the given series is uniformly convergent in $0 \leq x \leq k<1$.
Example 2. Show that the sequence $\left\langle f_{n}\right\rangle$, where $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ does not converge uniformly on \mathbf{R}.

Solution. Here, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{n x}{1+n^{2} x^{2}}=0 \quad \forall x \in \mathbf{R}
$$

Let if possible, the sequence converges uniformly on \mathbf{R}, then for a given $\varepsilon>0, \exists$ a positive integer m such that

$$
\begin{equation*}
n \geq m, x \in \mathbf{R} \Rightarrow\left|f_{n}(x)-f(x)\right|=\frac{n|x|}{1+n^{2} x^{2}}<\varepsilon \tag{1}
\end{equation*}
$$

If we take $\mathrm{E}=\frac{1}{3}$ and $x=\frac{1}{n}(n=1,2,3, \ldots)$, then

$$
\left|f_{n}(x)-f(x)\right|=\frac{n \frac{1}{n}}{1+n^{2} \frac{1}{n^{2}}}=\frac{1}{2}<\frac{1}{3}=\varepsilon
$$

Thus, there is no single m such that (1) holds simultaneously for all $x \in \mathbf{R}$.
For if, such an m existed, we would have (on taking $n=m$)

$$
\left|f_{m}(x)-f(x)\right|<\frac{1}{3} \quad \forall x \in \mathbf{R}
$$

but if we take $x=\frac{1}{m}$, we get a contradiction $\left(\because\right.$ in this case $\left.\frac{1}{2}<\frac{1}{3}\right)$ and therefore, the sequence is not uniformly convergent on \mathbf{R}. Also since $\frac{1}{m} \rightarrow 0$, therefore, 0 is a point of non-uniform convergence.

Example 3. Discuss the series

$$
\sum_{n=1}^{\infty}\left[\frac{n x}{1+n^{2} x^{2}}-\frac{(n-1) x}{1+(n-1)^{2} x^{2}}\right]
$$

for uniform convergence.
Solution. Here, we have

$$
\begin{aligned}
& u_{1}(x)=\frac{x}{1+x^{2}}-0 \\
& u_{2}(x)=\frac{2 x}{1+2^{2} x^{2}}-\frac{x}{1+x^{2}} \\
& \ldots \quad \cdots \quad \cdots \quad \cdots \\
& \cdots \quad \cdots \quad \cdots \quad \cdots \\
& u_{n}(x)=\frac{n x}{1+n^{2} x^{2}}-\frac{(n-1) x}{\left(1+(n-1)^{2} x^{2}\right)} .
\end{aligned}
$$

On adding, we get

$$
f_{n}(x)=\frac{n x}{1+n^{2} x}
$$

Now do same as example (1).
Example 4. Show that the sequence $\left\langle f_{n}\right\rangle$ where

$$
f_{n}(x)=\frac{x}{1+n x^{2}}
$$

converges uniformly on \mathbf{R}.
Solution. Here, we have

$$
\begin{aligned}
f(x) & =\lim _{n \rightarrow \infty} \frac{x}{1+n x^{2}}=0 \forall x \in \mathbf{R} . \\
y & =f_{n}(x)-f(x)=\frac{x}{1+n x^{2}} .
\end{aligned}
$$

Let
For maxima and minima of y, we must have

$$
\begin{array}{rlrl}
\frac{d y}{d x} & =0 \\
\Rightarrow & \frac{\left(1+n x^{2}\right)-2 n x^{2}}{\left(1+n x^{2}\right)^{2}} & =0 \\
\Rightarrow & \frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}} & =0 \\
\Rightarrow & x & = \pm \frac{1}{\sqrt{n}} .
\end{array}
$$

Clearly, $\frac{d^{2} y}{d x^{2}}$ is negative when $x=\frac{1}{\sqrt{n}}$.
\therefore Maximum value of $y=\frac{1 / \sqrt{n}}{1+n\left(\frac{1}{n}\right)}=\frac{1}{2 \sqrt{n}}$.
Also, $\quad \frac{1}{2 \sqrt{n}}-|y|=\frac{1}{2 \sqrt{n}}-\frac{|x|}{1+n x^{2}}=\frac{1+n x^{2}-2 \sqrt{n}|x|}{2 \sqrt{n}\left(1+n x^{2}\right)}$

$$
=\frac{(1-|x| \sqrt{n})^{2}}{2 \sqrt{n}\left(1+n x^{2}\right)} \geq 0
$$

Now,

$$
\begin{aligned}
M_{n} & =\sup _{x \in \mathbf{R}}\left|f_{n}(x)-f(x)\right| \\
& =\sup _{x \in \mathbf{R}}\left|\frac{x}{1+n x^{2}}\right|=\sup _{x \in \mathbf{R}}|y| \\
& =\max \cdot y=\frac{1}{2 \sqrt{n}} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence, by M_{n}-test the sequence is uniformly convergent on \mathbf{R}.
Example 5. Show that 0 is a point of non-uniformly convergence of the sequence $\left\langle f_{n}(x)\right\rangle$, where $f_{n}(x)=n x e^{-n x^{2}}, x \in \mathbf{R}$.

Solution. Here, we have

$$
\begin{array}{rlr}
f(x) & =\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} n x e^{-n x^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{n x}{e^{n x^{2}}} & \\
& =\lim _{n \rightarrow \infty} \frac{x}{x^{2} e^{n x^{2}}} & \text { Form } \frac{\infty}{\infty} \\
& =0 . & \text { (By L-Hospital rule) }
\end{array}
$$

Let if possible, the sequence be uniformly convergent in a neighbourhood $] 0, k$ [of 0 , where $k \in \mathbf{N}$.

Then, for a given $\varepsilon>0, \exists$ a positive integer m such that

$$
\begin{equation*}
n \geq m, x \in] 0, k\left[\Rightarrow\left|f_{n}(r)-f(x)\right|=n x e^{-n x^{2}}<\varepsilon .\right. \tag{1}
\end{equation*}
$$

In particular, the inequality (1) must be true for $x=\frac{1}{\sqrt{n}}$, where n is a positive integer greater than m such that

$$
0<\frac{1}{\sqrt{n}}<k
$$

Then (1) gives

$$
\frac{\sqrt{n}}{e}<\varepsilon
$$

Now, since $x \rightarrow 0$, when $n \rightarrow \infty$, we see that on taking x sufficiently near 0 , we can take n so large that $\frac{\sqrt{n}}{e}>\varepsilon$, which is a contradiction.

Hence, 0 is a point of non-uniform convergence of the sequence.

Aliter. Let $y=f_{n}(x)-f(x)=n x e^{-n x^{2}}$.
For maxima and minima of y, we must have

$$
\begin{aligned}
\frac{d y}{d x}=0 & \Rightarrow n e^{-n x^{2}}-2 n^{2} x^{2} e^{-n x^{2}}=0 \\
& \Rightarrow x= \pm \frac{1}{\sqrt{2 n}} .
\end{aligned}
$$

Also,

$$
\frac{d^{2} y}{d x^{2}}=- \text { ve, when } x=-\frac{1}{\sqrt{2 n}} .
$$

Therefore, maximum $\quad y=n-\frac{1}{\sqrt{2 n}} e^{-n} \cdot \frac{1}{2 n}=\sqrt{\frac{n}{2 e}}$

$$
\begin{aligned}
\Rightarrow \quad M_{n} & =\sup _{x \in \mathbf{R}}\left|f_{n}(x)-f(x)\right| \\
& =\sup _{x \in \mathbf{R}} n|x| e^{-n x^{2}} \\
& =\sup |y| \\
& =\text { Max. } y \\
& =\sqrt{\frac{n}{2 e}} \rightarrow \infty \text { as } n \rightarrow \infty
\end{aligned}
$$

$\Rightarrow M_{n}$ does not tends to zero as $n \rightarrow \infty$.
Hence by M_{n}-test, the given sequence is not uniformly convergent.
Also $x \rightarrow 0$ as $n \rightarrow \infty$, therefore, 0 is a pair of non-uniformly convergence.
Example 6. Show that the sequence $\left\langle f_{n}\right\rangle$, where $f_{n}=x^{n-1}(1-x)$.
Converges uniformly in the interval $[0,1]$.
Solution. Here, we have

$$
\begin{aligned}
f(x) & =\lim _{n \rightarrow \infty} f_{n}(x) \\
& =\lim _{n \rightarrow \infty} x^{n-1}(1-x)=0 \quad \forall x \in[0,1] . \\
y & =\left|f_{n}(x)-f(x)\right|=x^{n-1}(1-x) .
\end{aligned}
$$

Let
For maxima or minima of y, we must have $\frac{d y}{d x}=0$

$$
\begin{array}{ll}
\Rightarrow & (n-1) x^{n-2}(1-x)-x^{n-1}=0 \\
\Rightarrow & x^{n-2}[(n-1)(1-x)-x]=0 \\
\Rightarrow & x=0, \frac{n-1}{n} .
\end{array}
$$

Also, we can see that $\frac{d^{2} y}{d x^{2}}$ is negative, when $x=\frac{n-1}{n}$.
Now

$$
\begin{aligned}
M_{n} & =\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| . \\
& \left.=\sup _{x \in[0,1]} \mid x^{n-1}, 1-x\right) \mid \\
& =\sup _{x \in[0,1]} \cdot|y| \\
& =\operatorname{Max} \cdot y \\
& =\left(1-\frac{1}{n}\right)^{n-1}\left(1-\frac{n-1}{n}\right) \\
& \rightarrow \frac{1}{e} \times 0=0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence, by M_{n}-test, the sequence is uniformly convergent on $[0,1]$.
Example 7. Show that the sequence $\left\langle f_{n}\right\rangle$, where $f_{n}(x)=\frac{n}{n+x}, x \geq 0$ is uniformly convergent in any finite interval.

Solution. Here, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{n}{n+x}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{1+x / n}=1 \quad \forall x \geq 0 .
$$

For an arbitrary choosen positive number ε, we have
if $\quad \begin{aligned}\left|f_{n}(x)-f(x)\right| & <\varepsilon \\ \left.\frac{n}{n+x}-1 \right\rvert\, & <\varepsilon\end{aligned}$
i.e., if
i.e., if
i.e., if

$$
\begin{aligned}
\left|\frac{-x}{n+x}\right| & <\varepsilon \\
\frac{x}{n+x} & <\varepsilon \\
n & >x\left(\frac{1}{\varepsilon}-1\right)
\end{aligned}
$$

Obviously, n increase with x and tends to ∞ as $x \rightarrow \infty$.
Therefore, converges is not uniform in $[0, \infty[$.
But if $] 0, k[$ is any finite interval, where $k>0$, however large then m is any positive integer $\geq k\left(\frac{1}{\varepsilon}-1\right)$ such that

$$
n \geq m, x \in[0, k] \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

Hence, the sequence is uniformly convergent on $[0, k]$.
Example 8. Show that the series $\frac{\cos x}{1^{2}}+\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}+\ldots$ converges uniformly on \mathbf{R}. Give the interval of uniform convergence.

Solution. Let $\quad \sum_{n=1}^{\infty} u_{n}(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$.
Then, we have

$$
\left|u_{n}(x)\right|=\left|\frac{\cos n x}{n^{2}}\right| \leq \frac{1}{n^{2}} \forall x \in \mathbf{R}
$$

Taking $M_{n}=\frac{1}{n^{2}}$, the series $\sum M_{n}=\sum \frac{1}{n^{2}}$ is convergent.
Hence, by weirstrass's M-test, the given series converges uniformly on \mathbf{R}.
Also, the interval of uniform convergence is $a \leq x \leq b$, where a and b are any finite unequal real numbers.

Example 9. The sum to n terms of a series is $f_{n}(x)=\frac{n^{2} x}{1+n^{4} x^{2}}$.
Show that it converges non-uniformly in the interval $[0,1]$.
Solution. Here, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{n^{2} x}{1+n^{4} x^{2}}=0 \quad \forall x \in[0,1]
$$

Let if possible, the sequence $\left\langle f_{n}(x)\right\rangle$ converges uniformly on [0, 1]. Then, by definition for a given $\varepsilon>0, \exists m \in \mathbf{N}$ such that

$$
\begin{equation*}
n \geq m . x \in[0,1] \Rightarrow\left|f_{n}(x)-f(x)\right|=\frac{n^{2}|x|}{1+n^{4} x^{2}}<\varepsilon \tag{1}
\end{equation*}
$$

If $x=\frac{1}{n^{2}}(n \in \mathbf{N})$, then

$$
\left|f_{n}(x)-f(x)\right|=\frac{n^{2} \cdot \frac{1}{n^{2}}}{1+n^{4} \cdot \frac{1}{n^{4}}}=\frac{1}{2}
$$

If we take $\varepsilon=\frac{1}{2}$, there is no single m such that (1) holds simultaneously for all $x \in[0,1]$. For if such m exists, we would have

$$
\left|f_{m}(x)-f(x)\right|<\frac{1}{2} \forall x \in[0,1]
$$

In particular, when $x=\frac{1}{m^{2}}$, we get a contradiction

$$
\left(\because \text { in this case we would have } \frac{1}{2}<\frac{1}{2}\right)
$$

Hence, convergence is non-uniform on $[0,1]$.

- SUMMARY

- A sequence $\left\langle f_{n}(x)\right\rangle$ is said to be pointwise convergent to $f(x)$ if for given $\varepsilon>0 \exists a$ positive integer m depending on x such that $\left|f_{n}(x)-f(x)\right|<\varepsilon \forall n \geq m$.
- A sequence $\left\langle f_{n}(x)\right\rangle$ is said to be uniformly convergent to $f(x), f(x)=\lim f_{n}(x)$ if for given $\varepsilon>0 \exists$ a positive integer m not depending on x such that $\left|f_{n}(x)-f(x)\right|<\varepsilon \forall n \geq m \forall x$.
- Cauchy's general principle of uniform convergence : A sequence $\left\langle f_{n}(x)\right\rangle$ converges uniformly on X if f for every $\varepsilon>0 \exists$ a positive integer m such that

$$
\left|f_{n}(x)-f_{p}(x),\right|<\varepsilon \forall n \geq m, p \geq m
$$

- M_{n}-test $:$ Let $f(x)=\lim f_{n}(x)$ and $M_{n}=\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in X\right\}$. Then $\left\langle f_{n}(x)\right\rangle$ converges uniformly to $f(x)$ iff $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Weirstrass's M-Test : A series $\sum_{n=1}^{\infty} u_{n}(x)$ of functions, will converge uniformly on X if there exists a convergent series $\sum_{n=1}^{\infty} M_{n}$ of positive constants such that $\left|u_{n}(x)\right|<\dot{M}_{n} \forall n$ and $\forall x \in X$.

- STUDENT ACTIVITY

1. Show that the sequence $\left\langle f_{n}(x)\right\rangle$, where $f_{n}(x)=n x(1-x)^{n}$, is not uniformly convergent on $[0$, 1].
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Show that the sequence $\left\langle f_{n}(x)\right\rangle$, where $f_{n}(x)=\frac{x}{1+n x^{2}}$ converges uniformly on \mathbf{R}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- TEST YOURSELF

1. Test the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+x^{2}}$ for uniform convergence for all values of x.
2. Show that 0 is the point of non-uniform convergence of the sequence $\left\langle f_{n}(x)\right\rangle$ when

$$
f_{n}(x)=e^{-n r}, x \geq 0
$$

3. Show that 0 is a point of non-uniform convergence of the sequence $\left\langle f_{n}\right\rangle$ where

$$
f_{n}(x)=1-\left(1-x^{2}\right)^{n}
$$

4. Show that the sequence $\left\langle f_{n}(x)\right\rangle$ on $X=[0,1]$ is convergent on every point of the metric space convergent on every point of metric space X but is not uniformly convergent on X, when $f_{n}(x)=x^{\prime \prime}$ and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x^{n}=0, \text { when } 0<x \leq 1 \\
& \lim _{n \rightarrow \infty} x^{n}=1, \text { when } x=1
\end{aligned}
$$

5. Show that the sequence $\left\langle f_{n}\right\rangle$ where

$$
f_{n}(x)=x^{n}(1-x)
$$

converges uniformly in $[0,1]$.

ANSWERS

1. Uniformly convergent for all x.

4

. RIEMANN INTEGRAL

STRUCTURE

- Some Definitions
- Riemann Integral
- Some Theorems
- Lower and Upper Riemann Integrals
- Integrability of Continuous and Monotone functions.
- Algebra of R-integrable Functions
- Fundamental Theorem of integral calculus
- Summary
- Student Activity
- Test Yourself

LEARNING OBJECTIVES

After going through this unit you will learn :

- What is Riemann integral ?
- How to check whether the given function is Riemann integrable ona given interval.

- 4.1. SOME DEFINITIONS

Partition of a Closed Interval :

Let $I=[a, b]$ be a closed and bounded interval. Then, a finite set of points $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<x_{2} \ldots . .<x_{n-1}<x_{n}=b
$$

is called a partition or division of the interval $I=[a, b]$.

Segments of Partitions :

The closed sub-intervals $I_{1}=\left[a=x_{0}, x_{1}\right], I_{2}=\left[x_{1}, x_{2}\right] \ldots, I_{n}=\left[x_{n-1}, x_{n}=b\right]$ are called the segments of the partition.
Length of the Subinterval :
The length of the subinterval I_{r} is denoted by Δx_{r} or δ_{r} defined by

$$
\delta_{r}=\Delta x_{r}=x_{r}-x_{r-1} .
$$

Norm of the Partition :

The norm of a partition P is the maximum of the lengths of the segments of a partition P, denoted by $\|P\|$, defined by

$$
\|P\|=\max \left\{\Delta x_{r}, r=1,2, \ldots, n\right\} .
$$

Refinement of Partition :

If a partition P^{*} is a refinement of a closed and bounded interval $[a, b]$ then

$$
P^{*}=P_{1} \cup P_{2}
$$

is called the common refinement of P_{1} and P_{2}
Family of Partitions :
The family of all partitions of the closed interval $[a, b]$ is denoted by $\mathbf{P}(a, b)$.

Lower Riemann Sum, Upper Riemann Sum and Oscillatory Sum :
Let f be a bounded real valued function defined on a bounded and closed interval $[a, b]$ and $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\}$ be any partition of $[a, b]$. Also, let m_{r} and M_{r} denotes the infimum and supermum of the function f on the subinterval $\left[x_{r-1}, x_{r}\right]$ respectively, then the two sums

$$
L(P, f)=\sum_{r=1}^{n} m_{r} \delta x_{r} \cdot \text { and } \quad U(P, f)=\sum_{r=1}^{n} M_{r} \delta x_{r}
$$

are respectively called the lower Riemann sum and upper Riemann sum off on $[a, b]$ with respect to partition P.

Also, $\quad U(P, f)-L(P, f)=\sum_{r=1}^{n}\left[M_{r}-m_{r}\right] \delta x_{r}$

$$
=\sum_{r=1}^{n} \omega_{r} \delta x_{r} \text { where } \omega_{r}=\left(M_{r}-m_{r}\right)
$$

Then sum $\sum_{r=1}^{n} \omega_{r} \delta x_{r}$ is called the oscillatory sum for the function f with respect to partition P of $[a, b]$.
Upper and Lower Integrals :
The infimum of the set of the upper sums is called the upper integral of fover $[a, b]$ and is denoted by $U=\int_{a}^{b} f(x) d x$.

Also, the supremum of the set of the lower sums is called the lower integral of fover $[a, b]$ and is denoted by $L=\int_{-a}^{b} f(x) d x$.

- 4.2. RIEMANN INTEGRAL

From the above discussion, it is clear that the supremum of the set of upper sums is $M(b-a)$ and the infimum of the set of the lower sums is $m(b-a)$, where M and m be the bounds of f on $[a, b]$ such that for every value of r

$$
m \leq m_{r} \leq M_{r} \leq M
$$

Definition. A bounded function f is said to be Riemann integrable, or simply integrable over $[a, b]$. if its upper and loner integrals are equal; and their common value being called Riemann integral or simply the integral denoted by

$$
\int_{a}^{b} f(x) d x .
$$

- 4.3. SOME THEOREMS

Theorem 1. Let f be a bounded function defined on $\lfloor a, b]$ and let m and M be the infimum (and stupremum of $f(x)$ in $\{a, b]$, then for every partition P of $\{a, b]$, we have

$$
m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)
$$

Proof. Let $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b\right\}$ be any partition of $[a, b]$. Also, let $I_{r} \cdots\left[x_{r-1}, x_{r}\right]^{\prime} r=1.2 \ldots, n$ be the subintervals of $[a, b]$.

It M and m be the least upper bound and greatest lower bound of f on $[a, b]$, then we have $m \leq f(x) \leq M \quad \forall x \in[a, b] \quad$ (By definition of supremum and infimum)
Now let M_{r} and m_{r} by the supremum and infimum of f in I_{r}.
Then

$$
m \leq m_{r} \leq M_{r} \leq M \text { for } r \in \mathbf{N}
$$

$\Rightarrow \quad m \delta_{r} \leq m_{r} \delta_{r} \leq M_{r} \delta_{r} \leq M \delta_{r}$
(Multiplying by δ_{r})
$\Rightarrow \quad \sum_{r=1}^{n} m \delta_{r} \leq \sum_{r=1}^{n} m_{r} \delta_{r} \leq \sum_{r=1}^{n} M_{r} \delta_{r} \leq \sum_{r=1}^{n} M \delta_{r}$
(By summing the above result)

$$
\text { Now } \quad \begin{aligned}
\sum_{r=1}^{n} m \delta_{r} & =m \sum_{r=1}^{n} \delta_{r}=m \sum_{r=1}^{n}\left(x_{r}-x_{r-1}\right) \\
& =m\left[\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\left(x_{3}-x_{2}\right)+\ldots+\left(x_{n}-x_{n-1}\right)\right] \\
& =m\left(x_{n}-x_{0}\right)=m(b-a)
\end{aligned} \quad\left(\because \delta_{r}=x_{r}-x_{r-1}\right)
$$

Similarly, we may find that

$$
\sum_{r=1}^{n} M \delta_{r}=M(b-a) .
$$

Also, by definition of lower sum and upper sums, we get

$$
\sum_{r=1}^{n} m_{r} \delta_{r}=L(P, f), \quad \sum_{r=1}^{n} M_{r} \delta_{r}=U(P, f)
$$

Using all these values in (1), we get

$$
m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a) \quad \forall P \in \mathbf{P}[a, b]
$$

Theorem 2. If f_{1} and f_{2} are two real valued bounded functions defined on $[a, b]$, then
(i) $L\left(P, f_{1}+f_{2}\right) \geq L\left(P, f_{1}\right)+L\left(P, f_{2}\right)$
and (ii) $U\left(P, f_{1}+f_{2}\right) \leq U\left(P, f_{1}\right)+U\left(P, f_{2}\right) \quad \forall P \in \mathbf{P}[a, b]$
Proof. Let $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=b\right\}$ be any partition of $[a, b]$. Also, let $I_{r}=\left[x_{r-1}, x_{r}\right], r=1,2, \ldots, n$ be the subintervals of $[a, b]$.

Since, f_{1}, f_{2} both are bounded.
$\Rightarrow \quad f_{1}+f_{2}$ is bounded. $\quad(\because$ Sum of two bounded functions is also bounded $)$
Let $M_{r}, m_{r}, M_{1 r}, m_{1 r}$ and $M_{2 r}, m_{2 r}$ be the least upper bounds and greatest lower bounds of the functions $f_{1}+f_{2}, f_{1}$ and f_{2} in I_{r} for $r=1,2, \ldots, n$ respectively.
(i) By definition of infimum, we have

$$
\begin{aligned}
& f_{1}(x) \geq m_{1 r} \\
& f_{2}(x) \geq m_{2 r} \quad \forall x \in I_{r}
\end{aligned}
$$

Therefore, $\quad f_{1}(x)+f_{2}(x) \geq m_{1 r}+m_{2 r}$
$\Rightarrow \quad \quad \quad\left(f_{1}+f_{2}\right)(x) \geq m_{1 r}+m_{2 r}$
$\Rightarrow\left(m_{1 r}+m_{2 r}\right)$ is a lower bound of $\left(f_{1}+f_{2}\right)(x)$ on I_{r}. But, since m_{r} to be the greatest lower bound of $\left(f_{1}+f_{2}\right)$ on I_{r}, therefore,

$$
\begin{array}{llr}
& m_{r} \geq m_{1 r}+m_{2 r} \\
\Rightarrow & m_{r} \delta_{r} \geq m_{1 r} \delta_{r}+m_{2 r} \delta_{r} \\
\Rightarrow & \sum_{r=1}^{n} m_{r} \delta_{r} \geq \sum_{r=1}^{n} m_{1 r} \delta_{r}+\sum_{r=1}^{n} m_{2 r} \delta_{r} \\
\Rightarrow & L\left[P, f_{1}+f_{2}\right] \geq L\left(P, f_{1}\right)+L\left(P, f_{2}\right) . & \text { (Multiplying by } \delta_{r} \text {) }
\end{array}
$$

(ii) By definition of supremum, we have

$$
\begin{array}{rlr}
& f_{1}(x) \leq M_{1 r} \\
& f_{2}(x) \leq M_{2 r} \forall x \in I_{r} \\
\Rightarrow & f_{1}(x)+f_{2}(x) \leq M_{1 r}+M_{2 r} \\
\Rightarrow & \left(f_{1}+f_{2}\right)(x) \leq M_{1 r}+M_{2 r} \\
\Rightarrow & M_{1 r}+M_{2 r} \text { is an upper bound of }\left(f_{1}+f_{2}\right)(x) \text { on } I_{r} & \\
\Rightarrow & M_{r} \leq M_{1 r}+M_{2 r} \\
\Rightarrow & M_{r} \delta_{r} \leq M_{1 r} \delta_{r}+M_{2 r} \delta_{r} & \\
\Rightarrow & \sum_{r=1}^{n} M_{r} \delta_{r} \leq \sum_{r=1}^{n} M_{1 r} \delta_{r}+\sum_{r=1}^{n} M_{2 r} \delta_{r} & \text { (Multiplying by } \left.\delta_{r}\right) \\
\Rightarrow & U\left(P, f_{1}+f_{2}\right) \leq U\left(P, f_{1}\right)+U\left(P, f_{2}\right) . & \text { (By summing the above result) } \\
\Rightarrow & &
\end{array}
$$

Theorem 3. If f be a real valued bounded function defined on $[a, b]$ and $P_{1}, P_{2} \in \mathbf{P}(a, b)$, such that P_{2} is the refinement of P_{1}, then

$$
L\left(P_{1}, f\right) \leq L\left(P_{2}, f\right), U\left(P_{2}, f\right) \leq U\left(P_{1}, f\right)
$$

Proof. Let $P_{1}=\left\{a=x_{0}<x_{1}<x_{2} \ldots<x_{r-1}, x_{r} \ldots, x_{n}=b\right\}$ be any partition of $[a, b]$ and let P_{2} be any other partition of $[a, b]$ such that

$$
P_{2}=\left[a=x_{0}, x_{1}, x_{2}, \ldots, x_{r-1}, \alpha, x_{r}, \ldots, x_{n}=b\right]
$$

contains just one point α more than $P_{1}\left(x_{r-1}<\alpha<x_{r}\right)$.

Now let, the least upper bounds of f in the subinterval $\left[x_{r-1}, x_{r}\right],\left[x_{r-1}, \alpha\right]$ and $\left[\alpha, x_{r}\right]$ be $m_{r}, m_{1 r}$ and $m_{2 r}$ respectively. Then, by the definition of least upper bound, it is clear that

$$
\begin{equation*}
M_{r}<M_{1 r} \text { and } M_{r}<M_{2 r} \tag{1}
\end{equation*}
$$

From the definition of lower Darboux sum, we find that $M_{r}\left(x_{r}-x_{r-1}\right)$ is the contribution of the closed interval $\left[x_{r-1}, x_{r}\right]$ to $L\left(P_{1}, f\right)$ and $M_{1 r}\left(\alpha-x_{r-1}\right)+M_{2 r}\left(x_{r}-\alpha\right)$ that of the closed interval $\left[x_{r-1}, x_{r}\right]$ to $L\left[P_{2}, f\right]$.

Since α is the only extra point in P_{2}, which is not in P_{1} and $x_{r-1}<\alpha<x_{r}$ therefore, the contribution of each subinterval except $I_{r}=\left[x_{r-1}, x_{r}\right]$ to $L\left(P_{1}, f\right)$ and $L\left(P_{2}, f\right)$ is the same. Thus,

$$
L\left(P_{2}, f\right) \geq L\left(P_{1}, f\right)
$$

$$
\begin{equation*}
\Rightarrow \quad L\left(P_{1}, f\right) \leq L\left(P_{2}, f\right) \tag{2}
\end{equation*}
$$

In a similar manner taking the greatest lower bounds of f in the subintervals $\left[x_{r-1}, x_{r}\right],\left[x_{r \sim 1}, \alpha\right]$ and $\left[\alpha, x_{r}\right]$ as $m_{r}, m_{1 r}$ and $m_{2 r}$ respectively, we may prove that

$$
\begin{equation*}
U\left(P_{2}, f\right) \leq U\left(P_{1}, f\right) \tag{3}
\end{equation*}
$$

Also, we know that

$$
\begin{equation*}
L\left(P_{2}, f\right) \leq U\left(P_{2}, f\right) \tag{4}
\end{equation*}
$$

From (2), (3) and (4), we conclude that

$$
L\left(P_{1}, f\right) \leq L\left(P_{2}, f\right) \leq U\left(P_{2}, f\right) \leq U\left(P_{1}, f\right)
$$

Theorem 4. Let f be a real valued function, defined on $[a, b]$ and $P_{1}, P_{2} \in \mathbf{P}[a, b]$, then
(i) $L\left(P_{1}, f\right) \leq U\left(P_{2}, f\right)$
(ii) $L\left(P_{2}, f\right) \leq U\left(P_{1}, f\right)$.

Proof. Let P_{1} and P_{2} be two partitions of the interval $[a, b]$. Then, it is clear that $P_{1} \cup P_{2}$ is the common refinement of P_{1} and P_{2}.

Also

$$
P_{1} \subseteq P_{1} \cup P_{2} \text { and } P_{2} \subseteq P_{1} \cup P_{2}
$$

Then, from above theorem, we have

$$
\begin{gather*}
L\left(P_{1}, f\right) \leq L\left(P_{1} \cup P_{2}, f\right) \tag{1}\\
U\left(P_{1}, f\right) \geq U\left(P_{1} \cup P_{2}, f\right) \tag{2}
\end{gather*}
$$

and
Using, theorem (3), equation (1) and (2) gives

$$
\begin{equation*}
L\left(P_{1}, f\right) \leq L\left(P_{1} \cup P_{2}, f\right) \leq U\left(P_{1} \cup P_{2}, f\right) \leq U\left(P_{2}, f\right) \tag{3}
\end{equation*}
$$

Similarly, we may prove that

$$
\begin{equation*}
L\left(P_{2}, f\right) \leq L\left(P_{1} \cup P_{2}, f\right) \leq U\left(P_{1}, f\right) \tag{4}
\end{equation*}
$$

From (3) and (4), we conclude that

$$
L\left(P_{1}, f\right) \leq U\left(P_{2}, f\right) \text { and } L\left(P_{2}, f\right) \leq U\left(P_{1}, f\right)
$$

- 4.4. LOWER AND UPPER RIEMANN INTEGRALS

If f is bounded on the interval $[a, b]$, then for every $P \in \mathbf{P}(a, b), U(P, f)$ and $L(P, f)$ exist and are bounded. Then the lower Riemann integral is defined as

$$
\int_{-}^{b} f=\sup _{\mathbf{p}} L(P, f)
$$

and the upper Riemann integral is defined as

$$
\int_{a}^{b} f=\inf _{\mathbf{P}} U(P, f) .
$$

Riemann Integrable Function :

Definition I. A real valued function $f(x)$ is said to be Riemann integrable on $[a, b]$ if and only if their lower and upper Riemann integrals are equal.
i.e., iff

$$
\int_{-}^{b} f=\int_{a}^{b} f
$$

The common value of these integrals is known as the Riemann integral of f on $[a, b]$ and is denoted by $\int_{a}^{b} f(x) d x$
i.e., $\quad \int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$.

Definition II. A function fis said to be Riemann integrable over $[a, b]$ if and only if for every $\varepsilon>0$ there exists a positive number δ and a number I such that for every partition

$$
P=\left[a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right]
$$

with $\|P\|<\delta$ and for every $t_{r} \in\left[x_{r-1}, x_{r}\right]$

$$
\left|\sum_{r=1}^{n} f\left(t_{r}\right)\left(x_{r}-x_{r-1}\right)-I\right|<\varepsilon .
$$

Here I is said to be the integral of f over $[a, b]$ and the class of all bounded functions f which are Riemann integrable on $[a, b]$ is denoted by $\mathbf{R}[a, b]$.

Theorem 1. (Darboux Theorem). Assume that fis a bounded function defined on $[a, b]$. Then for every $\varepsilon>0$, there exists $\delta>0$ such that

$$
U(P, f)<\int_{a}^{b} f+\varepsilon \text { and } L(P, f)>\int_{a}^{b} f-\varepsilon
$$

for every partition P with $\|P\| \leq \delta$.
Proof. Given that, f is bounded on $[a, b]$, then by definition of boundedness there exist $K>0$ such that

$$
|f(x)| \leq K \quad \forall x \in[a, b] .
$$

Also, since $\inf U(P, f)$ is defined as $\int_{a}^{b} f$
\therefore for every $\varepsilon>0$ there exists a partition $P_{1}=\left[a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right]$ such that

$$
\begin{equation*}
U\left(P_{1}, f\right)<\int_{a}^{b} f+\varepsilon / 2 . \tag{1}
\end{equation*}
$$

If $x_{0}=a$ and $x_{n}=b$, then the partition P has $(n-1)$ points. Let $\delta_{1}>0$ be any number such that

$$
\begin{equation*}
2 k(n-1) \delta_{1}=\varepsilon / 2 . \tag{2}
\end{equation*}
$$

Now, let P be any partition with $\|P\|<.\delta_{1}$
Also, let $P_{2}=P \cup P_{1}$, then clearly P_{2} is a refinement of P and P_{1} then P_{2} has atmost ($n-1$) more points than P. Therefore,

$$
\begin{align*}
U(P, f)-2 K(n-1) \delta_{1} & \leq U\left(P_{2}, f\right) \\
& \leq U\left(P_{1}, f\right)<\int_{a}^{b} f+\varepsilon / 2 \tag{1}\\
\Rightarrow \quad U(P, f) & <\int_{a}^{b} f+\varepsilon / 2+\varepsilon / 2 \tag{2}\\
& =\int_{a}^{b} f+\varepsilon \text { for all partition } P \text { with }\|P\|<\delta_{1}
\end{align*} .
$$

Similarly, we may easily shown that there exists a positive number δ_{2} such that

$$
L(P, f)>\int_{a}^{b} f-\varepsilon \text { for all partition } P \text { with }\|P\|<\delta_{2}
$$

Define $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$
Then for all partition P of $[a, b]$ with $\|P\|<\delta$, we have:

$$
U(P, f)<\int_{a}^{b} f+\varepsilon \text { and } L(P, f)>\int_{a}^{b} f-\varepsilon .
$$

Theorem 2. (Necessary and Sufficient Condition for Integrability).
A necessary and sufficient condition for \mathbf{R}-integrability of a bounded function $f:[a, b] \rightarrow \mathbf{R}$ over $[a, b]$ is that for every $\varepsilon>0$, there exists a partition P of $[a, b]$ such that

$$
0 \leq U(P, f)-L(P, f)<\varepsilon \quad \forall\|P\|<\delta .
$$

Proof. (i) Necessary Condition. Let us first suppose f be Riemann integrable on' $[a, b]$. Therefore

$$
\begin{equation*}
\int_{a}^{b} f=\int_{a}^{b} f=\int_{a}^{b} f \tag{1}
\end{equation*}
$$

Let $\varepsilon>0$ be given, then by Darboux theorem, there exists $\delta>0$ such that for every partition P with $\|P\|<\delta$
and

$$
\begin{equation*}
U(P, f)<\int_{a}^{b} f+\varepsilon / 2 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
L(P, f)>\int_{a}^{b} f-\varepsilon / 2 \tag{3}
\end{equation*}
$$

Adding inequalities (2) and (3), we get

$$
U(P, f)+\int_{a}^{b} f-\varepsilon / 2<L(P, f)+\int_{a}^{b} f+\varepsilon / 2
$$

which gives

$$
U(P, f)-L(P, f)<\varepsilon
$$

[using (1)]
which is the required necessary condition.
(ii) Sufficient Condition. For every $\varepsilon>0$ and for a partition \mathbf{P} of $[a, b]$ with $\|P\| \leq \delta$, we have

$$
U(P, f)-L(P, f)<\varepsilon
$$

By definition of upper and lower integrals, we have

$$
\begin{aligned}
& L(P, f) \leq \int_{-}^{b} f \leq \int_{a}^{b} f \leq U(P, f) \\
\Rightarrow & \int_{a}^{b} f-\int_{a}^{b} f \leq U(P, f)-L(P, f)<\varepsilon \\
\Rightarrow \quad & \int_{a}^{b} f-\int_{a}^{b} f \leq 0
\end{aligned}
$$

Also, we know that lower Riemann integral can never exceed the upper Riemann integral, therefore

$$
\begin{equation*}
\int_{a}^{b} f-\int_{a}^{b} f \leq 0 \tag{5}
\end{equation*}
$$

From (4) and (5), we conclude that

$$
\begin{aligned}
& \int_{a}^{b} f-\int_{a}^{b} f=0 \\
\Rightarrow & \int_{a}^{b} f=\int_{a}^{b} f
\end{aligned}
$$

Hence, the function f is Riemann integrable over $[a, b]$.
Theorem 3. Let f be a bounded function defined on interval $[a, b]$ and P is a partition of $[a, b]$ then

$$
\lim _{\|P\| \rightarrow 0} L(P, f)=\int_{-a}^{b} f \text { and } \lim _{\|P\| \rightarrow 0} U(P, f)=\int_{a}^{b} f
$$

Proof. Since given that f is a bounded function defined on interval $[a, b]$ and P is a partition of $[a, b]$ and $\int_{a}^{b} f$ is the supremum of $L(P, f)$ for all partitions P

$$
\begin{equation*}
\Rightarrow \quad L(P, f) \leq \int_{a}^{b} f \tag{1}
\end{equation*}
$$

and $\int_{a}^{b} f$ is the infimum of $U(P, f)$ for all partitions P

$$
\Rightarrow \quad U(P, f)=\int_{a}^{b} f
$$

Now by Darboux theorem we know that for all $\varepsilon>0, \exists \delta>0$ such that

$$
\begin{align*}
& U(P, f)<\int_{a}^{b} f+\varepsilon \tag{3}\\
& L(P, f)>\int_{a}^{b} f-\varepsilon \tag{4}
\end{align*}
$$

From equation (1) and (4), we have

$$
\begin{aligned}
& \int_{-}^{b} f-\varepsilon<L(P, f) \leq \int_{a}^{b} f \\
\Rightarrow & \int_{-}^{b} f-\varepsilon<L(P, f) \leq \int_{a}^{b} f<\int_{-}^{b} f+\varepsilon \\
\Rightarrow \quad & \int_{-a}^{b} f-\varepsilon<L(P, f)<\int_{-}^{b} f+\varepsilon \\
\Rightarrow \quad & \lim _{\|P\| \rightarrow 0} L(P, f)=\int_{a}^{b} f
\end{aligned}
$$

Similarly from equation (2) and (3), we have

$$
\int_{a}^{b} f-\varepsilon<U(P, f)<\int_{a}^{b} f+\varepsilon
$$

$\Rightarrow \quad \lim _{\|P\| \rightarrow 0} U(P, f)=\bar{\int}_{a}^{b} f$.
Theorem 4. If $:[a, b] \rightarrow R$ is bounded function then

$$
U(P,-f)=-L(P, f) \text { and } L(P, f)=-U(P, f)
$$

Proof. Consider a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ in interval $[a, b]$, where $a=x_{0}$ and $x_{n}=b$.
Let M_{r} and m_{r} be the supremum and infimum of f in I_{r}.
Since f is bounded on $[a, b]$ thus $-f$ is also bounded on interval $[a, b]$ and $-m_{r}$ and $-M_{r}$ will be supremum and infimum of $-f$ in I_{r}.

Now $\begin{aligned} L(P,-f) & =\sum_{r=1}^{n}\left(-M_{r}\right) \delta x_{r} \quad \quad \text { (Lower Riemann sum) } \\ & =-\sum_{r=1}^{n} M_{r} \delta x_{r} \\ & =-U(P, f) \quad\left\{\because \sum_{r=1}^{n} M_{r} \delta x_{r}=U(P, f) \text { the upper Riemann sum of } f\right\}\end{aligned}$
Similarly. $\quad U(P, f)=\sum_{r=1}^{n}\left(-m_{r}\right) \delta x_{r}$

$$
=-\sum_{r=1}^{n} m_{r} \delta x_{r}
$$

$$
=-L(P, f) \quad\{\because L \text { is the lower Riemann sum of } f \text { in }
$$

$$
\left.[a, b] \text { such that } L(P, f)=\sum_{r=1}^{n} m_{r} \delta x_{r}\right\}
$$

SOLVED EXAMPLES

Example 1. Find $L(P, f)$ and $U(P, f)$ if $f(x)=x$ for $x \in[0,3]$ and let $P=[0,1,2,3]$ be the partition of $[0,3]$.

Solution. Let partition P divided the interval $[0,3]$ into the subinterval $I_{1}=[0,1], I_{2}=[1,2]$ and $I_{3}=[2,3]$.

The length of these intervals are given by

$$
\begin{aligned}
& \delta_{1}=1-0=1 \\
& \delta_{2}=2-1=1 \\
& \delta_{3}=3-2=1 .
\end{aligned}
$$

Let M_{r} and m_{r} be respectively the l.u.b. and g.l.b. of the function f in $\left[x_{r-1}, x_{r}\right]$, then we get

$$
\text { Therefore, } \begin{aligned}
M_{1} & =1, m_{1}=0, M_{2}=2, m_{2}=1, M_{3}=3 \text { and } m_{3}=2 \\
U(P, f) & =\sum_{r=1}^{3} M_{r} \delta_{r}=M_{1} \delta_{1}+M_{2} \delta_{2}+M_{3} \delta_{3} \\
& =1 \cdot 1+2 \cdot 1+3 \cdot 1=1+2+3=6 \\
L(P, f) & =\sum_{r=1}^{3} m_{r} \delta_{r}=m_{1} \delta_{1}+m_{2} \delta_{2}+m_{3} \delta_{3} \\
& =0 \cdot 1+1 \cdot 1+2 \cdot 1=0+1+2=3 .
\end{aligned}
$$

Example 2. Let $f(x)=x, 0 \leq x \leq 1$ and let $P=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ be a partition of $[0,1]$, find $U(P, f)$ and $L(P, f)$.

Solution. Let the partition P divides the interval $[0,1]$ into the subintervals

$$
I_{1}=\left[0, \frac{1}{4}\right], I_{2}=\left[\frac{1}{4}, \frac{1}{2}\right], I_{3}=\left[\frac{1}{2}, \frac{3}{4}\right], I_{4}=\left[\frac{3}{4}, 1\right]
$$

Clearly, the length of each subinterval is $\frac{1}{4}$.
Now, let M_{r} and m_{r} respectively be the l.u.b. and g.l.b. of the function f in $\left[x_{r-1}, x_{r}\right]$, then, we

$$
\begin{aligned}
& M_{1}=\frac{1}{4}, M_{2}=\frac{1}{2}, M_{3}=\frac{3}{4}, M_{4}=1 \\
& m_{1}=0, m_{2}=\frac{1}{4}, m_{3}=\frac{1}{2}, m_{4}=\frac{3}{4}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
U[P, f] & =\sum_{r=1}^{4} M_{r} \delta_{r}=M_{1} \delta_{1}+M_{2} \delta_{2}+M_{3} \delta_{3}+M_{4} \delta_{4} \\
& =\frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4}+1 \cdot \frac{1}{4} \\
& =\frac{1}{16}+\frac{1}{8}+\frac{3}{16}+\frac{1}{4}=\frac{5}{8} \\
L[P, f] & =\sum_{r=1}^{4} m_{r} \delta_{r}=m_{1} \delta_{1}+m_{2} \delta_{2}+m_{3} \delta_{3}+m_{4} \delta_{4} \\
& =0 \cdot \frac{1}{4}+\frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4} \\
& =0+\frac{1}{16}+\frac{1}{8}+\frac{3}{16}=\frac{3}{8} .
\end{aligned}
$$

Example 3. Let $f(x)=x$ on $[0,1]$.
Find $\int_{0}^{1} x d x$ and $\int_{0}^{1} x d x$, by partitioning $[0,1]$ into n equal parts. Also, show that

$f \in \mathbf{R}[0,1]$.

Solution. Let the partition P divides the interval $[0,1]$ into n subintervals such that

$$
P=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{r-1}{n}, \frac{r}{n}, \ldots, \frac{n}{n}=1\right\}
$$

Clearly, here we have

$$
m_{r}=\frac{r-1}{n}, M_{r}=\frac{r}{n} \text { and } \quad \delta_{r}=\frac{1}{n} \text { for } r=1,2, \ldots, n
$$

Now, by definition, we have

$$
\begin{aligned}
L[P, f] & =\sum_{r=1}^{n} m_{r} \delta_{r}=\sum_{r=1}^{n} \frac{r-1}{n} \cdot \frac{1}{n}=\frac{1}{n^{2}} \sum_{r=1}^{n}(r-1) \\
& =\frac{1}{n^{2}}[1+2+3+\ldots+(n-1)]=\frac{(n-1) \cdot n}{2 n^{2}}=\frac{n-1}{2 n} \\
U[P, f] & =\sum_{r=1}^{n} M_{r} \delta_{r}=\sum_{r=1}^{n} \frac{r}{n} \cdot \frac{1}{n} \\
& =\frac{1}{n^{2}} \sum_{r=1}^{n} r=\frac{1}{n^{2}}[1+2+3+\ldots+n] \\
& =\frac{n(n+1)}{2 n^{2}}=\frac{n+1}{2 n} .
\end{aligned}
$$

Therefore, $\int_{0}^{1} x d x=\lim _{\|P\| \rightarrow 0} L(P, f)=\lim _{n \rightarrow \infty} \frac{n-1}{2 n}=\frac{1}{2}$

$$
\int_{0}^{1} x d x=\lim _{\|P\| \rightarrow 0} U(P, f)=\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2}
$$

From above, it is clear that

$$
\int_{0}^{1} x d x=\int_{0}^{1} x d x=\frac{1}{2}
$$

Hence, $\quad \int_{0}^{1} x d x=\frac{1}{2}$.
Example 4. Let $f(x)=x^{2}$ on $[0, a], a>0$, show that $f \in \mathbf{R}[0, a]$. Also, find $\int_{0}^{a} f$.
Solution. Let $P=\left[\frac{r a}{n}: r=0,1, \ldots, n\right]$ be any partition of $[0, a]$. Then, clearly, we have

$$
m_{r}=\frac{(r-1)^{2} a^{2}}{n^{2}} \text { and } M_{r}=\frac{r^{2} a^{2}}{n^{2}}
$$

Also,

$$
\delta_{r}=\frac{a}{n}
$$

Now,

$$
\begin{aligned}
L[P, f] & =\sum_{r=1}^{n} m_{r} \delta_{r} \\
& =\sum_{r=1}^{n} \frac{(r-1)^{2} a^{2}}{n^{2}} \frac{a}{n}=\frac{a^{3}}{n^{3}} \sum_{r=1}^{n}(r-1)^{2} \\
& =\frac{a^{3}}{n^{3}}\left[\frac{n(n-1)(2 n-1)}{6}\right]=\frac{a^{3}}{6}\left[\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
U(P, f) & =\sum_{r=1}^{n} M_{r} \delta_{r}=\sum_{r=1}^{n} \frac{r^{2} a^{2}}{n^{2}} \frac{a}{n} \\
& =\frac{a^{3}}{n^{3}} \sum_{r=1}^{n} r^{2}=\frac{a^{3}}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{a^{3}}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \int_{0}^{a} f=\lim _{\|P\| \rightarrow 0} L(P, f) \\
&=\lim _{n \rightarrow \infty} \frac{a^{3}}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)=\frac{a^{3}}{3} . \\
& \begin{aligned}
\int_{0}^{a} f & =\lim _{\|P\| \rightarrow 0} U(P, f) \\
& =\lim _{n \rightarrow \infty} \frac{a^{3}}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)=\frac{a^{3}}{3}
\end{aligned} .
\end{aligned}
$$

Therefore, $\quad \int_{0}^{a} f=\int_{0}^{a} f$
which implies $f \in \mathbf{R}[0, a]$ and $\int_{0}^{a} f=\frac{a^{3}}{3}$.

- TEST YOURSELF

1. Show that if f is defined on $[a, b]$ by $f(x)=c \quad \forall x \in[a, b]$, where $c \in \mathbf{R}$ then $f \in \mathbf{R}[a, b]$ and $\int_{a}^{b} c=c(b-a)$.
2. Show that if f is defined on $[0, a], a>0$ by $f(x)=x^{3}$, then $f \in \mathbf{R}[0, a]$ and $\int_{0}^{a} f=\frac{a^{4}}{4}$.
3. Let f be the function defined on $[0,1]$ by $f(x)=\left\{\begin{array}{l}0, \text { when } x \text { is rational } \\ 1, \text { when } x \text { is irrational }\end{array}\right.$ Show that $f \notin \mathbf{R}[0,1]$.

4.5. INTEGRABILITY OF CONTINUOUS AND MONOTONE FUNCTIONS

Theorem 1. Every continuous function is R-integrable.
Proof. Let f be a continuous function on $[a, b]$, then clearly f is bounded.
$[\because$ Every continuous function is bounded]
Also, f is uniformly continuous on $[a, b]$ [being the continuous function in a closed interval]. Let $\varepsilon>0$ be given. Then there exists a partition

$$
P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}
$$

of $[a, b]$ such that the oscillation $\left(M_{r}-m_{r}\right)$ of the partition f in the sub interval $\left(x_{r-1}, x_{r}\right)$ is less than $\frac{\varepsilon}{b-a}$ for $r=1,2, \ldots, n$. Now, consider

$$
\begin{aligned}
& U(P, f)-L(P, f)= \\
& \sum_{r=1}^{n} M_{r}\left(x_{r}-x_{r-1}\right)-\sum_{r=1}^{n} m_{r}\left(x_{r}-x_{r-1}\right) \\
& =\sum_{r=1}^{n}\left(M_{r}-m_{r}\right)\left(x_{r}-x_{r-1}\right) \\
& <\sum_{r=1}^{n} \frac{\varepsilon}{b-a}\left(x_{r}-x_{r-1}\right) \quad\left(\because M_{r}-m_{r}=\frac{\varepsilon}{b-a}\right) \\
\Rightarrow & U(P, f)-L(P, f)<\frac{\varepsilon}{b-a} \sum_{r=1}^{n}\left(x_{r}-x_{r-1}\right) \\
\Rightarrow & U(P, f)-L(P, f)<\frac{\varepsilon}{b-a}\left[\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\ldots+\left(x_{n}-x_{n-1}\right)\right] \quad . \\
\Rightarrow & U(P, f)-L(P, f)<\frac{\varepsilon}{b-a}\left(x_{n}-x_{0}\right)=\frac{\varepsilon}{b-a}(b-a) \quad \quad\left[\because x_{n}=b \text { and } x_{n}=a\right] \\
\Rightarrow & U(P, f)-L(P, f)<\varepsilon .
\end{aligned}
$$

Hence, the continuous function f is \mathbf{R}-integrable.
Theorem 2. Every monotonic function f is \mathbf{R}-integrable.
Proof. Let f be the monotonically increasing function on $[a, b]$

$$
f(a) \leq f(x) \leq f(b) \quad \forall x \in[a, b]
$$

i.e.,

Now, for a given positive number ε there exist a partition

$$
P=\left[a=x_{0}, x_{1}, \ldots, x_{n}=b\right] \text { of }[a, b]
$$

such that the length of each subinterval is less than $\frac{\varepsilon}{[f(b)-f(a)+1]}$
i.e., $\quad\left(x_{r}-x_{r-1}\right)<\frac{\varepsilon}{[f(b)-f(a)+1]} \quad$ for $r=1,2, \ldots, n$.

Now, since the function f is monotonically increasing on $[a, b]$ then it is bounded and monotonically incresing on each subinterval $\left[x_{r-1}, x_{r}\right]$.

Let M_{r} and m_{r} be the bounds of f on the subinterval $\left[x_{r-1}, x_{r}\right.$] then,

$$
\begin{equation*}
M_{r}=f\left(x_{r}\right) \text { and } m_{r}=f\left(x_{r-1}\right) \tag{2}
\end{equation*}
$$

For the partition P, consider

$$
\begin{array}{rlr}
U(P, f)-L(P, f)=\sum_{r=1}^{n}\left(M_{r}-m_{r}\right)\left(x_{r}-x_{r-1}\right) & \\
& <\frac{\varepsilon}{[f(b)-f(a)+1]} \sum_{r=1}^{n}\left[f\left(x_{r}\right)-f\left(\dot{x}_{r-1}\right)\right] & \ddots[\text { using (1) and (2)] } \\
\Rightarrow & U(P, f)-L(P, f)<\frac{\varepsilon}{[f(b)-f(a)+1]}\left[f\left(x_{n}\right)-f\left(x_{0}\right)\right] & \\
\Rightarrow & U(P, f)-L(P, f)<\frac{\varepsilon}{[f(b)-f(a)+1]}[f(b)-f(a)] & {\left[\because x_{0}=a, x_{n}=b\right]}
\end{array}
$$

Therefore, the function f is Riemann integrable on $[a, b]$. Similarly, we may prove that the function f is \mathbf{R}-integrable on $[a, b]$ if f is monotonically decreasing function.

Hence, every monotonic function f is \mathbf{R}-integrable.
Theorem 3. A bounded functionf is \mathbf{R}-integrable in $[a, b]$ if the set of its points of discontinuity is finite:

Proof. Given that f is discontinuous on $[a, b]$, let $\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be a finite set of points of discontinuity. Also, suppose that M and m be the supremum and infinium of $f(x)$ respectively on $[a, b]$. Let $\varepsilon>0$ be an arbitrary positive number.

Now, let the above points of discontinuity of the function f be enclosed in k non-overlapping intervals $\left[x_{1}{ }^{\prime}, x_{1}{ }^{\prime \prime}\right],\left[x_{2}{ }^{\prime}, x_{2}{ }^{\prime \prime}\right] \ldots,\left[x_{k}{ }^{\prime}, x_{k}{ }^{\prime \prime}\right]$ such that the sum of the lengths of these subinterval be less than

$$
\left.\frac{\varepsilon}{2(M-m)} \text { (with } M-m \neq 0\right) .
$$

Since, as in each of these intervals the oscillations of the function f is less then equal to ($M-m$), therefore, their total contribution to these oscillatory sum

$$
\leq \frac{\varepsilon}{2(M-m)}(M-m) \quad \text { i.e., } \leq \varepsilon / 2 .
$$

Now, consider $(k+1)$ subintervals $\left[a, x_{1}{ }^{\prime}\right],\left[x_{1}{ }^{\prime \prime}, x_{2}{ }^{\prime}\right],\left[x_{2}{ }^{\prime \prime}, x_{3}{ }^{\prime}\right], \ldots,\left[x_{k}{ }^{\prime \prime}, b\right]$.
The function f is continuous in each of these subintervals. Now, each of the above $(k+1)$ subintervals can be further subdivided so that contribution of each of them separately to the oscillatory sum of these $(k+1)$ subintervals is less than $\frac{\varepsilon}{2(k+1)}$.

Therefore, there exists a partition of $[a, b]$ such that the oscillatory sum

$$
<\varepsilon / 2+\frac{\varepsilon}{2(k+1)} \cdot(k+1)
$$

i.e.,

$$
\operatorname{sum}<\varepsilon / 2+\varepsilon / 2
$$

$\Rightarrow \quad \operatorname{sum}<\varepsilon$.
Hence, the function f is Riemann-integrable in $[a, b]$.
Theorem 4. Let f be a bounded function on $[a, b]$ and let the set of its discontinuities have a finite number of limit points, then $f \in \mathbf{R}[a, b]$.

Proof. Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be the finite set of limit points of the set of discontinuities of f on $[a, b]$ such that

$$
\cdot x_{1}<x_{2}<\ldots<x_{k} .
$$

Let $\varepsilon>0$ be given. Now let the above points of discontinuity of the function f be enclosed in k non-overlapping intervals $\left[x_{1}{ }^{\prime}, x_{1}{ }^{\prime \prime}\right],\left[x_{2}{ }^{\prime}, x_{2}{ }^{\prime \prime}\right] \ldots\left[x_{k}{ }^{\prime}, x_{k}{ }^{\prime \prime}\right]$
such that the sum of their length is $<\frac{\varepsilon}{2(M-m)}$
where $M=$ supremum of f and $m=$ infimum of f.
Now the partition P of $[a, b]$ is given by

$$
P=\left[a, x_{1}{ }^{\prime}, x_{1}{ }^{\prime \prime}, x_{2}{ }^{\prime}, x_{2}{ }^{\prime \prime} \ldots x_{k}{ }^{\prime}, x_{k}{ }^{\prime \prime}, b\right]
$$

which has $(2 k+1)$ component intervals of two types.
(i) k intervals. $\left[x_{i}^{\prime}, x_{i}^{\prime \prime}\right], \quad i=1,2, \ldots k$ each of which contain a point x_{i} in its interior.

The total contribution to the oscillatory sum by these intervals is

$$
\begin{aligned}
& =\sum_{i=1}^{k}\left(M_{i}-m_{i}\right)(b-a) \leq \sum_{i=1}^{k}(M-m)\left(b_{i}-a_{i}\right) \\
& =(M-m) \sum_{i=1}^{k}\left(b_{i}-a_{i}\right) \\
& <(M-m) \frac{\varepsilon}{2(M-m)}=\varepsilon / 2 .
\end{aligned}
$$

(ii) $(k+1)$ subintervals. $\left[a, x_{1}{ }^{\prime}\right],\left[x_{1}{ }^{\prime \prime}, x_{2}{ }^{\prime}\right],\left[x_{2}{ }^{\prime \prime}, x_{3}{ }^{\prime}\right] \ldots\left[x_{k}{ }^{\prime \prime}, b\right]$.

In the above subintervals, the function f has only a finite number of points of discontinuity. Hence, these exists a partition $P_{r}: r=1,2, \ldots,(k+1)$ respectively of these subintervals such that the oscillatory sum is less than $\varepsilon / 2(k+1)$ for $r=1,2, \ldots, k+1$.

Hence, the total contribution to the oscillatory sum by these subintervals is less than equal to $\frac{\varepsilon}{2(k+1)}(k+1)$ i.e., $\leq \varepsilon / 2$.

Therefore, for any partition P the total oscillatory sum

$$
<\varepsilon / 2+\varepsilon / 2=\varepsilon .
$$

Hence, $f \in \mathbf{R}[a, b]$.

- 4.6. ALgEBRA OF R-INTEGRABLE FUNCTIONS

Theorem 1. If fis \mathbf{R}-integrable on $\{a, b]$, then $|f|$ is also \mathbf{R}-integrable on $[a, b]$.
Proof. Since the function f is \mathbf{R}-integrable on $[a, b]$, therefore f is bounded on $[a, b]$
$[\because$ Every integrable function is bounded]
$\Rightarrow|f(x)| \leq \lambda \forall x \in[a, b]$ for any positive number λ.
Also, since f is \mathbf{R}-integrable on $[a, b]$, therefore there exists a partition P of $[a, b]$ such that for any positive number ε

$$
\begin{equation*}
U(P, f)-L(P, f)<\varepsilon . \tag{1}
\end{equation*}
$$

Let the upper and lower bounds of $|f|$ and f in $\delta_{r}=\left[x_{r-1}, x_{r}\right]$ be respectively given by M_{r}, m_{r} and $M_{r}^{\prime}, m_{r}^{\prime}$.

Then for all y, z in $\left[x_{r-1}, x_{r}\right]$, we have

$$
\begin{array}{lc}
& {[|f(z)|-|f(y)|] \leq|f(z)-f(y)|} \\
\Rightarrow & M_{r}-m_{r} \leq M_{r}^{\prime}-m_{r}^{\prime} \\
\Rightarrow & \sum_{r=1}^{n}\left(M_{r}-m_{r}\right) \delta_{r} \leq \sum_{r=1}^{n}\left(M_{r}^{\prime}-m_{r}^{\prime}\right) \delta_{r} \\
& \sum_{r=1}^{n} M_{r} \delta_{r}-\sum_{r=1}^{n} m_{r} \delta_{r} \leq \sum_{r=1}^{n} M_{r}^{\prime} \delta_{r}-\sum_{r=1}^{n} m_{r}^{\prime} \delta_{r} \\
\Rightarrow & \quad\{(P,|f|)-L(P,|f|)\} \leq U(P, f)-L(P ; f) \\
\Rightarrow & \{U(U(,|f|)-L(P,|f|)<\varepsilon \\
\Rightarrow & U(P,|f| \text { is R-integrable on }(a, b) .
\end{array}
$$

$$
\Rightarrow \quad M_{r}-m_{r} \leq M_{r}^{\prime}-m_{r}^{\prime} \quad \text { (By taking supremum) }
$$

Theorem 3. If f_{1} and f_{2} are \mathbf{R}-integrable functions on $[a, b]$ then $f_{1} \pm f_{2}$ is also \mathbf{R}-integrable on $[a, b]$.

Proof. Let f_{1}, f_{2} be two \mathbf{R}-integrable functions on $[a, b]$.
Now f_{1} is \mathbf{R}-integrable on $[a, b]$
\Rightarrow For given $\varepsilon>0$ there exists a partition \dot{P}_{1} such that

$$
\begin{equation*}
U\left(P_{1}, f_{1}\right)-L\left(P_{1}, f_{1}\right)<\varepsilon / 2 . \tag{1}
\end{equation*}
$$

Also, f_{2} is \mathbf{R}-integrable
\Rightarrow for given $\varepsilon>0$ there exists a partition P_{2} such that

$$
\begin{equation*}
U\left(P_{2}, f_{2}\right)-L\left(P_{2}, f_{2}\right)<\varepsilon / 2 . \tag{2}
\end{equation*}
$$

Define the common refinement P of the partitions P_{1} and P_{2} such that

$$
P=P_{1} \cup P_{2}
$$

Clearly $P \in \mathbf{P}[a, b]$, where $\mathbf{P}[a, b]$ denotes the family of all partitions on $[a, b]$.
Consider

$$
\begin{aligned}
U\left(P, f_{1}+f_{2}\right)-L\left(P, f_{1}+f_{2}\right) & \leq\left[\left\{U\left(P, f_{1}\right)-L\left(P, f_{1}\right)\right\}+\left\{U\left(P, f_{2}\right)-L\left(P, f_{2}\right)\right\}\right] \\
& <\varepsilon / 2+\varepsilon / 2 r
\end{aligned} \quad[\text { using (1) and (2)] }
$$

$\Rightarrow U\left(P, f_{1}+f_{2}\right)-L\left(P, f_{1}+f_{2}\right)<\varepsilon$
$\Rightarrow f_{1}+f_{2}$ is \mathbf{R}-integrable on $[a, b]$.
Similarly we can show that $f_{1}-f_{2}$ is \mathbf{R}-integrable on $[a, b]$.
Theorem 3. If f is \mathbf{R}-integrable on $[a, b]$, then of is also \mathbf{R}-integrable on $[a, b]$, where $c \in \mathbf{R}$.

Also $\quad \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$.
Proof. Given that the function f is \mathbf{R}-integrable on $[a, b]$ therefore, there exists a partition P on $[a, b]$, such that

$$
\begin{equation*}
U(P, f)-L(P, f)<\varepsilon \tag{1}
\end{equation*}
$$

Let $c \in \mathbf{R}$ be any constant, then we know that

$$
(c f)(x)=c f(x)
$$

Therefore, $\quad U(P, c f)=c U(P, f)$ and $L(P, c f)=c L(P, f)$.
Now consider

$$
U(P, c f)-L(P, c f)=c[U(P, f)-L(P, f)]<c \varepsilon
$$

$\Rightarrow \quad c f \in \mathbf{R}[a, b]$
Also

$$
U(P, c f)<\int_{a}^{b} c f(x) d x+\varepsilon
$$

and

$$
c U(P, f)<\int_{a}^{b} c f(x) d x+\varepsilon
$$

Now using (1), we get

$$
\begin{gather*}
c U(P, f)=U(P, c f)<\int_{a}^{b} \cdot c f(x) d x+\varepsilon \\
\Rightarrow \quad c \int_{a}^{b} f(x) d x \geq \int_{a}^{b} c f(x) d x \tag{2}
\end{gather*}
$$

Replacing f by $-f$ in (2), we get

$$
\begin{array}{ll}
& c \int_{a}^{b}-f(x) d x \geq \int_{a}^{b}-c f(x) d x \\
\Rightarrow & c \int_{a}^{b} f(x) d x \leq \int_{a}^{b} c f(x) d x \tag{3}
\end{array}
$$

From (2) and (3), we conclude that

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

Theorem 4. If the function f is \mathbf{R}-integrable and if M and m the supremum and infimum of f on $[a, b]$, then
and

$$
\begin{aligned}
& m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \text { if } b \geq a \\
& m(b-a) \geq \int_{b}^{a} f(x) d x \geq M(b-a) \text { if } b \leq a
\end{aligned}
$$

Proof. Let $\mathbf{P}[a, b]$ denotes the family of all partitions on $[a, b]$. If $b>a$, then for all $P \in: \mathbf{P}[a, b]$, we have

$$
\begin{aligned}
& m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a) \\
\Rightarrow & m(b-a) \leq L(P, f) \leq M(b-a) \\
\Rightarrow & m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
\end{aligned}
$$

$$
\Rightarrow m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \quad\left[\because \int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x \text { for } f \in \mathbf{R}[a, b]\right]
$$

If $b<a$, then in a similar way, we may get

$$
\begin{array}{cc}
& m(a-b) \leq \int_{b}^{a} f(x) d x \leq M(a-b) \\
\Rightarrow & -m(b-a) \leq-\int_{a}^{b} f(x) d x \leq-M(b-a) \\
\Rightarrow & m(b-a) \geq \int_{b}^{a} f(x) d x \geq M(b-a) .
\end{array}
$$

Theorem 5. If the function $f(x)$ is bounded and \mathbf{R}-integrable over $[a, b]$ and $f(x) \geq 0 \quad \forall x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$.

Proof. Let M and m be the supremum and infimum of f on $[a, b]$. Then by above theorem if $b \geq a$, we have

$$
\begin{equation*}
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) . \tag{1}
\end{equation*}
$$

Here, it is given that $f(x) \geq 0 \quad \forall x[a, b]$.
Therefore $m \geq 0$.
Also $\quad b \geq a \Rightarrow b-a \geq 0$.
Hence, from (1), we conclude that $\int_{a}^{b} f(x) d x \geq 0$.
Theorem 6. (First Mean Value Theorem). If the function f is \mathbf{R}-integrable over $[a, b]$ and M, m be supremum, infimum respectively of f on $[a, b]$, then there exists a number $K,(m \leq K \leq M)$ such that

$$
\int_{a}^{b} f(x) \cdot d x=k(b-a)
$$

Also, if the function f is continuous on $[a, b]$, then there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=(b-a) f(c)
$$

Proof. We know that (From Theorem 8)
and

$$
\begin{aligned}
& m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a), \text { if } b \geq a \\
& m(b-a) \geq \int_{b}^{a} f(x) d x \geq M(b-a), \text { if } b \leq a
\end{aligned}
$$

If $m \leq k \leq M$, then we conclude that

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=k(b-a) . \tag{1}
\end{equation*}
$$

Also, if the function f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that $f(c)=k$, where $m \leq k \leq M$.

Hence, from (1), we conclude that

$$
\int_{a}^{b} f(x) d x=(b-a) f(c)
$$

Theorem 7. If f and g are \mathbf{R}-integrable over $[a, b]$, then $f g$ is also integrable over $[a, b]$.
Proof. Since f and g both are \mathbf{R}-integrable over $[a, b]$, therefore f and g both are bounded on [a, b]
$\Rightarrow \exists M>0$ such that $|f(x)| \leq M$ and $|g(x)| \leq M, \quad \forall x \in[a, b]$
Consider $|(f g)(x)|=|f(x) \cdot g(x)| \quad \forall x \in[a, b]$

$$
\begin{equation*}
\leq M^{2} \quad \forall x \in[a, b] . \tag{1}
\end{equation*}
$$

$\Rightarrow f g$ is bounded on $[a, b]$.
Now, let $\varepsilon>0$ be given.
Since $f \in \mathbf{R}(a, b)$ therefore, there exists a partition P_{1} of $[a, b]$ such that

$$
\begin{equation*}
U\left(P_{1}, f\right)-L\left(P_{1}, f\right)<\varepsilon / 2 M . \tag{2}
\end{equation*}
$$

Similarly $g \in \mathbf{R}(a, b)$, therefore, there exsits a partition P_{2} of $[a, b]$ such that

$$
\begin{equation*}
U\left(p_{2}, g\right)-L\left(P_{2}, g\right)<\varepsilon / 2 M . \tag{3}
\end{equation*}
$$

Let $P=P_{1} \cup P_{2}$ be a refinement of P_{1} and P_{2}, then we have

$$
\left.\begin{array}{c}
U(P, f)-L(P, f)<\varepsilon / 2 M \tag{4}\\
U(P, g)-L[P, g]<\varepsilon / 2 M
\end{array}\right] .
$$

Let $m_{r}, M_{r}, m_{r}^{\prime}, M_{r}^{\prime}, m_{r}^{\prime \prime}, M_{r}^{\prime \prime}$ be the infimum and supremum of f, g and $f . g$ respectively over the subinterval $I_{r}=\left[x_{r-1}, x_{r}\right]$. Then for all $x, y \in I_{r}$ we have

$$
\begin{align*}
|(f g)(x)-(f g)(y)| & =|f(x) \cdot g(x)-f(y) \cdot g(y)| \\
& =|f(x) \cdot g(x)-f(y) g(x)+f(y) g(x)-f(y) g(y)| \\
& =|g(x)[f(x)-f(y)]+f(y)[g(x)-g(y)]| \\
& \leq|g(x)||f(x)-f(y)|+|f(y)||g(x)-g(y)| \\
& \leq M|f(x)-f(y)|+M|g(x)-g(y)| . \tag{5}
\end{align*}
$$

Now,

$$
\begin{equation*}
|f(x)-f(y)| \leq M_{r}-m_{r} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(x)-g(y)| \leq M_{r}^{\prime}-m_{r}^{\prime} . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \quad M_{r}^{\prime \prime}-m_{r}^{\prime \prime}<M\left(M_{r}-m_{r}\right)+M\left(M_{r}^{\prime}-m_{r}^{\prime}\right) . \tag{8}
\end{equation*}
$$

Multiplying both sides of (8) by δ_{r} and adding on respective sides, we get

$$
\begin{aligned}
U(P, f g)-L(P, f g) & \leq M[U(P, f)-L(P, f)]+M[U(P, g)-L(P, g)] \\
& <M \frac{\varepsilon}{2 M}+M \frac{\varepsilon}{2 M}=\varepsilon
\end{aligned}
$$

Hence, $f g$ is \mathbf{R}-integrable.
Theorem 8. If fand g are two \mathbf{R}-integrable function on $[a, b]$ and $|g(x)| \leq k \quad \forall x \in[a, b]$ where k is a positive number then the quotient function f / g is also \mathbf{R}-integrable on $[a, b]$.

Proof. Since f and g both are R-integrable on $[a, b]$, therefore, they are bounded on $[a, b]$. Also, we know that the quotient of two bounded function is again bounded, therefore f / g is also bounded on $[a, b]$.

Let $\varepsilon>0$ be given. Since $f \in \mathbf{R}[a, b]$, therefore, there exists a partition P_{1} of $[a, b]$ such that

$$
\begin{equation*}
U\left(P_{1}, f\right)-L\left(P_{1}, f\right)<\frac{\varepsilon}{2 m} k^{2} . \tag{1}
\end{equation*}
$$

Similarly $g \in \mathbf{R}[a, b]$, therefore, these exists a partition P_{2} of $[a, b]$ such that

$$
\begin{equation*}
U\left[P_{2}, g\right]-L\left[P_{2}, g\right]<\frac{\varepsilon}{2 M} k^{2} \tag{2}
\end{equation*}
$$

Let $P=P_{1} \cup P_{2}$ be a refinement of P_{1} and P_{2}, then from (I) and (2), we have

$$
\begin{equation*}
U[P, f]-L[P, f]<\frac{\varepsilon}{2 M} k^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
U[P, g]-L[P, g]<\frac{\varepsilon}{2 m} k^{2} . \tag{4}
\end{equation*}
$$

Now, let $m_{r} M_{r} ; m_{r}{ }^{\prime}, M_{r}^{\prime} ; m_{r}{ }^{\prime \prime}, M_{r}^{\prime \prime}$ be the supremum and infimum of f, g and f / g respectivley over the subinterval $I_{r}=\left[x_{r-1}, x_{r}\right]$. Then for all $x, y \in I_{r}$, we have

$$
\begin{align*}
\left|\frac{f}{g}(x)-\frac{f}{g}(y)\right| & =\left|\frac{f(x)}{g(x)}-\frac{f(y)}{g(y)}\right|=\frac{|f(x) g(y)-f(y) g(x)|}{|g(x) g(y)|} \\
& =\frac{|f(x) g(y)-f(y) g(y)+f(y) g(y)-f(y) g(x)|}{|g(x) g(y)|} \\
& =\frac{|[f(x)-f(y)] g(y)+f(y)[g(y)-g(x)]|}{|g(x) g(y)|} \\
& \leq \frac{|g(y)||f(x)-f(y)|}{|g(x)||g(y)|}+\frac{|f(y)||g(x)-g(y)|}{|g(x)||g(y)|} \\
& \leq \frac{M}{k^{2}}|f(x)-f(y)|+\frac{M}{k^{2}}|g(x)-g(y)| . \tag{5}
\end{align*}
$$

Now m_{r} and M_{r} are the infimum and supremum of f respectively over I_{r}. Therefore,

$$
\begin{align*}
|f(x)-f(y)| & \leq M_{r}-m_{r} \quad \forall x, y \in[a, b] \tag{6}\\
|g(x)-g(y)| & \leq M_{r}^{\prime}-\dot{m}_{r}^{\prime} \quad \forall x, y \in[a, b] \tag{7}
\end{align*}
$$

Similarly
which implies

$$
\begin{array}{ll}
& \left|\frac{f}{g}(x)-\frac{f}{g}(y)\right| \leq \frac{M}{k^{2}}\left(M_{r}-m_{r}\right)+\frac{M}{k^{2}}\left(M_{r}^{\prime}-m_{r}^{\prime}\right) \\
\Rightarrow & M_{r}^{\prime \prime}-m_{r}^{\prime \prime} \leq \frac{M}{k^{2}}\left(M_{r}-m_{r}\right)+\frac{M}{k^{2}}\left(M_{r}^{\prime}-m_{r}^{\prime}\right) \tag{9}
\end{array}
$$

Multiplying (9) by δ_{r} and adding on the respective sides, we get

$$
\begin{aligned}
U[P, f / g]-L[P, f / g] & \leq \frac{M}{k^{2}}[U(P, f)-L(P, f)]+\frac{M}{k^{2}}[U(P, g)-L(P, g)] \\
& \leq \frac{M}{k^{2}} \frac{\varepsilon \cdot k^{2}}{2 M}+\frac{M}{k^{2}} \cdot \frac{\varepsilon k^{2}}{2 M}=\varepsilon
\end{aligned}
$$

Hence, $\frac{f}{g}$ is \mathbf{R}-integrable over $[a, b]$.

Some Important Definitions:

Primitive. A function $F(x)$ defined on $[a, b]$ called a primitive of a function $f(x)$, if the function $F(x)$ has $f(x)$ as its derivative at each $x \in[a, b]$
i.e.,

$$
F^{\prime}(x)=f(x) \quad \forall x \in[a, b]
$$

Integral Function. Let $f(x)$ be a R-integrable function on $[a, b]$. Then a function $F(x)$ is called the integral function of the function $f(x)$ if

$$
F(x)=\int_{a}^{b} f(t) d t, \quad \forall x \in[a, b]
$$

Theorem 9. Let $f \in \mathbf{R}[a, b]$, then the integral function' F of f given by

$$
F(x)=\int_{a}^{x} f(t) d t, a \leq x \leq b
$$

is continuous on $[a, b]$.
Proof. Let $f \in \mathbf{R}[a, b]$ is \mathbf{R}-integrable over [$a, b]$, then obviously it is bounded on $[a, b]$. Therefore, there exists a positive number M such that

$$
|f(t)| \leq M \quad \forall t \in[a, b]
$$

Let $x_{1}, x_{2} \in[a, b]$ such that $x_{1}<x_{2}$. Then, we have

$$
\begin{aligned}
\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right| & =\left|\int_{a}^{x_{2}} f(t) d t-\int_{a}^{x_{1}} f(t) d t\right| \\
& =\left|\int_{a}^{x_{2}} f(t) d t+\int_{x_{1}}^{a} f(t) d t\right| \\
& =\left|\int_{x_{1}}^{x_{2}} f(t) d t\right| \leq M\left|\int_{x_{1}}^{x_{2}} d t\right|=M\left|\left(x_{2}-x_{1}\right)\right| .
\end{aligned}
$$

Let $\left|x_{2}-x_{1}\right|<\varepsilon / M$ for a given positive number ε. Then, we have

$$
\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right|<M . \varepsilon / M
$$

$$
\Rightarrow \quad\left|F\left(x_{2}\right)\right|-F\left(x_{1}\right) \mid<\varepsilon
$$

whenever

$$
\left|x_{2}-x_{1}\right|<\delta \quad \forall x_{1}, x_{2} \in[a, b]
$$

where

$$
\delta=\frac{\varepsilon}{M}
$$

$\Rightarrow F$ is uniformly continuous on $[a, b]$. Hence it is continuous on $[a, b]$
$[\because$ Every uniformly continuous function is continuous]
Theorem 10. Let f be a continuous function on $[a, b]$ and let

$$
F(x)=\int_{a}^{x} f(t) d t ; \quad \forall x \in[a, b]
$$

Then

$$
F^{\prime}(x)=f(x) ; \quad \forall x \in[a, b] .
$$

Proof. Let $x \in[a, b]$. Then choose $h \neq 0$ such that $x+h \in\{a, b]$.
Consider $\quad F(x+h)-F(x)=\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t$

$$
\begin{equation*}
=\int_{a}^{x+h} f(t) d t+\int_{a}^{x} f(t) d t=\int_{a}^{x+h} f(t) d t \tag{1}
\end{equation*}
$$

Since f is continuous on $[a, b]$, therefore, there exists a number $c \in[x, x+h]$ such that

$$
\int_{a}^{x+h} f(t) d t=h f(c)
$$

Clearly $c \rightarrow x$ as $h \rightarrow 0$.
From (1) and (2), we conclude that

$$
\begin{array}{rlrl}
& & \begin{aligned}
F(x+h)-F(x) & =h f(c) \\
\Rightarrow \quad & \lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}
\end{aligned}=\lim _{h \rightarrow 0} f(c) \\
\Rightarrow \quad & & F^{\prime}(x) & =f(x) .
\end{array}
$$

Hence, we have -

$$
F^{\prime}(x)=f(x) \quad \forall x \in[a, b]
$$

4.7. FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

Theorem 15. Let f be a \mathbf{R}-integrable function on $[a, b]$ ant F be a differentiable primitive function on $[a, b]$ such that $F^{\prime}(x)=f(x) ; a \leq x \leq b$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Proof. Let f be continuous function on $[a, b]$.
By definition of primitive function, we have

$$
F^{\prime}(x)=f(x) ; \quad \forall x \in[a, b] .
$$

Also, f is \mathbf{R}-integrable function on $[a, b]$.
$\Rightarrow F^{\prime}(x)$ is \mathbf{R}-integrable function on $[a, b]$.
i.e., for a given positive number ε there exists a partition P of $[a, b]$ such that

$$
\begin{equation*}
\left|\sum_{r=1}^{n} F^{\prime}\left(t_{r}\right)\left(x_{r}-x_{r-1}\right)-\int_{a}^{b} F^{\prime}(x) d x\right|<\varepsilon \tag{1}
\end{equation*}
$$

where $t_{r} \in\left(x_{r-1}, x_{r}\right)$.
By Lagrange's mean value theorem of differential calculus, we find that there exists $t_{r} \in\left[x_{r-1}, x_{r}\right]$ such that

$$
\begin{aligned}
F\left(x_{r}\right)-F\left(x_{r-1}\right) & =\left(x_{r}-x_{r-1}\right) F^{\prime}\left(t_{r}\right) \\
\Rightarrow \quad \sum_{r=1}^{n}\left[\left(x_{r}-x_{r-1}\right) F^{\prime}\left(t_{r}\right)\right] & =\sum_{r=1}^{n}\left[F\left(x_{r}\right)-F\left(x_{r-1}\right)\right]=F(b)-F(a) .
\end{aligned}
$$

Put this value in (1), we get
which gives

$$
\left|F(b)-F(a)-\cdot \int_{a}^{b} F^{\prime}(x) d x\right|<\varepsilon
$$

$$
F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x=\int_{a}^{b} f(x) d x\left[\because F^{\prime}(x)=f(x)\right]
$$

$$
\Rightarrow \quad \int_{a}^{b} f(x) d x=F(b)-F(a)
$$

SOLVED EXAMPLES

Example 1. Find $\int_{1}^{2} x^{3} d x$, using fundamental theorem of integral calculus.
Solution. Here, we have

$$
f(x)=x^{3}, \quad 1 \leq x \leq 2
$$

Ciearly f is continuous on $[1,2]$
Now, if

$$
\phi(x)=\frac{x^{4}}{4} \quad(1 \leq x \leq 2)
$$

Then

$$
\phi^{\prime}(x)=x^{3}=f(x) .
$$

Therefore, by fundamental theorem of integral calculus; we have

$$
\int_{1}^{2} x^{3} d x=\phi(2)-\phi(1)=\frac{2^{4}}{4}-\frac{1^{4}}{4}=\frac{15}{4}
$$

Example 2. Let f be the function defined on $[0,1]$ by

$$
f(x)=\left\{\begin{array}{l}
0 \text { when } x \text { is irrational } \\
1 \text { when } x \text { is rational }
\end{array}\right.
$$

Show that f is bounded but not \mathbf{R}-integrable.
Solution. By definition of $f(x)$, we have

$$
0 \leq f(x) \leq 1 \quad \forall x \in[0,1]
$$

$\therefore f(x)$ is bounded on $[a, b]$.
Define a partition $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots . x_{r}, \ldots . x_{n-1}, x_{n}=b\right\}$ of $[a, b]$.
Let $I_{r}=\left[x_{r-1}, x_{r}\right]$ be any subinterval of P, with length $\delta_{r}\left(=x_{r}-x_{r-1}\right)$. Let M_{r} and m_{r} be respectively the supremum and infimum of f in I_{r}. Then, we have

$$
\begin{align*}
& M_{r}=1 \text { and } m_{r}=0 \\
& \text { Now, } \\
& L(P, f)=\sum_{r=1}^{n} m_{r} \delta_{r}=\sum_{r=1}^{n} 0 . \delta_{r}=0 \\
& U(P, f)=\sum_{r=1}^{n} M_{r} \delta_{r}=\sum_{r=1}^{n} 1 . \delta_{r}=\sum_{r=1}^{n} \delta_{r}=\left[\delta_{1}+\delta_{2}+\ldots+\delta_{n}\right] \\
& =\left[x_{1}-x_{0}\right]+\left[x_{2}-x_{1}\right]+\ldots+\left[x_{n}-x_{n-1}\right]=x_{n}-x_{0}=b-a \\
& \Rightarrow \quad \int_{a}^{b} f=\sup \{L(P, f)\}=0 \tag{l}\\
& \int_{a}^{b} f=\inf \{U(P, f)\}=b-a . \tag{2}
\end{align*}
$$

From (1) and (2), we conclude that

$$
\int_{a}^{b} f \neq \int_{a}^{b} f
$$

Hence, f is not \mathbf{R}-integrable over $[a, b]$.
Example 3. If a function f is defined on $[0, a], a>0$ by $f(x)=x^{3}$, then show that f is \mathbf{R}-integrable on $[0, a]$ and

$$
\int_{0}^{a} f(x) d x=\frac{a^{4}}{4}
$$

Solution. Consider a partition $P=\left\{0, \frac{a}{n}, \frac{2 a}{n}, \ldots, \frac{(n-1) a}{n}, \frac{n a}{n}=a\right\}$ of $[0, a]$.
Let I_{r} be the $r^{\text {th }}$ subinterval of P such that

$$
I_{r}=\left[\frac{(r-1) a}{n}, \frac{r a}{n}\right]
$$

with length $\delta_{r}=\frac{a}{n}, r=1,2 ; \ldots, n$.
Now, let M_{r} and m_{r} be respectively the supremum and infimum of f in I_{r}. Also, since $f(x)$ is an increasing function in $[0, a]$, therefore,

$$
m_{r}=\frac{(r-1)^{3} a^{3}}{n^{3}} \text { and } M_{r}=\frac{r^{3} a^{3}}{n^{3}}, r=1,2, \ldots, n
$$

Now

$$
\begin{aligned}
L(P, f) & =\sum_{r=1}^{n} m_{r} \delta_{r}=\sum_{r=1}^{n}\left[\frac{(r-1)^{3} a^{3}}{n^{3}} \frac{a}{n}\right] \\
& =\frac{a^{4}}{n^{4}} \sum_{r=1}^{n}(r-1)^{3}=\frac{a^{4}}{n^{4}}\left[1^{3}+2^{3}+\ldots+(n-1)^{3}\right] \\
& =\frac{a^{4}}{n^{4}}\left[\frac{(n-1) n}{2}\right]^{2}=\frac{a^{4}}{4}\left[1-\frac{1}{n}\right]^{2}
\end{aligned}
$$

$$
\Rightarrow \quad \int_{0}^{a} f=\lim _{n \rightarrow \infty} L(P, f)=\lim _{n \rightarrow \infty} \frac{a^{4}}{4}\left(1-\frac{1}{n}\right)^{2}=\frac{a^{4}}{4}
$$

Also, $\quad U(P, f)=\sum_{r=1}^{n} M_{r} \delta_{r}=\sum_{r=1}^{n}\left[\frac{r^{3} a^{3}}{n^{3}} \cdot \frac{a}{n}\right]$

$$
\begin{aligned}
& =\frac{a^{4}}{n^{4}} \sum_{r=1}^{n} r^{3}=\frac{a^{4}}{n^{4}}\left[1^{3}+2^{3}+\ldots+n^{3}\right] \\
& =\frac{a^{4}}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}=\frac{a^{4}}{4}\left[1+\frac{1}{n}\right]^{2}
\end{aligned}
$$

$\Rightarrow \quad \int_{0}^{a} f(x) d x=\lim _{n \rightarrow \infty} U(P, f)=\lim _{n \rightarrow \infty} \frac{a^{4}}{4}\left(1+\frac{1}{n}\right)^{2}=\frac{a^{4}}{4}$.
Clearly $\quad \int_{0}^{a} f=\int_{0}^{a} f=\frac{a^{4}}{4}$.

Hence, f is \mathbf{R}-integrable over $[0, a]$ and $\int_{0}^{a} f(x) . i=\frac{a^{4}}{4}$.
Example 4. Verify first mean whlue theorem for the function $f(x)=\sin x$ and $g(x)=e^{x}$ for $x \in[0, \pi]$.

Solution. Clearly, both the function $f(x)$ and $g(x)$ are continuous on $[0, \pi]$ and $g(x)>0, \forall x \in[0, \pi / 2]\left[\because g(x)=e^{x}\right.$ is an incruasing function in $\left.[0, \pi / 2]\right]$.

Then, by first mean value theorem

$$
\begin{align*}
\int_{0}^{\pi} f(x) g(x) d x & =f(c) \int_{0}^{\pi} g(x) d x & & 0 \leq c \leq \pi \\
\Rightarrow & \quad \int_{0}^{\pi} \sin x \cdot e^{x} d x & =\sin c \int_{0}^{\pi} e^{x} d x & \\
& =\left(e^{\pi}-1\right) \sin c & & 0 \leq c \leq \pi \tag{1}
\end{align*}
$$

Now

$$
\begin{align*}
\int_{0}^{\pi} e^{x} \sin x d x & =\left[\frac{1}{\sqrt{2}} e^{x} \sin \left(x-\frac{\pi}{4}\right)\right]_{0}^{\pi} \\
& =\frac{1}{\sqrt{2}} e^{\pi} \sin \frac{3 \pi}{4}-\frac{1}{\sqrt{2}} e^{0} \sin \left(0-\frac{\pi}{4}\right) . \\
& =\frac{1}{\sqrt{2}} e^{\pi} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \\
& =\frac{1}{2}\left(e^{\pi}+1\right) . \tag{2}
\end{align*}
$$

From (1) and (2), we conclude that

$$
\begin{array}{cc}
& \left(e^{\pi}-1\right) \sin c=\frac{1}{2}\left(e^{\pi}+1\right) \quad 0 \leq c \leq \pi \tag{3}\\
\Rightarrow & \sin c=\frac{1}{2}\left[\frac{e^{\pi}+1}{e^{\pi}-1}\right] .
\end{array}
$$

Now $0<\frac{1}{2}\left[\frac{c^{\pi}+1}{e^{\pi}-1}\right]<1$, therefore, there exists $c \in\left[0, \frac{\pi}{2}\right] \subset[0, \pi]$ satisfying (3).
Hence, the first mean value theorem is verified.
Example 5. Using first mean value theorem, show that

$$
\frac{1}{3 \sqrt{2}}<\int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} d x<\frac{1}{3}
$$

Solution. Here, we have

$$
f(x)=\frac{1}{\sqrt{1+x}} \text { and } g(x)=x^{2}
$$

Clearly $f(x)$ is continuous on $[0,1]$ and $g(x)>0$ on [0,1]. Also, $g(x)$ is continuous on [0,1]. Therefore, by first mean value theorem, we have

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} d x & =\frac{1}{\sqrt{1+c}} \int_{0}^{1} x^{2} d x, & & 0 \leq c \leq 1 \\
& =\frac{1}{\sqrt{1+c}}\left[\frac{x^{3}}{3}\right]_{0}^{1}, & & 0 \leq c \leq 1 \\
& =\frac{1}{3 \sqrt{1+c}}, & & 0 \leq c \leq 1
\end{aligned}
$$

Now $0 \leq c \leq 1 \Rightarrow 1<(1+c)<2$
$\Rightarrow \quad 1>\frac{1}{(1+c)}>\frac{1}{2} \Rightarrow \frac{1}{\sqrt{2}}<\frac{1}{\sqrt{1+c}}<1$
Therefore,

$$
\frac{1}{\sqrt{2}}<3 \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} d x<1
$$

or

$$
\frac{1}{3 \sqrt{2}}<\int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} d x<\frac{1}{3}
$$

- SUMMARY

- Lower Riemann Sum $=L(P, f)=\sum_{r=1}^{n} m_{r} \delta x_{r}$.
- Upper Riemann Sum $=U(P, f)=\sum_{r=1}^{n} M_{r} \delta x_{r}$
- $\quad L(P, f) \leq U(P), f \forall P$
- Upper Riemann integral :

$$
\int_{a}^{\bar{b}} f d x=\inf _{P}\{U(P, f)\}=\lim _{\|P\| \rightarrow 0} U(P, f)=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} M_{r} \delta x_{r}
$$

- Lower Riemann integral :

$$
\int_{\underline{a}}^{b} f d x=\sup _{P}\{L(P, f)\}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} m_{r} \delta x_{r}
$$

- If $\int_{\underline{a}}^{b} f d x=\int_{a}^{\bar{b}} f d x$, then f is R-integrable.
- $m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)$.
- Darboux Theorem :

$$
\begin{aligned}
& U(P, f)<\int_{a}^{b} f d x+\varepsilon \\
& L(P, f)>\int_{a}^{b} f d x-\varepsilon
\end{aligned}
$$

- $0 \leq U(P, f)-L(P, f)<\varepsilon \forall\|P\|<\delta \Leftrightarrow f$ is R-integrable.
- Every continuous function is R -integrable.
- Every monotonic function is R-integrable.
- First Mean Value Theorem : $\int_{a}^{b} f(x) d x=f(c)(b-a), \quad m \leq f(c) \leq M$.
- Fundamental Theorem integral calculus : Let f be a R-integrable function on $[a, b]$ and F. be a differentiable primitive function on $[a, b]$ such that $F^{\prime}(x)=f(x)$ on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- STUDENT ACTIVITY

1. Let $f(x)=x, 0 \leq x \leq 1$ and let $P=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ be a partion of $[0,1]$. Find $U(P, f)$ and $L(P, f)$.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Prove that every continuous function is R -integrable.

\qquad
\qquad
\qquad
\qquad
\qquad

- TEST YOURSELF

1. Let $f(x)=x(0 \leq x \leq 1)$. Let P be the partition $\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ of $[0,1]$, compute $U(P, f)$ and $L(P, f)$.
2. Show by definition that $\int_{0}^{1} x^{4} d x=\frac{1}{5}$.
3. Find the value of upper and lower integrals for the function f defined on $[0,2]$ as follows $f(x)=\left\{\begin{array}{l}x^{2}, \text { when } x \text { is rational } \\ x^{3}, \text { when } x \text { is in itional }\end{array}\right.$

ANSWERS

1. $2 / 3,1 / 3$
2. $31 / 12,49 / 12$

FILL IN THE BLANKS :

1. Partition of a set is also called \qquad
2. The value of $x_{r}-x_{r-1}$ is called of the internal $\left[x_{r-1}, x_{r}\right]$
3. Riemann sum is also known as sum.
4. The supremum of the set of the lower sums is called the \qquad integral.
5. The infimum of the set of upper sums is called the \qquad integral.
6. In computing the integral $\int_{a}^{b} f(x) d x$, the internal $[a, b]$ is known as of the integration.

TRUE OR FALSE :

Write ' T ' for true and ' F ' for false statement :

1. Every bounded function is \mathbf{R}-integrable.
2. Every \mathbf{R}-integrable function is bounded.
3. Every monotone function is not necessarily \mathbf{R}-integrable.
4. A bounded function f is \mathbf{R}-integrable in $[a, b]$ if the set of its point of discontinuity is finite.

MULTIPLE CHOICE QUESTIONS :

Choose the most appropriate one :

1. If P_{1} and P_{2} be any two partitions of $[a, b]$, then :
(a) $U\left(P_{1}, f\right) \geq L\left(P_{2}, f\right)$
(c) $U\left(P_{1}, f\right) \leq L\left(P_{2}, f\right)$
(b) $U\left(P_{1}, f\right)=L\left(P_{2}, f\right)$
(d) None of these.
2. The value of $\lim L(P, f)$ is :

$$
\|P\| \rightarrow 0
$$

(a) $\int_{a}^{b} f$
(b) $\int_{a}^{b} f$
(c) $\int_{a}^{b} f$
(d) None of these.
3. The value of $\lim _{\|P\| \rightarrow 0} U(P, f)$ is :
(a) $\int_{a}^{b} f$
(b) $\int_{0}^{1} f$
(c) $\int_{a}^{b} f$
(d) None of these.

ANSWERS

Fill in the Blanks :

1. dissection or net 2 . length
2. Darboux
3. lower

True or False
$\begin{array}{llll}\text { 1. } & \text { 2. T } & \text { 3.F } & \text { 4. } \mathrm{T}\end{array}$
Multiple Choice Questions:

1. (a) 2. (a) 3. (b)

5

CONVERGENCE OF IMPROPER INTEGRALS


```
STRUCTURE
- Improper Integrals
- Kinds of Improper Integrals
- Convergence of imroper integrals
- Convergence Tests : First Kind
- Convergence Tests : Second Kind
- Improper Integrals of Second Kind
- Summary
- Student Activity
a Test Yourself
```


:

After going through this unit you will learn :

- What are improper integrals ?
- How to check whether the given integral is convergent or divergent ?

- 5.1. IMPROPER INTEGRALS

Definition. The definite integral $\int_{a}^{b} f(x) d x$ is called Improper (or Infinite) integral if either any one or both limits are infinite and function $f(x)$ is bounded over the interval or neither the intervals $[a, b]$ is finite nor $f(x)$ is bounded over it.

- 5.2. KINDS OF IMPROPER INTEGRALS

By the definition of Improper lntegrals we can divide or categorized it into following three kind.
(1) First kind of improper integrals. First kind of improper integral is in which integrand $f(x)$ is continuous but limits are infinite.

Definition. A definite integral $\int_{a}^{b} f(x) d x$ in which limits are infinite i.e., $b=\infty, a=\infty$ and integrand is continuous is called first kind of improper integrals.

This first kind of improper integral can be classified into following three categories :
(a) Upper Limit Infinite :

For Example. $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$, here it is first kind of improper integral in which upper limit is infinite and $\left(1 / 1+x^{2}\right)$ is bounded.
(b) Lower limit infinite :

For Example. $\int_{-\infty}^{0} e^{x} d x$.
Here, the lower limit of function is infinite.
(c) Both limit infinite :

For Example. $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$.

It is the example in which both upper and lower limits are infinite.
(i) Consider $\int_{a}^{\infty} f(x) d x$. Here $f(x)$ is continuous in $\{a, \infty[$. There exists a definite number $b>a$ such that $\int_{a}^{b} f(x) d x$ as $b \rightarrow \infty$. This definite integral becomes the improper integral

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

If limit is finite, then improper integral $\int_{a}^{\infty} f(x) d x$ is convergent, otherwise divergent.
(ii) Consider $\int_{-\infty}^{\infty} f(x) d x$, then there exist $a<b$. such that $\int_{-a}^{b} f(x) d x$ as $a \rightarrow-\infty$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

If limit is finite, the improper integral is convergent otherwise divergent.
(iii) Consider $\int_{-\infty}^{+\infty}$. $f(x) d x$. It is the combination of above 2 -procedures so take a constant ' a ' between $-\infty$ to $+\infty$ and expressed in the integral in the form of

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{+\infty} f(x) d x \\
& \int_{-\infty}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x+\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
\end{aligned}
$$

If both the limits are finite then $\int_{-\infty}^{\infty} f(x) d x$ is convergent otherwise divergent i.e. If anyone or both limits are infinite.
(2) Second kind of improper integral. Second kind of improper integral is in which limits are finite but integrand is infinite. The point at which the integrand is infinite is called a singular point.

Second kind of improper integral is classified into following four categories :
(i) Singular point at right end ' b '. If $x=b$ is only singular point of $f(x)$ then there exists $\varepsilon>0$ (small positive number) such that

$$
\int_{a}^{b} f(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{a}^{b-\varepsilon} f(x) d x
$$

Here, $f(x)$ is continuous in $[a, b-\varepsilon]$.
(ii) Singular point at left end ' a '. If $f(x) \rightarrow \infty$ as $x \rightarrow a$ is only singular point of $f(x)$ then there exists a small positive number $\varepsilon>0$ such that

$$
\int_{a}^{b} f(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{a+\varepsilon}^{b} f(x) d x
$$

Here, $f(x)$ is continuous in $[a+\varepsilon, b]$.
If $\int f(x) d x=F(x)+c$ then

$$
\int_{a}^{b} f(x) d x=\lim _{\varepsilon \rightarrow 0}|f(b)-f(a+\varepsilon)| .
$$

So, we can say the convergence or divergence depend on the limit of $\lim _{\varepsilon \rightarrow 0} f(a+\varepsilon)$ respectively.
(iii) Singular point at ' c '. If $f(x) \rightarrow \infty$ as $x \rightarrow c$ the singular point of $f(x)$ where $\dot{a}<c<b$, then $\int_{a}^{b} f(x) d x$ decomposed into following form :

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \\
& =\lim _{\varepsilon \rightarrow 0} \int_{a}^{c-\varepsilon} f(x) d x+\lim _{\varepsilon^{\prime} \rightarrow 0} \int_{c+\varepsilon^{\prime}}^{b} f(x) d x .
\end{aligned}
$$

If one or both integrals in R.H.S. be convergent, then $\int_{a}^{b} f(x) d x, a<c<b$ is convergent, othenwise divergent.
(iv) Singular point at both a and b. If ' a ' and ' b ' are only singular point of $f(x)$ then there exists c such that $a<c<b$ then

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \\
& =\lim _{\varepsilon \rightarrow 0} \int_{a+\varepsilon}^{c} f(x) d x+\lim _{\varepsilon^{\prime} \rightarrow 0} \int_{c}^{b-\varepsilon^{\prime}} f(x) d x
\end{aligned}
$$

If each integral is convergent then the $\int_{a}^{b} f(x) d x$ is convergent.
(3) Third kind of improper integral. Third kind of improper integral is in which
(i) infinite limits
(ii) infinite integrand.
"It is the combination of both first kind and second kind of improper integral."
Let $\int_{a}^{\infty} f(x) d x$ is improper integral of third kind when $f(x)$ has a singular point at $x=c$, where $a<c<d$ and $c<d<\infty$ then

$$
\begin{equation*}
\int_{a}^{\infty} f(x) d x=\int_{a}^{d} f(x) d x+\int_{d}^{\infty} f(x) d x \tag{1}
\end{equation*}
$$

(I)
(II)

Here, $\int_{a}^{\infty} f(x) d x$ is convergent if both integrals are convergent otherwise divergent.

- 5.3. CONVERGENCE OF IMPROPER INTEGRAL

Definition. The integral $\int_{a}^{\infty} f(x) d x$ is said to converge to the value 1 , if for any arbitrary chosen positive number ε, however small but not zero, there exists a positive number N such that

$$
\left|\int_{a}^{b} f(x) d x-I\right|<\varepsilon ; \text { for all values of } b \geq N
$$

If the integral $f(x)$ has a finite limit then improper integral called convergent and if having no finite limit i.e., limits are $+\infty,-\infty$ then it is said to be divergent and when having neither finite value, $0,+\infty$ nor $-\infty$, the improper integrals is said to be oscillatory.

SOLVED EXAMPLES

Example 1. Discuss the convergence of the following integral $\int_{1}^{\infty} \frac{d x}{\sqrt{x}}$ by evaluating them.
Solution. Since we have
\square

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{\sqrt{x}} & =\lim _{x \rightarrow \infty} \int_{1}^{x} \frac{d x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \int_{1}^{x} x^{-1 / 2} d x \\
& =\lim _{x \rightarrow \infty}\left(\frac{x^{1 / 2}}{\frac{1}{2}}\right)_{1}^{x}=\lim _{x \rightarrow \infty}\left(2 x^{1 / 2}\right)_{1}^{x}=\lim _{x \rightarrow \infty}(2 \sqrt{x}-2)=\infty
\end{aligned}
$$

\Rightarrow the limit does not exists finitely
\Rightarrow the given integral is divergent.
Example 2. Discuss the convergence of the integral $\int_{1}^{\infty} \frac{d x}{x^{3 / 2}}$ by evaluating them.
Solution. Since we have

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x^{3 / 2}} & =\lim _{x \rightarrow \infty} \int_{1}^{x} x^{-3 / 2} d x=\lim _{x \rightarrow \infty}\left[\frac{x^{-1 / 2}}{-\frac{1}{2}}\right]_{1}^{x} \\
& =\lim _{x \rightarrow \infty}\left[-\frac{2}{\sqrt{x}}\right]_{1}^{x}=\lim _{x \rightarrow \infty}\left[-\frac{2}{\sqrt{x}}+2\right] \\
& =\frac{-2}{\infty}+2=2
\end{aligned}
$$

\Rightarrow the integral exist and finite
\Rightarrow given integral is convergent.
Example 3. Discuss the convergence of the integral $\int_{0}^{1} \frac{d x}{\sqrt{1-x}}$ of evaluating them.
Solution. Here given integral is $\int_{0}^{1} \frac{d x}{\sqrt{1-x}}$.
It is not bounded at limit $x=1$.
So $\quad \int_{0}^{1} \frac{d x}{\sqrt{1-x}}=\lim _{\varepsilon \rightarrow 0} \int_{0}^{1-\varepsilon} \frac{d x}{\sqrt{1-x}}$

$$
\begin{aligned}
& =\lim _{\varepsilon \rightarrow 0}[-2 \sqrt{1-x}]_{0}^{1-\varepsilon}=\lim _{\varepsilon \rightarrow 0}[-2 \sqrt{\varepsilon}+2] \\
& =2
\end{aligned}
$$

which is a finite number.
\Rightarrow the given integral is convergent.
Example.4. Discuss the convergence of the given integral by evaluating $\int_{-1}^{1} \frac{d x}{x^{2}}$.
Solution. Given integrand is $\int_{-1}^{1} \frac{d x}{x^{2}}$.
It becomes infinite at $x=0,-1<0<1$.

So

$$
\begin{aligned}
\int_{-1}^{1} \frac{d x}{x^{2}} & =\lim _{\varepsilon_{1} \rightarrow 0} \int_{-1}^{-\varepsilon_{1}} \frac{d x}{x^{2}}+\lim _{\varepsilon_{2} \rightarrow 0} \int_{\varepsilon_{2}}^{1} \frac{d x}{x^{2}} \\
& =\lim _{\varepsilon_{1} \rightarrow 0}\left[-\frac{1}{x}\right]_{-1}^{\varepsilon_{1}}+\lim _{\varepsilon_{2} \rightarrow 0}\left[-\frac{1}{x}\right]_{\varepsilon_{2}}^{1} \\
& =\lim _{\varepsilon_{1} \rightarrow 0}\left[\frac{1}{\varepsilon}-1\right]+\lim _{\varepsilon_{2} \rightarrow 0}\left[-1+\frac{1}{\varepsilon_{2}}\right]
\end{aligned}
$$

Since (I) and (II) do not exist finitely \Rightarrow limit does not exist finitely

Hence given integral is divergent.
Example 5. If $\int_{0}^{2 a} \frac{d x}{(x-a)^{2}}$ is an integrand then discuses the convergence of given function.
Solution. The given integral $\int_{0}^{2 a} \frac{d x}{(x-a)^{2}}$ becomes infinite at $x=a$ and $0<a<2 a$.
So $\quad \int_{0}^{2 a} \frac{d x}{(x-a)^{2}}=\int_{0}^{a} \frac{d x}{(x-a)^{2}}+\int_{a}^{2 a} \frac{d x}{(x-a)^{2}}$

$$
\begin{aligned}
& =\lim _{\varepsilon_{1} \rightarrow 0} \int_{0}^{a-\varepsilon_{1}} \frac{d x}{(x-a)^{2}}+\lim _{\varepsilon_{2} \rightarrow 0} \int_{a+\varepsilon_{2}}^{2 a} \frac{d x}{(x-a)^{2}} \\
& =\lim _{\varepsilon_{1} \rightarrow 0}\left[\frac{-1}{(x-a)}\right]_{0}^{a-\varepsilon_{1}}+\lim _{\varepsilon_{2} \rightarrow 0}\left[\frac{-1}{(x-a)}\right]_{n+\varepsilon_{2}}^{2 a n} \\
& =\lim _{\varepsilon_{1} \rightarrow 0}\left[\frac{1}{\varepsilon_{1}}+\frac{1}{a}\right]_{0}^{a-\varepsilon_{1}}+\lim _{\varepsilon_{2} \rightarrow 0}\left[\frac{1}{\varepsilon_{2}}-\frac{1}{a}\right] \\
& \text { I }
\end{aligned}
$$

Since the limit of (I) and (II) not exist finitely
\Rightarrow the given integrated is divergent.
Example 6. Discuss the convergence of integral $\int_{0}^{1} \frac{d x}{1-x}$.
Solution. We have

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{1-x} & =\lim _{\varepsilon \rightarrow 0} \int_{0}^{1-\varepsilon} \frac{d x}{1-x} \\
& =\lim _{\varepsilon \rightarrow 0}[-\log (1-x)]_{0}^{1-\varepsilon}=\lim _{\varepsilon \rightarrow 0}[-\log \varepsilon+0]
\end{aligned}
$$

Since $\lim _{\varepsilon \rightarrow 0} \log \varepsilon$ is $-\infty$, therefore $\int_{0}^{1} \frac{d x}{1-x}$ is meaningless i.e., limit does not exists. So the integral is said to be divergent.

- TEST YOURSELF

Evaluate the following integral and also discuss their convergence :

1. $\int_{1}^{\infty} \frac{d x}{x}$.
2. $\int_{0}^{\infty} e^{2 x} d x$.
3. $\int_{-1}^{1} \frac{d x}{x^{2 / 3}}$.
4. $\int_{-\infty}^{\infty} e^{-x} d x$.
5. $\int_{0}^{1} \frac{d x}{x^{3}}$.
6. $\int_{3}^{\infty} \frac{d x}{(x-2)^{2}}$.

ANSWERS

1. ∞, divergent
2. ∞, divergent
3. 6, convergent
4. ∞, divergent
5. ∞, divergent
6. I, convergent.

- 5.4. CONVERGENCE TESTTS : FIRST KIND

Recall that, First kind of improper integal is in which limits are infinite and integrand is continuous.

For Example. $\int_{a}^{\infty} f(x) d x$ or $\int_{-\infty}^{b} f(x) d x$ is the example of first kind of improper integral which can not be actually integrated. To test its convergence we use the following tests.

(a) Comparison Test :

If $\int_{a}^{\infty} f(x) d x$ and $\int_{b}^{\infty} g(x) d x$ are positive, continuous (bounded) and integrable in the interval $] a, \infty[$ and
(i) $f(x) \leq g(x)$, for all x beyond a point $x=c$ and also $\int_{b}^{\infty} g(x) d x$ is convergent, then $\int_{a}^{\infty} f(x) d x$ is convergent.
(ii) If $g(x) \leq f(x)$, for all value of x and $\int_{b}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.
(b) Limit Form of Comparison Test :

If $\int_{a}^{\infty} f(x) d x$ and $\int_{b}^{\infty} g(x) d x$ are such that the integrands are positive and $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L$ then,
(i) $\int_{a}^{\infty} f(x) d x$ is convergent, when $L=0$ and $\int_{b}^{\infty} g(x) d x$ is convergent.
(ii) $\int_{a}^{\infty} f(x) d x$ is divergent, when $L=\infty$ and $\int_{b}^{\infty} g(x) d x$ is divergent.
(iii) both integrals are either convergent or divergent if L exists but non-zero.

Theorem 1. The integral $\int_{a}^{\infty} \frac{d x}{x^{n}}$, when $a>0$ is convergent when $n>1$, and divergent when $n \leq 1$.

Proof. We have

$$
\begin{array}{rlr}
\int_{a}^{\infty} \frac{d x}{x^{n}} & =\lim _{x \rightarrow \infty} \int_{a}^{x} x^{-n} d x \quad \text { (By definition of improper integral) } \\
& =\lim _{x \rightarrow \infty}\left[\frac{x^{1-n}}{1-n}\right]_{n}^{x} \text { if } n \neq 1 \\
& =\lim _{x \rightarrow \infty}\left[\frac{x^{1-n}}{1-n}-\frac{a^{1-n}}{1-n}\right] . \tag{1}
\end{array}
$$

Now if $n>1$ then $(1-n)<0 \Rightarrow(n-1)>0$ therefore in this case, we have

$$
\lim _{x \rightarrow \infty} x^{1-n}=\lim _{x \rightarrow \infty} \frac{1}{x^{n-1}}=\frac{1}{\infty}=0
$$

\therefore From (1), we have

$$
\int_{a}^{\infty} \frac{d x}{x^{n}}=\frac{a^{1-n}}{n-1} \text { if } n>1 .
$$

Hence the given integral is convergent when $n>1$.
Now, If $n<1$, then $(1-n)>0$ and $(n-1)<0$
and

$$
\lim _{x \rightarrow \infty} x^{1-n}=\infty
$$

\therefore From (1), $\quad \int_{a}^{\infty} \frac{d x}{x^{n}}=\infty$.
Therefore, the given integral is divergent when $n<1$.
If $n=1$, then $\int_{a}^{\infty} \frac{d x}{x^{n}}=\int_{a}^{\infty} \frac{d x}{x}=\lim _{x \rightarrow \infty} \int_{a}^{x} \frac{d x}{x}=\lim _{x \rightarrow \infty}[\log x]_{a}^{x}$

$$
=\lim _{x \rightarrow \infty}[\log x-\log a]=\infty-\log a=\infty .
$$

\therefore The given integral is divergent if $n \leq 1$.
Hence $\int_{a}^{\infty} \frac{d x}{x^{n}}$ converges when $n>1$ and diverges when $n \leq 1$.
(c) Dirichlet's Test :

If $f(x), g(x)$ and $g^{\prime}(x)$ are all continuous in $[a, \infty[$ and $f(x), g(x)$ satisfy the following three conditions
(i) $\lim _{x \rightarrow \infty} g(x)=0$

1
(ii) $\int_{a}^{\infty}\left|g^{\prime}(x)\right| d x$ is convergent and
(iii) $F(r)=\int_{a}^{r} f(x) d x$ is bounded i.e., $|F(r)| \leq M$ for some positive constant M.

Then $\int_{a}^{\infty} f(x) g(x) d x$ is convergent.
(d) The μ-Test :

Let $f(x)$ be bounded and integrable in the interval $] a, \infty[$ where $a>0$.
Then $\int_{a}^{\infty} f(x) d x$ is convergent, if there is a number $\mu>1$, such that $\lim _{x \rightarrow \infty} \mu f(x)$ exists. ఆ $-\therefore$ 。
If there is a number $\mu \leq 1$ such that $\lim _{x \rightarrow \infty} x^{\mu} f(x)$ exists and non-zero, then $\int_{a}^{\infty} f(x) d x$ is dive
(e) Weierstrass M-test :

If there exists a positive continuous function $M(t)$ such that $|f(x, t)| \leq M(t), t \geq a, c \leq x \leq d$, then the improper integral $\int_{a}^{\infty} f(x, t) d t$ converges uniformly and absolutely for every x in the interval $[c, d]$ if $\int_{a_{i=}}^{\infty,} M(t) d t$ converges.
(f) Abel's Test for the Convergence of Integral of Products:

The integral $\int_{a}^{\infty} f(x) \phi(x) d x$ is convergent, if $\int_{a}^{\infty} f(x) d x$ converges and $\phi(x)$ is bounded and monotonic for $x>a$.

(g) Absolute Convergence :

If the integral $\int_{a}^{\infty}|f(x)| d x$ is convergent then the infinite integral $\int_{a}^{\infty} f(x) d x$ is said to be absolutely convergent.

- 5.5. CONVERGENCE TEST : SECOND KIND

We test the convergence of a definite integral $\int_{a}^{b} f(x) d x$ for which limits (intervals) are finite and integrand $f(x)$ is not bounded at one or more points of given integral $[a, b]$.
(a) Comparison Test :

Let $\int_{a}^{b} f(x) d x$ be the given improper integral, whose limits are finite and $f(x)$ is not bounded only at $x=a$.

Let $x=b$ be a singular point for both $f(x)$ and $g(x)$ in interval $[a, b]$ and
(i) $0 \leq f(x) \leq g(x)$ everywhere, except at $x=b$ then $\int_{a}^{b} f(x) d x$ is convergent if $\int_{a}^{b} g(x) d x$ is convergent.
(ii) $f(x) \geq g(x) \geq 0$ everywhere, except at $x=$ a then $\int_{a}^{b} f(x) d x$ is divergent if $\int_{a}^{b} g(x)$ is
(b) Limit Form of Comparison Test :
(i) If $f(x)$ and $g(x)$ are positive and $\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=L$, where L is neither zero nor infinite then $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ either both converge or both diverge at singular point $x=b$.
(ii) If $L=0$ and $\int_{a}^{b} g(x) d x$ converges, then $\int_{a}^{b} f(x) d x$ converges.
(iii) If $L=\infty$ and $\int_{a}^{b} g(x) d x$ diverges then $\int_{a}^{b} f(x) d x$ diverges.
(c) Abel's Test :

If $\phi(x)$ is bounded and monotonic for $a \leq x \leq b$ and $\int_{a}^{b} f(x) d x$ converges. Then $\int_{a}^{b} f(x) \phi(x) d x$ converges.

(d) Dirichlet's Test :

If $\int_{a+\varepsilon}^{b} f(x) d x$ is bounded and $\phi(x)$
$\rightarrow a$, then $\int_{a}^{b} f(x) \phi(x) d x$ converges.
(e) Integrand is both + ve and -ve :

Let the integrand be both + ve and -ve in $[a, b]$. Let $x=b$ be a singular point of $f(x)$. Now if $\int_{a}^{b} f(x) d x$ is convergent then $\int_{a}^{b} f(x) d x$ is absolutely convergent $\int_{a}^{b} f(x) d x$ is convergent but $\int_{a}^{b}|f(x)| d x$ is divergent then $\int_{a}^{b} f(x) d x$ is conditionally convergent.
(f) The μ-test:

Let $f(x)$ be not bounded at $x=a$ and bounded and integrable in the arbitrary interval $] a+\varepsilon, b[$, where $0<\varepsilon<b-a$.

If there is a number μ between 0 and 1 such that $\lim _{x \rightarrow a+0}(x-a)^{\mu} f(x)$ exists, then $\int_{a}^{b} f(x) d x$ is convergent.

If there is a number $\mu \geq 1$ such that $\lim _{x \rightarrow a+0}(x-a)^{\mu} f(x)$ exists and is non-zero, then $\int_{a}^{b} f(x) d x$ is divergent and the same is true, if $\lim _{x \rightarrow a+0}(x-a)^{\mu} f(x)=+\infty$ or $-\infty$.

SOLVED EXAMPLES

Example 1. Test the convergence of the integral $\int_{1}^{\infty} \frac{d x}{\sqrt{x^{3}+1}}$

Solution. We have $f(x)=\frac{1}{\sqrt{x^{3}+1}}=\frac{1}{x^{3 / 2} \sqrt{1+\frac{1}{x^{3}}}}$.
Let us consider

$$
\begin{aligned}
g(x) & =\frac{1}{x^{3 / 2}} \\
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow \infty} \frac{1}{\frac{x^{3 / 2} \sqrt{1+\frac{1}{x^{3}}}}{\frac{1}{x^{3 / 2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\left(\frac{1}{x^{3}}\right)}}=1
\end{aligned}
$$

\Rightarrow limit is finite and non-zero.
$\Rightarrow \int_{1}^{\infty} f(x) d x$ and $\int_{1}^{\infty} g(x) d x$ are either both convergent or divergent.
Now by comparison test-
$\int_{1}^{\infty} g(x) d x=\int_{1}^{\infty} \frac{d x}{x^{3 / 2}}$ will be convergent[Since $n>1$]
$\Rightarrow \int_{1}^{\infty} f(x) d x$ will be convergent.
Example 2. Test the convergence of integral $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+a^{2}} d x$.
Solution. Let $f(x)=\frac{\cos m x}{x^{2}+a^{2}}$, Let $g(x) \frac{1}{x^{2}+a^{2}}$.
Here $f(x), g(x)$ both are positive in interval $] 0, \infty[$, and $f(x)<g(x)$ for all $x \geq 0$.
Also, $\quad I=\int_{0}^{\infty} g(x) d x=\int_{0}^{\infty} \frac{1}{x^{2}+a^{2}} d x$

$$
=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{x^{2}+a^{2}}=\lim _{b \rightarrow \infty}\left[\frac{1}{a} \tan ^{-1} \frac{x}{a}\right]_{0}^{b}
$$

$$
=\lim _{b \rightarrow \infty}\left[\frac{1}{a} \tan ^{-1} \frac{b}{a}-0\right]=\frac{1}{a} \cdot \frac{\pi}{2}, \text { which is finite. }
$$

$\therefore \quad \int_{0}^{\infty} \frac{d x}{x^{2}+a^{2}}$ is convergent.
Hence, $\int_{0}^{\infty} \frac{\cos n x}{x^{2}+a^{2}} d x$ is also convergent.
Example 3. Test the convergence of the following integrals
(i) $\int_{1}^{\infty} \frac{d x}{\sqrt{x^{5}+1}}$
(ii) $\int_{0}^{\infty} \frac{x^{3} d x}{\left(x^{2}+a^{2}\right)^{2}}$.

Solution. (i) Let $f(x)=\frac{1}{\sqrt{x^{5}+1}}$, and $g(x)=x^{-5 / 2}$.
So that $\quad \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{x^{5 / 2}}{\sqrt{x^{5}+1}}=1$, finite,
and, $\quad \int_{1}^{\infty} g(x) d x=\int_{1}^{\infty} \frac{d x}{x^{5 / 2}}$ is convergent.
Hence, the given integrals converges.
(ii) $\int_{0}^{\infty} \frac{x^{3} d x}{\left(x^{2}+a^{2}\right)^{2}}=f(x)$ and let $g(x)=x^{-1}$ so that,

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{x^{4}}{\left(x^{2}+a^{2}\right)^{2}}=\lim _{x \rightarrow \infty} \frac{1}{\left(1+a^{2} / x^{2}\right)^{2}}=1
$$

Since $\int_{0}^{\infty} g(x) d x=\int_{0}^{\infty} \frac{1}{x} d x$ is divergent therefore given integral also divergent.
Example 4. Examine the convergence of $\int_{1}^{\infty} \frac{d x}{x^{1 / 3}\left(1+x^{1 / 2}\right)}$.
Solution. Let $\quad f(x)=\frac{1}{x^{1 / 3}\left(1+x^{1 / 2}\right)}=\frac{1}{x^{1 / 3} \cdot x^{1 / 2}\left(1+1 / x^{1 / 2}\right)}$

$$
=\frac{1}{x^{5 / 6} \cdot\left\{1+\left(1 / x^{1 / 2}\right)\right\}}
$$

$f(x)$ is bounded in the interval $(1, \infty)$ then by μ-test $\mu=\frac{5}{6}-0=\frac{5}{6}$.
We have $\lim _{x \rightarrow \infty} x^{\mu} f(x)=\lim _{x \rightarrow \infty} x^{5 / 6} \cdot \frac{1}{x^{5 / 6}\left\{1+1 / x^{1 / 2}\right\}}$

$$
=\lim _{x \rightarrow \infty} \frac{1}{\left(1+1 / x^{1 / 2}\right)}=1 \quad \text { (finite and non-zero) }
$$

Since $\mu=5 / 6<1$, so the given integral is divergent.
Example 5. Test the convergence of the integral

$$
\int_{a}^{\infty} \frac{\sin x}{\sqrt{x}} d x, \text { where } a>0
$$

Solution. We have $\int_{a}^{\infty} \frac{\sin x}{\sqrt{x}} d x$.
Let

$$
f(x)=\frac{1}{\sqrt{x}} \text { and } \phi(x)=\sin x
$$

$1 / \sqrt{x}$ is bounded and monotonically decreasing for all $x \geq a$ and $\lim 1 / \sqrt{x}=0$.
Also, $\left|\int_{a}^{\infty} \phi(x) d x\right|=\left|\int_{a}^{\infty} \sin x d x\right|=|\cos a-\cos \infty| \leq 2$.
For all finite values of x the value of $\cos x$ lies between -1 and 1 .
$\therefore\left|\int_{a}^{\infty} \phi(x) d x\right|$ is bounded for all finite values of x.
Hence by Dirichlet's test the integral $\int_{a}^{\infty} \frac{\sin x}{\sqrt{x}} d x$ is convergent.
Example 6. Show that $\int_{1}^{\infty} \frac{\sin x}{x^{4}} d x$ is absolutely convergent.
Solution. If $\int_{1}^{\infty}\left|\frac{\sin x}{x^{4}}\right| d x$ is convergent, then integral $\int_{1}^{\infty} \frac{\sin x}{x^{4}} d x$ will be absolutely convergent.

Let $f(x)=\left|\frac{\sin x}{x^{4}}\right|$ then $f(x)$ is bounded in the inteval $] 1, \infty[$.
Now, we have

$$
f(x)=\left|\frac{\sin x}{x^{4}}\right|=\frac{|\sin x|}{x^{4}} \leq \frac{1}{x^{4}} ; \quad(\text { since }|\sin x| \leq 1)
$$

\therefore By comparison test, if $\int_{1}^{\infty} \frac{1}{x^{4}} d x$ is convergent then $\int_{1}^{\infty} f(x) d x$ is convergent.
But the comparison integral $\int_{1}^{\infty} \frac{1}{x^{4}} d x$ is convergent because here $n=4$ which is greater then 1.

Hence, $\int_{1}^{\infty} f(x) d x$ is convergent and so the given integral is absolutely convergent.

- TEST YOURSELF

1. Evaluate the following integrals :
(i) $\int_{3}^{\infty} \frac{d x}{(x-2)^{2}}$.
(ii) $\int_{0}^{1} \frac{d x}{1-x}$.
(iii) $\int_{0}^{1} \frac{d x}{x^{3}}$.
2. Test the convergence of the following integrals :
(i) $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+a^{2}} d x$.
(ii) $\int_{0}^{\infty} \frac{\cos m x}{1+x^{2}} d x$.
3. Test the convergent of the following integrals:
(i) $\int_{a}^{\infty} \frac{d x}{x \sqrt{\left(1+x^{2}\right)}}, a>0$
(II) $\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+a^{2}\right)^{2}} d x$
4. Show that the integral $\int_{0}^{\infty} e^{-x^{2}} d x$ is convergent.

化 3

$$
. i: \quad,
$$

ANSWERS

1. (i) $-\infty$
(ii) ∞
2. (i) convergent
(iii) convergent
(iv) divergent
3. (i) convergent
(ii) divergent

- 5.6. IMPROPER INTEGRALS OF SECOND KIND

We know that an integral $\int_{a}^{b} \dot{f}(x)^{r} d x$ is said to be of second kind in which the range of integration is finite and the integrand $f(x)$ is unbounded at one or more points of the given interval $[a, b]$. Here, it is sufficient to consider the case when $f(x)$ becomes unbounded at $x=a$ and bounded for all other values of x in the interval $[a, b]$.
\therefore We have $\int_{a}^{b} f(x) d x=\lim _{h \rightarrow 0} \int_{a+h}^{b} f(x) d x, h>0$.
Now we use the following test, to test the convergence of the given integral.
(a) Comparison Test :

Let $\int_{a}^{b} f(x) d x$ be the given improper integral, in which the range of integration $] a, b[$ is finite and $f(x)$ is unbounded only at $x=a$. Let $\phi(x)$ be any positive function in the interval $] a+h, b[$ such that $|f(x)| \leq \phi(x)$.

Then $\int_{a}^{b} f(x) d x$ is convergent if $\int_{a}^{b} \phi(x) d x$ is convergent.

Also, if $|f(x)| \geq \phi(x) \forall x \in] a+h, b\left[\right.$, then $\int_{a}^{b} f(x) d x$ is divergent, provided $\int_{a}^{b} \phi(x) d x$ is divergent.

Theorem 1. The coinparison integral $\int_{a}^{b} \frac{d x}{(x-a)^{n}}$ is convergent when $n<1$ and divergent when $n \geq 1$.

Proof. Consider

$$
\begin{align*}
\int_{a}^{b} \frac{d x}{(x-a)^{n}} & =\lim _{h \rightarrow 0} \int_{a+h}^{b} \frac{d x}{(x-a)^{n}}=\lim _{h \rightarrow 0} \int_{a+h}^{b}(x-a)^{-n} d x \\
& =\lim _{h \rightarrow 0}\left[\frac{(x-a)^{-n+1}}{1-n}\right]_{a+h}^{h}, \text { if } n \neq 1 . \\
& =\lim _{h \rightarrow 0}\left[\frac{(b-a)^{1-n}}{1-n}-\frac{h^{1-n}}{1-n}\right] . \tag{1}
\end{align*}
$$

Now

$$
n<1 \Rightarrow 1-n>0 \Rightarrow \lim _{h \rightarrow 0} h^{1-n}=0
$$

Therefore, (1) gives

$$
\int_{a}^{b} \frac{d x}{(x-a)^{n}}=\frac{(\ddot{b}-a)^{1-n}}{1-n}, \text { if } n<1
$$

\Rightarrow The given integral converges when $n<1$.
If $n>1$ then $1-n<0 \Rightarrow n-1>0$.

$$
\therefore \quad \int_{a}^{b} \frac{d x}{(x-a)^{n}}=\lim _{h \rightarrow 0}\left[\frac{(b-a)^{1-n}}{1-n}+\frac{1}{(n-1) h^{n-1}}\right]=\infty .
$$

\Rightarrow The given integral divergent when $n>1$.
Now, if $n=1$, then

$$
\begin{aligned}
\int_{a}^{b} \frac{d x}{(x-a)^{n}} & =\int_{a}^{b} \frac{d x}{(x-a)}=\lim _{h \rightarrow 0} \int_{a+h}^{b} \frac{d x}{x-a} \\
& =\lim _{h \rightarrow 0}[\log (x-a)]_{a+h}^{b} \\
& =\lim _{h \rightarrow 0}[\log (b-a)-\log h]=\infty .
\end{aligned}
$$

Hence, the given integral diverges when $n=1$.

SOLVED EXAMPLES

Example 1. Test the convergence of the integral $\int_{0}^{1} \frac{d x}{x^{3}\left(1+x^{2}\right)}$.
Solution. Here, it is clear that the integral

$$
f(x)=\frac{1}{x^{3}\left(1+x^{2}\right)}
$$

is unbounded at $x=0$.
Let $\quad \phi(x)=\frac{1}{x^{3}}$.
$\therefore \quad \lim _{x \rightarrow 0} \frac{f(x)}{\phi(x)}=\lim _{x \rightarrow 0} \frac{1}{1+x^{2} .}=1$, i.e., finite and non-zero.
Then, by comparison test $\int_{0}^{1} f(x) d x$ and $\int_{0}^{1} \phi(x) d x$ either both converges or both diverges.
But clearly $\int_{0}^{1} \frac{d x}{x^{3}}$ is convergent

Hence, the given integra! $\int_{0}^{1} \frac{d x}{x^{3}\left(1+x^{2}\right)}$ is convergent.
Example 2. Test the convergence of the integral $\int_{0}^{\pi / 2} \frac{\cos x}{x^{2}} d x$.
Solution. Here, the integral $f(x)=\frac{\cos x}{x^{2}}$ is unbounded at $x=0$. \because
Let

$$
\phi(x)=\frac{1}{x^{2}}
$$

' Then

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)}{\phi(x)} & =\lim _{x \rightarrow 0}\left\{\frac{\cos x}{x^{2}} \cdot x^{2}\right\} \\
& =\lim _{x \rightarrow 0} \cos x=1, \text { finite and non-zero. }
\end{aligned}
$$

\therefore by comparison test the integrals $\int_{0}^{\pi / 2} \cdot f(x) d x$ and $\int_{0}^{\pi / 2} \phi(x) d x$, either both converge or both diverge.

But $\int_{0}^{\pi / 2} \phi(x) d x=\int_{0}^{\pi / 2} \frac{1}{x^{2}} d x=\lim _{h \rightarrow 0} \int_{h}^{\pi / 2} \frac{1}{x^{2}} d x$

$$
=\lim _{h \rightarrow 0}\left[-\frac{1}{x}\right]_{h}^{\pi / 2}=\lim _{h \rightarrow 0}\left[-\frac{2}{\pi}+\frac{1}{h}\right]=\infty .
$$

$\therefore \int_{0}^{\pi / 2} \phi(x) d x$ is divergent.
Hence, the integral $\int_{0}^{\pi / 2} \frac{\cos x}{x^{2}} d x$ is divergent.
(b) The μ-test :

Let the function $f(x)$ be unbounded at $x=a$ and integrable in the interval $] a+h, b[$, $0<h<b-a$. If there is a number μ between 0 and 1 such that $\lim _{x \rightarrow a+0}(x-a)^{\mu} f(x)$, exists, then $\int_{a}^{b} f(x) d x$ is convergent and if there is a number $\mu \geq 1$ such that $\lim _{x \rightarrow a+0}(x-a)^{\mu} f(x)$ exists and non-zero, then $\int_{a}^{b} f(x) d x$ is divergent and if

$$
\lim _{x \rightarrow a+0}(x-a)^{\mu} f(x)=+\infty \text { or }-\infty, \text { then } \int_{a}^{b} f(x) d x
$$

is also divergent.
(c) Abel's Test :

If $\int_{a}^{b} f(x) d x$ converges and $\phi(x)$ is bounded and monotonic for $a \leq x \leq b$, then $\int_{a}^{b} f(x) \phi(x) d x$ converges.

(d) Dirichlet's Test :

If $\int_{a+h}^{b} f(x) d x$ be bounded and $\phi(x)$ be bounded and monotonic on the interval $a \leq x \leq b$
converging to zero as x tends to a, then $\int_{a}^{b} f(x) \phi(x) d x$ converges.

Example 1. Show that the integral $\int_{0}^{1} \frac{d x}{\sqrt{\{x(1-x)\}}}$ converges.
Solution. Here $f(x)=\frac{1}{\sqrt{\{x(1-x)\}}}$ is unbounded at $x=0$ and 1 .
Let a be any number such that $0<a<1$.
Then $\int_{0}^{1} \frac{d x}{\sqrt{\{x(1-x)\}}}=\int_{0}^{a} \frac{d x}{\sqrt{\{x(1-x)\}}}+\int_{a}^{1} \frac{d x}{\sqrt{\{x(1-x)\}}}=I_{1}+I_{2}$.
In the integral I_{1}, the integrand $f(x)$ is unbounded at lower limit of integration $x=0$ and in integration I_{2}, the integrand $f(x)$ is unbounded at the upper limit of integration $x=1$.

To test the convergence of I_{4}, taking $\mu=\frac{1}{2}$, we have

$$
\lim _{x \rightarrow 0} x^{\mu} f(x)=\lim _{x \rightarrow 0} \frac{x^{1 / 2}}{\sqrt{\{x(1-x)\}}}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{1-x}}=1
$$

So, the above limit exists.
Since, $0<\mu<\frac{1}{2}$, so I_{1} is convergent by μ-test.
To test the convergence of I_{2} taking $\mu=\frac{1}{2}$, we have

$$
\begin{aligned}
\lim _{x \rightarrow 1-0}(1-x)^{\mu} \cdot f(x) & =\lim _{x \rightarrow 1-0}(1-x)^{1 / 2} \cdot \frac{1}{\sqrt{\{x(1-x)\}}} \\
& =\lim _{x \rightarrow 1-0} \frac{1}{\sqrt{x}}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1-h}}=1 .
\end{aligned}
$$

Since $0<\mu<1$, so I_{2} is convergent by μ-test.
Thus, the given integral is the sum of two convergent integrals. Hence, the given integral is convergent.

Example 2. Test the convergence of the integral $\int_{0}^{1} x^{n-1} \log x d x$.
Solution. Since $\lim _{x \rightarrow 0} x^{r} \log x=0$ where $r>0$, the integral is a proper integral if $n>1$.
If $n=1$, then we have

$$
\begin{aligned}
\int_{0}^{1} \log x d x & =\lim _{h \rightarrow 0} \int_{h}^{1} \log x d x=\lim _{h \rightarrow 0}[x \log x-x]_{\varepsilon}^{1} \\
& =\lim _{h \rightarrow 0}[-1-h \log h+h]=-1 .
\end{aligned}
$$

So the given integral is convergent if $n=1$.
If $n<1$ and $f(x)=x^{n-1} \log x$ then, we have

$$
\begin{align*}
\lim _{x \rightarrow 0} x^{\mu} f(x) & =\lim _{x \rightarrow 0} x^{\mu+n-1} \cdot \log x=0 \text { if } \mu>1-n \tag{i}\\
& =-\infty \text { if } \mu \leq 1-n .
\end{align*}
$$

Hence, if $0<n<1$, then we can take μ between 0 and 1 and satisfying (i).
Then if $0<n<1$ then the integral is convergent by μ-test.
Again if $n \leq 0$ then, we can take $\mu=1$ and satisfying (ii).
Hence if $n \leq 0$ then the integral is divergent by μ-test.
So by the above discussion we get, the given integral is convergent if $n>0$ and divergent if $n \leq 0$.

Example 3. Discuss the convergence of the given integral

$$
\int_{0}^{\infty} x^{n-1} e^{-x} d x, \text { if } n>0
$$

Solution. Here given that

$$
I=\int_{0}^{\infty} x^{n-1} e^{-x} d x
$$

$$
I=\int_{0}^{1} x^{n-1} e^{-x} d x+\int_{1}^{\infty} x^{n-1} e^{-x} d x
$$

Let $\quad I_{1}=\int_{0}^{1} x^{n-1} e^{-x} d x$

$$
I_{2}=\int_{1}^{\infty} x^{n-1} e^{-x}
$$

Here for discuss the convergence of given integral, we use μ-test in I_{2} and comparison test in I_{1}.

$$
I_{1}=\int_{0}^{1} x^{n-1} e^{-x} d x
$$

$$
f(x)=x^{n-1} e^{-x} \text { at } x=0, \text { it will be unbounded. }
$$

Let

$$
\begin{aligned}
& g(x) \simeq x^{n-1} \\
& \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} e^{-x}=1
\end{aligned}
$$

By comparison test if $g(x)$ is convergent then $f(x)$ will also be convergent or if divergent then $f(x)$ will be divergent

$$
\begin{aligned}
\int_{0}^{1} g(x) d x & =\int_{0}^{1} x^{n-1} d x=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} x^{n-1} d x \\
& =\lim _{\varepsilon \rightarrow 0}\left[\frac{x^{n}}{n}\right]_{\varepsilon}^{1}=\lim _{\varepsilon \rightarrow 0}\left[\frac{1}{n}-\frac{\varepsilon^{n}}{n}\right] \\
& =\frac{1}{n}, \text { which is a finite real number. }
\end{aligned}
$$

$\Rightarrow \int_{0}^{1} g(x) d x$ is convergent
$\Rightarrow f(x)$ will be convergent.
Now $\quad I_{2}=\int_{1}^{\infty} x^{n-1} e^{-x} d x$.
Here $f(x)=x^{n-1} e^{-x}$. It is bounded in the interval $(1, \infty)$

$$
\lim _{x \rightarrow \infty} x^{\mu} f(x)=\lim _{x \rightarrow \infty} \frac{x^{\mu} \cdot x^{n-1}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{x^{\mu+n-1}}{1+x+\frac{x^{2}}{2!}+\ldots}=0
$$

For $\mu>1$, we have $\int_{1}^{\infty} x^{n-1} e^{-x} d x$ is convergent.
From the above result we can say I will be convergent because I_{1} and I_{2} both are convergent.

- SUMMARY

- First kind of improper integrals :

$$
\int_{a}^{\infty} f(x) d x, \int_{-\infty}^{a} f(x) d x, \int_{-\infty}^{\infty} f(x) d x
$$

- Second kind of improper integrals :

$$
\int_{a}^{\infty} \frac{d x}{x-a)^{n}} \text { or } \int_{a}^{\infty} \frac{d x}{(x-b)^{n}}
$$

- When $a>0$, then $\int_{a}^{\infty} \frac{d x}{x^{n}}$ is
(i) convergent if $n>1$
(ii) divergent if $n \leq 1$
- The integral $\int_{a}^{b} \frac{d x}{(x-a)^{n}}$ is :
(i) Convergent if $n<1$.
(ii) Divergent if $n \geq 1$.
- STUDENT ACTIVITY

1. Discuss the convergence of the integral $\int_{0}^{1} \frac{d x}{\sqrt{1-x}}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Test the convergence of the integral $\int_{0}^{1} x^{n-1} \log x d x$.
\qquad
\qquad
\qquad
\qquad
\qquad

- TEST YOURSELF

1. Show that the integral $\int_{0}^{1} \frac{d x}{x^{1 / 3}\left(1+x^{2}\right)}$ is convergent.
2. Test the convergence of the integral $\int_{1}^{2} \frac{d x}{\sqrt{x^{4}-1}}$.
3. Test the convergence of the integral $\int_{0}^{1} \frac{d x}{(x+1) \sqrt{\left(1-x^{2}\right)}}$.
4. Show that $\int_{0}^{1} x^{n-1} e^{-x} d x$ is convergent if $n>0$.

ANSWERS

2. convergent
3. convergent

FILL IN THE BLANKS :

1. The definite integral $\int_{a}^{b} f(x) d x$ is called integral if either any one or both limits are finite and function is bounded over the range of integration.
2. A definite integral $\int_{a}^{b} f(x) d x$ in which limits are infinite and integrand is continuous is called kind of improper integral.
3. If improper integral having finite value, then it is called
4. The point at which the integrand is infinite is called
\qquad .. point.
5. The integral $\int_{0}^{1} \frac{d x}{1-x}$ is

TRUE OR FALSE :

Write 'T' for true and ' F ' for false statement :

1. The integral $\int_{0}^{\infty} \frac{d x}{(1+x)^{2 / 3}}$ is convergent.
2. The comparison integral $\int_{0}^{\infty} \frac{d x}{x^{n}}$, when $a>0$ is convergent when $n>1$ and divergent when $n \leq 1$.
3. In μ-test the value of μ is usually taken to be equal to the highest power of x in the denominator of the integrand minus the highest power of x in the numerator of the integrand.

MULTIPLE CHOICE QUESTIONS :

Choose the most appropriate one :

1. The integral $\int_{0}^{\infty} x^{n-1} e^{-x} d x$ is convergent if :
(a) $n>0$
(b) $n=0$
(c) $n<0$
(d) None of these.
2. The integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ converges :
(a) uniformly
(b) conditionally
(c) absolutely
(d) None of these.

ANSWERS

Fill in the Blanks :

1. Improper
2. First
3. Convergent
4. Singular
5. Divergent

True or False:

1. F
2. T
3. T

Multiple Choice Questions :

1. (a) 2. (b)

FUNCTIONS OF A COMPLEX VARIABLE

- Complex Number
- Algebra of Complex Numbers
- Properties of Conjugate of a Complex Number
- Modulus of Argument of a Complex Number
- Properties of Moduli
- Properties of Arguments
- Geometrical representation of Complex Number
- polar form of a Complex Number
- Equation of a Straight Line in Complex Form
- Equation of a Circle in Argand Plane
- Condition for Four Points to be Concyclic
- Analytic Functions
- Cauchy-Riemann Equations
- The necessary and sufficient conditions for a function $f(z)$ to be analytic
- Construction of Analytic Functions
- Summary
- Student Activity
- Test Yourself

4. LEARNING OBJECTIVES

After going through this unit you will learn:

- What is a complex Number and how to represent it ?
- How to find the equation of a straight line and a circle in complex form.
- What are analytic functions ?
- What are harmonic functions ?

- 6.1. COMPLEX NUMBER

The concept of numbers, as we now is gradually extended from natural numbers to integers. Integers to rational numbers and from rational numbers to real numbers. We know that the square of every real number is non-negative, therefore, there exist no real number whose square equal to -1 .

For example, there is no solution in real number of the equation $x^{2}+1=0$ and $x^{2}-2 x+3=0$. Euler (1707-1783) was first to introduce the symbol i for the square root of -1
i.e., $\quad i=\sqrt{-1}$ and $i^{2}=-1$. So $i^{3}=i^{2} \cdot i=(-1) i=-i$
$i^{4}=(i)^{2}=1$ and so on.
Gauss (1777-1855) first proved in a satisfactory manner that every algebraic equation with real coefficient has complex roots of the form $x+i y$, the real roots being a particular case of complex numbers for which the coefficient of i is zero. Hamilton (1805-1865) also made a great contribution to the development of the theory of complex numbers.

Imaginary Numbers :

Definition. Square root of a negative number is called as imaginary number.
For example : $\sqrt{-1}, \sqrt{-2}, \sqrt{-3}$ etc.

Complex Numbers :

Definition. A complex number may be defined as an ordered pair $x+i y$, of real mumbers and may be denoted by the symbol (x, y).

If we write $z=(x, y)$ i.e. $x+i y$, then x is called the real part and y is the imaginary part of the complex number z and may be denoted by $R(z)$ and $I(z)$ respectively.

For example : $5+2 i, 3+6 i, 2-i, 0+i$ etc. all are complex numbers.

Equality of Two Complex Numbers :

'Two complex number are said to be equal if and only if their real as well as imaginary parts are equal : if $x_{1}+i y_{1}$ and $x_{2}+i y_{2}$ are two complex numbers, then

$$
\begin{array}{ll}
& x_{1}+i y_{1}=x_{2}+i y_{2} \Leftrightarrow x_{1}=x_{2}, \text { and } y_{1}=y_{2} \\
\because & x_{1}+i y_{1}=x_{2}+i y_{2} \\
\Rightarrow & \left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)=0 \\
\Rightarrow & \left(x_{1}-x_{2}\right)=i\left(y_{2}-y_{1}\right) \\
\Rightarrow & \left(x_{1}-x_{2}\right)^{2}=(-1)\left(y_{2}-y_{1}\right)^{2} \\
\Rightarrow & \left(x_{1}-x_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=0 \\
\Rightarrow & x_{1}-x_{2}=0 \text { and } y_{2}-y_{1}=0 \Rightarrow x_{1}=x_{2} \text { and } y_{1}=y_{2}
\end{array}
$$

or we can say $(a, b)=(c, d) \Leftrightarrow a=c$ and $b=d$.

Important Results :

(i) If x and y are two positive real numbers then

$$
\sqrt{-x} \times \sqrt{-y}=-\sqrt{x y}
$$

(ii) For any two real numbers $\sqrt{x} \times \sqrt{y}=\sqrt{x y}$ is true only when at least one of x and y is either positive or zero.

$$
\text { i.e., } \sqrt{x} \times \sqrt{y}=\sqrt{x y} \text { is not valid, if both } x \text { and } y \text { are negative. }
$$

(iii) For any positive real number x, we have

$$
\sqrt{-x}=\sqrt{-1 \times x}=\sqrt{-1} \times \sqrt{x}=i \sqrt{x}
$$

- 6.2. ALGEBRA OF COMPLEX NUMBERS

(A) Addition of complex numbers. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be two complex numbers, then their sum $z_{1}+z_{2}$ is the number $\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$.

From the definition, it is clear that the sum of $\left(z_{1}+z_{2}\right)$ is
real $\left(z_{1}+z_{2}\right)+i \operatorname{imag}\left(z_{1}+z_{2}\right)$
where $\operatorname{Re}\left(z_{1}+z_{2}\right)=\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(z_{2}\right)$
andimag $\left(z_{1}+z_{2}\right)=\operatorname{imag}\left(z_{1}\right)+\operatorname{imag}\left(z_{2}\right)$.
For example : Let $z_{1}=5+3 i$ and $z_{2}=3+6 i$ be any two complex numbers then, we have

$$
z_{1}+z_{2}=(5+3)+i(3+6)=8+9 i .
$$

Properties of the Addition of Complex Numbers :

(i) Commutativity. If z_{1} and z_{2} are two complex numbers, then

$$
z_{1}+z_{2}=z_{2}+z_{1} .
$$

(ii) Associativity. For three complex numbers z_{1}, z_{2} and z_{3}, we have
$\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$.
(iii) Additive identity. The complex number $0=0+i 0$ is the identity element for addition i.e.,$z+0=0+z=z$ for all $z \in \mathbf{C}$.
(iv) Additive inverse. Corresponding to every non-zero complex number $z=x+i y$, there exist a complex number

$$
\begin{aligned}
& -z=-(x+i y)=-x-i y \text { such that } \\
& z+(-z)=0=(-z)+z .
\end{aligned}
$$

Here, $-z$ is called the additive inverse of z.
(B) Substraction of complex numbers. If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be two complex numbers, then their difference $z_{1}-z_{2}$ is the number $z_{1}+\left(-z_{2}\right)$.

Symbolically :

The difference of two complex number z_{1} and z_{2} can be written as

$$
z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)=\left(x+i y_{1}\right)+\left(-x_{2}-i y_{2}\right)=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right) .
$$

For example : Let $z_{1}=3+7 i$ and $z_{2}=1+5 i$ are any two complex numbers, then

$$
z_{1}-z_{2}=(3-1)+i(7-5)=2+2 i .
$$

(C) Multiplication of complex numbers. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are two complex numbers then the product of z_{1} and z_{2}, given by

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right)=x_{1} x_{2}+i x_{1} y_{2}+i x_{2} y_{1} f\left(y_{1} \dot{y}_{2}^{2}=-1\right) \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
& =\left\{\operatorname{Re}\left(z_{1}\right) \cdot \operatorname{Re}\left(z_{2}\right)-\operatorname{im} \cdot\left(z_{1}\right) \cdot \operatorname{im} \cdot\left(z_{2}\right)\right\}+i\left\{\operatorname{Re}\left(z_{1}\right) \cdot \operatorname{im} \cdot\left(z_{2}\right)+\operatorname{Re}\left(z_{2}\right) \cdot \operatorname{im}\left(z_{1}\right)\right\} .
\end{aligned}
$$

For example : Le $z_{1}=3+2 i$ and $z_{2}=5+3 i$ be two complex numbers, then

$$
z_{1} \cdot z_{2}=(3+2 i) \cdot(5+3 i)=(15-6)+i(9+10)=9+19 i .
$$

Properties of Multiplication of Complex Numbers :
(i) Commutativity. For any two complex number z_{1} and z_{2}, we have .

$$
z_{1} z_{2}=z_{2} z_{1} .
$$

(ii) Associativity. For any three complex number z_{1}, z_{2} and z_{3}, we have

$$
\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right)
$$

(iii) Multiplicative identity. The complex number $1=1+i .0$ is the identity element for multiplication
i.e.,

$$
z \cdot 1=z=1 . z \text { for all } z \in \mathbf{C}
$$

(iv) Multiplicative inverse. Corresponding to every non-zero complex number $z=x+i y$, there exists a complex number $z_{1}=x_{3}+i y_{1}$, such that

$$
z \cdot z_{1}=1=z_{1} \cdot z
$$

Here, z_{1} is called the multiplicative inverse of z.
(v) Distributivity. For any three complex numbers z_{1}, z_{2}, and z_{3}

$$
\begin{aligned}
& z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3} \\
& \left(z_{2}+z_{3}\right) z_{1}=z_{2} z_{1}+z_{3} z_{1}
\end{aligned}
$$

and
(vi) Cancellation law for multiplication. If z_{1}, z_{2} and z_{3} are three complex numbers and $z_{3} \neq 0$ then,

$$
z_{1} z_{3}=z_{2} z_{3} \Rightarrow z_{1}=z_{2} .
$$

(D) Conjugate of a complex number. If $z=x+i y$ is a complex number, then conjugate of z, denoted by \bar{z} given by $x-i y$, which is obtain by replacing $-i$ for i in z.

- 6.3. PROPERTIES OF CONJUGATE OF A COMPLEX NUMBER

(i) $(\bar{z})=z$.
(ii) $z+\bar{z}=2 \operatorname{Re}(z)$.
(iii) $z-\bar{z}=2 i \operatorname{Im}(z)$.
(iv) $z=\overline{\bar{z}} \Leftrightarrow z$ is purely real.
(v) $z+\bar{z}=0 \Rightarrow z$ is purely imaginary.
(vi) $z \bar{z}=\{\operatorname{Re}(z)\}^{2}+\{\operatorname{Im}(z)\}^{2}$.
(vii) $\bar{z}_{1}+\bar{z}_{2}=\bar{z}_{1}+\bar{z}_{2}$.
(viii) $\overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2}$.
(ix) $\overline{z_{1} z_{2}}=\bar{z}_{1}, \bar{z}_{2}$.
(x) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}}$ (provided $z_{2} \neq 0$).
(E) Division of complex number. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be two complex numbers, then division of z_{1} and z_{2}, denoted by $\frac{z_{1}}{z_{2}}$ is given by

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)^{-1} \\
& =\left(x_{1}+i y_{1}\right)\left\{\frac{x_{2}}{x_{2}^{2}+y_{2}^{2}}-i \frac{y_{2}}{x_{2}^{2}+y_{2}^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\left(\frac{x_{1} x_{2}}{x_{2}^{2}+y_{2}^{2}}+\frac{y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}\right)+i\left(\frac{-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+\frac{x_{2} y_{1}}{x_{2}^{2}+y_{2}^{2}}\right)\right\} \\
& =\left(\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}^{2}+y_{2}^{2}}\right), \text { provide } x_{2}^{2}+y_{2}^{2} \neq 0 .
\end{aligned}
$$

For example : If $z_{1}=1+4 i$ and $z_{2}=2-3 i$, then

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{1+4 i}{2-3 i}=\frac{1+4 i}{2-3 i} \times \frac{2+3 i}{2+3 i} \\
& =\frac{(1+4 i)(2+3 i)}{2^{2}-(3 i)^{2}}=\frac{2+3 i+8 i-12}{9-9 i^{2}}=\frac{11 i-10}{4-(-9)}=\frac{11 i-10}{13}=\left(\frac{-10}{13}\right)+i\left(\frac{11}{13}\right) .
\end{aligned}
$$

Dot and cross product of complex number. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be two complex numbers (vectors). Then dot product (scalar product) of z_{1} and z_{2} is defined by

$$
\begin{align*}
z_{1} \circ z_{2} & =\left|z_{1}\right| \cdot\left|z_{2}\right| \cos \theta=x_{1} x_{2}+y_{1} y_{2} \\
& =\operatorname{Re}\left(\bar{z}_{1} z_{2}\right)=\frac{1}{2}\left(z_{1} z_{2}+z_{1} \bar{z}_{2}\right) \tag{1}
\end{align*}
$$

where θ is the angle between z_{1} and z_{2} which lies between 0 and π and cross product of z_{1} and z_{2} is

$$
\begin{align*}
z_{1} \times z_{2} & =\left|z_{1}\right|\left|z_{2}\right| \sin \theta=x_{1} y_{2}-y_{1} x_{2} \\
& =\operatorname{Im}\left(z_{1} z_{2}\right)=\frac{1}{2 i}\left(\bar{z}_{1} z_{2}-z_{1} \bar{z}_{2}\right) . \tag{2}
\end{align*}
$$

By (1) and (2), it is clear that

$$
\begin{equation*}
\bar{z}_{1} z_{2}=\left(z_{1} \circ z_{2}\right)+i\left(z_{1} \times z_{2}\right)=\left|z_{1}\right|\left|z_{2}\right| e^{i \theta} \tag{3}
\end{equation*}
$$

If both z_{1} and z_{2} are non zero, then
(i) z_{1} and z_{2} is perpendicular if and only if $z_{1} 0 z_{2}=0$.
(ii) z_{1} and z_{2} is parallel if and only if $z_{1} \times z_{2}=0$.
(iii) The magnitude of the projection of z_{1} on z_{2} is $\frac{\left|z_{1} 0 z_{2}\right|}{\left|z_{2}\right|}$.
(iv) The area of a parallelogram whose side z_{1} and z_{2}, is $\left|z_{1} \times z_{2}\right|$.

- 6.4. MODULUS AND ARGUMENT OF A COMPLEX NUMBER

Let $z=x+$ iy be any complex number. Let $x=r \cos \theta, y=r \sin \theta$, then $r=+\sqrt{x^{2}+y^{2}}$ is called the modulus of the complex number z written as $|z|$ and $\theta=\tan ^{-1} \frac{y}{x}$ is called the argument or amplitude of z, written as arg z.

$$
\begin{aligned}
& \text { Thus, } \\
& r=|z|=\sqrt{x^{2}+y^{2}} \\
& \Rightarrow \quad . \quad|z|^{2}=x^{2}+y^{2}=z \cdot \bar{z} \\
& \Rightarrow \quad z \cdot \frac{\bar{z}}{|z|^{2}}=1 \text {, if } z \neq 0 \text {. }
\end{aligned}
$$

- 6.5. SOME PROPERTIES OF MODULI

Theorem 1. The modulus of the product of two complex numbers is the product of their moduli i.e., $\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$.

Proof. We have, $\left|z_{1} \cdot z_{2}\right|^{2}=\left(z_{1} \cdot z_{2}\right)\left(\overline{z_{1} \cdot z_{2}}\right)$

$$
=z_{1} \cdot z_{2} \cdot \bar{z}_{1} \cdot \bar{z}_{2}=\left(z_{1} \cdot \bar{z}_{1}\right) \cdot\left(z_{2} \cdot \bar{z}_{2}\right)=\left|z_{1}\right|^{2} \cdot\left|z_{2}\right|^{2}
$$

$\Rightarrow \quad\left|z_{1} \cdot z_{2}\right|^{2}=\left|z_{1}\right|^{2} \cdot\left|z_{2}\right|^{2}$
$\Rightarrow \quad\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$.
Theorem 2. The modulus of the sum of two complex numbers is less than or equal to the sum of their moduli
i.e., $\quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.

Proof. To show $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then

Hence, $\quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
Theorem 3. The modulus of the difference of two complex numbers is greater than or equal to the difference of their moduli
i.e.,

$$
\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|
$$

Proof. To show $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$.
Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$
then

$$
\left|z_{1}\right|=r_{1} \text { and }\left|z_{2}\right|=r_{2}
$$

$$
\left(\because\left|e^{i \theta}\right|=1\right)
$$

$z_{1}-z_{2}=r_{1} e^{i \theta_{1}}-r_{2} e^{i \theta_{2}}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)-r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$\Rightarrow z_{1}-z_{2}=\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)+i\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)$.
Now $\quad\left|z_{1}-z_{2}\right|=\sqrt{\left[\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)^{2}\right]}$

$$
=\sqrt{\left[r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right]}
$$

$$
\geq \sqrt{\left[r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\right]} \quad\left[\because-\cos \left(\theta_{1}-\theta_{2}\right) \geq-1\right]
$$

$$
=r_{1}-r_{2}=\left|z_{1}\right|-\left|z_{2}\right|
$$

Hence, $\quad\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$.
Cor. Prove that $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
Proof. We have,

$$
\left|z_{1}-z_{2}\right|=\left|z_{1}+\left(-z_{2}\right)\right| \leq\left|z_{1}\right|+\left|\left(-z_{2}\right)\right|=\left|z_{1}\right|+\left|z_{2}\right|
$$

Hence, $\quad\left|z_{1}-z_{2}\right| \leq\left|z_{i}\right|+\left|z_{2}\right|$.
So, by above results, we get

$$
\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

Theorem 4. Prove that $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$.
Proof. To show $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$.
Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then $\left|z_{1}\right| \doteq r_{1}$ and $\left|z_{2}\right|=r_{2}$

$$
\begin{aligned}
z_{1}+z_{2} & =r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)+r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)+i\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right)
\end{aligned}
$$

Now,

$$
\left|z_{1}+z_{2}\right|=\sqrt{\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right)^{2}}
$$

$$
=\sqrt{\left[r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right]}
$$

$\geq \sqrt{\left[r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\right]} \quad$ [Since $\left.\cos \left(\theta_{1}-\theta_{2}\right) \geq-1\right]$

$$
=r_{1}-r_{2}=\left|z_{1}\right|-\left|z_{2}\right|
$$

Hence, $\quad\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$.

Theorem 5. Prove that

$$
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left[\left|\cdot z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]
$$

Proof. Let $z_{1}=r_{1} e^{i \theta_{1}}$, and $z_{2}=r_{2} e^{i \theta_{2}}$ then $\left|z_{1}\right|=r_{1}$ and $\left|z_{2}\right|=r_{2}$

$$
\begin{aligned}
& z_{1}+z_{2}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)+r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& z_{1}+z_{2}=\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)+i\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right) \\
& z_{1}-z_{2}=\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)+i\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)
\end{aligned}
$$

Now

$$
\left|z_{3}+z_{2}\right|^{2}=\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right)^{2}
$$

$$
\left|z_{1}-z_{2}\right|^{2}=\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)^{2}
$$

Taking $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=\left[\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right)^{2}\right]$

$$
+\left[\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)^{2}\right]
$$

$$
\begin{aligned}
& =\left[r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right]+\left[r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{1}\right)\right] \\
& =2\left[r_{1}^{2}+r_{2}^{2}\right]=2\left[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]
\end{aligned}
$$

Hence, $\quad\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]$.

$$
\begin{aligned}
& z_{1}+z_{2}=r_{1} e^{i \theta_{1}}+r_{2} e^{i \theta_{2}}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)+r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)+i\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right) \\
& \therefore \quad\left|z_{1}+z_{2}\right|=\sqrt{\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right)^{2}} \\
& =\sqrt{\left[r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right]} \\
& \begin{array}{l}
\leq \sqrt{\left[r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2}\right]} \\
=r_{1}+r_{2}=\left|z_{1}\right|+\left|z_{2}\right| .
\end{array} \\
& {\left[\text { For } \cos \left(\theta_{1}-\theta_{2}\right) \leq 1\right]} \\
& =r_{1}+r_{2}=\left|z_{1}\right|+\left|z_{2}\right| \text {. }
\end{aligned}
$$

- 6.6. PROPERTIES OF ARGUMENTS

Theorem 1. The argument of the product of two complex numbers is equal to the sum of their arguments
i.e.,

$$
\arg .\left(z_{1}, z_{2}\right)=\arg \cdot\left(z_{1}\right)+\arg \cdot\left(z_{2}\right) .
$$

Proof. To show arg. $\left(z_{1}, z_{2}\right)=\arg .\left(z_{1}\right)+\arg .\left(z_{2}\right)$.
Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ then arg. $\left(z_{1}\right)=\theta_{1}$ and arg. $\left(z_{2}\right)=\theta_{2}$.
Taking

$$
z_{1} \cdot z_{2}=r_{1} \cdot r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

$\Rightarrow \quad \therefore$ Arg. $\left(z_{1} \cdot z_{2}\right)=\theta_{1}+\theta_{2}=\arg .\left(z_{1}\right)+\arg .\left(z_{2}\right)$.
Hence, Arg. $\left(z_{1} \cdot z_{2}\right)=\arg .\left(z_{1}\right)+\arg .\left(z_{2}\right)$.
Theorem 2. The argument of the quotient of two complex numbers is equal to the difference of their arguments
i.e.,

$$
\arg \cdot\left(\frac{z_{1}}{z_{2}}\right)=\arg \cdot\left(z_{1}\right)-\arg \cdot\left(z_{2}\right)
$$

Proof. To show arg. $\left(\frac{z_{1}}{z_{2}}\right)=\arg .\left(z_{1}\right)-\arg .\left(z_{2}\right)$
Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ then

$$
\arg \cdot\left(z_{1}\right)=\theta_{1} \text { and arg. }\left(z_{2}\right)=\theta_{2} .
$$

Taking $\quad \frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}$.
$\Rightarrow \quad-\quad \operatorname{Arg}\left(\frac{z_{1}}{z_{2}}\right)=\theta_{1}-\theta_{2}=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$.
Hence,

$$
\arg \cdot\left(\frac{z_{1}}{z_{2}}\right)=\arg \cdot\left(z_{1}\right)-\arg \cdot\left(z_{2}\right) .
$$

SOLVED EXAMPLES

Example 1. Express $\frac{1+7 i}{(2-i)^{2}}$ in the modulus amplitude form.
Solution. Here, $\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4-4 i+i^{2}}=\frac{1+7 i}{3-4 i}=\frac{(1-7 i)}{3-4 i} \frac{(3+4 i)}{3+4 i}$

$$
=\frac{3+4 i+21 i+28 i^{2}}{9-16 i^{2}}=\frac{-25+25 i}{25}=-1+i .
$$

Now let $\quad-1+i=r(\cos \theta+i \sin \theta)$.
On comparing real and imaginary part, we have

$$
\begin{align*}
r \cos \theta & =-1 \tag{1}\\
r \sin \theta & =1 \tag{2}
\end{align*}
$$

Squaring (1) and (2), and adding,

$$
r^{2}=1+1=2
$$

$$
\therefore r=\sqrt{2} .
$$

Now putting $r=\sqrt{2}$ in (i) and (ii), we have

$$
\cos \theta=-\frac{1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}} \text {, giving } \theta=\frac{3 \pi}{4}
$$

Hence

$$
\frac{1+7 i}{(2-i)^{2}}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) .
$$

- 6.7. GEOMETRICAL REPRESENTATION OF COMPLEX NUMBER

A complex number $z=x+i y$ can be represented by a point P in the cartesian plane. The co-ordinate of P are (x, y) referred to rectangular axis $\dot{O X}$ and $O Y$, where $O X$ is called real axis and $O Y$ is called imaginary axis.

The complex number $0+i .0$ corresponds to the origin, the real number $x=x+i 0$ and imaginary number $i y=0+i y$ correspond to the points on X-axis and Y-axis respectively.

Obviously, the polar co-ordinate of P are (r, θ) where $r=O P=\sqrt{x^{2}+y^{2}}$ is the modulus and the angle $\theta=\tan ^{-1} \frac{y}{x}$ is the argument of $z=x+i y$.

To each complex number there exists one and only one point in the $X-Y$ plane, and to each point in the $X-Y$ plane there exist one and only one complex number, by this fact, the complex number $z=x+i y$ is referred to the point z in this plane. This plane is called complex plane or Gaussian plane or Argand plane. The representation of complex number is called Argand

Fig. 1 diagram. The distance between the points $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ is given by

$$
\left|z_{1}-z_{2}\right|=\sqrt{\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]}
$$

Some Geometrical Interpretations:

(i) $z_{1}+z_{2}$. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be two complex numbers, represented by the image P and Q. Complete the parallelogram $O P R Q$.

Let $P K, Q L$ and $R M$ represents the perpendicular from P, Q and R respectively on X-axis.

Since the diagonal of a parallelogram bisect each other, therefore, co-ordinates of the mid point of $P Q$ and also that of $O R$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Therefore, the co-ordinate of R are $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$.

Hence, R represents the complex number
$\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$

$$
=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=z_{1}+z_{2}
$$

(ii) $z_{1}-z_{2}$. Let P and Q be two points represents the two complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$.

Since, the sum of z_{1} and $-z_{2}$ is represented by the extremely R of the diagonal $O R$ of parallelogram $O P R Q^{\prime}$.

Hence, R represents the complex number
$\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)$

$$
\begin{aligned}
& =\left(x_{1}+i y_{1}\right)-\left(x_{2}+i y_{2}\right) \\
& =z_{1}-z_{2}
\end{aligned}
$$

Fig. 2

Fig. 3

- 6.8. POLAR FORM OF A COMPLEX NUMBER

Consider a point P in the Argand plane (or complex plane) corresponding to a complex number $z=x+i y$.
put
then

$$
x=r \cos \theta, y=r \sin \theta
$$

and

$$
r=\sqrt{x^{2}+y^{2}}=|x+i y|=|z|
$$

$$
\theta=\tan ^{-1} \frac{y}{x} .
$$

It follows that

$$
\begin{aligned}
z & =x+i y=r \cos \theta+i r \cdot \sin \theta \\
& =r(\cos \theta+i \sin \theta)=r e^{i \theta} \\
z & =r e^{i \theta} \quad\left(\because e^{i \theta}=\cos \theta+i \sin \theta\right)
\end{aligned}
$$

which is called the polar form of the complex number z.

Fig. 4
r and θ called polar co-ordinate of $z . r$ is the modulus or absolute value of z and θ is the argument or amplitude of z.

It is also written as $\theta=\arg .(z)$ or $\theta=$ amp. (z).

SOLVED EXAMPLES

Example 1. Find the moduli and arguments of the following complex numbers

(i) $\frac{1-i}{1+i}$
(ii) $\frac{3-i}{2+i}+\frac{3+i}{2-i}$
(iii) $\left(\frac{2+i}{3-i}\right)^{2}$.
Solution. (i) Here, we have

$$
\begin{array}{ll}
& \frac{1-i}{1+i}=\frac{1-i}{1+i} \cdot \frac{1-i}{1-i}=\frac{(1-i)^{2}}{1-i^{2}}=\frac{-2 i}{2}=-i \\
\therefore & \left|\frac{1-i}{1+i}\right|=|-i|=\sqrt{0+(-1)^{2}}=1
\end{array}
$$

and
because

$$
\begin{aligned}
& \text { arg. }\left(\frac{1-i}{1+i}\right)=\arg \cdot(-i)=-\frac{\pi}{2} \\
& -i=0-i=\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)
\end{aligned}
$$

(ii) Here, we have

$$
\begin{aligned}
\frac{3-i}{2+i} & +\frac{3+i}{2-i}=\frac{(3-i)(2-i)+(3+i)(2+i)}{(2+i)(2-i)} \\
& =\frac{6-3 i-2 i-1+6+3 i+2 i-1}{4-i^{2}}=\frac{10}{5}=2
\end{aligned}
$$

So $\quad\left|\frac{3-i}{2+i}+\frac{3+i}{2-i}\right|=2$
and

$$
\arg \cdot\left(\frac{3-i}{2+i}+\frac{3+i}{2-i}\right)=\arg \cdot(2)=0 \quad(\because \text { argument of a positive real number is } 0)
$$

(iii) Here, we have

$$
\begin{aligned}
& \quad\left(\frac{2+i}{3-i}\right)^{2}=\frac{(2+i)^{2}}{(3-i)^{2}}=\frac{3+4 i}{8-6 i}=\frac{3+4 i}{8-6 i} \cdot \frac{8+6 i}{8+6 i}=\frac{50 i}{100}=\frac{1}{2} i . \\
& \therefore \quad\left|\left(\frac{2+i}{3-i}\right)^{2}\right|=r=\frac{1}{2} .
\end{aligned}
$$

Now, let

$$
\frac{1}{2} i=r(\cos \theta+i \sin \theta)
$$

then,

$$
r \cos \theta=0, r \sin \theta=\frac{1}{2}
$$

Squaring and adding above relation, we get

$$
r^{2}=\frac{1}{4} \Rightarrow r=\frac{1}{2}
$$

Putting $r=\frac{1}{2}$, we have $\cos \theta=0, \sin \theta=1$.
The value of θ lying between $-\pi$ and π, which satisfies both these equation is $\frac{\pi}{2}$.
Hence, principal value of arg. $\left(\frac{2+i}{3-i}\right)^{2}=\frac{\pi}{2}$.
Example 2. The real numbers A and B if
(i) $A+i B=\frac{3-2 i}{7+4 i}$
(ii) $A+i B=\frac{1}{(1-2 i)(2+3 i)}$.

Solution. (i) Here, we have

$$
A+i B=\frac{3-2 i}{7+4 i}=\frac{(3-2 i)(7-4 i)}{(7+4 i)(7-4 i)}=\frac{13-26 i}{65}=\frac{13}{65}-\frac{26}{65} i=\frac{1}{5}-\frac{2}{5} i
$$

Equating real and imaginary parts of both the sides, we get

$$
A=\frac{1}{5}, B=-\frac{2}{5}
$$

(ii) Here, we have

$$
\begin{aligned}
A+i B & =\frac{1}{(1-2 i)(2+3 i)}=\frac{1}{\left(2+3 i-4 i-6 i^{2}\right)}=\frac{1}{8-i} \\
& =\frac{8-i}{(8-i)(8+i)}=\frac{8+i}{64-i^{2}}=\frac{8+i}{64+1}=\frac{8+i}{65}=\frac{8}{65}+\frac{1}{65} i .
\end{aligned}
$$

Equating real and imaginary parts of both the sides, we get

$$
A=\frac{8}{65}, B=\frac{1}{65}
$$

Example 3. Show that arg. $z+\arg . \bar{z}=2 n \pi$, where n is any integer.
Solution. Let $z=x+i y$, then $\bar{z}=x-i y$, where x and y are real.
Now we have

$$
\arg \cdot z+\arg \cdot \bar{z}=\arg \cdot(z \cdot \bar{z})=\arg \cdot\{(x+i y)(x-i y)\}=\arg \cdot\left(x^{2}+y^{2}\right)
$$

Now $x^{2}+y^{2}$ is a positive real number, say c. Since c is a positive real number, so the representative point of c in the argand plane will lie on the positive side of the real axis. So the principal value of arg. c is 0 and the general values is $2 n \pi$, where n is any integer.

Hence, $\quad \arg . z+\arg . \bar{z}=2 n \pi$.
Example 4. Prove that $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2}$ interpret the result geometrically and deduce that

$$
\left|\alpha+\sqrt{\alpha^{2}-\beta^{2}}\right|+\left|\alpha-\sqrt{\alpha^{2}-\beta^{2}}\right|=|\alpha+\beta|+|\alpha-\beta|
$$

all the numbers involved being complex.
Solution. We have,

$$
\begin{align*}
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2} & =\left(z_{1}+z_{2}\right)\left(\overline{z_{1}+z_{2}}\right)+\left(z_{1}-z_{2}\right) \cdot\left(\overline{z_{1}-z_{2}}\right) \\
& =\left(z_{1}+z_{2}\right)\left(z_{1}+\bar{z}_{2}\right)+\left(z_{1}-z_{2}\right)\left(z_{1}-\bar{z}_{2}\right) \\
& =2 z_{1} \bar{z}_{1}+2 z_{2} \bar{z}_{2}=2\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2} \tag{i}
\end{align*}
$$

Geometrical interpretation. Let A and B be the points of affix z_{1} and \dot{z}_{2} respectively. Complete the parallelogram $O A B C$.

Then, we have

$$
\begin{aligned}
& O A=\left|z_{1}\right|, O C=\left|z_{2}\right| \\
& O B=\left|z_{1}+z_{2}\right|, A C=\left|z_{1}-z_{2}\right|
\end{aligned}
$$

Now, from the property of parallelogram

$$
\begin{aligned}
O B^{2}+C A^{2} & =2 O A^{2}+2 O C^{2} \\
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2} & =2\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2}
\end{aligned}
$$

or

Fig. 5

Deduction. Le $z_{1}=\alpha+\sqrt{\alpha^{2}-\beta^{2}}$ and $z_{2}=\alpha-\sqrt{\alpha^{2}-\beta^{2}}$, then we have
and so
[using (i)]

- 6.9. EQUATION OF STRAIGHT LINE IN COMPLEX FORM

Equation of straight line passing through two given complex number. If z_{1} and z_{2} be any two points (complex numbers) in argand plane and $A(z)$ be the any current point. To find the equation of a straight line passing through the point $P\left(z_{1}\right)$ and $Q\left(z_{2}\right)$. Consider the following figure :

$$
\begin{align*}
& \frac{1}{2}\left|z_{1}+z_{2}\right|^{2}+\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \tag{i}\\
& \frac{1}{2}|2 \alpha|^{2}+\frac{1}{2}\left|2 \sqrt{\left(\alpha^{2}+\beta^{2}\right)}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \\
& 2|\alpha|^{2}+2\left|\left(\alpha^{2}-\beta^{2}\right)\right|=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \\
& {\left[\left|z_{1}\right|+\left|z_{2}\right|\right]^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1} z_{2}\right|=2|\alpha|^{2}+2\left|\alpha^{2}-\beta^{2}\right|+2|\beta|^{2}} \\
& =|\alpha+\beta|^{2}+|\alpha-\beta|^{2}+2\left|\alpha^{2}-\beta^{2}\right| \\
& =[|\alpha+\beta|+|\alpha-\beta|]^{2} . \\
& \text { So } \quad\left|z_{1}\right|+\left|z_{2}\right|=|\alpha+\beta|+|\alpha-\beta| \text {. } \\
& \text { Hence, }\left|\alpha+\sqrt{\alpha^{2}-\beta^{2}}\right|+\left|\alpha-\sqrt{\alpha^{2}-\beta^{2}}\right|=|\alpha+\beta|+|\alpha-\beta| \text {. }
\end{align*}
$$

Evidently,

$$
\arg \cdot\left(\frac{z-z_{1}}{z_{1}-z_{2}}\right)=0 \text { or } \pi
$$

Consequenly, $\left(\frac{z-z_{1}}{z_{1}-z_{2}}\right)$ is purely real. So, we have

$$
\frac{z-z_{1}}{z_{1}-z_{2}}=\overline{\left(\frac{z-z_{1}}{z_{1}-z_{2}}\right)}=\frac{\bar{z}-\bar{z}_{1}}{\bar{z}_{1}-\bar{z}_{2}}
$$

$$
\begin{align*}
& \quad\left(z-z_{1}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right)=\left(z_{1}-z_{2}\right)\left(\bar{z}-\bar{z}_{1}\right) \\
& z\left(\bar{z}_{1}-\bar{z}_{2}\right)-z_{1}\left(\bar{z}_{1}-\bar{z}_{2}\right)=\bar{z}\left(z_{1}-z_{2}\right)-\bar{z}_{1}\left(z_{1}-z_{2}\right) \\
& z\left(\bar{z}_{1}-\bar{z}_{2}\right)-z_{1} \bar{z}_{1}+z_{1} \bar{z}_{2}=\bar{z}\left(z_{1}-z_{2}\right)-z_{1} \bar{z}_{1}+\bar{z}_{1} z_{2} \\
& z\left(\bar{z}_{1}-\bar{z}_{2}\right)-\bar{z}\left(z_{1}-z_{2}\right)+\left(z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}\right)=0 \tag{1}
\end{align*}
$$

which is the required equation of straight line in Argand plane.
Now multiplying (1) by i, we get

$$
\begin{equation*}
i z\left(\bar{z}_{1}-\bar{z}_{2}\right)-i \bar{z}\left(z_{1}-z_{2}\right)+i\left(z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}\right)=0 . \tag{2}
\end{equation*}
$$

Now we take the coefficient of \bar{z} is α and the coefficient of z, which is the conjugate of that of z is α. Agian $\bar{z}_{1} z_{2}$ is the complex conjugate of $z_{1} \bar{z}_{2}$. So, the number $z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}$ is imaginary and the number $i\left(z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}\right)$ is purely real. So we have

$$
i \cdot\left(z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}\right)=k \text {, where } k \text { is real. }
$$

Now from (2), we get or

$$
\bar{\alpha} z+\alpha \bar{z}+k=0, \alpha \neq 0 \text { and } k \text { is real. }
$$

where α and k are constant.
Which is the general equation of a straight line.

Some Important Theorems :

Theorem 1. The equation of any straight line passing through the origin and making an angle α with the real axis is $\dot{z}=r e^{i \alpha}$ where r is any real parameter.

Proof. Consider a point $z=x+i y$ on the straight line passing through the origin and making an angle α with real axis. Then, we have

For

$$
\begin{align*}
& x=r \cos \alpha, \quad y=r \sin \alpha \\
& z=x+i y=r \cos \alpha+i r \sin \alpha=r(\cos \alpha+i \sin \alpha)=r(\cos \alpha+i \sin \alpha) . \tag{4}\\
& z=r e^{i \alpha}, \text { which is the required equation. }
\end{align*}
$$

Theorem 2. The equation of any straight line passing through the point z_{1} and making an angle α with the real axis is $z=z_{1}+r e^{i \alpha}$ where r is any real parameter.

Proof. Let $z=x+i y$ be any point on the straight line passing through the point z_{1} and making an angle α with the real axis. Then

$$
x-x_{1}=r \cos \alpha
$$

which implies

$$
\left(x-x_{1}\right)+i\left(y-y_{1}\right)=r \cos \alpha+i r \sin \alpha
$$

$\Rightarrow \quad(x+i y)-\left(x_{1}+i y_{1}\right)=r \cos \alpha+i r \sin \alpha$
$\Rightarrow \quad z-z_{1}=r(\cos \alpha+i \sin \alpha)$, where $z_{1}=x_{1}+i y_{1}$.
Hence

$$
z-z_{1}=r e^{i \alpha}, \text { which is the required equation. }
$$

Theorem 3. The equation of the straight line joining the point z_{1} and z_{2} is $z=t z_{1}+(1-t) z_{2}$, where t is any real parameter.

Proof. Suppose that z be the affix of any point on the straight line joining the points z_{1} and z_{2}. Again, suppose that the point z divides the join of z_{1} and z_{2} in the ratio $\lambda: 1$, where λ is any real number not equal to -1 .

We have

$$
\begin{equation*}
z=\frac{z_{1}+\lambda z_{2}}{1+\lambda} \text { or } z=\left(\frac{1}{1+\lambda}\right) z_{1}+\left(\frac{\lambda}{1+\lambda}\right) z_{1} \tag{I}
\end{equation*}
$$

Put $\frac{1}{1+\lambda}=t$ i.e., $1-t=\frac{\lambda}{1+\lambda}$ in (1), we get

$$
z=t z_{1}+(1-t) z_{2}, \text { which is the required equation. }
$$

- 6.10. EQUATION OF A CIRCLE IN ARGAND PLANE

Show that the equation of a circle in the Argand plane is of the form

$$
z \vec{z}+c \bar{z}+\bar{c} z+k=0
$$

where k is real and c is a complex constant.
Proof. Consider a circle, whose centre is $c(b)$ where b is any complex number and r be the radius of the circle and let $A(z)$ be any point on the circle.

Then, the line $C A=$ radius of the circle

$$
|z-b|=\rho
$$

On squaring, we get

$$
\begin{array}{ll}
& |z-b|^{2}=\rho^{2} \\
\Rightarrow & (z-b)(\overline{z-b})=\rho^{2} \Rightarrow(z-b)(\bar{z}-\bar{b})=\rho^{2} \\
\Rightarrow & z \bar{z}-\bar{b} z+b \bar{b}-b \bar{z}=\rho^{2} \\
\Rightarrow & \bar{z}-\bar{b} z-b \bar{z}+\left(|b|^{2}-\rho^{2}\right)=0 .
\end{array}
$$

Fig. 6

Taking $-b=c$ and $\left(|b|^{2}-\rho^{2}\right)=k=$ real number.
Then, we get $\quad \bar{z}+c \bar{z}+\bar{c} z+k=0$
where k is real and c be a complex constant.
Which is the required equation of a circle.
General equation of a circle. We know that the equation of a circle is given by *

$$
\bar{z}+c \bar{z}+\bar{c} z+k=0
$$

(where k is real) ...(1)
The above equation can be written as

$$
(z+c)(\bar{z}+\bar{c})=c \bar{c}-k \Rightarrow|z+c|^{2}=c \bar{c}-k
$$

Here, equation (1) represents a circle if k is real and

$$
c \bar{c}-k \geq 0 .
$$

Thus, the general equation of the circle is of the form

$$
\bar{z}+\bar{z}+\bar{c} z+c \bar{z}+k=0, k \text { is a real and } c \bar{c}-k \geq 0
$$

- 6.12. CONDITION FOR FOUR POINTS TO BE CONCYCLIC

Let $P\left(z_{1}\right), Q\left(z_{2}\right), R\left(z_{3}\right), S\left(z_{4}\right)$ be the four points (complex numbers). Then the given four points P, Q, R, S are concyclic if $\angle P R Q, \angle P S Q$ are either equal or differ by π

Fig. 7
$\Rightarrow \quad$ arg. $\frac{z_{3}-z_{1}}{z_{3}-z_{2}}$, arg. $\frac{z_{4}-z_{1}}{z_{4}-z_{2}}$ are either equal or differ by π
$\Rightarrow \quad$ arg. $\left[\frac{z_{3}-z_{1}}{z_{3}-z_{2}} / \frac{z_{4}-z_{1}}{z_{4}-z_{2}}\right]=0$ or π
$\Rightarrow \quad \frac{z_{3}-z_{1}}{z_{3}-z_{2}} / \frac{z_{4}-z_{1}}{z_{4}-z_{2}}$ is real
$\Rightarrow \quad \frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}$ is purely real.
Hence, four points $z_{1}, z_{2}, z_{3}, z_{4}$ are concyclic if $\frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}$ is purely real.

Let z_{1}, z_{2}, z_{3} be any three points (complex numbers) on a circle and let z be any point on the circle, then we know that the four points z_{1}, z_{2}, z_{3}, z are concyclic if $\frac{\left(z_{2}-z_{1}\right)\left(z-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}$ is purely real

$$
\begin{array}{ll}
\Rightarrow & \frac{\left(z_{2}-z_{1}\right)\left(z-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}=\frac{\left(\overline{z_{2}-z_{1}}\right)\left(\overline{z-z_{3}}\right)}{\left(\overline{z-z_{1}}\right)\left(\overline{z_{2}-z_{3}}\right)} \\
\Rightarrow \quad & \frac{\left(z_{2}-z_{1}\right)\left(z-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}=\frac{\left(\bar{z}_{2}-\bar{z}_{1}\right)\left(\bar{z}-\bar{z}_{3}\right)}{\left(\bar{z}-z_{1}\right)\left(\bar{z}_{2}-\bar{z}_{3}\right)}
\end{array}
$$

which is the required equation of the circle passing through three points.
Example 1. Find the region of the Argand plane for which

$$
|z-1|+|z+1| \leq 3 .
$$

Solution. We have $z=x+i y$, then

$$
\begin{aligned}
|z-1|+|z+1| & =|x+i y-1|+|x+i y+1|=|(x-1)+i y|+|(x+1)+i y| \\
& =\sqrt{\left[(x-1)^{2}+y^{2}\right]}+\sqrt{\left[(x+1)^{2}+y^{2}\right]} .
\end{aligned}
$$

But it is given $|z-1|+|z+1| \leq 3$. So
or

$$
\begin{aligned}
& \sqrt{\left[(x-1)^{2}+y^{2}\right]}+\sqrt{\left[(x+1)^{2}+y^{2}\right]} \leq 3 \\
& \sqrt{\left[(x-1)^{2}+y^{2}\right]} \leq 3-\sqrt{\left[(x+1)^{2}+y^{2}\right]}
\end{aligned}
$$

Squaring both side, we get
or

$$
\begin{aligned}
& (x-1)^{2}+y^{2} \leq 9+(x+1)^{2}+y^{2}-6 \sqrt{\left[(x+1)^{2}+y^{2}\right]} \\
& 9+4 x-6 \sqrt{\left[(x+1)^{2}+y^{2}\right]} \geq 0 \\
& 6 \sqrt{\left[(x+1)^{2}+y^{2}\right]} \leq 4 x+9 .
\end{aligned}
$$

Again squaring, we get

$$
36\left[(x+1)^{2}+y^{2}\right] \leq 16 x^{2}+81+72 x \text { or } 36 x^{2}+36 y^{2}+36 \leq 16 x^{2}+81
$$

or

$$
20 x^{2}+36 y^{2} \leq 45 \text { or } \frac{x^{2}}{9 / 4}+\frac{y^{2}}{5 / 4} \leq 1
$$

Hence, the region of the Argand plane is boundary and interior of the ellipse $\frac{x^{2}}{9 / 4}+\frac{y^{2}}{5 / 4} \leq 1$.

Example 2. If P, Q, R are points of affix $z_{1}, z_{2}, z_{1}+z_{2}$ respectively then prove that $O P R Q$ is a parallelogram.

Solution. Let $z_{1}, z_{2},\left(z_{1}+z_{2}\right)$ be three points such that

$$
z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}, z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) .
$$

Thus the co-ordinate of O, P, Q, R are $(0,0),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ respectively.
Now, mid point of $P Q=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
and the mid point of

$$
O R=\left(\frac{0+x_{1}+x_{2}}{2}, \frac{0+y_{1}+y_{2}}{2}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Hence, $O P Q R$ is a parallelogram.
Example 3. Show that $\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|<1$ if $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$.
Solution. The given inequelity $\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|<1$ will hold if

$$
\begin{aligned}
& \left|z_{1}-z_{2}\right|<\left|1-\bar{z}_{1} z_{2}\right| \text { or }\left|z_{1}-z_{2}\right|^{2}<\left|1-\bar{z}_{1} z_{2}\right|^{2} \\
\Rightarrow & \left(z_{1}-z_{2}\right)\left(\overline{z_{1}-z_{2}}\right)<\left(1-\bar{z}_{1} z_{2}\right)\left(\overline{1-\bar{z}_{1} z_{2}}\right) \\
\Rightarrow & \left(z_{1}-z_{2}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right)<\left(1-\bar{z}_{1} z_{2}\right)\left(1-z_{1} \bar{z}_{2}\right) \\
\Rightarrow & z_{1} \bar{z}_{1}-z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}+z_{2} \bar{z}_{2}<1-z_{1} \bar{z}_{2}-\bar{z}_{1} z_{2}+z_{1} \bar{z}_{1} \cdot z_{2} \bar{z}_{2} \\
\Rightarrow & \left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2} \\
\Rightarrow & \left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1-\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}<0 \\
\Rightarrow & \left(\left|z_{1}\right|^{2}-1\right)\left(1-\left|z_{2}\right|^{2}\right)<0 .
\end{aligned}
$$

Now, the above inequality will hold if $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$:
Hence, $\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|<1$ if $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$.
Example 4. Determine the region of the argand plane, for which $\left|\frac{z-c}{z-\bar{c}}\right|<1,=1$ or >1 where real part of c is positive.

Solution. Here, we have $\left|\frac{z-c}{z-\bar{c}}\right|<1,=1$ or >1

$$
\begin{array}{ll}
\Rightarrow & |z-c|^{2}<=>|z+\bar{c}|^{2} \\
\Rightarrow & (z-c)(\overline{z-c})<=>(z+\bar{c})(\overline{z+\bar{c}}) \\
\Rightarrow & (z-c)(\bar{z}-\bar{c})<=>(z+\bar{c})(\bar{z}+c) \\
\Rightarrow & (z \bar{z}-z \bar{c}-c \bar{z}+c \bar{c})<=>(z \bar{z}+z c+\bar{c} \bar{z}+\bar{c} c) \\
\Rightarrow & \bar{z}-(\bar{z} \bar{c}+c \bar{z})<=>(\overline{z z}+z c+\bar{c} \bar{z}) \\
\Rightarrow & -(\bar{z}+c \bar{z})-(z c+\bar{c} \bar{z})<=>0 \\
\Rightarrow & (z \bar{c}+c \bar{z})+(z c+\bar{c} \bar{z})>=<0 \\
\Rightarrow & z(c+\bar{c})+\bar{z}(c+\bar{c})>=<0 \\
\Rightarrow & (z+\bar{z})(c+\bar{c})>=<0 \Rightarrow 2 \times 2 \operatorname{Re}(c)>=<0
\end{array}
$$

$$
\Rightarrow \quad x>=<0 \quad(\because \operatorname{Re}(z) \text { is positive })
$$

Hence the required region is the right half of the Argand plane, imaginary axis and left half of the Argand plane respectively.

Example 5. Show that the radius and centre of the circle

$$
\begin{align*}
\left|\frac{z-i}{z+i}\right| & =5 \\
\left|\frac{z-i}{z+i}\right| & =5 \tag{1}\\
|z-i| & =5|z+i| \\
|x+i y-i| & =5|x+i y+i|
\end{align*}
$$

Solution. We have

Squaring both sides, we get

$$
\begin{align*}
&|x+i(y-1)|^{2}=25|x+i(y+1)|^{2} \\
& x^{2}+(y-1)^{2}=25\left[x^{2}+(y+1)^{2}\right] \\
& x^{2}+y^{2}-2 y+1=25\left[x^{2}+y^{2}+2 y+1\right] \\
& 24\left(x^{2}+y^{2}\right)+52 y+24=0 \\
& x^{2}+y^{2}+\frac{13}{6} y+1=0 \tag{2}
\end{align*}
$$

which is the equation of a circle.
Therefore the locus of the points on the Argand plane which satisfy the condition (1) is a circle.

The co-ordinates of the centre of the circle equation (1) are $\left(0,-\frac{13}{12}\right)$ and its radius is

$$
\sqrt{\left[(0)^{2}+\left(-\frac{13}{2}\right)^{2}-1\right]}=\sqrt{\frac{25}{144}}=\frac{5}{12}
$$

Hence the locus of the given circle is the point whose affix is

$$
z=0+(-13 / 12) i \text { i.e., }(-13 / 12) i
$$

and its radius is $5 / 12$,

- TEST YOURSELF

1. Find the modulus and arguments of the following :
(i) $\frac{1+2 i}{1-(1-i)^{2}}$
(ii) $\frac{2+i}{4 i+(1+i)^{2}}$.
2. For two complex number z_{1}, z_{2} prove that $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ if and only if. $z_{1} \bar{z}_{2}$ is purely imaginary.

- 6.12. ANALYTIC FUNCTION

Some Important Definitions

Single and multiple valued function. If we get only one value of w corresponding to one value of z, then we say that w is a single valued function of z or $f(z)$ is a single valued function.

For example. If $w=z^{2}$. Here, corresponds to one value of z we get only one value of w. Hence, $w=z^{2}$ is a single valued function of z.

On, the other hand if we get one or more value of w, corresponding to each value of z, then we say that w is a multiple valued function (or many valued function).

For example. If $w=\sqrt{z}$, then we get two value of w, corresponding to each value of z. Hence, w is a multiple valued function of z.

A multiple valued function can be considred as a collection of single valued functions, whose every member is called a branch of the function. And a particular member is called a principal branch of the multiple valued function and the value of the funcion according to his branch is known as principal value.

Limits and continuity of a complex function. Let f(z) be a single valued function defined in a bounded and closed domain D. Then a number l is said to be the limit of $f(z)$ at $z=z_{0}$, if for any positive number ε (however small) we can find a positive number δ such that

$$
|f(z)-l|<\varepsilon \quad \forall z \text { for which } 0<\left|z-z_{0}\right|<\delta
$$

The limit must be independent of the manner in which $z \rightarrow z_{0}$.
Symbolically, we write $\lim _{z \rightarrow z_{0}}(z)=l$.
Some important results on limits. If $\lim _{z \rightarrow z_{0}} f(z)=l$ and $\lim _{z \rightarrow z_{0}} g(z)=m$, then
(i) $\lim _{z \rightarrow i_{0}}[f(z) \pm g(z)]=\lim _{z \rightarrow z_{0}} f(z) \pm \lim _{z \rightarrow z_{0}} g(z)=l \pm m$
(ii) $\lim _{z \rightarrow z_{0}}[f(z) \cdot g(z)]=\lim _{z \rightarrow z_{0}} f(z) \cdot \lim _{z \rightarrow z_{0}} g(z)=l \cdot m$
(iii) $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{\lim _{z \rightarrow z_{0}} f(z)}{\lim _{z \rightarrow z_{0}} g(z)}=\frac{l}{m}$ if $m \neq 0$.

Continuity. Let $f(z)$ be a single valued function of z defined in the closed and bounded domain D. Then $f(z)$ is said to be continuous at a point z_{0} in D iff, for any positive number (however small) we can find a positive number δ such that

$$
\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon \text { whenever }\left|z-z_{0}\right|<\delta
$$

From the definition of limit and continuity we can say that $f(\dot{z})$ is continuous at $z=z_{0}$ if and only if $\lim _{z \rightarrow i_{0}} f(z)=f\left(z_{0}\right)$.

Note. If $f(z)$ is continuous at $z=z_{0}$ then this implies three conditions.
(i) $\lim f(z)=l$ must exists.

$$
z \rightarrow z_{0}
$$

(ii) $f\left(z_{0}\right)$ must exists.
(iii) $f\left(z_{0}\right)=l$.

For example. If $f(z)=z^{2}, \forall z$ then $f(z)$ is continuous at $z=i$ because

$$
\lim _{z \rightarrow i} f(z)=\lim _{z \rightarrow i} z^{2}=i=-1
$$

Discontinuity. At any point z_{0}, at which $f(z)$ is not continuous then $f(z)$ is said to be discontinuous at z_{0}. If $\lim _{z \rightarrow z_{0}} f(z)$ exist but not equal to $f\left(z_{0}\right)$, then this type of discontinuity is called removable discontinuity.

Continuiy in real and imaginary part of $f(z)$. If $f(z)=u(x, y)+i v(x, y)$ is a continuous function of z, then $u(x, y)$ and $v(x, y)$ are also continuous function of x, y and if $u(x, y)$ and $v(x, y)$ are continuous function of x, y then $f(z)$ is also a continuous function;

Uniform continuity. Let A function $f(z)$ defined in a domain D, then $f(z)$ is said to be uniform continuous in D if for any $\varepsilon>0, \exists \delta>0$ such that

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|<\varepsilon \text { whenever } 0<\left|z_{1}-z_{2}\right|<\delta \text {, where } z_{1} ; z_{2} \in D .
$$

Differentiability. Let $f(z)$ be a single valued function of z defined in a domain D, then $f(z)$ is said to be differentiable at point $z=z_{0}$ of D iff

$$
f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

provided that the limit exists and does not depend upon path which $h \rightarrow 0$ or we can say

$$
f^{\prime}(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Theorem 1. Continuity is a necessary but not a sufficient condition for the existance of a finite derivative.

Proof. Let $f(z)$ be a differentiable function at $z=z_{0}$ then

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \text { exist. }
$$

Now, we can take

$$
f(z)-f\left(z_{0}\right)=\left(z-z_{0}\right) \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \text { if } z \neq z_{0} .
$$

Taking limit of both sides,

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}}\left[f(z)-f\left(z_{0}\right)\right] & =\lim _{z \rightarrow z_{0}}\left[\left(z-z_{0}\right) \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right] \\
& =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \cdot \lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
\end{aligned}
$$

$$
=0 \cdot f^{\prime}\left(z_{0}\right)=0 \quad\left(\text { Since } \lim _{z \rightarrow i_{0}}\left(z-z_{0}\right)=z_{0}-z_{0}=0\right)
$$

or

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}}\left[f(z)-f\left(z_{0}\right)\right]=0 \Rightarrow \lim _{z \rightarrow z_{0}} f(z)-\lim _{z \rightarrow z_{0}} f\left(z_{0}\right)=0 \\
& \Rightarrow \quad \lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) .
\end{aligned}
$$

Hence, $f(z)$ is continuous at $z=z_{0}$ thus continuity is a necessary condition for differentiability.
Now we shall show that continuity is not a sufficient condition for differentiability. It is clear from the following example. Consider the function $f(z)=|z|^{2}$, where $z=x+i y$.

The function $|z|^{2}=x^{2}+y^{2}$ is continuous at every point.
Now $f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\left|z_{0}+\Delta z\right|^{2}-\left|z_{0}\right|^{2}}{\Delta z}$

$$
\begin{aligned}
& =\lim _{\Delta z \rightarrow 0} \frac{\left(z_{0}+\Delta z\right)\left(z_{0}+\Delta \bar{z}\right)-z_{0} \bar{z}_{0}}{\Delta z}=\lim _{\Delta z \rightarrow 0}\left[\frac{z_{0} \Delta \bar{z}+\Delta z \cdot \bar{z}_{0}+\Delta z \cdot \Delta \bar{z}}{\Delta z}\right] \\
& =\lim _{\Delta z \rightarrow 0}\left[\frac{\Delta \bar{z}}{\Delta z} z_{0}+\bar{z}+\Delta \bar{z}\right]=\lim _{\Delta z \rightarrow 0}\left[\frac{\Delta \bar{z}}{\Delta z} z_{0}+\bar{z}_{0}\right] . \quad(\because \Delta z \rightarrow 0 \Rightarrow \Delta \bar{z} \rightarrow 0)
\end{aligned}
$$

So at $z_{0}=0, \bar{z}_{0}=0$ so that $f^{\prime}\left(z_{0}\right)=0$.
Again at $z_{0} \neq 0$. Now let $\Delta z=r(\cos \theta+i \sin \theta)$ then, $\quad \Delta \bar{z}=r(\cos \theta-i \sin \theta) \Rightarrow \frac{\Delta \bar{z}}{\Delta z}=\frac{\cos \theta-i \sin \theta}{\cos \theta+i \sin \theta}=\cos 2 \theta-i \sin 2 \theta$
which does not tend to a unique limit. Since this limit depends upon arg. Δz.
Thus the function $f(z)$ is continuous everywhere but not differentiable for any non zero value of z.

Analytic function. Consider a single valued funcion $f(z)$ defined in a domain D, then the function $f(z)$ is said to be analytic at $z=z_{0}$ of D. if it is differentiable not only at z_{0} but also in some neighbourhood of z_{0}.

Or
A function $f(z)$ is said to be analytic in a domain D. If $f(z)$ is differentiable at every point of a domain D.

Singular point. A point $z=z_{0}$ at which $f^{\prime}\left(z_{0}\right)$ does not exists, is said to be singular point of $f(z)$.

If a function $f(z)$ is analytic in every neighbourhood of a point z_{0} except z_{0}. Then z_{0} is known as isolated singularity of $f(z)$.

If $f(z)$ is not analytic at $z=z_{0}$ but it can be made analytic by taking a suitable value to $f(z)$ at point z_{0}, then $f(z)$ is said to have an removable singularity at a point z_{0} of D.

A function $f(z)$ is analytic in some deleted neighbourhood of z_{0} and has a removable singularity at z_{0}. Then the function $f(z)$ is said to be regular at z_{0}.

- 6.13. CAUCHY-RIEMANN EQUATIONS

A necessary condition that $w=f(z)$, where $f(z)=u(x, y)+i v(x, y)$ be analytic in a domain D, s $u(x, y)$ and $v(x, y)$ satisfy the equation

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{1}
\end{equation*}
$$

The above equation (1) is known as the Cauchy-Riemann equation.
If partial derivative in (1) are continuous then it is the sufficient condition for a function $f(z)$ to be analytic in D.

- 6.14. THE NECESSARY AND SUFFICIENT CONDITION FOR A FUNCION $f(z)$ TO BE ANALYTIC

(i) Necessary condition for $f(z)$ to be analytic.

Theorem 2. If a function $f(z)=u(x, y)+i v(x, y)$ is analytic at a point $z=x+i y$ in a domain D, then the partial derivative $u_{x}, v_{x}, u_{y}, v_{y}$ should exist and satisfy the equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.

Proof. Since $f(z)=u(x, y)+i v(x, y)$ is differentiable at a point $z=x+i y$ then

$$
\begin{equation*}
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \tag{1}
\end{equation*}
$$

must exists and unique as $\Delta z \rightarrow 0$ in any manner.
If $\quad z=x+i y$ and $\Delta z=\Delta x+i \Delta y$.
Now, using the above relations, equation (1) can be written as

$$
\begin{equation*}
\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}=\lim _{\Delta z \rightarrow 0}\left[\frac{u(x+\Delta x, y+\Delta y)-u(x, y)}{\Delta x+i \Delta y}+i \frac{v(x+\Delta x, y+\Delta y)-v(x, y)}{\Delta x+i \Delta y}\right] \tag{2}
\end{equation*}
$$

Taking Δz to be wholly real (along real axis) so that $\Delta y=0$ then, quation (2) gives

$$
\begin{equation*}
=\lim _{\Delta x \rightarrow 0}\left[\frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x}\right] . \tag{3}
\end{equation*}
$$

Now, since $f(z)$ is differentiable, then the partial derivative $\frac{\partial u}{\partial x}$ and $\frac{\partial v}{\partial \dot{x}}$ must exist and the limit is

$$
\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=u_{x}+i v_{x} .
$$

Again taking Δz to be wholly imaginary (along imaginary axis) so that $\Delta x=0$, then equation (2) gives

$$
\begin{equation*}
\lim _{\Delta y \rightarrow 0}\left[\frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+i \frac{v(x, y+\Delta y)-v(x, y)}{i \Delta y}\right] . \tag{5}
\end{equation*}
$$

Since, $f(z)$ is differentiable, then the partial derivative $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial y}$ must exist and the limit is

$$
\begin{equation*}
\frac{1}{i} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}=v_{y}-i u_{y} . \tag{6}
\end{equation*}
$$

Since, the limit given by $\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}$ is unique. So the limits given in (4) and (6) must be identical. Now equating the real and imaginary parts, we get
or

$$
\begin{aligned}
u_{x} & =v_{y} \quad \text { and } \quad u_{y}=-v_{x} \\
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \text { and }
\end{aligned} \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Above two equation is known as Cauchy-Riemann partial differential equations.

(ii) Sufficient condition for a function $f(z)$ to be analytic.

Theorem 3. A single valued continuous function

$$
f(z)=u(x, y)+i v(x, y)
$$

is analytic in a dontain D. If the four partial derivative $u_{x}, v_{x}, u_{y}, v_{y}$ exist, are continuous and satisfy Cauchy-Riemann partial differential equations at every point of D.

Proof. Let $w=f(z)=u(x, y)+i v(x, y)$ be a single valued function possessing partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$, at each point of a region D and satisfying the equation i.e., $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$, we shall show that $f(z)$ is analytic, i.e., $f^{\prime}(z)$ exists at every points of the region D.

By Taylor's theorem for functions of two variables, we have, on omitting second and higher degree terms of δx and δy

$$
\begin{align*}
f(z+\delta z) & =u(x+\delta x, y+\delta y)+i v(x+\delta x, y+\delta y) \\
& =\left[u(x, y)+\left(\frac{\partial u}{\partial x} \delta x+\frac{\partial u}{\partial y} \delta y\right)\right]+i\left[v(x, y)+\left(\frac{\partial v}{\partial x} \delta x+\frac{\partial v}{\delta y} \delta y\right)\right] \\
& =[u(x, y)+i v(x, y)]+\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \delta y \\
& =f(z)+\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \delta y \\
f(z+\delta z)-f(z) & =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \delta y \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \delta x+\left(-\frac{\partial v}{\partial x}+i \frac{\partial u}{\partial x}\right) \delta y \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \delta x+\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) i \delta y \tag{2}\\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)(\delta x+i \delta y)=\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \delta z \quad\left(\because i^{2}=-1\right) \\
& (\because \delta z=\delta x+i \delta y)
\end{align*}
$$

$$
\Rightarrow \quad \frac{f(z+\delta z)-f(z)}{\delta z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} .
$$

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} .
$$

Thus $f^{\prime}(z)$ exists, because $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$ exist. Hence $f(z)$ is analytic.

Cauchy-Riemann Equation in Polar Form :

Here, we have

$$
\begin{align*}
x & =r \cos \theta \text { and } y=r \sin \theta . \\
r^{2} & =x^{2}+y^{2} . \tag{1}
\end{align*}
$$

So
and

$$
\begin{equation*}
\theta=\tan ^{-1} \frac{\dot{y}}{x} . \tag{2}
\end{equation*}
$$

Now, differentiating (1) and (2) partially w.r. to x and y, we get
and

$$
\begin{aligned}
& \frac{\partial r}{\partial x}=\frac{x}{r}=\cos \theta \text { and } \frac{\partial r}{\partial y}=\frac{y}{r}=\sin \theta \\
& \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(-\frac{y}{x^{2}}\right)=-\frac{y}{x^{2}+y^{2}}=-\frac{r \sin \theta}{r^{2}}=-\frac{\sin \theta}{r}
\end{aligned}
$$

Taking

$$
\frac{\partial \theta}{\partial y}=\frac{1}{\left(1+\frac{y}{x}\right)^{2}}\left(\frac{1}{x}\right)=\frac{x}{x^{2}+y^{2}}=\frac{r \cos \theta}{r^{2}}=\frac{\cos \theta}{r} \quad\left(\because r^{2}=x^{2}+y^{2}\right)
$$

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \theta} \cdot \frac{\partial \theta}{\partial x}=\frac{\partial u}{\partial r} \cos \theta-\frac{\partial u}{\partial \theta} \frac{\sin \theta}{r} \\
\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial u}{\partial \theta} \cdot \frac{\partial \theta}{\partial y}=\frac{\partial u}{\partial r} \cdot \sin \theta+\frac{\partial u}{\partial \theta} \frac{\cos \theta}{r} \tag{3}
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
\frac{\partial v}{\partial x}=\frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial v}{\partial \theta} \cdot \frac{\partial \theta}{\partial x}=\frac{\partial v}{\partial r} \cos \theta-\frac{\partial v}{\partial \theta} \frac{\sin \theta}{r} \\
\frac{\partial v}{\partial y}=\frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial y}=\frac{\partial v}{\partial r} \sin \theta+\frac{\partial v}{\partial \theta} \frac{\cos \theta}{r} \tag{5}
\end{array}\right\} .
$$

and
Now by Cauchy-Riemann equation, $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$.
Using (3) and (4), (5) becomes

$$
\begin{align*}
& \frac{\partial u}{\partial r} \cos \theta-\frac{\partial u}{\partial \theta} \frac{\sin \theta}{r}=\frac{\partial v}{\partial r} \sin \theta+\frac{\partial v}{\partial \theta} \cos \theta \tag{6}\\
& \frac{\partial u}{\partial r} \sin \theta+\frac{\partial u}{\partial \theta} \frac{\cos \theta}{r}=-\frac{\partial v}{\partial r} \cos \theta+\frac{\partial v}{\partial \theta} \frac{\sin \theta}{r} . \tag{7}
\end{align*}
$$

Now multiplying (6) by $\cos \theta$, and (7) by $\sin \theta$ and adding, we get

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} . \tag{8}
\end{equation*}
$$

Again multiplying (6) by $\sin \theta$ and (7) by $\cos \theta$, and substracting, we get

$$
\begin{equation*}
\frac{1}{r} \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r} . \tag{9}
\end{equation*}
$$

Equation (8) and (9) be the required Cauchy Riemann equation in polar form.
Conjugate function. If $f(z)=u+i v$ is a analytic function. If u and v satisfy the Laplace's equation, then t and v are called conjugate Harmonic function or conjugate function.

Harmonic function. If u is a function of x and y and u has continuous partial derivaive of first and second order and satisfies the Laplace's equaion then u is called a Harmonic function.

Orthogonal system. If $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ be the two families of curves then these two families are said to form an orthogonal system if they intersect at right angles at each of their points of intersection.

Firstly, differentiaing $u(x, y)=c_{1}$, we get

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{\partial u}{\partial x} / \frac{\partial u}{\partial y}=m_{1} \text { (say) }
$$

Now differentiating $v(x, \dot{y})=c_{2}$, we get

$$
\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \cdot \frac{d \dot{y}}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{\partial v}{\partial x} / \frac{\partial v}{\partial y}=m_{2} \text { (say) }
$$

Now two families of curves intersect orthogonally if $m_{1} m_{2}=-1$

$$
\frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial y}=0
$$

SOLVED EXAMPLES

Example 1. Show that the function $f(z)=z^{n}$ is an analytic function, where n is a positive integer.

Solution. Here, we have $f(z)=z^{n}$,
then,

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{n}-z^{n}}{\Delta z}
$$

Now $f^{\prime}(z)$ exists if the above limits exists and does not depend on the manner in which $\Delta z \rightarrow 0$. By Binomial theorem, we have

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0}\left[n z^{n-1}+\frac{\Delta z}{2}(n-1) z^{n-2}+\ldots+\Delta^{n-1} z\right]=n z^{n-1}
$$

Therefore, $f^{\prime}(z)$ exists for all finite values of z.
Hence, $f(z)$ is an analytic function.
Example 2. Show that the function $f(z)=|z|^{2}$ is continuous everywhere but nowhere differentiable except at the origin.

Solution. Here, the function $f(z)=|z|^{2}$ is continuous everywhere. Since $x^{2}+y^{2}$ is continuous every where.

Now

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{\left|z_{0}+\Delta z\right|^{2}-\left|z_{0}\right|^{2}}{\Delta z}
$$

$$
\begin{aligned}
& =\lim _{\Delta z \rightarrow 0} \frac{\left(z_{0}+\Delta z\right)\left(z_{0}+\Delta \bar{z}\right)-z_{0} \bar{z}_{0}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0}\left[\bar{z}_{0}+\Delta \bar{z}+z_{0} \frac{\Delta \bar{z}}{\Delta z}\right]=\lim _{\Delta z \rightarrow 0}\left[\bar{z}_{0}+z_{0} \frac{\Delta \bar{z}}{\Delta z}\right] \quad(\because \Delta z \rightarrow 0 \Rightarrow \Delta \bar{z}=0)
\end{aligned}
$$

So at $z_{0}=0, f^{\prime}(0)=0$.
When $z_{0} \neq 0$, let $\Delta z=r(\cos \phi+i \sin \phi)$, then $\Delta \bar{z}=r(\cos \phi-i \sin \phi)$ so that

$$
\frac{\Delta \bar{z}}{\Delta z}=\frac{\cos \phi-i \sin \phi}{\cos \phi+i \sin \phi}=\cos 2 \phi-i \sin 2 \phi
$$

which does not tend to a unique limit, since limit depends upon arg. Δz. Hence, the function $|z|^{2}$ is not differentiable for any non-zero value of z.

Example 3. If $f(z)=u+i v$ is an analytic function of $z=x+i y$, then prove that the curves $u=$ constant and $v=$ constant on the z plane intersect at right angles.

Solution. Let $f(z)=u+i v$ be an analytic function of z, then Cauchy- Riemann equation is $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ satisfied.

Now, let slop of tangent to the curve $u=c_{1}$ is m_{1}
and slop of tangent to the curve $v=c_{2}$ is m_{2}.
To show that both the curve $u=c_{1}$ and $v=c_{2}$ is orthogonal we shall show that $m_{1} m_{2}=-1$.
Taking differential of $u=c_{1}$ and $v=c_{2}$, we get
or

$$
\begin{aligned}
& d u=0 \text { and } d v=0 \\
& \frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0 \text { and } \frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y=0 \\
& m_{1}=\frac{d y}{d x}=-\frac{u_{x}}{u_{y}} \text { and } m_{2}=\frac{d y}{d x}=-\frac{v_{x}}{v_{y}} \\
& m_{1} m_{2}=\left(\frac{-u_{x}}{u_{y}}\right)-\frac{v_{x}}{v_{y}}=\frac{u_{x} v_{x}}{u_{y} v_{y}}=\frac{u_{x} v_{x}}{\left(-v_{x}\right)\left(u_{x}\right)}
\end{aligned}
$$

So
$\Rightarrow \quad m_{1} m_{2}=-1$.
Hence, both the curve intersect at right angle on z-plane.

- 6.15. CONSTRUCTION OF ANALYTIC FUNCTION

Milne's Thomson's method. We have $z=x+i y$ so that $x=\frac{z+\bar{z}}{2}$
and

$$
y=\frac{z-\bar{z}}{2 i}
$$

Now

$$
w=f(z)=u+i v=u(x, y)+i v(x, y)
$$

or

$$
f(z)=u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)+i v\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

The above relation is formal identity in two independent variable z and \bar{z}.
Taking $x=z, y=0$ so that $z=\bar{z}$, we get

$$
\begin{equation*}
f(z)=u(z, 0)+i v(z, 0) \tag{1}
\end{equation*}
$$

We know that

$$
f^{\prime}(z)=\frac{d w}{d z}=\frac{\partial w}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y} .
$$

Now taking

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\phi_{1}(x, y)=\phi_{1}(z, 0) \\
\frac{\partial u}{\partial y} & =\phi_{2}(x, y)=\phi_{2}(z, 0) \\
f^{\prime}(z) & =\phi_{1}(z, 0)-i \phi_{2}(z ; 0)
\end{aligned}
$$

we get
On integration, we get

$$
f(z)=\int\left[\phi_{1}(z, 0)-i \phi_{2}(z, 0)\right] d z+c
$$

where c is a constant. Now we can obtain $f(z)$ if u is known.
Similarly, if $v(x, y)$ is given, then

$$
f(z)=\int\left[\Psi_{1}(z, 0)+i \psi_{2}(z, 0)\right] d z+c^{\prime}
$$

where

$$
\psi_{1}=\frac{\partial \nu}{\partial y} \text { and } \psi_{2}=\frac{\partial \nu}{\partial x} .
$$

Example 1. Obtain , the analytic function $f(z)=u+i v$, whose real part u is $e^{x}(x \cos y-y \sin y)$.

Solution. Here, we have $u=e^{x}(x \cos y-y \sin y)$
then

$$
\frac{\partial u}{\partial x}=e^{x}(x \cos y-y \sin y)+e^{x} \cos y
$$

and

$$
\frac{\partial u}{\partial y}=e^{x}[-x \sin y-\sin y-y \cos y]
$$

$$
\left(\frac{\partial u}{\partial x}\right)_{r=0}=x e^{x}+e^{x}=e^{x}(x+1)
$$

$$
\left(\frac{\partial u}{\partial y}\right)_{y=0}=e^{x} \cdot 0=0
$$

Now

$$
\begin{aligned}
& \phi_{1}(x, 0)=\left(\frac{\partial u}{\partial x}\right)_{y=0}=e^{x}(x+1) \\
& \phi_{2}(x, 0)=\left(\frac{\partial u}{\partial y}\right)_{y=0}=0
\end{aligned}
$$

Now, by Milne's thomson's method, we have

$$
\begin{aligned}
f(z) & =\int\left[\phi_{1}(z, 0)-i \phi_{2}(z, 0)\right] d z \\
& =\int\left[e^{z}(z+1)-i .0\right] d z+c=\int\left(z e^{z}+e^{z}\right) d z+c \\
& =e^{z}(z-1)+e^{z}+c=z e^{z}+c .
\end{aligned}
$$

Hence,

$$
f(z)=z e^{z}+c
$$

Example 2. If $f(z)=u+i v$ and $u-v=e^{x}(\cos y-\sin y)$, find $f(z)$.
Solution. Here, we have $u-v=e^{x}(\cos y-\sin y)$
then

$$
\begin{align*}
& \frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}=e^{x}(\cos y-\sin y) \tag{1}\\
& \frac{\partial u}{\partial y}-\frac{\partial v}{\partial y}=e^{x}(-\sin y-\cos y)
\end{align*}
$$

and
or

$$
\begin{equation*}
-\frac{\partial \dot{v}}{\partial x}-\frac{\partial u}{\partial x}=-e^{x}(\sin y+\cos y) \tag{2}
\end{equation*}
$$

(By C-R equations)
or $\quad \frac{\partial \nu}{\partial x}+\frac{\partial u}{\partial x}=e^{x}(\sin y+\cos y)$.
Now, from (1) and (2)

Now

$$
\frac{\partial u}{\partial x}=e^{x} \cos y=\phi_{1}(x, y) \text { and } \frac{\partial v}{\partial x}=e^{x} \sin y=\phi_{2}(x, y) \text {. }
$$

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\phi_{1}(z, 0)+i \phi_{2}(z, 0)
$$

$$
\begin{aligned}
\therefore \quad f(z) & =\int\left[\phi_{1}(z, 0)+i \phi_{2}(z, 0)\right] d z+c \\
& =\int\left(e^{z} \cos 0+i e^{z} \cdot \sin 0\right) d z+c=\int e^{z} d z+c
\end{aligned}
$$

or

$$
f(z)=e^{z}+c
$$

Example 3. If $f(z)=\frac{x^{3} y(y-i x)}{x^{6}+y^{2}}, z \neq 0$ and $f(0)=0$ prove that $\frac{f(z)-f(0)}{z} \rightarrow 0$ as $z \rightarrow 0$ along any radius vector but not $z \rightarrow 0$ in any manner i.e., $f(z)$ is not differentiable at $z=0$.

Solution. Here, we have

$$
\frac{f(z)-f(0)}{z}=\frac{f(z)-0}{z}=\frac{f(z)}{z}=\frac{x^{3} y(y-i x)}{\left(x^{6}+y^{2}\right) z}=\frac{-i x^{3} y(x+i y)}{\left(x^{6}+y^{2}\right) z}=\frac{-i x^{3} y}{x^{6}+y^{2}} .
$$

Now we take the path $y=m x$ (radius vector)

$$
\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}=\lim _{z \rightarrow 0} \frac{-i x^{3} m x}{x^{6}+m^{2} x^{2}}=\lim _{z \rightarrow 0} \frac{-i m x^{2}}{m^{2}+x^{4}} \neq 0 .
$$

Also, along the path $y=x^{3}$

$$
\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}=\lim _{z \rightarrow 0} \frac{-i x^{3} \cdot x^{3}}{x^{6}+x^{6}}=\frac{-i}{2} \neq 0 .
$$

Hence, $\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z} \neq 0$ along any path except radius vector.
Example 4. Prove that an analytic function with constant modulus is constant.
Or
Show that an analytic function cannot have a constant modulus without reducing to a constant.
Solution. Let $f(z)=u+i v$ be the given analytic function then u and v satisfy the equation

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} . \tag{i}
\end{equation*}
$$

We have, $|f(z)|=$ constant $=c$.
Then

$$
\begin{equation*}
u^{2}+v^{2}=c^{2} . \tag{ii}
\end{equation*}
$$

Now, differentiating (ii) partially w.r. to x and y, we get

$$
\begin{aligned}
& u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}=0 \text { and } u \frac{\partial u}{\partial y}+v \frac{\partial v}{\partial y}=0 \\
& \Rightarrow \quad u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}=0 \text { and } u \frac{\partial u}{\partial y}+v \frac{\partial u}{\partial x}=0,
\end{aligned}
$$

Now eliminating $\frac{\partial u}{\partial y}$ in above equation, we get

$$
\left(u^{2}+v^{2}\right) \frac{\partial u}{\partial x}=0 \Rightarrow \frac{\partial u}{\partial x}=0, \text { provided } u+i v \neq 0 .
$$

Similarly, we have $\frac{d u}{\partial y}=0=\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}$.
Now, since $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are zero. So u and v are constant.
Hence, $f(z)=u+i v$ is a constant function.
Example 5. If $f(z)=u+i v$ is an analytic function, then show that u and v are both: Harmonic functions.

Solution. Let $f(z)=u+i v$ is an analytic function then Cauchy-Riemann equation satisfied. i.e.,

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \text {. } \tag{1}
\end{equation*}
$$

Now, since u and v are the real and imaginary part of $f(z)$. So partial derivative of u and v exist and continuous function of x and y.

Now from equation (1), we have

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y} \text { and } \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x} .
$$

Adding both the equations, we have

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} v}{\partial y \partial x}=0 .
$$

Hence

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Similarly, we can easily shown that $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$.
So the function u and v satisfy the Laplace equation $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$.
Hence, u and v both are the Harmonic functions.
Example 6. Show that the function $f(z)=\sin x \cosh y+i \cos x \sinh y$ is continuous everywhere and analytic everywhere.

Solution. Here, we have

$$
f(z)=\sin x \cosh y+i \cos x \sinh y .
$$

$\operatorname{Now} u(x, y)=\sin x \cosh y$ and $v(x, y)=\cos x+\sinh y$.
Since, u and v both are the rational functions of x and y with non-zero denominators for all value of x and y. So u and v are boh continuous everywhere.

Now to show $f(z)$ is analytic everywhere, we have

$$
\frac{\partial u}{\partial x}=\cos x \cosh y, \quad \frac{\partial u}{\partial y}=\sin x \sinh y
$$

and $\quad \frac{\partial v}{\partial x}=-\sin x \sinh y, \quad \frac{\partial v}{\partial y}=\cos x \cosh y$.
So, by above relations,

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

So, u and v satisfying the Cauchy-Riemann equations.
Hence, $f(z)$ is analytic everywhere.
Example 7. Show that the function $u(x, y)=e^{x} \cos y$ is harmonic. Determine its harmonic conjugate $v(x, y)$ and the analytic function $f(z)=u+i v$.

Solution. We have $u=e^{x} \cos y$
\Rightarrow

$$
\frac{\partial u}{\partial x}=e^{x} \cos y, \quad \frac{\partial u}{\partial y}=-e^{x} \sin y
$$

and

$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{x} \cos y \text { and } \frac{\partial^{2} u}{\partial y^{2}}=-e^{x} \cos y
$$

which implies $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
Also, first and second order partial derivatives of u are continuous.
$\therefore u$ is a harmonic function.
Now, let v be the harmonic conjugate of u, therefore

$$
\begin{aligned}
& d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y=-\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y \text { (By C-R equations) } \\
& =e^{x} \sin y d x+e^{x} \cos y d y .
\end{aligned}
$$

On integrating, we gef

$$
v=e^{x} \sin y+C
$$

Therefore,

$$
\begin{aligned}
f(z) & =u+i v=e^{x} \cos y+i\left(e^{x} \sin y+c\right) \\
& =e^{x}(\cos y+i \sin y)+i c=e^{x} \cdot e^{i y}+i c \\
& =e^{x+i y}+i c=e^{z}+d, \text { where } d=i c, \text { a complex constant. }
\end{aligned}
$$

- SUMMARY

- Complex number $=\{z=x+i y: x, y \in R\}$.
- If $z=x+i y$, then $|z|=\sqrt{x^{2}+y^{2}}$, $\arg (z)=\tan ^{-1}\binom{y}{x}$.
- $\quad z+\bar{z}=2 \operatorname{Re}(z)$
- $z-\bar{z}=2 i \operatorname{Im}(z)$
- $z=\bar{z}^{\prime} \Leftrightarrow z$ is purely real.
- $z+\bar{z}=0 \Rightarrow z$ is purely imaginary
- $\overline{z_{1} \pm z_{2}}=\bar{z}_{1}+\bar{z}_{2}$
- $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]$
- $\quad \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
- $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
- $z=|z| e^{i \theta}$
- Equation of a straight line is $\bar{\alpha} z+\alpha \bar{z}+k=0$, where $\alpha \neq 0$ and \dot{k} is real.
- Equation of a circle is $z \bar{z}+c \bar{z}+\bar{c} z+k=0$ where k is real and c is a complex number.
- $\quad C-R$ equations are $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
- $u=f(z)$ is harmonic if $\nabla^{2} u=0$.

- STUDENT ACTIVITY

1. Prove that $\left|Z_{1}+Z_{2}\right|^{2}+\left|Z_{1}-Z_{2}\right|^{2}=2\left[\left|Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}\right]$
2. Obtain the analytic functions $f(z)=u+i v$ whose real part u is $e^{x}(x \cos y-y \sin y)$.

- TEST YOURSELF

1. Show that the following function are Harmonic and find their Harmonic conjugate :
(i) $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ (ii) $u=\cos x \cosh y$.
2. Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin, although Cauchy-Riemann equations are satisfied at the origin.
3. If $f(z)=\frac{x y^{2}(x+i y)}{x^{2}+y^{4}}, z \neq 0, f(0)=0$, then prove that $\frac{f(z)-f(0)}{z} \rightarrow 0$ as $z \rightarrow 0$ along any radius vector but not as $z \rightarrow 0$ in any manner.
4. Show that the following function are Harmonic and find the corresponding analytic function $u+i v$
(i) $u=\sin x \cosh y+2 \cos x \cdot \sinh y+x^{2}-y^{2}+4 x y$
(ii) $u=e^{x} \cos y$.

ANSWERS

1. (i) $\tan ^{-1} \frac{y}{x}+c$
(ii) $-\sin x \sinh y+c$
2. (i) $\sin z+z^{2}-2 i\left(\sin z+z^{2}\right)+c$
(ii) $e^{z}+c$

FILL IN THE BLANKS :

1. A complex number is defined as an ordered pair (x, y) of \qquad numbers.
2. Two complex numbers $x_{1}+i y_{1}$ and $x_{2}+i y_{2}$ are said to be equal if $x_{1}=x_{2}$ and \qquad
3. Every non-zero element having multiplicative
4. Two complex numbers are said to be equal iff their conjugate are \qquad .

TRUE OR FALSE :

Write 'T' for true and ' F ' for flase statement :

1. Two complex numbers are said to be equal iff their conjugate are equal.
2. A function, which is analytic is also called Holomorphic function.
3. Continuity is a necessary but not a sufficient condition for differentiability.
4. Argument of a complex number is unique.
5. Conjugate of a complex number can be obtained by replacing i by $-i$ in the given complex number.
6. A complex number is purely real if $z-\bar{z}=0$.

MULTIPLE CHOICE QUESTIONS :

Choose the most appropriate one :

1. The conjugate of $\frac{1}{2+i}$ is :
(a) $\frac{2+i}{5}$
(b) $\frac{1}{2-i}$
(c) $\frac{2-i}{5}$
(d) $\frac{5}{2+i}$.
2. $\operatorname{Arg} z+\operatorname{Arg} \bar{z}(z \neq 0)$ is :
(a) 0
(b) π
(c) $\pi / 2$
(d) 12π.

ANSWERS

Fill in the Blanks :

1. Real
2. $y_{1}=y_{2}$
3. T
4. F
5. T
6.T

Multiple Choice Questions :

1. (a)
2. (a)
