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LEARNING OBJECTIVES

After going through this unit you will learn :
e What is meant by sequences ? :
e How to classify the convergent, divergent and oscillatory sequences.

* 1.1. INTODUCTION

George Cantor (1845-1918) is known as the creater of the set theory. He made a considerable
contribution to the development of the theory of real sequence, and found a firm base for most of
the fundamental concepts of real analysis in the sequence of rational numbers. Though his lay-outs
are not convenient in the initial stages, they are quite advantageous while making advanced
investigations. The study of many important and advanced concepts becomes easy if the notion
of the sequence is employed. '

Set of Numbers
We shalll be using capital latters N, I, Q and R for the ‘set of numbers as specified below :
N={n:n=1,2,3, ...}, the set of natural numbers,

I={x:x=...-2,-1,0,1, 2, ...}, the set of integers,
Q= {x: x is a rational numbers}, the set of rational numbers
and R = {x: x is a real numbers}, the set of real numbers.

* 1.1. SEQUENCES

Let N be the set of all natural numbers and S be any set of real numbers. A function whose
domain is the set of natural numbers and range is a subset of S, is called a sequence in §.

Symbolically, if we define a function f: N — S, then fis a sequence. As in the case of
function, we shall denote a sequence in a number of ways :

(i) Usually a sequence is denoted by its images. For a sequence f, the image corresponding

to ne N is denote by f, or f{n) and is called the n™ term of the sequence f, For example
q p

(1,4,9, ... ) is the sequence whose i term is n”.
(ii) Usmg in order, the first few elements of a sequence, tlll the rule for wr1t1 ng down different

elements becomes clear. For example { 1,2, 3, ... ) is the sequence whose 7" " term is n.

1
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(iii) Defining a sequence by a recurrence formula i.e., by a rule which expresses the n" term
by the (n - 1)"' term. For example, let
a=1,a,,,=2a,forallnz1l.

These above relations define a sequene whose n" term is 2"~
Examples :
111 1
2 3»4...,"...)

l’_i_’ l’ I

33' 43 e gl . . .
(iii) { — 2n ) is the sequence (— 2 -4,-6,...-2n,...)
. 3 n
) o 238wl

Range of a sequences. The set of all distinct terms of a sequence is known as its range.

Constant sequence. A sequence { s, ) defined by s,=a for all nE N, is called a constant
sequence.

Equality of two sequences. Two sequences ( s, ) and (¢, ) are said to be equal it s,=1,
VrneN.

Operations on sequences. Since the sequences are real valued functions, therefore, the sum,
difference, product etc. of two sequences are defined as follows :

@) If { s, ) and {1, be any two sequences, then the sequences whose n™ terms are s, + 1,
s, —1t, and s, .1, are respectively known as the sum, difference and product of the sequences
(s, ) and (¢, ) and are denoted by {s,+1¢,), {5, —t,) and { s, t,, ) respectively.

@) ( Y is the sequence( ,

(i) (— 1 )1s the sequence(l
n

) is the sequence (

(ii) If s, # 0, ¥ ne N, then the sequence whose n{h term is l is called the reciprocal of the

) " Sn -
sequence { s, ) and is denoted by (sl ).
n
(iii) The sequence whose ™ term is Su/ty, (4, #0, V¥ ne€ N) is known as the quotient of the

sequence { s, ) by the sequence { t, ) and is denoted by (SL S

n
(iv) The sequence whose n" term is ks,, where k€ R is known as the scalar multiple of the
sequence ( s, ) by k and is denoted by { ks, ).

* 1.2. BOUNDED SEQUENCES '

(i) Bounded below sequence. A sequence (s, ) is said to be bounded below if there exists

a real number / such that 5,2/ V-ne N.

The number ! is known as the lower hound of the sequence { s, ).

(ii) Bounded above sequence. A sequence (s, ) is said to be bounded above if there exists
a real number u such that s, <u Vne N. -

The number u is said to be upper bound of the sequence (s, ). .

(iii) Bounded sequence. A sequence (s, ) is said to be bounded lf it is bounded above as
well as bounded below.

Or .

A sequence (s,) is bounded if there exist two real numbers ! and u (! <u) such that
I<s,<uVnelN

Equivalently, a sequence is bounded iff there exists a real number k > 0 such that

|s,|<k YneN.

(iv) Unbounded sequence. A sequence (s, ) is said to be unbounded if it is not bounded.

In sequences, terms with equal values can occur. Therefore, a sequence may have more than
one term, with the smallest value. In such a case any of those is taken for the smallest value. In
fact while talking about the smallest value we are interested in the value of the term rather than the
position of the term in the sequence. Similar explanation holds for the greatest value. Note that,
like sets of real numbers, a sequence bounded below or above may or may not have a smallest or




a greatest member accordingly. Clearly, an unbounded sequence can not have a smallest or a greatest
member.

(v) Least upper bound. If a sequence (s, ) is boundcd above, then there exists a number
uy such.that '

= .<u, VneN. (D)

This number u; is called an upper bound of the sequence (s, ). If u; < uj, then from (1) we

find that '
C s, <u; YneN

which implies, u; is also an upper bound of the sequence (s, ). Hence, we can say any number

greater than u, is an upper bound of (s,). .

Hence, a sequence has an infinite number of upper bounds if it is bounded above. Let u is
the least of all the upper bounds of the sequence {5, ). Then u is defined as the least upper bound
(L.u.b.} or supremum of the sequence (s, ).

(vi) Greatest lower bound. If a sequence (s, ) is bound below then there exists a number
!, € R such that

L<s, VneN. SN (i)

This number [; is known as the lower bound of <5, >. If [, < {,, then from (ii) we have
L<s, ¥YneN
which implies, I, is also a lower bound of the sequence (s, ). Hence, we can say any number
less than [ is a lower bound of (s, ).

Hence, a sequence has-infinite number of lower bounds, if it is bounded below. Let ! is the
greatest of all the lower bounds of the sequence (s, ). Then [ is known as. greatest lower bound
(g.1.b.) or infimum of the sequence (s, ).

Examples :
(i) The sequence (n ) is bounded below by 1 but not bounded above

1
PR _<_
(ii) The sequence { T 1 ) is bounded as S <1 VneN.

(iii) The sequence { —n’) is bounded above by — 1 but not bounded below.
(iv) The sequence (;l;) is bounded since % £1 Vre N.

(v) The sequence { (- 1)") is bounded since | (- 1)"|<1 Vne N.
111 Yre N

(vi) The sequence (s, ) defined by sp=1+(-1)"forallne N is bounded since the range
* set of the sequence is {0, 2}, which is a finite set.
(vii) The sequence ( (— 1)"/n ) is bounded since | (- 1)"/n|<1 for all n € N.
(viii) The sequence (2" ) is bounded below and has smallest term as 2. Every member of
]— o, 2] is a lower bound of the sequence and the sequence is unbounded above.
Theorem 1. A sequence (s, ) is bounded iff there exists a positive integer m and

1€ R, a <0 such that -
|sy—l]|<a Vn2m.

Proof. Let (s, ) be a bounded sequence. Then there exist two real numbers ¢, and ¢, such

that _ : :

- ¢y <s,<¢cy; Yne N , !

+ 4+ )+
or (cl—c—li—cgj<(s,,—¥}<(cz—¥J VneN
’ cl—cz< c tecr <cz—c1 VneN
or 3 Sy 2 > n
Cr— €y C}+Cz

or . © —a<(s,—-)<a Yne N where,a= > and /=
or |s,—I|<a VYneN wherem=1€ N,le Randa>0.
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Conversly, let there exists { € R, a>0 and m € N-such that
|sy—l|<a Vnzm

This gives l—a<s,<l+a Vnzm

Let ky=min {5, 83, ..., Sy, I — a}
and k, = max {s, s5, ... $,_1, { +a}.

Then ki<s,<k; VneN.

Hence,<.s, ) is bounded sequence.

‘Limit point of the sequence. A real number | is called a limit point of a sequence (s, ) if
every nbd of | contains infinite number of terms of the sequence.

Thus /€ R is a limit point of the sequence {s,) if for given e>0 Sp € N —¢, l+ g[, for
infinitely many points.

The limit points of a sequence may be classified in two types :

(i) those for which ! =s, for infinitely many values of n € N.

- (ii) those for which ! =s, for only a finite number of values of n € N.

But this distinction is not very much needed. As such we do not dlstmgulsh the above
mentioned two types of limit points of sequences by different titles.
Examples on Limit Points :

(i) The sequence ( % ) has one limit point namely 0.

(ii) The sequence ( (- 1)" ) has two limit points 1 and — 1.
(iii) The sequence { n ) has no limit point.
3\
(iv) The sequence {1 + L—’;IL) has one limit point i.e., 1.
B
'3’ 1, R
~ (vi) The sequence { n+ 1) has no limit point.

Sufficient Conditions for number [ to be or not to be a limit point of the
Sequence ( sp).

(@ If for every €>0, I3me N such that s,€ J/—€,/+&[ Yn2m or equivelently
|5, ~1| <€ Y n2m,then ! is the limit point of the sequence (s, ).

(v) The sequence {1, %v 1 ) has one limit point i.e., 1.

(if) If for any € >0, s, € }JI — €, [+ €[ for only a finite number of values of n, then / is not a
limit point of the sequnece ( s, ). Such a condition is also necessary for a number / not to be a limit
point of the sequence (s, ). )

Theorem 1. (Bolzano-Weierstrass Theorem for sequence).

Every bounded sequence has at least one limit points.
Proof. Let S = {s, : n € N} be the range set of the bounded sequence ( s,, ) Then S is bounded

set. Now there may be two cases : :

Casel. Let S be a finite set. Then s, = p for infinitely many indices n. Here p € R. Obviously
p is a limit point of (s, ).

Case II. Let § be an infinite set. Since S is boundcd then by Bolzano- Weierstrass theorem

for sets of real numbers, $ has a limits point, say p. Therefore every nbd of p contains infinitely
many distinct point of S i.e., infinitely many term of ( s, ) and hence p is a limit point of the sequence

($n)- ‘
e 1.3. LIMIT SUPERIOR AND LIMIT INFERIOR

The greatest limit point of a bounded sequence is called the upper limit or limit superior and

is_denoted by lim s, and the smallest limit point of a bounded sequence is called the lower limit

or limit inferior and is denoted by lim s,,.

» By definition it is obvious that lim s, < lim Spe

* A bounded sequehce (s, ) for which the..upper limit and lower limit coincide with real
number { is said to converge to /.




\

Limit of sequence. A sequence ( s, )is said to have a limit l if for a’given € >0 3, a positive

integer m such that . : '
_ - .

|s,—l}<e, Yn2m /

* 1.4 CONVERGENT SEQUENCES

Definition (1) : A sequence s, ) is said to converge to a number l, if for a giverg,' €> 0 there
© exists a positive integer m such that .

' |sp,—1l|<e, Yn2m.

The number ! is called the limit of the sequence (s, ) and can be written as

sy=>lasn—o0 or lim s,=1 or lims,=1.
n— o

Definition (2) : A sequence ( s, ) is said to be convergent iff it is bounded and has one and
only one limit point. -
In such a case the sequence is said to converge to this limit point I.

* 1.5. SUBSEQUENCES

Let (s, ) be any sequence. If {ny, ny, ..., n ... ) be a strictly increasing sequence of positive
integers ie., i >j = n; > n;, then the sequence
(Snps Sngs +cos Sy ++7)

is called a subsequence of (s, ).

SOME IMPORTANT THEOREMS

Theorem 1. If { s, ) is a sequence of non-negative numbers such that im s, =1, then 12 0.
Proof. Let, if possible / <0 then —{>0. Now lim s, =/, therefore, for € = - % > 0, there
exists a positive integer m such that
l
|s,,-l|<—5, Ynrzm

In particular

lsm=1l<-7
l l
= l+5<sm<l—§
S l
= s,,,<5<0,

which is a contradiction, because s, > 0. Therefore our assumption is wrong. Hence, we must
have /2 0.

Theorem 2. A sequence can not converge to more than one limit point.

Or

Limit of a sequence is unique.

Proof. Let if possible, a sequence ( s, ) converges to two distinct numbers /; and /,.

Now L#h=1-5L=20

=|L-5L|>0.

Lets=%|ll—12|;thens>0. ,
Since ( s, ) converges to [}, there must exists a positive integer m; such that
[sa—li|<€ Vnzm . (1)
Similarly (s, ) converges to [, there must exists a positive integer m; such that
' |si-ll<e Vn2my ‘ (2)
Now, let- m=max {m, my}.

Then result (1) and (2) hold for all n 2> m. So for all n = m we have
[ =Ll= s~ 1)~ (s~ 1) |
S|Sn—ll I+]sn—12|

Sequences
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<E+E . [Using (1) and (2)]
=2 : .
=l -4
= |h-hi<lh-L]
which is absurd, hence we must have /| =1, i.e., the limit of the sequence is unique. .
Theorem 3. Every convergent sequence is bounded. ' .
Proof. Let (s5,) be a sequence which converges to /. Take € = 1. Then there exists a positive

integer m such that
[sp—li<l, Yn2m

ie., (-D<s,<(+1), Yn2m.
Let ky =min {sq, 83, ..., Sp_1, L — 1}
{ and , ky=max {s], 59, ..., S, L+ 1}
therefore k<s,<k, YneN.

Hence the sequence (s, ) is bounded.
Note. The converse of the above theorem is not necessanly trite. ie., a bounded sequence

need not be convergent. For example { (— 1)" ) is bounded but not convergént.”
Theorem 4. If (s, ) converges to I, then any subsequence of s, ) also converges to l

Proof. Let (s, ) be any subsequence of (s,). Then by definition of subsequence

ny, ny, ..., Ny, ... are positive integers such that
R <Ay <. <M<,
Now 2l =m2k S By induction)
Since ( s, ) converges to l so given'e > 0, there exists a positive integer m such that
|se=1ll<e, Yi2m
for k 2 m, we have
n2k>m

| therefore | s, — I} <, forall ;y2m

(s, ) converges to [.
. g

Theorem 5. The limit of the sum of two convergent sequences is the sum of their limits.
Proof. Let (s, ) and (¢, ) be the two given sequences such that

lims,=1, ' (1)
and limt, =1 (2)
Since, lim s, = {,, therefore for a given € > 0, there exists a positive integer m, such that
[s,— | <€/2, ¥n>m. '

Similarly, lim ¢, = I,, therefore, for a given € > 0, there must exists a positive ifltéger miy such

that
=k | <€/2, Ya2m,
Let m=max {my, my}.
Therefore |sp=1|<€/2, Vu2m
and 1t,—L|<e/2, Yn>m.

Now, consider
t(sn+tn)"(ll +12) ’=i(sn_ll)+(tn_l2) |v Vnzm
Slsp=hl+|ta-h|, Yn2m :
<E/2+€/2=g,Vn2m.
" Therefore, the sequence (s, + 1, ) is convergent and
lim(s, +t,) =1+ =lims, + lim¢,.
Theorem 6. If lim s, =1, and limt,=1,, then lim (s5,2,) =1, . lz
Proof. We have
I Spln— 1112 I = | Sply — lltn + lltn _'1112 |
=t (= 1)+l (1= 1) |
Sltdlsa—h|+ Wt - L. ' (1)




The sequence { t, ) is convergent, therefore it is bounded, (*. Every convergent sequcncé is
bounded) so there must exists a positive real no ¢ such that
it,|<¢c, YneN. -(2)
Since the sequences {5, ) and (1, ) both are convergent, there must exist, positive integers
m,; and m, such that

|s,— 1 | <€/2c, ¥ n2m, ' S E)

and |t,~bl<e/2¢c, Y n2m,. (B
Let m=max {m,, m,}.

From (1). (2), (3) and (4) we have

E € .
|s,‘t,,—lllz|<c.z+|c|.m, Yn2m
_ <€/2+E/2=¢, Vn2m.
Therefore lim (s,¢,) = i1,
Theorem 7. Iflims,=1,1,#0and s, #0, Vne N then
o (1 1
lim 5 —llv

Proof. Since [, # 0, there exists a positive number ¢ and positive integer m; such that

{sp|>c, Ynzm. :,.(l)
Also lim s, = I, therefore, for a given € > 0, there must exists a positive integer i, such that
|s, =4 |<cll|e, Vn2m,. ' (2
Let m =max {my, m;}. Then _
| l
L—l= S0 Cllls,Van
Sn ll Isn”lll cllll
=g, Vn=2m
.11
Therefore, lim — =+
Sn ll
Theorem 8. Iflims,=1, and limt,=1, ([, #0), 1,20, Vne N then
l
lim o
t, I’Z
Proof. We have
Sn

lim

| [ 1}
=lim|s,—
¢
. . (1
=lim (s,) . im (;—J

[". limit of the product of two sequence is equal to the product of the limits]

=1 . 1 {By previous theorem]

7

n

s, 1
= lim ==
n—)co t’l lz

« 1.6. DIVERGENT SEQUENCES

Definition (i) A sequence (s, ) is said to diverge to + <, if for every real number k> 0, there
exists a positive integer m such that

sy, >k, VY nzm.

Definition (it) A sequence ( s, ) is said to diverge to — o, if for ev"ery real number k < O, there
exists a positive integer m such that

s, <k, Ynzm. o

Definition (iii) A sequesice is said to be divergent sequence, if it diverges to either + o or

Definition (iv) A sequence, which is not convergent, is known as divergent sequence.

Sequences
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Examples : \
(i) (3, 32,33 .. ) diverges to + eo. '
(i) (-2,-2% -2 ...) diverges to — co.
(iii) {2, 4,6, ...,2n, ... ) diverges to + <o,
Gv) (-2,-4,-6,...,—2n, ... ) diverges to — oo

* 1.7. OSCILLATORY SEQUENCE

A sequence { s, ) is said to be an oscillatory sequence if it is neither convergent nor divergent.

An oscillatory sequence is said to-oscillate finitely or infinitely according as it is bounded or
unbounded. ' _ > ‘

In other words, we can say : /

(i) A bounded sequence, which is not convergent is said to oscillate finitely.

(ii) An unbounded sequene which does not diverge, is said to oscillate infinitety,

(ifi) A bounded sequence which does not converge and has at least two limit pomts is said
to be oscillate finitely. - 3
Examples :

@) (1+(1") oscillate finitely.

(u) (-1 )oscnllate finitely.

(m) (D1 +— ) oscillate finitely.
(iv) (n (- 1)" ) oscillate infinitely.
SOME IMPORTANT THEOREMS

Theorem 1. If a sequence (s, ) diverges to infinitely, then any subsequence of { S, ) also
diverges to infinitely.
Proof. Let (s, ) be any subsequence of the sequence (s,). Then by the definition of

'| subsequence ( n, ny, ..., 0y, ... ) is a strictly increasing sequence of positive integers
= n2l=n2k (By induction)

Take any positive real number c;.

Now (s, ) diverges to eo=> for ¢, >0 3 m € N such that 5,> ¢, for all n2m ie., s> ¢,
Vk2mfork>m, we have n,2k2mie., n,2m.

> €1 forall ¢ 2m.

= (s,, ) diverges to oo,

Theorem 2. If the sequence ( s, ) diverges to infinity and the sequence { t, ) is bounded, then
(s, +1, ) diverges to infinity.

Proof. The sequence (¢, ) is bounded; therefore for arbltrary positive number &; such that

| ta | < k.
Also, the sequence ( s, ) diverges to infinity. Therefore for arbitrary positive number k there
must exists a positive integer m such that :
S, >k+k, Vnzm
Now, for all n > m, we have
Sptt, 28, — |t |>k+k -k =k
Thus for £ > 0, 3 a positive integer m such that
Sptt,>k, Yauzm.

= The sequence ( s, +#, ) diverges to infinity. _

Theorem 3. If the sequences {s,) and (1, ) both diverges to infinity, then the sequences
(sp+1,)and {s,.1,) diverges to infinity.

Proof. Since, the sequence ( s, ) diverges to infinity, therefore for k, > 0, there must exists a
positive, integer s such that s, > k; V¥ n2m,. Similarly, the sequence (¢, ) dlvelges to infinity,
therefore for &, > 0, there must exists a positive integer m; such that

1, > kz, Vn2 my.

Let m=max {m,, my}. Then

/




s, + 1> k] + k2 = ll (Say)
and Sutn > ky . ky = 1y (say).
Therefore, sequences (s, + ;) and ( 5,2, ) diverges to infinity.

SOLVED EXAMPLES

Example 1. Show that the sequence (%) converges to 0.

Solution. Let (s,,‘)=(;ll-).
. 1
Now lim s,= lim — =0
\ n-» o o n—eo 2n
and ) lim  s5,,,= lim = )
n—ee T n=)co 2n+l
Therefore Iim so,= lim 59,,;=0
ne-yoo n—ee
= lim s,=0, Vre N.
n—es

Since 0 is a finite quantity. Hence, the sequence ( s, ) is. convergent and converges to 0.
Example 2. Show that the sequence { (— 1)"/n ) is convergent.
Solution. Let (5,)=K(=1)"n).

| e L

Here lim s, = Iim —= lim =0
n—yo L 2n n—»oee 2”
_127!"‘1 _1
and lim s3,4,= lim e . lim =
. - fe oo noe 2n+1 n—e 20+ 1
which gives, lim sp,= lim s5p,,;=0
! n—eo n— e v
= ' lim s,=0, Vne N.
n—ee

Since 0 is a finite quantity. Hence, the givén sequence ( s, ) is a convergent sequence.

Example 3. Discuss the convergence of the seqiience { % ).

’ Solut\ion. Let {sp) 5( % )3
' - 1
Then lim" 55, = lim —-=
n—yeo n— oo
and : lim s$5,,7= lim- 2:;1+130 R
n— oo n—w
which implies lim §5,= lim s5,,,=0
n-— o n—oyee
Therefore, lim s,=0, V ne N.
n-—yoo

Since O is a finite quantity, hence, the given sequence (s, ) is a convergent sequence.
Example 4. Show that the sequence s, ) defined by '

s, =((Nn+1-vn)), VneN

is convergent.
Solution. We have
s, =¥n+ 1l -Vn
Forany €>0, |[s,—0]=Vn+1-Vn<e
- Vn+1<(E+n).

= Cn+l<ef+2eVn +n
= : 1<e*+2eVn
. 1
ie. if —<n
4¢?

Thus, for any given €>0, I m [> ﬁ} € N such that
£

Sequences
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then

|s,~0|<e, Vn2m.
Therefore, lims,=0.
Since, 0 is a finite quantity. Hence, the given sequence ( s, ) is convergent.
Example 5. Show that the sequence (s,, ) def ned by S$p = " converges to 0 if | r| < L.
Solution. If | 7| < 1. Then

|r|=ﬁ, where h> 0.
Since, (L+1)"=1+nh+ ’—’%,—1—1 Rt +h
>1+nh Vi
Now |s,=0}=|7"|
. =[r["=_ 1\
a+ k)"
: “T+nh v
Let£>0. Then -
. 1 1
s, -0]<e if T o5 SEOrn> [E— J/h

Now, if we take a positive integer m such that m > %— l) / h, then, forall n2m

TN

|s,—0]|<Ee.

Hence, the sequence (s, ) converges to 0. '
Example 6. Show that the sequence (s, )= % has the limit 3.
: n+5n

Solution. Let € be any positive number.

4 3n _ 15" 15
Consider, w52 1 n +5n'/2 e
o "3n . 15° 225
Therefore, ———~3|=¢ if —5<¢€ o0or n>—
n+ 50" n'? &

If we choose a positive integer m > @ » then, we get
' €

Isp—3l<e, Vn2m.

Hence lim s,=3.
n-—yoo
Example 7. Show that lim Nn =1.
n-—» oo

Solution. Let "}fnh =1+h, where h20 -

= n=(+h)"

S 1)/2 B
21
= n>-"—(%“—13h, Va ¢ h20)
= hz<—-3—, forné2
n-1

= [h|<\’(L] , for n22. -
n-1

Let € > O (any positive number, however small) then

|h|<‘\/L <€ prov:ded 2 —~ <& or n>£+l
n—1 n-1 e

If we take m € N such that m > %+ 1
€

|h|<e Yn2zm




or |n‘/;—‘l | <E ‘ V‘n >m = lim 'n\/n—i 1. Sequences
Ao )

Sn+ |

=1 Tkei_z' prove
13 *

Example 8. If( s, ) be a sequence such that s, #0 for any n€ N, and

that if | 1] < 1, then 5, — 0. -
Solution. Since |/|< 1. Hence there exist €; > 0 such that

|l|+81:h<1.
Sn+l L o .
Now '; — { = there exists a positive integer m such that
n
s
n““l <g, Vnz2m.
Sa . ’
We have -
s ‘\'s $
bl 22 < |22 g 4
Sn " Sy ' n
<g +|If, Yr2m
S,
ie., 22l h Yacm
sn

Replacing n by, m,m + 1, ..., n — 1 successively in the above equation and multiplying the
corresponding sides of the resulting (# — m) inequalities, we get

Sm+ 1 Sm+2 Sn <hn—m
Sm Sm+1 Sn-1
=3 Sm+1 'sm+2“' Sn <hn-—m,'
Sm Sm+1 Sn-1
nf L Sm]
= | 5. | <k 7;;“ , forall n>m. (D)
Since, 0 < /1 < 1, therefore A" — 0 and hence, .given € >0, there exists a positive integer m;
such that
K : :
| "< » Yn2m,. (2)
| 5m | ’
m' ) -

Now, let us choose a positive integer p such that
p>max {my, my}.

From (1) and (2), we get
|s.|<€e ¥Yn2p.

Hence s, — 0.

* 1.8. CAUCHY SEQUENCES

A sequence ( s, ) is said to be Cauchy sequence if, given € > 0 there exist m € N such that
|sp—spl<e, Yn2m - -

or !sp—sq|<£, Vp.gzm
or | $usp—Sa|<€& VYn2mandp>0.
Examples :

(i) The sequence (%) is a Cauchy sequence.
(i) The sequence { %) is a Cauchy sequence.
(iii) The sequence (i, ) is not a Cauchy sequence.

(iv) The sequence { (- 1)") is not a Cauchy sequence.
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3

SOME IMPORTANT THEOREMS

Theorem 1. Every Cauchy sequence is bounded.

Proof. Let (s, ) be a Cauchy sequence.

Taking € = 1, there exists a positive integer m such that .
|$p—sm|<1l, YR2m

= Gu—D<s,<(s,+1) Vn2zm.
" Let - k=min (s, — 1, 51,52 ..., Sm—1(}
and K=max {s,, + 1,5, 5 .« Sp 1}
Then k<s, <K, Vn '

= The sequence { s, } is bounded. — ;

Note. Converse of the above theorem is not necessarily true, i.e., a boundéd sequence need
not be a Cauchy sequence, for example, the sequence { (— 1)") is bounded, but is not a Cauchy
sequence.

Theorem 2. (Cauchy’s General Principle of Convergence). A sequence is convergent if
and only if it is a Cauchy sequence.

Proof. Let us first suppose { s, ) be a convcrgent sequence. Let, this sequence converges to

l
~.for a given € > O these exists a positive integer m such that .
|s,—1l<e/2, Ynzm. , ' (1)
In particular, for n=m ' '
|sm=1]<e/2. : (2
Now, consider '
| 5, — s,,,|—|s,,-l+l—-s,,,|
.<,5n—”+lsm_”
<&/24+€/2, Vnzm
=€, Vnzm
ie., | Sp=—Sm|<€& Ynzm
= (s, )is a Cauchy sequence.
Conversely, let { s, ) be a Cauchy sequence.
=( s, ) is a bounded sequence - .[By Theorem 1]
= By Bolzano-Weierstress theorem ( 5, ) has at least one limit point, say /. We shall show
that the sequence ( s, ) converges to /.
Let € > 0 be given.
Since, (s, ) is a Cauchy sequence
3 a positive integer m such that
Isp—Sm|<€/3, Yn2m. -(3)
Since, ! is the limit point of (s, ). '
for above choice of € and m, 3 a positive integer k > m such that

. |si—1|<e/3. . ' (4
Since, k > m, therefore from (3) _
| 53— 8 | <€73. , {5)

Now, consider
|sn_lI=I3n—sm+sm"sk+sk“1| .
’glsn_sm“'lsm_skl'*'lsk_ll
"<e/3+e/3+€/3
=€
ie., ' |sp—tl<€, Vnzm.
= (s, )is convergent.

‘ SOLVED EXAMPLES

Example 1. If{s,) is a sequence in R, where




I 1
=l+T+o+. =
23 n )
evaluate, lim |a,,,-a, | Verif:v, if this sequence satisfy the Caiichy criterion. _
n—yeo

Solution. Here s,=1+= 1 = 1 +.

2 3
i
n+1

+1
n
1
n

= Sn+l_l+; ; o+

1
T+l

= lim |s,4—35,|=0.
n~»c0
Also, here we have -

Sp+1 ~ 5y

1 1
Fot kT

Sop— S, l+1+1 +
%= %= 23 n+l n+2

1

1
n+l+n+2
1
>
= ]sz,,-s,,|>% Vne N.

= there exists a positive integer k such that | s, — s | 2 -;: whenever n 2 k

= Cauchy criterion is not satisfied.
Example 2. Show by applying Cauchy’s convergent criterion that the sequence (s, ) given

l+1+l+ .+ 1 diverges
- 35 n—1 rges.

Solution. Here, we have

-1 1
+ .t

1
s -1 2@m+1)-1
1

s

Spe1=1+7

1

3

1 1,+ 1

3 2n—-1 2n+1.._ .

1+1+1+ ;+ L 1+1+}_+ + LT
3 5 2n-1 2n+1 357

>0, Vane N.

=l+-+-+... +

_ 1
" 2n+1
Sne1> S Yne N
= The sequence (s, ) is increasing sequence.

Also, we have

—1+l+l+ QIS S
3 5 2n—1- 2n+1

[ 1 1 1 1
L+s+o+.. 4+ +

375 n—1 2m+1 "
Sy

--l+l++1'
“2n+1 2n+3 7 4dn-1

1
= San s,,>n(4nJ

= sy, s,,|> VneN .

R 1
( S v— > an etc and there are n termﬂ

= there exists a positive integer k such that | s, — s; | > % whenever n 2 k

= Cauchy criterion is not satisfied.
= The sequence (s, ) can not converge
= The sequence (s, ) diverges to + co. '

7

Sequences
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This gives

- SOME IMPORTANT THEOREMS

Theorem 1. (Squeeze Principle). If (s, ), {t,) and { u, ) are three sequences such that
@) $,<t,Su, vn : : ‘ .

and (iiy (s, ) converges to l and ( u, ) also converges to I, then (1, ) also converges 1o 1.
Proof. Let €> 0 be given. Since the sequences (s, ) and { u, ) converges to /, there must
exist positive integers i, and m, such that

|sp,—1l| <€ Ynzm

(1)
|u,— | <€, Vn2m, .(2)
Let m=max {m,, my}. Then for n > m, we have
l~e<s, <ty Su,<l+e
or l-e<t,<l+e
or |t,—1l]<€, Vnzm
= Hence limz,=1 '
= (1t,) converges 1o [. -
Theorem 2. (Cauchy’s first theorem on limits). If lim s,=1, then
* n—y oo
* lim le.
n—eo n )
Proof. Let us define a sequence {t, ) in such a way that
Cty=s,—1 ' ”
then- lim ¢, =lim (s, - {) =lims,—{=1-1=0
and

S1tspt..+s,

n

+t1+t2+ S
no.

In order to prove this theorem, we have to show that
L ht Lty
im——————= )

. n . ! ;

Now, sequence 1, ) is convergent (. (s, ) is convergent), therefore it is bounded and hence

there must exists a positive number & such that '

|t <k, VneN. : :

Also, (1, ) converges to zero. Therefore for a given € > 0 there must exists a positive integer

m such that ' ' C

|1, ) <€/2, Yn2m'

Now, consider

ittt k| |H+h+.

v by
- =

Gttt
n

nllnls

n

s n

...+|t,,,1+|tm+1|+.<t]t,,i

n

< % + 5 (n- m), Ynzm.
Keeping m fixed, we have

M<s/2 if n>M-
n £

’ . 2mk .
» Let, 1 be any positive integer > 22 so that n 2 {4 we have

mk e,
e

Let A =max {m, t}.
Therefore, for each n > A, we have

Wttt

n

<s+f-¢
2 277

Fid

Htt+...+1,
m ——=

=0.,
n—eo h




Hence, we have ,
S Syt +S

lm 1 2 n

n— oo n '

Theorem 3. (Cauchy’s second theorem on Ilmlts) If{s,)isa sequence of positive. terms

and lim s,=1, then
n-seo

=L

lim (s1, 59, ..., 5,)"" =1
Proof. Let {1, ) be a sequence, such that
t,=logs, VneN.
Now lims,={=>lim 1, =limlog s, = log !
(. lims,=1 limlogs,=log ! provided 5,>0, VY nand[>0)

Then, by Cauchy first theorem on limits, we have
htt+... 41,

lim ——’;—-—-=lim t,=log!
n—3 e "
logs +logs,+... +logs
= jm —2L Y 0BT g ~=logl
n—eo n
= lim %]og(s,,sz,.. 5, =logl
n—yea
= : lim log (s;, 53, ..., 5,) " = log {
= im (53, 83 .00y 5,)" =1,

Theorem 4. If (s, ) isa sequence such that

lim I=lwhere|l|<l

. > oo n R
then lim s,=0.
n—e . .
Proof. Since |/|< 1, let us choose a positive small number € such that
[{|+e<1.
Now, lim =L =1, therefore for € > 0 there must exists a positive ineger m such that, for all
X .
nzm
N
Sntl Il <€
n
§
= 2 s |2 o) <k
Sp Sy
S ]
= cntl <|l|+a k(say)
n

Now, puttingn=m,m+1, ...,n— “1 1n the above mcquallty and multiplying them, we get

s_ <kn—m
sl’!
| $m |
or B R

But k< 1 = k" — 0 as n — oo, which gives lim 5,=0.

J 5y .
Theorem 5. If (s,) is a sequence such that s,>0 and lim ; L=, then limNs, =1.
. *n

Proof. Let us define a sequence (1, ) such that

82 8y
t =S5, t::':'— LI t,, =
N . Sh-i
Thent) .t ...t, =5,
. Sptl V . .
Also - lim =1 = lim S =l=lim¢t, =1
n n~1

. =5,>0=1,=0, VneN.
Hen(,e we have thc sequence {t,)of posmvc terms and 11m i,=1

Sequences
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Now, Cauchy's second theorem on limits we have T W

lim (1, g, ..o 1) " =1
i/n =1

or lim (s,,) PR
Theorem 6. (Cesaro’s Theorem). Iflims,=1; and Lini ty=1. Then
R IT P o ) PR ST N TR
lim m
Proof. Let us define s, =1, +u,and|u,|=U,.
Then lim u, = 0 and therefore tim U, = 0.

Now, by Cauchy’s first theorem on limits, we have

lim;ll-.[U1+U2+....+ UJd=0. . (1)
Consider, )

| 1 I .
; [s12q+ Satn -1 + ... +5,1] =;’ [t +2,+...+1,] +; [t +unty_ 1+ o+ ut)). . (2)

Since, the sequence (7, ) is convergent. Therefore, it is bounded. Hence, there must exists a

positive real number & such that

|t,]<k, YneN.
Therefore,
1 - .
;(ult,, +ust,_+ ..+ u,,t.;l 20
1 . '
RUlalldtult |+ +u |1 120
k
;{i“1.|+’"2|+---+'|“n-|}>0
k .
;{u1+u2+...+u,,j>0.
. P 0
= ;[u,+u2+...+u,,]-—«>0asna->oo [By using (1)]
.1 ' : _
Thus lim M fogty + tigty 1 + ... +uyt ] =0.
Since, lim 1, = [,, therefore
. hth+
lim ———

t=1,
n y
Now, from (2), we have

lim "!; (SItn +Sztn_ 1+ e+ s,,tl) = lllz.

SOLVED EXAMPLES

Example 1. Prove that lim s,=1, where s,=n'"
neyo
Solution. For n=1, s,=1
For nx2, s,>1.°
Let Sp=14+4,4,>0,YVn22
n=s"=(1+) ,
=1+nt,+ % R [By Binomial Theorem]
RIGS
21
2
<t?<
= 0<t,"< n—1 .
2
< Py S
= O0<1,< o1

2




Since . 3l->Oasn—>°°

ty > 0asn— oo . [By Sandwitch Theorem]

. Hence s,— lasn— e,
Example 2. If

then s, — e. Hence show that

1/n
lfn '
n—e| 1

Solution. Let t = Z 2 ud n+l ’
) Tl t2 3 I TR
so that s,=1," _ | |
) n+1 n+l C
I . .
AISO, n+l= n+2 =1+ 1
In n+1 n+1,
t
Now lim _nil_=e‘
n—e in

. Hence, by Cauchy’s second theorem on limits, we have

. . /
lim s,= lim 1, =e. .

n— oo n—y e

(G-

[ 1/n
e e

n" n!

n+l{n" v
R ) '
R [CESN
neye | neyes n Jin!

n 1/n
..on+l n
= lim lim |—
hosw M phein!

Also

1 1 1 }
S, = + +...+
{Vn2+1 Nn? + 1 " Vrt+ 1
converges to 1.

Solution. Here, we have

n
Sp S —=
d,, +n ‘[;2-

= <l
‘J +(1/n

Now the sequence (¢, ), { i, ) are such that
i) 1,<s,<u,

IA

ST o

Sequences
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and (ii) lim¢,=limu,=1
where, t,= — 1 and u,=1.

1+l
n

From (i) and (ii), we have

lims,=1. [By Sandwitch theorem)

Example 4. Prove that

[(n+ Dn+2)(n+3)... (n+n):|=i_

lim

n
R €

il

s =(n+l)(n+2)...(n+n)= @n)!.

§ ' n" n(n?t)
@n+2)! -

(n+ D" (4 1)1

el (24 ta"(mh) @2n+2)(2n+1)

Solution. Let

Then Spy =

Therefore,

S R RS Y E R O s
_(2n+2)@2nt Hn" _2Q2n+ )"
(n+ 1)"*2 NGB
RER 1.
2x2n|:1+2nj'n 4n 1+2'1 n

(Dt D n[l+l}(n+l)”
n
. 1
3] BN
N T+l
() 7
n
1
n|(l1+—].
[ 2"] 1
DI
. n n

Now, taking lim # — oo; we have

1 :
4 K =~ -
[l + 2n:|
. Sn+1 , 1 4
lim = lim T —|==
n—e Sn n—oee |14 |: l] €
n 1+=
. n
" Now By Cauchy’s second theorem on limits, we have
lim (s)"= kim |2*t|-2
n-— oo n—eo Sn €
- lim (n+l)(n+2ﬂ)...(n+n) _4
n-—3oo n €

Example 5. Prove that

lim % 1+2Y2433 4 4n =1,

Solution. Lets, =n"" .
lim 5, = lim n"=1.

Then, by Cauchy’s first theorem on limits, we'have -




lim%(31+s2+ etsy)=1

= - um%[l +27243% ¢ enM =1

* 1.10. MONOTONIC SEQUENCES

(i) A sequence ( s, ) is said to be monotomcally lncreasmg (or non-decreasing) if
< Sn+ lv V n
or Sp S Spy Y R>m.
(ii) A sequence (s, ) is said to be strictly increasing if
s,;<s,,+1, ¥V ne N,
(iii) A sequence (s, ) is said to be monotonically. decreasing (or non- increasing) if
SpZSps1y VR -
or Sy 28y, Vn<m.
(iv) A sequence (s, ) is said to be strictly decreasing if
$p>Sps1, YREN.
(v) A sequence (s, ) is said to be monotonic if it is clther monotonically mcrcasmg or
monotonically decreasing.
Examples : :
(i) (2,2,4,4,6,...)is monotonically increasing.
@) (1.,2,3,... n)is strictly increasing.

@) (1,1, ; % ' é . ) is monotonically decreasing.

(iv) (-2,-4,-6,-18, ... ) is strictly decreasing.
v) (0,1,0, 1, ...) is not monotonic. -
Theorem 1. (Monotone Convergence Theorem). Every bounded monotonically increasing
sequence converges.
Proof. Let us suppose ( s, ) be a bounded monotonically increasing sequence. Let
, S={s,:ne N}
denotes its rangé. Then, obviously S is a non-empty set, which is bounded above. Therefore
there exists a number /, which is the supremum of S. We shall show that the sequence (s, )
converges to /.
Let € > 0 be a given number. Since! — € </, therefore ! — € is not an upper bound of §. Hence,
there exists a positive integer m such that 5, >/ — €
Now, since { s, ) is monotonically increasing sequence. Therefore '
5,285, >l~€ VYnzm ' (1)
Sup.§=1 = s,<l<l+¢g, Vn ..(2)
From (1) and (2), we have
l-e<s,<l+€, Vnzm
= |s,—ll<e, Ynzm
= {s,) converges to L

Theorem 2. Every bounded monotonically decreasing sequence converges.
Proof. Let (s, ) be a bounded monotonically decreasing sequence. Consider a sequence

{ ¢, } such that
t,=—5, YneN.
Then, (1,) is bounded monotonically increasing sequence and therefore it converges [By

Theorem 1] .
If lim z, =1, then lim s, =lim (- ¢,) =— L

Theorem 3. A non-decreasing sequence (mcreasmg) which is not bounded above diverges

to 0. :
Proof. Let (s, ) be a monotonic non-decreasing sequence, which is not bounded above. Let
¢ be any positive number. Since, the sequence (s, ) is unbounded and monotonically increasing,
therefore, there must exists a positive integer m such that

Py
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Sp28p>c, Va>m
= s,>c, Yn>m.
Hence, the sequence ( s, ) diverges to oo,
Theorem 4. A non-increasing sequence (decreasmg), which is not bounded below diverges

10 — oo,

Proof. Proof is exactly on same lines and left as an exercise for the students.
A\

SOLVED EXAMPLES

Example 1. Show that the sequence (s, ) defined by

converges.

ie.,

| Comparing (1) and (2), we see that 5,1 25, V.

= ——
""n+l n+2 7 n+n
Solution. Since, the sequence (s, ) is defined by
jpa— [
""n+l 42 7 n+n
= P RS T
S T g2 2n+2
’ 1 1 1 1 1 1
Now Sn+ 1 s"_(n+2+n+3+m+2n+2)-(n+1+n+2+m+2n]
_ 1 + 1 1
T2+l 2142 n+l
ol
“2n+l 2n+2
>0, Yn.
Hence, the sequence { s, ) is monotonically increasing.
: | R | 1
Now Is,|= 1t Y en
<l+l-|~...+l (upto n terms)
non n . , .
=n.l=l : !
n
|sp| <1, Va

= sequence { s, ) is bounded.
Then, by monotonic convergence criterion, the sequence { s, ) converges.

n .
Example 2. Show that lim |1+ %J exists and lies berween 2 and 3.
-3 !

' n
Solution. Let s, = gl + %)

5y =
SH=1+nl+n!n71!__l?+w+n(n—l')...l‘i"
n 2 n n n

[By binomial theorem for posiﬁvle integral ‘index]

GA(L), LA f 0(,2) (e
—l+l+2![l n]+...+n![l n](l "] (l - J (D)
' 1 1 ] 1. 2
S"+1_1+1+2’[1 n+l)+m+(n+l)![l_n+1](l-n+l]

Similarly

= The sequence ( s, ) is monotonically increasing.




Now from (1), we have

: 1.1 1
2<s,,<l+1+2'+ +. "’;T
s'1+1+l+i+.. +L which is a G.P.
27 T a
=l+—
1__
2

=3-—1-<3 va
2"

= The sequence (s, ) is bounded.

Thus, the sequence (s, ), being a monotomcally increasing sequence bounded above by 3, is |-

convergent.
Since 2<s5,<3, Vn
= 2< lim 5,<3, Vn

n— oo
= limit of the sequence { s, ) lies between 2 and 3.

Example 3. Show that the sequence { s, ) defined by
1 = \12_, Spe1=V(2s,)
converges to 2. '
Solution. We haves, , ; =V(2s,)

For n=1 5= \“ (2s1)
52=V(2\[§).
Since 1<V2=22<22 = \(2—<\J(2\f2—)

=5 < 8.
Now, let us suppose that s,, < 5, +)
then V2s,) < V(25,4 1)
= Sm+1<Sp42-

How, by the method of Mathematical induction, we have
Sn<Sper, YREN

i.e., (5, ) is monotonically increasing sequence.
Now, we shall show that { s, ) is bounded.
Since =V2<2.

Let us suppose that Sm<2. Then V(2s,) < V(Z 2)=2
= Sma1 <2

B y the method of mathematical induction, we have
s,<2, Vne N
= (s,) is bounded above by 2.
= (s, ) is monotonically increasing sequence which is bounded above.
Then, by monotone cbnvergent criterion ( s,, ) is convergent. ‘

Now, let lim s,=] = lim s,4,=1
n—=yoo n—o e

given that Spa1= V(2s,)

= lim s, , ; = lim V25, :

= L=\ = 10-2)=0
which gives {=2,1=0. :

But, since ( s, ) is positive terms sequence with first term = =v2. Hence I can not be equal to
0

= : 1=2.

Example 4. Prove that the sequence { a, ) is convergent where :

’ ~1+L+—l*+ L ...+i+....
Pro2r 3t n!

Solution. Since

Sequences
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DTPRE UUE SN W U
G=ltydogegy oty =
and : gpop=letely Ly L1, L
ntl 1Y 2030 T a e+ )Y
3 .
then “"*,’”‘-‘"=(n+1)r>o’ ¥V ne N
Thus { a, ) is monotonically increasing.
Further,
U U U S
G=l gyttt
5 141 1 1 1
= <a,,< + +?+—2+..'.+2n_1
1__21’7 B
= 2<a, 21+ =3-—<3, Vn
. i on 1
-3

= {a,) is bounded.
Hence, { a, ) is convergent.

SUMMARY

* Afunction f: N — § is known as a sequence.
*  Asequence (s, ) is bounded iff | 5, | < k Vn.

*  Every bounded sequence has at least one limit point. _ )

*  Asequence (s, ) converges to [ if for given €>0 me N such that [s,—I{<eV n2m.

* A sequence (s,) is a Cauchy sequence 3 for given €>03m,n in N such that
|$p— S| <€ VnzZm. ;

-

*  Cauchy’s first theorem on limit : If lim s5,=/, thenlim ="
n—y oo n—yes .ﬂ
+  Cauchy’s second theorem on limit : If lim s,=/, then lim (5,55 ... 5,)"" =1
. n—eo n—ee. "
*  Asequence (s, ) is monotonic if either 5,2 s, or 5,55, ¥V 1> m.

STUDENT ACTIVITY

1. Prove that every convergent sequence is bounded.

2. Prove that every Cauchy sequence is convergent.




* TEST YOURSELF
1. Discuss the boundedness of the following sequence ( sz ) where { sn ) is given by
(i) sn=6 , (i) su=(~1)" .4
2n+3 o "
(iii) Sn———ﬁ (iv) sn=(l+;l;J .
(v} Su=l2+_l_2+...-l'- 12
. nt L (n+1) 2n) _ )
(i) sn =0 (vii) sn =1+ (= 1)".

2. Discuss the convergence and divergence of sequences in Ques. 1.
3. Give examples of sequence ( s, ) for which
im 2o
n—oeo S :
and (i} sp >0 (i) sp—>2 (iit) sp— 0.
4.  Verify the following :
. . - i 1
@ lim 2=2._3 () lim {2+ D8+ DV4=0
" aoe 4 -2n 2 e 0o
S 1 I 1
(iif) lim R g+t 2 =0
noew(n” (n+l) (2n) :
. . 1" . n
Gv) lim jl-—| =e (v) lim —o=e
now n n—oo 01"
R - : )
(vi) lim ———=1.
X—>oo e]/x+ 1
+1
5. Show that the sequences ( sn ) defined by s1 =% rSnel = *25-"3—

find its limit.

ANSWERS

1. (1), (i), Gii), (iv), (v), (vii) bounded (vi) unbounded.
2. (), (iii), (iv), (v) converges (i), (vii) oscillate (vi) diverges to oo

N .. 2n+l. 1
3. (i) s,=n @i s,= " (iil) s, = "
5. I=1
Fill in the Blanks :
1. Every convergent sequence is ......... .
.2.  Every bounded sequence is .......... convergent.
3. The limit of a positive term sequence is always .......... .
4. Limit of the sequence is .......... .
5. A sequence is-Cauchy if and only if it is .......... .
6. Every Cauchy sequence is .......... .

True or False :

Write T for true and F for false statement :

1. Every convergent sequence is bounded:

2. Every bounded monotonically increasing sequence is convergent.

3.  If {sn+1—sn) oscillate finitely, then { sn ) oscillate.

4. If given k (however large) we can find m for which an > k then s, — oo,

5. If {su+1— s ) oscillate infinitely, then ( sn ) oscillate.

Multiple Choice Questions :

Choose the most appropriate one :

1. An oscillatory sequence is :
(a) always bounded (b) may or may not be bounded
(c) never bounded (d) none of these.

2. Formula for s,, for the given sequences 1,- 1, 1,—1,...is:

V n e Nis convergent. Also

(T/F)
(T/F)
(T/F)

(T/F)

(T/F)

Sequences
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(@ sn=(-1"~vneN ) sn=(-1""" vaeN
(c) sn=11ifniseven (d) none of these. '

3." If the sequence ( sx ) converges to / then the sequence (| si | ) converges to :
(a) 1 G (c)—1! (d) none of these.

4. A sequence of (s, ) of real numbers such that (| su | ) converges but { s, ) does not. is given
by :

@ ((=1)") (b)(%) (d) none of these.

@ ¢="0)

Fill in the Blanks :
1. Bounded
4. unique
True and False :
1. T 2T 3.F 4.F 5. F
Multiple Choice Questions :
1. (b)) 2.(a 3.(b) 4.(a)

2. not necessarily
5. convergent

3. non-negative
6. convergent

Qaa
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INFINITE SERIES

i
Definitions ) :

Sequence of Partial Sums
Convergence, divergence or oscillation of a seties
Comparison tests
Cauchy's Root test
D'Alembert Ratio Test
Raabe’s Test

Logarithmic test
Cauchy’s integral test
Leibnitz Test

Q0 Summary

Q Student Activity

0 Test Yourself

LEARNING OBJECTIVES

After going through this unit you will leam [
e What is an infinite series ? -
e How to distinguishe the sequence and series.
® How to check whether a given series. s convergent or divergent using the said tests.

« 2.1. DEFINITIONS

Let(u,) be a sequence of real numbers, then an expression of the form
wmtup+ .. otu,+... - : (1)

is called an infinite series. In symbols it is generally written as
T u, or Tu,
n=1

If all the terms of (u,) after a certain number are zero then the expression
m

uy+up+ ... +u, writtenas 'Y, u, is called a finite series.
n=1

The term «,, is called the- n™ term or general term of the series (1). The sum of first n terms
of the series is denoted by s5,. Thus,

S,=uy +u1+ e +ll".

* 2.2. SEQUENCE OF PARTIAL SUM OF AN INFINITE SERIES

An expression of the form u; + u; + ... + u, + ... which involves addition of infinitely many
terms has in itself no meaning. In order to give a meaning to the value of such an.infinite sum, we
form a sequence of partial sums. It is the limit of such a sequence which gives meaning to the

infinite series. :
Let us associate to the infinite series u; + uy + ... + u, + ..., a sequence { s, ) defined by

Sp=u +ur+ ... +u,

Infinite Series
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| Examples :

Then the sequence { s, ) is called the sequence of partial sums of the given series
Uy ‘gt ... fu,+....

¢ 2.3. CONVERGENCE, DIVERGENC? OR OSCILLATION OF A SERIES

An mflmte series Y, u,is said to be :
n=1

(l) Convergent if the sequence ( 5, ) of its partla] sums: (:onverges to a real number S dnd in

- m -
that case S is called the sum of the series X 1, and we write Y u,=S. Inthis case, we also
n=1 n=1

say that the series is convergent to S.

oo

(ii) Converges absolutely, if ¥ |u,|converges.
n=1

(iii) Converges conditionally, if Y u, converges but ¥ |u,]does not converge.
n=1 n=1"

(iv) Diverges to o= (or — =) if the sequence (s, ) diverges to o (or —e2) and in that case

) unzoo(or z u,,=—°o].
n=1 n=1

(v) Oscillate finitely, if the sequence ( 5, ) oscillate finitely.

(vi) Oscillate infinitely, if the sequence ( s, ) oscillate infinitely.

(vii) Oscillatory if S,, the sum of its first » terms, neither tends to a definite finite limit nor
to + o0 Or — o0 as 1 — oo,

o 2 22__ 2n.:1‘-1'.< s i -}:r'-
(1) The seriesl+§+[—3— ++[§] 7 +..."is convergent.

(2) The series 5 + ? + 55 +... 18 conv:argent g

(3) Theseries 1 +2+3+...+n+...1is dlvergent
(4) The series3—-3+3-3+...1s oscﬂlatory

SOME IMPORTANT THEOREM

Theorem 1. (Necessary condition for cbnvergenc‘?}. Fora seriés Su, to be convergent, it
is necessary that '
limu,=0. ¢ J
Or
For every convergent series 2.u, , we must have lim u,= 0.
Proof. Let us suppose, the series Zu, be convergent. Let S, denote the sum of n terms of
the series Yu,.
= Sp=uptua .ty

=8, (1
= S,,_1=u1+u2+...+u,,_lj|=>u" Sn = Sn-1 M

The series 2u, is convergent, therefore §, and S, _, both will tend to the same finite limit,
say [ as n — oo,
Now, from (1)
limu,=lim§,-limS,_,={-1=0.
Hence, for a convergent series, it is necessary that lim u, = 0. .
Theorem 2. (Cauchy’s General principle of convergence for series). A necessary and
sufficient condition for a series Yu, to be convergent is that to each € > 0, there exists a positive

integer m such that
| thy st +ttypnd .ottty , | <€ whenevern2zmand p2 1.

Proof. Let{ 5, ) be the sequence of partial sums of the series Yu,. The series Z.u, will converge
if and only if the sequence (s, ) of its partial sums converges. But by Cauchy’s general principle




of convergence for sequences, we know that a necessary and sufficient condition for the convergence
of (s, ) is that for each € > 0, there exists m € N such that
|$y—Sm|<€& Vn>m
= gyttt iy, | <€ Y>m and p21.

Theorem 3. A series of positive terms is convergent if §,, the sum of n terms is less than a
Sixed number for all values of n. .

Proof. Letu; +uy+ ... +u,+ ... be the series of positive tcrms

Then Sp=u+us+ .. +u,

Obviously if'n increases, then S,, increases and may tend to a finite limit or to + . The series
can not oscillate.

If S, remains less than a fixed number for all values of n it can not tend to infinity and 50 it
must tend to a finite limit. Hence the series is convergent.

Theorem 4. A series of positive term Yu, is convergent if and only if the sequence (s,)
(where s, = uy +uy + ... + w,) of its partial sum is bounded above.

Proof. Since, 1, >0, V n, the sequence ( 5, ) of partial sums of the series is monotonically
increasing. '

~ Now the series Yu, is convergent iff the sequence ( s, ) is convergent.

i.e., iff the sequence (s, ) is bounded above.

(' a monotonically increasing sequence is convergent iff it is bounded above)
Theorem 5. (Convergence of geometric series). The geometric series
T4r+P+ .+ 4 s

|
1_r1f|r|<l.

(i) Converges to

(if) Divergesto+eooifr>1.
(iii) Oscillate finitely if r=—1.
and (iv) Oscillate infinitely if r<-— 1.

Proof. Here Sp=l4r+rt+e.. +771
_ LA
=y 1-r

n if r=1.

Now, there are following cases :
Case (i). Ifjr|<1.

Then lim =0
n— oo
so that ' lim §,== 1
n— oo " l_r

P _ 1
which gives, the series is convergent to 1

-r
Case (il). If r> 1.
Then lim =
n-3o0
— n . - n
so that S,,=1 A ! + 3 00 a5 11— o0,

il-r 1-r r-1
Hence, the series is divergent to oo,
If r=1,then §;,=1+1+...+1+...tontimes=n

Thus, the sequence { 5, ) diverges and hence the series diverges.
Case (iii). Ifr=-1.

_ |0 ifniseven
‘Then, Sp= {-1 if nis odd

therefore the sequence (s, ) oscillate between 0 and 1.

= The series oscﬂlate finitely between Oand 1.
Case (iv). Ifr<-1.
Let r=—a where a > 1.

Infinite Series
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1 B.d

Then S”=I+a I+a

so that  §,, = — o0 and S,,, | —> .

Therefore, the sequence { s, ) oscillate infinitely between — oo and + oo,

Hence, the series oscillate infinitely.

Theorem 6. A positive terms series Tu, either converges to a finite limit or diverges to .

Proof. Let

Sp=uy+iuat ..+,
= Spii=uptupt .o
= Sn+!”sn=un+l>0

= 841> 8w Vin
= (S,) is monotonically increasing sequence.

Since, a monotonically increasing sequence is either convergent to a ﬁmte limit or divergent
to oo, the sequence ( S, ) of partial sums of the series Yu, is either convergent to a finite limit or

divergent to oo,
Hence, the series Yu, is either converges or diverges to o.

Theorem 7. (Tke Auxiliary series %, #] The infinite series
1) 1.1, .1
Sl=l==t o+ = .
T I -4 -

is convergent if p> 1 and divergent if p<1,
Proof. Case (i). p > 1.

We have —l-=l.
IP
i 1 1 1 2 |-
Also, —t—<—+—=—= P
27 3" 2k 20 2F
1 1 1 1 ¢t 1 1 1 4 |-
and —t—t—t—<—Ft—t—F—z—=4 ¥
¢ 77 ¥ ¥ & ¥ &
1 1 1 il - w1l =pn .
—_—— (2" =2 7).
@y (2"+1)" 2"*' 1y @) (_ )

Adding, all the above inequalities, we have

1 1) (1,11 1 1 1
Syt =14 Lo e et Sl el B R + +
v (2” 3”] (4” 5 ¢ 7") ((2")P Q2"+ 1y

<142 PPy g ol-a
This is a geometric series of n terms with common ratio

9l-

—1_(2l—p)n+|“ 1 - _(zl—p)n+l
I P e TN

= C (say).

1
l -2'"
Now since the series is of positive termis and
"' -152">n, Vn
We have
S, <8y _1<C, ¥ n

= the sequence { S, ) of partial sums of the series X iy is bounded above.

n
Hence, the given series is convergent.
Case (ii). When p =1. Then the given series becomes

p— ]
(2n+ _l)p




1 11
Enp-1+2+3+

Now, this series may be written as follows

Now since lim u, = -;- # 0, the series is divergent.

Case (iii). When p <1. Then
27<2,3"<3,4” <4 and so on.
Hence, the given series reduces to -
1 1 11

2‘,§>1+2+3+4+

Clearly, the series on the right hand side is divergent. [By case (i)}
Hence, the given series is divergent when p < 1.

¢ 2.4. COMPARISON TESTS

The most important technique for deciding whether a series is convergent or not is to compare
it with another suitable chosen series which is already known to be convergent or divergent.
First form. Let Yu, and Yv, be two series of positive terms such that

u,<kv,, Vn

Then,
@ Yv, converges = Yu, converges
@) Yu, diverges = Yv, diverges.
Proof. Firstly we shall prove (i) Xv, convergent = u, is convergent
Now, u,<kv, vne N
o= (m+u+. . tu)y<k(vi+vy+...+v,). (D)
But the series v, is given to be convergent.
=> By the fundamental result for positive term series, 3 a positive number M such that
vi+v+..+v, <M, YneN. «(2)
From (1) and (2), we have
uytuy+...+u,<k. M=k, (say), Vne N
= wuytuyt...+u,<k Vne N, where ky =mk>0
=» 3 a positive number & such that
Uy +us+ ... +u, <k, vneN
=> by the fundamental result for the positive terms series, Zu, is also convergent.
We shall now prove that if Yu, is divergent, then Xv, is also divergent.
Since, we are given Yu, to be d:vergent
= The sequence (s, ) of its partial sums is also divergent.
= 3 a positive -number k, (however large) and positive integer m € N such that
" Sp>ky, YVa>m
Le., it ... fu,>ky, Yn>m. «(3)
From (1) and (3), we have
ky<uy+uy+ .. +u,,<k(vl +vot ... +v,), Va>m

= VitV t ..ty (—k3) Vn>m

= T, > ks, Vn>m

Infinire Series
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kz :
where k3=-; and T,=v;+va+ ...+,

= 3 a positive number k; (however large) and a positive integer m such that 7, > &,
¥ n>m and thus T, is divergent and cosequently Yv, is divergent.

Second form. Let Yu, and v, be two series of positive terms and let ky and ky be positive
real number such that

ky,<u,<ky, Vn
Then, the series Yu, and Lv, converge or diverge together.
Proof. We have ' ,
kv, Su, <k, Va WD

(i) If the series v, is convergent, then 3k,v, is convergent and hence, from second part of
the (i) the series Yu, is convergent. .

(ii) If the series Yu, is convergent, then from first part of the inequality (1), Tk,v, is.convergent

and hence Yv, (= kl Eklan is convergent.
1

(iii) If the series Xu, is divergent, then from second part of inequality (1) Ykjyv, is divergent
and hence Xv, is divergent.

(iv) If the series Xv, is divergent, then Xk,v, is dlvergent and hence from first part of the
inequality (1), Zu, is divergent. : -

Third form. If Yu, and Yv, be two given positive termn series such that

u,<kv,, Yn>mk>0and me N '

Then, . ' '

@) Xv, is convergent =» Yu, is convergent

@) 2Zu, is divergent = Y, is also divergent.

Proof. (i) Let us suppose ( 5, ) and (¢, ) be two sequences of partial sums of the two given
positive terms series 2u, and Yy, respectively.

Therefore, s,=uy+tup+...4+u, YneN

and L,=vitwn+..+v, YneN
since U, <kv, Y n2m= s, <kt,, Vnzm
= Sy = S Skt —t,) =kt,— ki,
= Sy S kty + (s, — kty) =kt,+ M
where M =s, —kt,, a fixed quantity. i (D

Now, if X, is convergent = (t, ) is convergent and thus it is bounded above
= 3 a number A such that 1, <A, Vrne N. ' (2)
Now from (1) and (2), we have '
S, <k . A+M=k,Vne N
and therefore {5, ) is bounded above.
Moreover, {5, ) is a monotonically increasing sequence, therefore, (s, ) is monotonically
increasing sequence which is bounded above and thus, it is convergent and hence v, is convergent.
(ii) Now if Zu, is divergent = (s, ) is divergent and therefore 3 a positive number € > 0 and
n'€ s,
s> B8, Ynzm'.

‘Let m" =max {m, m"} so thats,>B, Vn2 ",
Now from (i) ‘
| t,,'>-l(s,,—M)>l(B~M)=C, Vnzmt, C#0.

= (1,) is divergent and hence Y, is divergent. .

Fourth form. Let Yu, and Yv, be two series of positive terms and let k, and k, be positive
real numbers such that kv, < u, < kyv,, ¥ n>m, m'being a fixed positive integer. Then the series
Yu, and v, converge or diverge together.

Proof. Proof immediately follows from the second form of comparison test.




Fifth form. Let Yu, and Yv, be two series of positive terms such that

" ull .
lim — =1 (finite and non-zero)
n—rea n . . .

then both the series converge or diverge together.

'O un ’ s
Proof. Since ‘7> 0, Vn ’
n . - .

. i .
lim %20 ie, 120.
n— oo v"

But/#0 (by assuniption) : therefore [ > 0..
Now, let € > 0 be choosen in such a way that / ~£> 0.

. .ou : e
Since lim — =/, therefore 3 a positive integer m such that
n—ye ¥n

I—s<£’1<l+a, YV n>m. ' ' (D
Vn
Since, v, > 0 V n, therefore, multiplying (1) by v,, we obtain
(-&)v,<u,<(i+€)v,, V n>m.

Since ! - € and / + & are both positive, therefore applying the fourth form of comparison test,

we find that the series Xu, and Xv, converge or diverge together.

that

u,,>v,,

Bpi1 - Va+1
then Zu, and Yv, both converge or diverge together.
Proof. Let us suppose (s, ) and ( ¢, ) are two sequences of partial sum of the series Yu, and

v, respectively, such that

yVarzm

Sp=Wytuy+ ...t u,
L,=vi+wn+..+vy, Y
Now for n 2 m, we have

um_ U Um+1 Uy -

Up  Ums)  Upt2 Uy
Vm - Vm+1 Vn-1

Vint1 Vm+2 - Vi

= U, £y,

Since, m is fixed positive integer, — is a fixed number say k. Thus for n > m, we have
vn

“u, < kv, ) .
= Xu, and Yv, both converge or diverge together.

SOLVED EXAMPLES

Example 1. Test the convergence of the series

g+§+ﬁ+ +n+l+
1 49 70 2
Solution. Here u,,=n+l. Take v,,=—"§=l
- n n-on
U _n+l /1 n+l n_n+l
Then_ S n___nz =
43
Therefore lim —= lim ntl_ lim 1_|._1.
n—ee Yn  poe N n—reo n

Sixth form. Let 3u, and v, are two series of positive terms and 3 a positive integer m such |

Infinite Series
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= |, whi¢h is finite and non-zero.
Thus, by the comparison test the two series are either both convergent or both divergent. But,

the auxiliary series Yv, = P divergent. Hence, the given Xu, is also divergent. .-

Example 2. Test the convergence of the series - o F
1 1 L1 -
AT TN )
11 1

Solution. Here u,= n(n+l) n n+l

If 5, is the partial sum of n terms of the series 2u,, then
' Sp=upF Uy oo+ iy

1}
-
t

Now, lim s,=
ne n— e

!
3
e
L
]
+
—
1

= [, which is finite and non-zero."
Hence, the given series is convergent.

Example 3. Show that the series

1 1
1+§+§—'+
is convergent. '

1 1

Solution. Since, we have €31=3%
1.1
312 .
1 1
n!<2"“'

Therefore, +%+-—1~+ +;1~!+...<1+%+i2+...

The series on the right hand side is a geometric series with common ratio 5‘ and hence

convergent. So the series on the left hand side will also be convergent..
Example 4. Test for convergence the series whose general term is
(7 + 1) — ).
Solution. Here, we have
u, = (n3 + 1) -n

Letv, = -l; » then the auxiliary series Zv, =X iz
n° n
Now Iim 2=1_L., _

1 L .
3 —» which is finite and non-zero.
n—»oa Y 3 9n 3
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Since the series Ev,,:})—2 is convergent (p =2> 1), therefore, the given series is also
n

convegent.
Example 5. Test for convergence the series whose n™" term is ' o

Nt + 1) — Vit - 1)

Solution. Here, we have

11 1{1 1
_— __1 == —_
) 1 2(2 1 2[2 l](Z l] 1
=n 1+5;—+ 77 -?+ 71 ~F+
h
1(1_ 171 jf1_
1 2[2 l) 1 2[2 1(2 I}
| 1-==+ i -+
T 2! n3 3! nlz .
2| 1 1
=nt st
" n*  8n'? :,
1 1
=+ -

u 1 1
Now im —= lim | 5+—7+. -y
n-soe Vn n—eo [nz 8n'° :l/ n2
: = lim 1+-1—8+
n—eca 8” 1

= 1, which is finite and non-zero.
Therefore, by comparison test, the given series is also convergent.

Example 6. Test for convergence the series whose n™ term is

- \[:1—3
Solution. Here, we have
172
u =N+ 1 - ‘];3_= nyz[l + —1-3] -n"?
n .
=n>?} 1 +-13—L6+ |- 237
2n°  8n

U S N
‘2n3/2'8n9/2+ e

Let us take v, = =5 (since, we know that, when g, is in the form of series in powers of

1/n, v, is taken as the term of lowest power of 1/a, by ignoring the numerical factor).

Then, we have

=L, which is finite and non-zero.

is convergent {p =3/2> 1). Hence, the given .série,s is

But the auxiliary series Yv, =X
Iz

also convergent.
Self-Learning -Material 33
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- Test the convergence or divergence of the following series :
t 1. 2u,,=l+%+%+:§'+-.... ]
- : 1.1 1
; ‘ | 2. Eu,,=1+6+5+&
3. Ju, l+§+%+%+ “+1122:1

1.2 V3 n
5. Yu,= 2f2+10+”+n2+1+“
6. Yu,= VL + V2 + V3 +....

1+V1 242 3443

7. u,= L,

n*+3n
8. u,,——"--

(a+nb)
Y Vn+ 1+ ¥a+l+vNn-1
9. =

n
ANSWERS

1. Divergent 2. Divergent 3. Divergent -~ 4.Divergent
5. Convergent_ 6. Divergent - 7. Divergent 8.Divergent

9. Convergent

e 2.5. CAUCHY’S ROOT TEST

Let Zu, be a series of positive terms and Iét

lim )" =1

n—ye .

Then if|
(i) <1, Xu, converges;
(ii) > 1, Xu, diverges;
(iii) / = 1, the test fails and the series may either converge or diverge.
Proof. Case (i) Let u}"=1<1.
Since { < 1, we can choose an € > 0 such that
l+e<]. ‘
Letl+e=rthenO<r<]l.

Since lim 4™ =1, therefore, there exists a positive integer m; such that
n— e
]ul/" Il<g ¥V n>m
= l—8<‘u,l,/"<l‘+€, V n>ny
= (- <u, <+, V n>my.

Since u, < r", ¥ n>m and since Ir" converges (being a geometrlc series with common
| ratio less than one). Then by comparison test, Yu, converges.

Case (ii) Let ul"=i>1

Since I > 1, we can choose € > 0 such that
l-eg>1
Let !—e¢=R then R>1.

Since R" < u,, ¥ n>m,, and since LR" diverges (bemg a G.P. with common l'dlIO greater
than one). Then, by comparison test; Yu,’ diverges. -
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Case (iii) Let u,,=l-' - : - S

n
. 1 1/n
Then . ow"= —J
n
Then - lim «}™=1.

R

Since Z( diverges, therefore we find that if

1

tim )" =1, then the series Yu, may diverge.

n—o

Again, let u, = Lz In this case also
n

im «"=1
_onoe
but the series Yu, converges. Thus we find that if lim u}/”=1, then the series Yu, may

"o
converge. The above two examples show that if
tim (u)"=1 . -
n -3
Then the test fails.

* 2.6. DALEMBERT RATIO TEST _

It Yu, be a series of positive terms such that

u
(@ lim ——=1.
a—e Hpt1

Then, if

(i) 1> l.the serics converges;

(ii) /< 1, the series diverges; -

(iii) l- 1, the series may converge or diverge and therefore the test fails.

®) - '
Upi1
" Proof. (a) Case (|) When [ > 1, Let € > 0 be a positive number such that / —& > 1.

—+too as{ n— oo, Then Yu, converges.

Now, since lim

=1, therefore, 3 a positive integer m such that
noe Uns !

l-e< <l+eg, whcnevern>m
Upi1'

Now, putting n=m + 1,m+2, ..., p— 1, in succession in the above inequality, we get

Ums 1.

l-g< ‘<l+g,
Um+2
Um+2
[~g<—=<l+E¢,
U+ 3

i,
l—e<2<l+e
Up
Multiplying the corresponding sides of the first part of the above inequalities, we get

-t - U T U, _
(1‘"8)” t m m+1 m+2“. p—1

Uns2 Up+3 up .
= (~gptmmel

up _
= up<um+,(l—£)'"+] (1-€)?
= uy<k(1-87 ¥ p2m+2andk=u,., (-6 ".

Smce the series X, (! —€) ? converges (being a geometric series with common ratlo
— €)™, which is certainly less than unity), then by comparison test it follows that Yu, converges.
Case (ii) When [ < 1, let € > 0 be a positive number such that [+ € < [.

Infinite Series
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u,

Now since lim = [, therefore, 3 a positive integer m such that

n-—e u’l+l
Up

l-e< <l+e, Vn>m
. Up s

Putting n=m+ 1,m+2,...,p—~ 1 in succession in the second part of the above inequality,

| we get

U,
’"_"'1.<[+e,

Un+2
Uns2
=<l +E,
Up+3

TS
iy .
Multiplying the corresponding sides of the above inequalities, we have

u ]
—'Z“‘<(1+e)" L-m

£
= B RR (- G (R 3 i
= uy>AU+EY P, Yp2m+2and A=y, ((+E)""".

Since, £ (/+€)” is a divergent series (being a geometric series with common ratio
(+e)y ! which is certainly greater than unity), then by compariééﬁ test, it follows that Yu, diVérge's.

Case (iii) Let I=1.

Now, first consider the harmonic series

1.1 1 ' RS
b suls SRR el N :
Ligtgtat ,
U U
Then no ALl i 2
Up+1 n n noe Uy

Since, the harmonic series is divergent, we find that if / = 1, a series may diverge.
Now, consider the series ' ’

1 1 1 .- PR - ' .
—S+—=+...+t5+... .
1222 n N
2 2
Then u—n =(LT?1_)_-—_; 1 +l = [im _ull =1.
Up+ | n n nesos Unt)

. . 1 . .
Since, the series ¥ — converges, we find that if [ = 1, a series may converge.

u,

(b) Let us suppose lim = + o then there exist positive integers m and p such that

a0 Upsy
u,

>pvnz2m, p>1.
Ups1

Replacingnby m,m+1,m+2,...,n—1, we have
) ", _

>p

"m-l-l
Uy 41 -
- >

Uy v 2

Hn-1
: Uy, _ _
Multiplying the corresponding sides of the above inequalities, we have

>p

_.>p ' ——

U

m-n
u,<p Uy

4

Cup<A.p " Va>mand A=p"u,




Since £p " is convergent, then by comparison test the series Tu, is convergent.

* 2.7. RAABE’S TEST

If Zu, be a series of positive terms is such that

) u, .
lim {n { - IJ} =1
n-res Uy
Then, if '

(i) !> 1, the series converges,

(ii) < 1, the series diverges, :

(iii) / = 1, the series may either converge or diverge and therefore the test fails.

Proof. Case (i) When !> 1. We can write { = 1 + r, where r> 0 choosing € = 7/2, we can
find a positive integer m such that

u
l-e<n|——~1|<l+e, ¥ n2m.
Hpy

Now, from the first part of the above inequality, we have

1 Un
(1+r)-—~2—r<n( —1], Vnzm

Up 4y

1 L
= 3 Tlns 1 < Ny “(n+Duyy, Yozm 1)

Puttingn=m+1, m+ 2,...,p— 1 in succession in (l)), we have
1
STUme2 <M+ D tysy =M+ sy
i
irup<(p— Du, - puy,.

Now, adding the corresponding sides of the above inequalities, we have
1
37 [y sattmezt. .. tugl<(m+ 1)y, —puy,

1
= Er(um+2+...+up]<(m+l)u,,,.,l,
2(m+1 )
or u1+uz+...+ul,<--(--r-—-——lu,,,+,+u| tUugt ...ty VpZm+2,

The above inequality shows that the sequence (s, ) of the partial sums of the series Zu, is
bounded and therefore Yu, converges. '
Case (if) When I <1. Let us choose £ =1 —/, then we can find a positive integer m such

that
. I—e<n( B -1J<1(=I+E),Vn2m
Upy
or nu, <(n+ Dy, Yozm

Puttingn=m+1,m+2,...,p—1 (p2m+2), in succession, we get
(m+ 1)ty <(m+2) uy 42,
(m+2)upsa<(m+3)unys
(p—Du,_, <pu,
From the above inequality, we have by transitivity
(m+Du,, <pu, Vp2m+2
or u,>k(l/p), Vpzm+2andk=(m+1)up, ;-

.Now, since the series 3 [Il’J diverges, then by comparison test the given series diverges.

Case (iii) When ! =1, In this case the test fails to give any definite information.

For example, consider the series Y, 1 and X —1—2 then, we have
n (log n)
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. Up
lim »n -1l|=1
n—yeo Uy -

But the former series is divcrgeni, while the latter is convegent- ", .

e 2.8. LOGARITHMIC TEST

If Xu, be a series of positive terms such that

lim |zlog Hn =l
n—e Hpyet

then Yu, converges if I > 1 and diverges when I < 1.

Proof. Case (i) When /> 1. In this case, we-can choosc €>0 such that [-¢e> l Let
[ —e=p (say). .o R oo

Since lim [n log
p=yoe | - Up ey

Therefore, we can find a positive integer m such that

=1l

—<l+g, Vn2m.
Upt 1

Consider the first part of the above inequality, we have

l-e<nlog

nlog >p, Vazm
Un s -
U, o .
>’ Vn>m : . (D
Upns .

n , :
. 1 , . . . :
. Since, a, = [1 +-’;J defines a monotonically increasing sequence converging to e, therefore,

From (1) and (2), we have

" )
> ]+i , Vnzm
Upy n

Up, Vn .
= > , Yn2m, ) (3
Uprt Vn+l .
. 1
where - V=
"

Now since p > 1, therefore Xv, converges and from (3) it then follows by comparlson test
that Tu, converges.

Case (ii) WhenI<1. Lét the comparison series 2v, =Y, fp— be divergent, ie., p< 1.

u,;

Yu, will be dlvergent if
Y41 un

= n 1+— = log <plog 1+ —p -l-——l~+i.+
“n+l Uy + no2* 3n
. N Ce
1 -at5 .|
) [i 5 ]

. Uy
lim' |{nlog =p<l-
n—yo Upnt

Yu, will be divergent if / < 1.

e 1+1J, V. ' o O
. n

N




Some Important Limits : .

@ lim (1+£j =¢' (i) lim »""=1

n~—poo n n— e

(i) lim 1287 _¢ (iv) lim (1+f]a=1ifpis finite

ne M now

n+p
“(v) lim [1+f) =&, if p is finite.

n— oo

Some Other Important Test :_
(1) De Morgan’s and Bertrand’s test : , )
The series Tu, of positive terms is convergent or divergent according as

lim {n( i —-IJ} logn:l>l or <l.
i Up 4y

(2) Alternative to Bertrand’s test :
The series Zu, of positive terms is convergent.or divergent according as

lim[nlog —l]logn:'>l or <l -~ _.

T

Uy

SOLVED EXAMPLE

(i) Based on D’Alembert’s Ratio Test.
Example 1. Test for convergence the series
il 3!’ ,4P
l+2_?+3_!+ﬂ+ v
Solution. Here, we have .
P (n+1y
=y = 1= (;:+ 11) I

.U . (n+ 1P nr 1T 1
Now lim Sntl = lim —A——=1im 11+—]|. .
n—ee Hn o MELD P n| (n +'l)

Hence, by Ratio test the series 2u,, is cohvergcnt.
Example 2. Test for convergence the series

1 1 1 !
21 31 4.+ +!n+1!.+

AT

3 3"
Solution. Here, we have '
n+1)! (n+2)!
Upy=—"—"t— = Uy = 1
3 3'!'4'
- . Uy .
Now lim —= lim 5= 0.
n-re Mgy " -y oo n+

Hence. by ratio test. the given scries is divergent.
Example 3. Test the series
3 5 07
+ .‘E o L
. T TSt
jor convergence. for all positive value of x.
Solution. Since v s positive. Hence the given series is of positive term series

RITR el
X

+ ...

T R
S DR & I
_ it , Qa1 2n(2n+1)
=> lim - = lim ———""—— "= .
TR LT 3 (-N hd l)' “"”*l - 300 xz
=00, V positive values ol x.
Then, by ratio wst the given scries converges for all positive values of x.
Example 4. Test for convergence the series :

Here

Infinite Series
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2 3
X  x X
I+ 4+=~5+—+
22 32 4
Solution. Here we have -
Xn—l
Uy ==
n
n
X
= Upy1 ™
. (n+1) )
-1 2 ' 2
- . u, ‘=-x" .(n+l) 1 1+l o
Up+1 nz xn X n o .
2 t h + B R
U
= lim = fim L[1+3] =1 ~
n—see Hnsy n—oe X n x .

Hence, by ratio test the series converges if 7> 1 ie., x< 1 diverges if x> 1 and the test fails
ifx=1.

1 . . - 1.
Forx=1,u,= - Therefore in the case the series Tu, = X — is convergent.
n

n
(ii) Based on Cauchy’s Root Test :
Example 5. Test the convergence of the series x + sz + 3x +axt+ .
Solution. Here, we have -
U, = nx
= (u")l/n - nl/n x
= lim ()" = lim (x.n"""=x.1=x
i n - o0

=x.l=x [ logn'™=1)
Then, by Cauchy’s root test, 2u, is convergent if x < | and is divergent if x> 1.
For x =1, the Cauchy’s root test fails.
In this case, the given series becomes

1+2+3+....

s, = sum of n terms of the series = -;- n(n+1).

Thus the given series is convergent if x < 1 and is divergent if x> 1.

. Example 6. Test the convergence of the series

2 3
1.(2 3Y 2 {4 3 -
2+ 3 x+ 4 X+ 5 x +...00,x>0,

Solution. Omitting the first tertn of the series {(because it will not affect the convergence or
divergence of the series), we have

+1Y
n

n+2
{l+i}r
n
Vn _

Therefore lim «, " = lim [ ————|=x.

n-3eo n-yeo (2J
14—
n

Therefore, by Cauchy’s root test, the given series Yu, converges if x < 1, divergent if x> 1.
For x = 1, test fails

1 7t
1+-=
. . [ "] e
lim u,= lim -=—
1o n—es 2 €
: n

The series Yu, diverges if x = 1.

> 0.

@ |-




Hence, the given series is convergent if x < 1 and divergent if x> 1.
Exmaple 7. Test the series for convergence
' 1 1 1

l+-S+—S+—+....
T
Solution. Here, we have
’ 1
u,,=—~,-;
n
= lim ()" = li o<1
n—r = n‘—)oo n

~ Hence by Cauchy’s root test the given series is convergent.
(i) Based on Raabe’s Test.
Example 8. Test the convergence of the series
3 3.6 2 3.6.9
g+ 0" 7 0. 37
Solution. After leaving the first term we have
_ 3.6.9...3n N
7.10.13 ... 3n+4)
- 3.6.9...3n(3n+3) Iy
1771013, 3r+4)(3n+7)

Now, lim 2*'- lim (—3"—”}:

+...

Un

s

n-yoe Hn n—3oo 3’l+7

_ .lim 3+3/n x
nsee | 3+T7/0
=X.
Then, by D’ Alembert ratio test the series is convergent if x < |, divergent if x> 1 and the test

fails if x=1. '
For x =1, we have

_Mn _3ntT
CUye7 3043
or n Uy _1l= 3n+7_l _ 4
Hyy . 3n+3 In+3
i TR | I 4 _ 4
= Nn =M 3 o 343/

4
—3>1.

‘ Therefore, by Raabe’s test the series is convergent when x = 1.
Hence, the given series is convergent when x < 1 and divergent when x> 1.
Example 9. Test the convergence of the series '
a. (1 +a)+ (l+a)2+a)
b (1+b) (1+b)(2+b)
Solution. Here, we have

: _(+a2+a)...(n—1+a)
T+ (2+b) ... (n—1+D)
- " _(+a)(2+a)...(n+a)
PIT (L4 b)) 24 b) ... (n+h)

. Uy . n+b

lim = lim
neyeo U+l noe | Bta
b
1+-=

= lim
now |y, 8
n

= ].
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Hence, the D’ Alembert ratio test fails.
Now, consider

lim ] —2—1|= lim n n+b~»l

fnt—ren Upa n-so n+a

lim n b-a 7
nses |RTD .

= lim { b-a ] .
noea | 1 +8/0 n

=(b-a). . . _

Then by Raabe'’s test the given series is convergent if b~ a > l.i.e., b>a+ 1 and divergent
ifb<a+l. o T
The test fails for b=a + 1.
Now for b =q + 1, the given series becomes
_a  l+ta 1+a

+ ... : .
at+l 2+a n+a
Taking v, = = by comparison test, we can easily show that the series is divergent.

Hence, the given series is convergent if b> a + 1 and divergentif b<a+ 1.

(iv) Based on Logarithmic Test.
Example 10. Test the convergence of the series

l+5x+¥x I3+
Solution. Here, we have
u =D 4
n= ~
nn 1
n!
= Upe1 = x
(n+1
-1
lim - lim (r+ )" (n-11x"
“noe M1l poe ntx". 0!

=ﬁm[ul}l
ndco n| x

x|

Hence, the given series is convergent if ke 1 ie., if x<e, divergent if x > ¢ and the test fails

(1+J_T
n._
lim [n log d ]= lim | nlog

n— o0 Un+1| noe e

if x=e. In this case

Hence, by log test the series Yu, is diverget if x=e.
Thus the given series Zu, is convergent if x < e and divergent if x > .
Example 11. Test the convergence of the series
242 333 44,4
X+'-2—!+?+T+’.. .

Solution. Here, we have




AN

non

_n'x
=0

- _ £”+l)n+l .I”+l
A
. n+ 1) ! "

Therefore, lim = (n+1)!nx

nove Mnsl noe (n+ 1)1 )

= lim --—l——=L

n—)w( 1]" ex
I+=|x
n

Thus, by D’Alembert’s ratio test the series is convergent if ex < 1 i.e., x <— > divergent if
. e

—

x> 1 and the test fails if 1 =lie,x=—
e ex e

In this case

. Up . e
lim njlog = lim nlogi 77—
n—e Up 41 n—yee {1+1J
n

= lim n[loge—n log[l +—l~]]
n—yeo n

L.

- -

Hence, by Logarithmic test, the series is divergent if x=—i~- Thus the given series Yu, is

. 1 . . 1
convergent if x < — and divergent if x > —
AN e e

Example 12. Test the convergence of the series
\2 3
(at+x) +(a+2,\) + (“+3XL+_“ .

. 1! 2! 31
Solution. Here, we have
_(a+m)"
"t -
_ [a~|~§n-¥-l!x]"+l
= S '
[1 +£QT
= L ! 1
x

. ull . 1
=  lim = lim " e .-
n—oe Hyi) n-—oa 1 / x .-
. .a’x . . .
1+-— 1+ - . . R "
"[ n n+l| ¢ J LA
e 1
x,e_.e.a/x ex

, e . o oo . 1
Hence, by D’Alembert’s ratio test the given series is convergent if p >1ie,x<—and|
. : x

divergent if x > i and the test fails if x =.

=
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In this case

lim »nlog % 1= lim n log - —
n—yes Up 1 n—yea 1 ae o
(l+~J (1+ J
L n n+1
= lim nLﬂog(l+gﬁ-+bge—rﬂog(l+l]—(n+l)bg[l+-*£“H
n— e on n +1
22 33 :
=lim njn _(g_aez_’_a_g;m +1-n -1-—‘%+L3
oo no 20" 3 n 2n° 3n

o "ae a’e? ae '
~(n+1) - -+ ;
: n+1d 2(n+ 1y 3(n+1y

2.2 2,2 :
1 a - . .
= lim [-— +3: + i + terms containing n in the denominator
n-eo 2(1 + -~
n
_ 2 +l 2,2
2 2 2
=1
-2<1

Hence, by logarithmic test, the series is divergent.

Thus the given series is convergent if x < % and divérgent ifx2 %-
EXERCISE 2
Test the convergence of the following series :
i 1 + 2 N 3 + .
T2 g2 142 T - .
2?2 32 4 n* ,
2. 1+ 2'+3'+4'+ +n!+.... . .
13 1 !
3. 1+ g——+3—+1~+ 4
22 3t 4 n -
2 42 .52 22 22 42
5. 1°.2 +2 .3 +3 .4

1! 2! 3!

a.zfgij.
n“+1
2(1).2.4(1) 2.4.6
7. l+§'("£}+ﬁ(6]+ 5. 7( )+

ANSWERS-

1. Convergent 2. Convergent 3. Convergent 5. Convergent

6. Convergent 7. Convergent

¢ 2.10. CAUCHY’S INTEGRAL TEST

Let fix) is a non-negative monotonically decreasing integrable function on (1, oo| then the

series E fn) and the improper integral I j(x) dx converge or diverge together.

n=1
Proof. Let f{x) is a monotonically décreasing on [1, oo[.
Then we have )

O fmzfix)2fin+1), wheren<x<n+1l.




Also, fix) is non-negative and integrable, we have .- Infinite Series
n+1 n+1 n+i

foydxz)  foydrz]  fin+ Ddx

it

- ’ n+ 1

or 2], foydx2fin+ ). (1)
Now, putting n=1, 2, ... (n — 1) in (1) and adding all these, we get

2 3
ﬂ1)+ﬂ2)+...+f(n—l)ZJ‘] )‘(.7c)(L\'+J.2 fx)dx+...

+,f,,;. fx)dx 2 f2) +f(3) + +fln). ...(2)'

Let us suppose
S, =fAD+A2)+ ... + fin)

n
and . I, = L f(x) dx.

Then (2) can be written as
Sn "f(X) 2 III 2 Sn -ﬂl)

or L) <8, — 1L, <AD). ..(3)
Let u,=8,—1, YyneN. )
Then U+ - U, = (Sn+ 1 In+ l) - (Sn - In)

=(Su+1 “Sn)_(ln+l _In)

n+1

=fn+1)-}, fx) dx

<0 : ' [By using (1)]
Hence, we have ( u, ) is monotonically decreasing sequence. '
Now, from (3) u, 2f{n) 20, ¥V n € N. Therefore sequence { &, ) is bounded below. Hence
{u,) is aconvergent sequence and it has a finite limit.
Now, since S, = u, + I, the sequence (S, ) and (/, ) converge or diverge together. Hence,

oo

the series X fn) and the integral L Jx) dx converge or diverge together.

Alternating Series. A series, whose terms are alternatively positive and negative is called
an alternating series.

Thus, a series of the form _ : , !

uy —tp Uz —tg+ .+ (=1 uy . o )

where 1, > 0 V n, is an alternating series. . '

Absolute Convergence. A series Xu, is said to be absolutely convergent if the series
2 u, | is convergent. E :

Conditional Convergence. - A series Su, is said to be conditionally convergent if Lu, is
convergent but Y| u, | is divergent.
REMARK

* The conditional convergence of a series is also known as semi-convergent or
non-absolutely convergent.

SOME IMPORTANT THEOREMS

Theorem 1. An absolutely convergent series is convergent.

Proof. Let us supposc, the series Ju, is absolutely convergent. Then by definition ¥ | u, | is
convergent. ' o
NOW ull + I ll/l | = {

2u, , if u, is positive
0 , ifu,isnegative.
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Therefore, every terin of the series X(u, + | 1, |) is 20 and less than equal to the corresponding
term of the convergent series X2 | u, |.

Hence ¥ (u, + | u,|) is convergent. Hence Xu, is convcrgent

Theorem 2. If the terms of a convergent series of positive terms are rearranged, the series
remains convergent and its sum is unaltered. !

Proof. Let us suppose Xu, be a convergent series, and let the terms be rearranged in any
manner. Denote the new series by ¥v,, so that every u is a v and every v is a u.

Let s,,*—'-u|+u2+.'.. +u,
and L=vity+.tv,

Then, for aﬁy definite value of n, 5, contains n terms each of which occurs, sooner or later,
in the v series and so we can find a corresponding m: such that 7,, contains all the terms of s, (and
possibly other not contained in s,,).

Now, since each term is positive,

Sy <ty
Also, suppose that the first m terms of Xv, are among the first (1 + p) terms of Yu,. Therefore,
Sn < Iny -4 Sn+p
and m tends to infinity with z.
Let ¥u, converges 1o s, so that
lims,=lims,,,=5

o lim ¢, =s.

Hence, Yv, is convergent and has the same sum as Yu,. .

Theorem 3. If the terms of an absolutely convergent series are rearragned, the series remains
convergent and its sum is unaltered. '

Proof. Let Y,u, be an absolutely convefgent series, and let its terms be rearranged in a different
order. Let, the new series is denoted by Zv, so that every v occurs somewhere in the u series and
every u occurs somewhere in the v series. .

Now, we have u, + | u, | = 2u, or 0 according as u, is positive or negative. Now X | i, | is a
convergent series of positive terms, so also is the series X (1, + | u, |), because its terms are less
than equal to be corresponding terms of the series ¥ 2 | u, |.

Let Zlu,,l—s and X (u,+|u, =5
$o that Su,=s" -s.

Also, since ¥, | u, | and X (u,, + | u, [} are convergent series of positive terms, their sum remains
unchanged by any rearragement of terms (By Theorem 2)

Accordingly,

' . 2 I Vn I =g
and T at|va) ="

Hence Yv, = 5" — s = Xu,, as asserted.

* 2.11. LEIBNITZ TEST

If the alternative series
uy—uptus—... (u,,)O, Vne N)

is such that
i) u,.15u, vneN
(i) lm u,=0. R S
'l—)w .
Then the series converges.
Proof. LetS,=u,— uptuy— ...+ - 1) u,, sothat (S, )isa sequence of parual sums of the
given series. g “PJ? T s 2
Now for all n ’ ' '

Sony2— 83 = uz,,.,.l—uz,,+220 {BY(I)]
Wthh gives that { Sy, ) is a monotonically increasing sequence.
Further, Sy = U —Up+ Uy — o F Uy | — Uy, )
=1y — (up + uz) = (Ug— Us) = ...~ Ugp

-




=uy - [(uz '—u3) + ...+ uz,,}
= u) — some positive number
< uy.
Therefore, the monotonically increasing sequence ( Sy, ) is bounded above and consequently
it is convergent.

Let lim $5,=8§.
n—)oo
Now Son+1 =S8t tni
lim S, = lim Sy + lim uy,,
n-re n—3oo n— e
=5+0 < lim ou,=0
n—oo
=S.

Thus, the subsequences { Sy, ) and { S5, + 1 ) both converge to the same hmlts Now we shall
show that the sequence { 5, ) also converges to §.
Let €> 0 be given. Since, the sequenes (Sz,,) and (S2,,+, ) both converge to S, there exist
positive integers m;, n, such that
| 82— S|<e Vn>m;,

and |Sys1—S|<e Yn2m,.
Let m=max (my, my).
Then [S,-Sl<€e Vn22m

which gives that the sequence (S, ) converges to S.
Hence, the given series 3, (— 1)" ™' u, converges.

SOLVED EXAMPLES

Example 1. Show that

lim [1 +~l’+ +£—log n] exists.

now=| 2

Solution. Let  fix *—"is x €11, eof.

Then f{x) > 0 and monotonically decreasing on [1, oo[.

Let Sn=ﬂ1)+ﬂ2)+...+f(n)—l+;+;+ +Ll
n n ll ~
and ]n=J'1 ﬂx)dx= ) ;dx = “ng]n= ]og n.
’ 1

It can be easily shown that
f(n)<S -IL,sAl) VneN

or 0<= <S -I,<1 VneN

which gives that the sequence { i, ), where u, = S, — I, is bounded below. ‘
Now, it can also be shown easily that the sequence (u, ) is a2 monotonically decreasing
sequence. Therefore it converges.

Hence, lim l+-l-+...+-1' exist.
' n—> 2 n

Example 2. Show by integral test that Zw}’; converges if p > 1 and diverges if p < 1.
7

Solution. Let flx) -; » p>0. Then fx) is positive valued and monotonically decreasing.

Therefore by Cauchy’s integral test 3, ip and J.l Sfx) dx converges and diverges together.
n

n "
- g
Let {,= L x” —dx —J. x Fx

Infinite Serics
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l-p )
n 1 .
-, %1
= [l—p ]."p} if p
logn , ifp=1.

If n—oo, nl'p=—1———)0asp>l

p-1
n
and tendstoeeifp<1and logn— e .
1 1.
lim [=—7T"—=—""»ifp>1
Hedber l-p p-1 P :

and lim I,=o0,ifp<l.

n- 0

Hence, J.l fx) dx converges if p> 1 and diverges if p< 1. Then by Cauchy’s integral test
the series 2, % is convergent if p > | and divergentif p< 1.

Example 3. Show that Cauchy’s integral test that the series % S con&erges if
: n=2 n(logny
p>1anddiverges ifO<p< 1
Solution. Let us suppose

fi)=——=1p>0

A x (log xY’ - A _
and x € [2, «¢[; then obviously f{x) is monotonically decreasing on [2, ={ and positive valued.
n S
x (tog x)° AR
1-p
Then I, =]:§l£g_x)__1 ,p#l
l-p
= togn) 7P —(Qog2)! 7], p#1
LG C
| and I, =[log log x}n , p=1

= [log log n —log log 2],' p=1L
Therefore, we have '

n
lim I,= lim L fxydx=oo,ifp<] '
n-—»vee n.—)m
. { 1-p . . .
and tim I=-———(log2) %, ifp> 1. :
MR e RS

Thus the integral L Rx) dx converges if p> | and diverges if 0<p < 1.

Hecce, by Cauchy’s integral test, .the series
T =3 ——
- n=2 n=2 n(logn)’
converges if p> 1 and diverges if 0<p < 1.
Example 4. Tes: the convergence of the series
l-~——l—+~—1 ey x>0,a>0. "
x x+a x+2a -
Salution. Since, the given series is an alternating series.
", the o™ term '

1 . wh _ 1
x+{n=1)a “n WhETE u"-x+(n—- Da >
1 1
“x+na x+@m-1Da

= (- 1) 0.

Now Uy s — Up




_[x+(m-—1)a)l —[x+ na]
T [x+na)fx+(n-1)d]
-a-

[x+na][x+(n—l)a] <0
l["+l<un .
Also, lim u,= lim +=o.
h-3eo e Xt(n—1)a

Hence, by Leibnitz test, the given series is convergent.
Example 5. Test the convergence of the series
log2 _8_ log4 _
22 32 42
Solution. The given series is an alternating series.
Here, the n™* term

t,= (D" u,, where u, = lgg_(g+_21)_ >0
n+1)
fim u,= lim loggn+212= lim log(n+1) 1 —0.
n—roo n‘--)m (”+l) n— ea (n+1)‘ (n+l)
Now, we shall show that
1 Su, Yo

Let j(x)zl—oﬁ-
2
X
xz.l—?,xlogx 1-210 .
Then fx)= = = 3 EX .0 whenx>e?

x* x

Therefore, the function f{x) is monotonically decreésing for all x> e'”%. We know that

2<e<3=2"%<e? <32
=1<e?<2

so fin+2)<An+ 1) forall n
ie., Uy 1Su, Vn

‘Hence, by Leibnitz test the given series is convergent.

- Example 6. Show that the series
1 1 1

TGN
is conditionally convergent.

Solution. The given series is an alternating series.
th

o then” term
t,=(- i)""u,, whcrcu,,=L>0..
n

Now [7 u, = 1 1
R ——
" " Va+l n
_YavarT

Vo Vn+1

Ups) < Up

Also lim u,= lim —-—0

n—oe " r!—>°°‘j_

. by Leibnitz test the given series is convergent.

But the series Y,

l(_ lln—l‘
vn

1 1
=Y —isdivergent {© p=7<1].
i ;

Hence, the given series is conditionally convergent.
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SUMMARY

n . oo

. Z u,is known as the partial sum of the infinite series ¥ u,,.
re=1 N=1. :

+ If lim u, =0, then Zu, is need not be convergent.
* If lim u, # O then the Zu, is divergent.

«  Cauchy’s root test : If lim (,)"" =1, then
n—joo

(i) Zu, is convergent if 1 < 1
(ii) Zu,, is divergent if I > 1
(iii) If I = 1, then the test fails.

+«  D’Alembert Ratio Test : If lim uu,, =1, thén
n+ |

(i) Zu, cdnvergcs ifi>1.
(ii) Zu,, diverges if I < 1.
(iii) If I =1, then the test fails.

* Raabe’s Test : If lim n ( "LI ) =1, u,>0, then"
n

n— oo Upp1 —
(i) Zu, converges if [ > 1.
(ii) Zu, diverges if / < 1.
(iii) If I =1, thn the test fails.

*  Logarithmic Test : If lim (n log i )= I, u, >0, then

n—yeo Hy 11
(i) Zu,, converges if / > 1
(i) Zu, diverges if I < |
«  De Morgan’s and Bertrand’s test : If lim [ n ( S J— 1 ] log =1, u, >0 then
n—> e Uy
(i) Zu,, converges if { > 1
(ii} Zu, diverges if { < 1.

STUDENT ACTIVITY - e

' ' L Provethat £ - is convergent if p> 1.
! ’ n=1n

1 1
x+a x+2a

Lo 1
' 2. Test the convergence of the series P

* TEST YOURSELF 4

1. Test the convergence of the following series.
Sty gt

2. Prove that the following series is absolutely convergent

\
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. -1 1. e
3. Show that the series ¥ (- 1)" ' sin oS conditionally convergent...

" | i
4.  Test for convergence the series X T .

S. - Shq.w that the series

converge conditionally.
6.  Show that the series & (— b [Nrl+1 =] is condmonally convergent.

- A
7.  Show that the series 2, ‘(‘_'L__“IS not absolutely convergent.
1 41 y &
ns

ANSWERS

1. Convergent 4. Convergentif x< % and divergent if x >£

Fill in' the Blanks : -
1. Every absolutely convergent SEFiEs’iS oo .
2. The sum of an absolutely convergent series is .......... of the order of terms.
3. A scries whose terms are alternatively positive and negative is called an .........
4. If Suy is convergent, and I | uy, | is divergent then series Zuy is said to be .......... .
True or False :
Write T for true and F for false statement.
For every convergcnt series, it is necessary that lim u, = 0.

The series )_, is convergent.

1
2
3. If Zuy is a series of positive terms then up > 0, V ne N
4, If lim u, > 0 then series is convergent.
5. If lim un =0, then the series may or may not be convergent.
6. If lim wy =0, then the series is always convergent.
Multiple Choice Questions :
Choose the most appropriate one.
L Iflimuy=0 (1 is the 0™ term of the given series) then :
(a) series is necessarily convergent  (b) series is necessairly divergent
(c) may or may not be convergent (d) none of these.
2. If Yu, converges to Iy and v, converges to 12, then ¥ (un + va) converges to

(@ h ®) ©@h+h (& h-b.

3. 1f Tup and Yv, are two divergent series having all positive terms, then T (1 + vy) is

(a) convergent (b) divergent (c) osciliatory (d) none of these.
4. The nature of the given series will be change if :

(a) the sign of all terms are changed

(b) a finite no. of terms are added or omitted

(c) each term of the series is multiplied or divided by a non-zero number

(d) none of these.

ANSWERS

Fill in the Blanks :
1. Convergent 2. Independent
3. Alternating series 4. Conditionally or semi-convergent. )
True or False : '
I.T 22F 3.T 4F 5T 6.F
Multiple Choice Questions
L.(c} 2.(c) 3.(b) 4.(d)

(T/F)

(T/F)
(T/F)
(T/F)
(17¥)
(T/F)

Infinite Seriex
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UNIT

3

UNIFORM CONVERGENCE
STRUCTURE

Pointwise Convergence

Uniform convergence of sequences of functions

Couchy’s general principle of uniform convergence

CUniform convergence of a sequence of continuous functions
Tests for Uniform Convergence

G Summary

0 Student Activity

0 Test Yourself

LEARNING OBJECTIVES

Aiter going through this unit you will learn :
e What is pointwise convergence ?
e What is uniform convergence. -
e How to determine that the given sequence or series of functions is uniformly
convergent ?

* 3.1. POINTWISE CONVERGENCE

Let ( £, ) be a sequence of real valued functions on a metric space (X, d). Let the function £,
be tends to a definite limit for all values of x € X as 1 — oo. Therefore, to each pomt 1€ X, there
corresponds a sequence of numbers ( f;, (¢) ) with terms

HO.L0.A0) ..

Let this sequence (f, () ) converges to f(t) Then pomtwrse converges can be deﬁned as
follows:

Definition. Let (X, d) be a metric space and f be a function from X to R. Also, for each
n€ Nletf,: X — R. Then, the sequence of functions ({ f, ) conveges pointwise to the function f, if
for each x € X, the sequence of real nubmers (£, (x} ) converges to the real number f{x).

Therefore (f, ) converges pointwise to fif

lim f, (x) f(x) Y xe X.

n—seo

For example :
(i) Foreachne N. Let us deﬁnefn:R—>Rbyf,,(x)=% VxeR
Then {f, (x)) convergesto {x)=0 V x€ R.

(i) The sequenée {(f, (x))={x") converges pointwise to the function f: [0, 1] = R defined

0 if xe 10,1
by oy ={§ 1f 100

(iii) The sequence {x (1 ~x)") c‘cinvefges pointwise to the function f that vanish identically.
(iv) The sequence ( ﬁ, =14+

fxy=1 V xe 10,0l
(v) The geometric series | +x+x*+x+... convergesto (1 -x)7' V xe }-1, 1.

T+ ) converges, pointwise to the function f defined by




Theorem wihout proof. Let (X, d) be a metic space and f be a function fro X to K and
f»: X > RV ne N. The sequence of function (£, ) converes pointwise to f if and only if for each
x € X and for each positiv real number, €, 3 a positive integer m such that

n2m=|f, (x)-fx)|<e ‘

SOLVED EXAMPLE

Example 1. Let {f, ) be the sequence defined by £, : R = R such that
I (x)=f ¥ xe R.neN.

Show that the sequence converges pointwise 1o the zero function.

Solution. Here, we want 1o show the given sequence converges pointwise to the zero function |

ie., flx) =0, x€ R, then we must show that given € > 0, we can find m € N such that

5—0~=1%L . A1)

Y n2m =,

B
€

Let us ctioose m >

3

Then (1) gives

xle

X
Vazm = |=--0
n n

Here, the given sequence converges pointwise to the zero function.

» 3.2. UNIFORM CONVERGENCE OF SEQUENCES OF FUNCTIONS

Let us suppose the sequence{ f,(x) ) converges for every point xin X. Therefore, £, tends to
a definite limit as n — oo for every x € X. The lifit is also a function of x.
Then by definition of limit, we must have that for every € > 0 3 a positive integer m such that
nzm = |f,@x-Ax)|<e »
Here, it must be noted that the integer m depends upon x as well as €.
Definition. The sequence {f, (x) ) of functions is said to converge, uniformly on X to a

Sfunction f, if for every € > 0, we can find a positive integer m such that
n2m = |f(x)-fx)]|<e ¥ xeX.

Some Examples :
(1) The éequence of function {f, ) defined on R such that f, (x) =I—: V ne N converges

poiatwise to the zero function (i.e., fx) = 0) while, this sequence does not converges unitormly to
this function.
We will prove that convergence is not uniform.

Let us suppose the sequence (ﬁ) converges uniformly to the zero function on R, then there
is some m € N (m depending only on € = 1) such that
nzm =>[f,,(x)—f(x)|=1%l<l vV xeR

L=l
m““ .-

(2) Let { f(x) Y ={x" ) be the given sequence of function defined on [0, 1]. Then we can easily

verify that the given sequence { f, (x) ) converges pointwise to the limit function £, defined by
if 0<x<1
fx)= {l if x=1

foreveryxe [0.1]. . . .

To check that the convergence is uniform, we consider the mterva] [0, 1]. Lete> 1 be given.

Then, we have .
() —=fi)]<e = |x"-0]<e = x"<¢
= - —L>l = nlogl>logi ‘
l x" € X £

which is not true for all x € R for if n=m and x = m, then

Uniform Convergence
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5 log (176)
log (1/x)
Therefore, when x # 1, m € N, such that
> log (1/¢)
log (1/x)
In particular, when x =0, m = L.
Now as x increases from 0 to 1, it is clear from (1) that n — oo,
Therefore, it is not possible to find m € N such that
nzm = |f,(x)-fix)|<¢e

ie.,

for all x € {0, 1]. Hence, the given sequence is not uniformly convergent on (0, 1].

Note. If we consider the interval [0, k], where 0 <k < 1, then the greatest value of
log (l/a)/log (1/x) is log (1/€)/1og (1/k) so that if we take m > (log 1/€)/log (1/k) € N, we have
nzm = |f,(x)-fix)|<e V xe [0,4]. .

Therefore, { f, (x) ) converges uniformly on [0, ].

(3) The sequence of function{ 1/(1 + r{xz) ) does not converges uniformly on R to the function
f defined by
if x#0

,_ 0,
ﬂ")‘{l , if x=0.

(4) Let a be any positive real number and for each n € N.
Define f,,(x): ! 5 V x€ [a, o
+ nx

The sequence {f, (x) ) converges umformly to the zero function i.e., f{x) = 0 on [a, b[, because

ot me N > (1 —€)/a* then .

1

nxm = |f(x)-0]=
1 +nx

1

)+ mx
1
1 +ma
<¢ V x€e [a =

Point of Non-uniform convergence. A point such that the sequence does not conver ge
uniformly in any neighbourhood of it, however small, is said to be a point of non-uniform converges
of the sequence. '
Sum function of a series. Consider the series

oo

E ux)=u () +up(x)+ ... Fu N+ ..., xe X

n=1
of real valued function defined on a metric space (X, &). This series gives rise to a sequence of
function {f, (x) ) where

f;l (x) ul(x) + uZ(X) +...+ M,,(X)

The series Eu,, (x) is said to be convergent on X if the corr espondmg sequence { f, (x)) 1s :

<

2

<

2

convergent on X and the limit function s(x) of the sequence is said to the sum function or the sum .
of the series.
Uniform Convergence of a Series of Functions :

Definition. The series Z u, (x) is said to converge uniformly on X if the sequence
n=1 )
{fo (X)), where f, (x) = uy (x) + up (%) + ... +u, (x), converges uniformly on X. -

* 3.3. CAUCHY’S GENERAL PRINCIPLE OF UNIFORM CONVERGENCE

Theorem 1. Let(f, ) be a sequence of real valued function defined on X. Then { f, ) converges
uniformly on X if and only if for every € > 0, there exists a positive integer m such that
n2mpzmxeX = |f,(x)~f, ) |<e. (D




Proof. The only if part. Let us first suppose, the sequence £, ) converges uniformly to the
function fon X. Then, by definition. ’
For given € > 0, 3 a positive integer /n such that
1 () f(x)[<s/2Vn>m,\1xGX. '
Therefore, if p, n 2 m, we have for any xe X .
L ) = f, (0) = [ for (x) = fx) + fx) = f, (¥) |
@) = f) |+ -0 |
<e/2+e/2 =€
Hence (1) holds for this m.
The if part. Let (f,) be a sequence of function from X to B such that for givene>0 Ja
positive integer » such that (1) holds.
To show 3 a function fon X such that the sequence {f, ) converges uniformly to fon X.
. Now, for each fixed x € X, (1) gives that the sequence of real aumbers { £, (x) ) is a Cauchy
sequence and therefore lim f, (x) exists for every x € X
H oo

(" Every Cauchy sequence of real numbers is convergent)
Define f:X-->Rbyfix)=1im f,(x) V xe X.

n— o
We want to show that the sequence (£, ) converges uniformly to f.
If x € R, €> 0, then there is some m € N such that
mpzm = |f(x)-f,(x)|<e/2 forailxe X.
" Forany fixed p, p > mand fixed x € X, consider the sequence( | f, (x) - f, (x) | : n € N ). Since
lim f, () =Ax) and |f, () -/, (x)|<€/2

nH—r e
for n = m, we have

im [fy ) =5 @) | =[fx) - £, () | < e72.

' . n—ee
Therefore, if p 2 m, the
[Ax)—f, (x) | <€ V¥V xe X. ‘
Hence, the sequence { f, (x) ) converges uniformly to fon X.
Theorem 2. The series 2 1, (x) converges uniformly on X if and only if for every £ >03 a
positive integer m such that ' '
R2m = | ttys 1 ) Flgr2 (D) 4. uysp, ()<, p=1,2, ...
forallxe X.
Proof. Let s, (x) denotes the sequence of partial sum of the given series such that
S )= (Xt (x)+... +u,(x), xe X.
Then, 5,4, () =35, () =tps 1 )+ otz )+ .o ity 4, ().

The series Z u, (x) converges uniformly to fix) on X if and only if ( f, ) converges umformly
n=1
on X. - .
But (s, (x) ) converges to s(x) on X if and only if for given £ > 0 3 a positive integer m such
that
nZm = {54, —s5, @) |<e p=12, ...
for all x € X. Hence,
nxm = |u,,+1(x)+un+2(x)+ gy, (X) |<E p=1,2, ...
forallxe X.

* 3.4. UNIFORM CONVERGENCE OF A SEQUENCE OF CONTINUOUS -
FUNCTION

Theorem 3. Let{f, ) be a sequence of continuous real valued function defined on the compact

metric space (X. d) such that
@2hW2..2fm2... .. . (1)
for every x€ X. If (f,) pointwise converges on X to the continuous function f on X, then
(f.) converges uniformly to f on X.

Uniform Convergence

Self-Learning Material 55



Mathematics {

66 Self-Learning Material

Proof, Let g.=fa—floreachne N,
Ther, from (1), we get
fimzgx2...g,x2...20.
Also, since ( f, ) converges to fon X, we have
lim g,(x)=0 V xe X.

n—yos
To show, { g, ) converges uniformly to 0 on X. Let € > 0 be given.
If x € X, then from (3) 3 a positive integer /n (x) such that
0<g, (x)<e/2.
- Since g, (x) is continuous at x, therefore, 3 an open sphere S(x,r) such that
Y € 5 (x) = gy () < €. Therefore, the collection :
C={S(x,nN:xe X, r>0}
forms an open cover of X. Since X is compat, therefore, by definition 3. a finite subcover of C
i.e., 3 a finite number of open spheres §(x, r) say 8 (x, 7)), S (x5, 19) .... S (x4, ry), which also
cover X.
- Now, let .
=max {m (x)), m (x3), ..., m(x)}.
If y is any point of X, then y € S {x;, r) forsome i=1,2, ..., k.

Therefore, &mixy) O) <E.

But since m(x;} < m, therefore from (2), we have _
8n 0) = gnry O) i

= ‘ 0<g,()<e V ye X.

Thus, from (2), we have
0<g,0)<e Ynzm, ye X.
Hence, ( g,, ) converges uniformly to 0 on X. This implies that (£, ) converges uniformly on
Y to the function f.

* 3.5. TESTS FOR UNIFORM CONVERGENCE

Theorem 1. (M,-test). Let (f,) bea seéuence of function defined on a metric space X. Let
lim f,(x)=fx) forall x€ X and let '

ne» oo
M, = sup {| f, () —fx) | : x € X).
Then (f, ) converges uniformly to f if and only if M,, —> 0 as n — oo
Proof. Necessary condition.. Let us suppose, the sequence (f, ) of functions converges

uniformly to fon X. Then by defmztlon, for a given € >0 3 a positive integer m (independent of x)
such that

n2m = |f,(x)-fix)]<e V xe X.
Also, M, is the supremum of | f, (x) —fx) |.

Therefore
i) -fx)|<e Yn2m V xe X
= M,= sup |f,(x)-R)|<e V nzm
. xe X
= M,— 0, as n— .

Sufficient condition. Let us assume that M,, — Qasn — . Then fora given £> 0 3 a positive
integer m such that ‘
IM,-0}<e V n2m ¥V xe X
M,<€ Vn2zm, V xe X
sup ) =fx) | =M, <& ¥ n>m

|f;,(x) -fx)|sM,<e ¥ n2m, VxeX
{f ) converges uniformly to f on X.

SOLVED EXAMPLES-

(A lll.l

Example 1. Show that the sequence {f, ) where

P R T

e, [drs i SR



Sy =nx(1-x)
does not converge uniformly on [0, 1].
Solution. Here, we have

fx)=lim f,(x)= lim __nx___‘ Form =
nen e (1=x)" » e
= lim x [Using L-Hospital rule]

nse —(1=0""log (1 <x)
C~ lim x(l-x)

noee l0g (1 —x)

o ,=0 L. (l-x)"—)'O Vv xe [0,1]]
= JSx)=0 V xe [0, 1]. .
Now M, =sup {|f, (x) —fix) [} : x € [0, 1]}

=sup {nx (1 -x)":x€ [0, 1]}
=sup(1~2)" V xe x[0, 1].

n
Therefore, M,zn. «i—(l - -I—) [Taking x= 1 € [0, 1])
n n n
( l)" 1 A'
=|1-=| »—asn—oeo,
n e

Hence, by M,-test {f, ) does not converge uniformly on [0, 1]. Therefore, 0 is a point of

. . . 1
non-uniform convergence, since x =~->0 as n - oo,
n

Theorem 2. (Weirstrass’s M-test). A series 2 u, (%) of functions will converge uniformly
n=1
on X if there exists a convergent series Z M, of positive constants such that

n=1

|uy (x)|<M, Yn and ¥V x€ X.

Proof. Since E M, is convergent, therefore, by definition for a given €>0 we can find a |

positive integer m such that

n2m = My +Mppot ..+ My, , <€ (1)
(forp=1.2,3,...)
Since |uy (x)|SM, ¥V nand V x€ X. .(2)

From (1) and (2), we conclude that
|H,,+1(JC)‘+‘M,,+2(X)+ +un+p(x)l<|“n+1 (x)l+|un+‘2(x)|+ +|“n+p(x)]
<Mn+l+Mn+2+ +Mn+p
<¢, forevery n2m and YV xeX.

Hence, 2 u,{x) converges uniformly on X.

SOLVED EXAMPLES

Example 1. Show that the series

cosX  cos2x cos 3x cos nx
+ Foob T

17 ¥ 3 w
converges uniformly on R if p > 1. Also give the mterval of convergence.
Solution. Here, we have

COS nx 1
e <— VY xe R.

?

n

Also, the series l. is known to be convergent for p > 1.
" - P

Hence, by Weirstrass’s M-test the given series converges usniformly on R for p > 1.
Above is true for all x € R.

Uniform Convergence
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So the interval of uniform convergence is {a, &] where a. b are any finite distinct real numbers.
Theorem 3. (Abel’s Test). The series 2 u,, (x) v, (x) will converges uniformly in [a, b) if

0] 2 u, (x) is uniformly convergent in {a, b)
(if) the sequence (v, (x)} is monotonic for every x € [a, b] *
(iii) the sequence { v, (x) ) is uniformly bounded in {a, b] by k i.e.,
|vp(x)|<k ¥V x€la,b] and Vne N
Proof. Let R, , (x) be denote the partial remainder of the series 2 1, (x} v, (x) and #, , (x)

that of the series 2 t, (x). Then
Rn.p @)=ty ) Vs () F 2 () Va2 () + .. Uyt p (%) Viewp x)
=y, ](x) Vas l(x) + {rn, Z(x) —a, l(x)} Yy g(X) + {rn, 3(X) ~ T, Z(X)} V,,+3(X) L
‘ s+ {rn.p(x) “np- |(X)} Voip ('\')
= (x) {Vn + l(x) - \’,,+2(X)} +ry, Z(x) [Vn+2(x)v'_ Y+ 3(.!')} t...
t -t (x) {er-p—] (x) - Vn+p(x)} + rn.p(x) "n+p(x) (1)
Given that { v, (x) ) is monotonic, therefore,

Ve 1) = v s o)} {va e 2() = Vot B(X)}v cee {vn+p—!(x) - le—p(X)}

all have the same sign for fixed value of x in [a, b]. ...'(A)
Also, given that { v, (x)} is uniformly bounded by £, therefore
| v, (¥)|<k forall xe [a,b]and ¥ ne N. ‘ . (2)

Also, since the given series 2 u;, (x) is uniformly convergent in [a, b] for a given€>0, J a
positive integer m, independent of x such that for n > m '
€ .
|7 G 1=ty ()t (9 ooty () | < W)
From (1) and (3), we have

]Rn.,-) (x)]<3%l Vo +1(%) _"n+2(x)]+“;l;i Vi o(X) — Vn+3(x)1
""—;,;l"n+l(x)""n+p(x)|+§§k‘| "u+p(x)|

=%|Vn+l(x)_vn-ﬁ-p(x)’-i-iivn-bp(x)" ()
Using (A). we have _
|v,,+l(x)'-v,,+2(x) |+ | Vpa2 (X) = Vi3 () l +o+| Vnap-1 (x) - Vn+p )|
-—-Iv,,H(x)-17,,+2(x)+v,,+2(x)— Va3 (X) ... T Vnsp- (X)_";Hp(x”
=| Vost (X) _,vn-i-p(x) |

Now IVn+1 ()C)—V,,“, (x)15|Vn+l(x)|+|""n+p (X)[
<k+k
< 2k. (5)
Then (4) can be written as
IR,,|‘,(x).:|<i.2k+i.k=e {6)
ie., [ o1 (X} Vs @) |+ gy () vy p (@) | <€ Vn2Zm V x€ {a,b]

Hence, from (6}, the given series Z uy, (x) v, (x) converges uniformly on [a, b].

SOLVED EXAMPLE

N .
_ 3yl
Example 1. Test the series E I—IHL- . x" for uniform convergence in [0, 1].

. _ 1yt
Solution. Let us suppose v, (x)=x" and u, (x) = Ll—"l——

Clearly, the sequence { v, (x) } is uniformly bounded and monotonically increasing on [0, 1].

2 (_ l)n-l

Also, the series Y, u, (x) = —— is convergent. Hence, by Abel’s test the series




Z(_ l)n 1

Z vy Ky =—""""—.x

-is uniformly convergent on [0, 1].

=

Theorem 4. (Dirichlet’s Test). The series 2 #n (x) vy (x) will be uniformly convergent on
[a, D] if

(i) The sequence (v, (x) ) is @ positive monotonic decreasing sequence converging uniformly
to zero for all x € [a, b}.

n

) fix)= Z 1, (x) is uniformly bounded in {a, b] i.e.,
r=1

1£,00]=]2 u )| <k

r=1

Jor every value of x in [a, b] and for all positive integral values of n, where k is a fixed number,
independent of x.
Proof. Proceed as in previous theorem, we have

R, p ) =ty g () Vs O F g () Visg )+ ... # Up 4 p(X) Vnap )
= [Sua1 () =5, @ Vg O+ Lsps2 O = 5001 D] Vi2 () + ..
+ [5n+p(x) Sn-l-p i (X)] Vaosp ()C)
=8p41 (%) [Voy 1.(x) ~Vpr2 (K] + S ) [Vpaa () = vae3 ()] +.
tSnep -1 (O Wi p o1 () =V OH 574, () Vi (3) = 5, (x) Vay1 () (1)
Now, since (v, (x)) is a -positive monotomc deueasmg sequence, therefore,
vy {x), va (x), v3 (x) ... are all positive and
V> E>nE >y @ ...
Also | £, (x) | < k for all x in [a, b] and for all n e N.
From (1), we have .
’ Rn,.p (x) | < ,f;l-!-! Y Vne 1 B = Vg2 (D) + .00 + |fn+p—'i )| [vir+p—1 (- Vi +p ]
e p D Vi p () [+, () [ Vg1 ()
<k Vg () — Vntp (x) + v, +p (x) + vy (0)]

Also, since { v,, | (x) ) converges to zero, we have

| v (%)) <—8k- \7’_n >m

i.e.,. v, (r)<-2-lg Y nzm. ) : .(3)

From (2) and (3), we conclude lhat
= >
| Ry p(x) | <2k. 2 ' for n>m
= | Rop x)| <€ for nzm V xé€ [a, b).

Hence, the series 2 ity (x) v, (x) is uniformly convergent in [a, b].

SOLVED EXAMPLE

Example 1. Show that the series 2 - l)h_ oy converges uniformly in 0<x<k<1.
n=1
Solution. Let u,=(-1Y""", v, (x) =x".
n
. N _ {0 ifniseven
Since 5, (9= X = {1 if n is odd

r=1
=> §, (x) is bounded for all n € N.
Also (v, (x) ) is positive monotonic decreasing sequence, converging to a zero for all values
of r1n0<x<L<1

=2k Yo+l (X) ‘ : ’ (2)

o
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onR.

Hence, by Dirichlet’s test, the given series is uniformly convergentin 0 <x<k< 1.

Example 2. Show that the sequence { £, ), wheref, (x) = nﬁ-‘q_z does not converge uniformly
. nx

Solution. Here, we have ol

fo)=lim f,(x)= lim —55=0 ¥ xe R.
-3 o0 PE X +n°x
Let if possibie, the sequence converges uniformty on R, then for a given £ >0, 3 a positive
integer m such that :

nz2mx€R = |f,,(x)—j(x)l=—m—<s (1)

n
1+a%%
If we take e:% and x=;l; (n=1,2,3,...), then

n—
n
f @ -f0) = —"
: 1+ =
n

Thus, there is no single m such that (1) holds simultaneously for all x € R.
For if, such an m existed, we would have (on taking n = m)

1@ -f0l<3 ¥ xeR

<l"€
3_ .

R

¢

but if we take x= -'i- » we get a contradiction { in this case s < %) and therefore, the sequence
is not uniformly convergent on R. Also since ;—)0. therefore, O is a point of non-uniform

convergence.
Example 3. Discuss the series

ol m  @m-Dx |
z:l:l+nz,\:2 l+(u—l)2x2:|

n=t
Sor uniform convergence.
Solution. Here, we have

X
uy (X} = -0
l() l+2

2x x

Uy (X) = ——5~—
2 () 1425 1+4°

mx___ (n=Dx
1402 (1+(n-1°5

i, (x) =
On adding, we get
nx
Xx) = .
2 ®) 1 +nx

Now do same as example (1). )
Example 4. Show that the sequence { f,7) where

x
x -
fa () I+

converges uniformly on R.

Solution. Here, we have

fx)= lim ——=0 V xeR.
n-see | +Hx
x
Let y=f, ) -fxy=—"—
1+nx

For maxima and minima of y, we must have




. (1+nx —2m
: (1 +n?y?
. 1-nx*
= _
(1 4+ nx)”
: 1
= x=1+—
Vn
2 .
Clearly, 51—2 is negative when x = L
af e
Maximum value of y = —ld{'-—— =1
(1) 2Nn
1+n|—=
nl
Also, —¥~—|)’|=—l~_ [x] __,l+”x2"2‘j'7["l
2¥n (1 + nd?)
Now, M,= sup Lfa (1)~ fixy |
X€E
= Sup d = Sup Iy'
xeR +n.x2 xeR
=max.y"--—->0asn-)oc
2Vn

Hcnce, by M, -test the sequence is umformly convergent on R.
Example 5. Show that O is a point gf non- umformly convergence of the sequence ( Ja (X)),

where f, ) =nx e -t ,xe R,

Solution. Here, we have
2
fx)=lim £, (x)= lim nx e ™
n—oee . n—yeo
= lim — ‘ Forim —
n—w e’“ oo

. X
= hm —,
n—y e xze"x
=0.
Let if possible, the sequence be uniformly convergent in a neighbourhood }0 k[ of 0, where
ke N.

Then, for a given € > 0, 3 a positive integer m such that

(By L-Hospital rule)

2

n2mxe 0,k = |ﬁ,(r)—f(x)]=nxe_""—<& (1)
In particular, the inequality (1) must be true for x = AL, where n is a positive integer greater
n
than m such that
0< L <k.
n
Then (1) gives
n
—<E,
e

Now, since x — 0, when n — o, we see that on taking x sufficiently near 0, we can take n so
Vn. i -
large that — > €, which is a contradiction.
€

Hence, 0 is a point of non-uniform convergence of the sequence.

Uniform Convergence
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Aliter. Let y=f(x)-fAx)=nxe ™.

For maxima and minima of y, we must have

% =0 = ne ™ -2l e =0
= x=1= L
2n
2
Also, —d—% =—ve, when x = 1
dx 2n
Therefore, maximum =n- —l-‘e‘ n 1 _qfn
. yEnm o= 5 T N,
= Mn = Sup Ifn (X) _ﬂx) I
xe R
=sup n|x|e™
rYeER
=sup|y|
=Max. y

i
— 30 dS H—y®
2e

= M, does not tends to zero as 1 — o,

Hence by M,-test, the given sequence is not uniformly convergent.

Also x — 0 as n — oo, therefore, 0 is a pair of non-uniformly convergence.
Example 6. Show that the sequence (f, ), where f, = X1 - x).
Converges uniformly in the intérval (0, 1].

Solution. Here, we have ’

fx) = lim f, (x)

n—yoo -
= lim ¥ '(1-x)=0 V x€ [0, 1].
R~ o0

Let y=lf@)~fx)|=x""" (152
For maxima or minima of y, we must havel g’,xz =0
= n-DX"21-x-x""1=0
= T~ (1-x)-x]1=0
= x=0'n—l'

i

dzy n-1

Also, we can see that —3 is negative, when x =
dx

sup | £, () - Ax) |
xe (0, 1] :
sup X7 (A-x)|
xe [0, 1]
sup .|y
x€10.1]
Max. ¥

n

Now M,

1}

1
—)-éx0=0asrz—>m.

Hence, by M,-test, the sequence is unfformly convergent on [0, 1]. .

Example 7. Show that the sequence  f, ), where f, (x) = v x20is uniformly convergent

. n+x
in any finite interval.
Solution. Here, we have
. ST n
fix)y=lim f,(x)= lim

n—yeo now NHX

oo
Form —
O
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—lim —— = V¥ x30.
n

For an arbitrary choosen positive number €, we have

[ () -fo|<e

n

if -1l <e¢
n+x
. . - X
ie., if <€
n+x
. . g X
ie., if <€
n-+4+x

ie., if n>x(l—i).
€

Obviously, # increase with x and tends to o as x — oo,
Therefore, converges is not uniform in [0, oof. _
But if |0, [ is any finite interval, where k > 0, however large then a1 is any positive integer

2k [é - IJ such that

nzm,x€{0,k] = |f,(x)-fx)|<e.
Henee, the sequence is uniformly convergent on [0, £].

cosx cos2x cos3x by
+ + ... converges uniformly on R.

Example 8. Show that the series = > 2
1 2° 3
Give the interval of uniform convergence. -
. COS nx
Solution. et E u, (x) = 2 —
. n=1 n=1
Then, we have
COS 71X 1
|u, () f=|—=5—1<= VreR
n

Taking M, = *l,- » the series EM,, = 2 iﬁ is convergent.
n n- -

Hence, by weirstrass’s M-test, the given series converges uniformly on R.
Also, the interval of uniform convergence is @ < x < b, where a and b are any finite unequal
real numbers. '

n ZI

1 +n%?
Show that it converges non-uniformly in the-interval [0, 1].
Solution. Here, we have
2
f®=1im f, ()= lim —2=5=0V xe [0, 1],

n—oa n—se 1+n0X

Example 9. The swn to n terms of a series is f, (x) =

Let if possible, the sequence { f, (x) ) converges uniformly on [0, 1). Then, by definition for
_agiven €>0, Ime N such that

. 2 . .
n2m xe [0, 1] = |f, ) -j(x)}=-i-l%< £ - (D)
I +nx
If).'-—iz(ne N), then
n
e
"2
n 1
(D=9 | =" =5
1+ ﬂd.—_‘

13

If we take €= % there is no single 7 such that (1) holds simultaneously for all x € [0, 1].

4

For if such m exists, we would have

Uniform Convergence
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{for ) —f(x)l<% ¥ xe [0, 1].

. 1 L
In particular, when x = —;, we get a contradiction
n

*.* in this case we would have % < %)

Hence, convergence is non-uniform on {0, 1}.

SUMMARY

* A sequence {f, (x) ) is said to be pointwise convergent to f{x) if for given € >0 3 a positive
integer m depending on x such that | f, (x) —Ax) |<eV n=m.

* A sequence {f, (x)) is said to be uniformly convergent to f{x), f (x) = lim f, (x) if for given
£>03 a positive integer m not depending on x such that | £, (x) - f(x) j<e¥Yn2m V¥ x.

|+ Cauvchy’s general principle of uniform convergence : A sequence {f, (x)) converges

uniformly on X if f for every € > 0 3 a positive integer m such that
) -f, ) 1<e Vazmpzm.
* M -test : Let f(x) =lim f, (x) and M, =sup {|f, (x} —f(x) | : x € X}. Then ([, (x) ) converges
uniformly to f (x) iff M, > 0 asn > oo,

*  Weirstrass’s M-Test : A series 2 u, (x) of functions, will converge uniformly on X if there

n=1

exists a convergent series Z M, of positive constants such that | u, (x)l<M,, ¥ n and

n=1

Vxe X
STUDENT ACTIVITY

, ' N
1. Show that the sequence { fy (x) ), where £, (x) = nx (1 — x)", is not uniformly convergent on [0,

11.

L 4

2. Show that the sequence { f (x) ), where £ (x) = N z 5 converges uniformly on R.
. 1+ nx




* TEST YOURSELF

Smad

. * ~ 1 n—1 .
Test the series E i—-)—z for uniform convergence for ail values of x.

n+x
n=1

Show that 0 is the point of non-uniform convergence of the sequence { £, (x) ) when

C e fi=e ™, x20. ,

Show that 0 is a point of non-uniform convergence of the sequence ( f, ) where

' f@=1--2) |

Show that the sequence { £, (x) ) on X = [0, 1] is convergent on every point of the metric space
convergent on every point of metric space X but is not uniformly convergent on X, when
fa(@)=x"and

lim ¥"=0,when0<x<1
n—yee

lim X"=1, when x=1.
n—oe

Show that the sequence { fi; ) where
fo @) =X"(1~x)

converges uniformly in [0, 1).

ANSWERS

1. Uniformly convergent for all x.

. Unifann Convergence
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"UNIT

4

RIEMANN INTEGRAL

STRUCTURE

Some Definitions
Riemann Integral

Some Theorems -

Lower and Upper Riemann Integrals

Integrability of Continuous and Monotone functions.
Algebra of R-integrable Functions

Fundamentat Theorem of integral calculus

a Summary

.0 Student Activity

0 Test Yourself

g " B
. t"ﬂl‘li&'{: 5

LEARNING OBJECTIVES

After going through this unit you will learn :
e What is Riemann integral ?
e How to check whether the given function is Riemann integrable ona given interval.

* 4.1. SOME DEFINITIONS

Partition of a Closed Interval :
Let I=[a,b] be a closed and bounded interval. Then, a finite set of points
P = {xg, X1, X3, -..s Xz} such that

» a=Xg<X| <Xy .. KX <Xp=b
is called a partition or division of the interval I = [a, b].
Segments of Partitions :
The closed sub-intervals I, = [a=xg, x1], I =1Ix|, %3] ..., I, =[x,_,x, =b] are called the
segments of the partition.
Length of the Subinterval :
The length of the subinterval I, is denoted by Ax, oF 3, defined by

S, =Ax,=x,~x,_;.

Norm of the Partition : .

‘The norm of a partition P is the maximum of the lengths of the segments of a partition P,
denoted by || P ), defined by '

||P| =max {Ax, r=1,2,...n}.

Refinement of Partition :

If a partition P* is a refinement of a closed and bounded interval {a, b] then

P*=PUP,

is called the common refinement of Py and P,.

Family of Partitions :
The family of all partitions of the closed interval [a, b} is denoted by P(a, b).



Lower Riemann Sum, Upper Riemann Sum and Oscillatory Sum : Rientann lntegral
Let f be a bounded real valued function defined on a bounded and closed interval [a, b] and -

P={a=xy, x|, ... x, = b} be any partition of [a, b]. Also, let'm, and M, denotes the infimum and

supermum of the function fon the subinterval [x,_ |, x,] respectively, then the two sums

n n
LP.fy= Zmbx, and UP.f= L M, 8,

r=1 r=1 :
are respectively called the lower Riemann sum and upper Riemann sum of f on [a, b)] with respect
to partition P. ’

Also,  UP.H-LP.H=3 [M,—m,]dx,
r=1

, 6x, where 0, =(M,—m,)
1

M=

r

n

Then sum I ®,0x, is called the oscillatory sum for the function f with respect to partition
r=1 .

P of (a, b].
Upper and Lower Integrals : '
The infimum of the set of the upper sums is called the upper integral of f over [a, b) and is

ob
denoted by U= L fx) dx.

Also, the supremum of the set of the lower sums is called the lower iniegral of fover {a, b]
b

and is denoted by L = L fx) dx.

* 4.2, RIEMANN INTEGRAL

From the above discussion, it is clear that the supremum of the set of upper sums is
M(b -- a) and the infimum of the set of the lower sums is m (b — @), where M and m be the bounds
of fon [a, b] such that for every value of r
' m<m <M. <M.

Definition. A bounded finction f is said to be Riemann integrable, or simply integrable over
la, b]. ifits upper and lower integrals are equal; and their common value being called Riemann
integral or simply the inregral denoted by

b

" Ax) dx.

* 4.3. SOME THEOREMS

Theorem 1. Let f be a bounded function defined on |a, b} and let m and M be the infimum
and supremum of fx) in la, b], then for every partition P of |a, b], we have
m(b—a) < L{P.fy SUP, H < M(b - a).
Proof. Let P={a=xpx,..,x,_1.x,=Db} be any partition of [a,b]. Also, let

Lo |xpo 1. X0 r= 1. 2. ... n be the subintervals of [a. b]. .
[t M and s be the least upper bound and greatest lower bound of fon [a, b], then we have
msflxysM Vxe [a.b] (By definition of supremum and infimum)
. Now let M, and i, by the supremum and infimum of fin /.

. Then m<m <M. <Mtforre N .
= moé,.<m 8, <M. 8 <MS§, {Multiplying by 3,)
n n ! n n
= T md <X md < E MS < I M, , (D)
r=1 r=1 r=1 r=1 I

(By summing the above result)
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Now md,=m X §,=m T (x,—x,_)) St & =x—x10)
1 r=1 r=1 ) ’

' - = [y = x6) + (Xa —x0) + (53 = 23) + os + (X = g )]

I ™M s

r

= m(x, - xo) = m(b - a) (" x=a,x,=b)
Similarly, we may find that
;: MS,=M(b - a).
Also, by deﬁnitio;l_(;f lower sum and upper sums, we get
): m, 9, = L(P, f), E M, 8,=U(P,f).

r=1 r=
Using all these values in (1), we get
m(b-a)<L(P,f)<UP,fy<Mb-a) ¥ Pe Pla,bl
Theorem 2. If f, and f, are two real valued bounded functions defined on [a, b, then
@ LP.A+R)ZLUP[)+LP.f)
and iy UP.[+H)SUP[H+UP.f) YPEP[ab]
Proof. Let P={a=xy Xj, X3, . X,_1, X, =b} be any partition of [a,b]. Also, let
L=[x,_1,x]),r=1,2, ..., n be the subintervals of [a, b]. '
Since, fi, f> both are bounded.

= fi + /2 is bounded. (" Sum of two bounded functions is also bounded)

Let M,, m,, M,,, m,, and M,,, n,, be the least upper bounds and greatest lower bounds of the
functions f; + f2, fi and £ in I, for r=1, 2, ..., n respectively.

(i) By definition of infimum, we have

fix) 2 my,

and " falx)z2m,, Yxel,
Therefore, J)+ (%) 2 my, + my,
= ) (h+£) (x)2my, +my,

= (my, + n,,) is a lower bound of (fi +£;) (x) on I,. But, since m, to be the greatest lower
bound of (f, +f,) on I,, therefore,
m.2my,+ niy,

= m.8,> m,, 8, + my, 5, (Multiplying by 8,)

= 2 mo, 2 2 m,, 8, + Z tig, O, . (By summing the above result)
r=1 r=1

= LIP.A+f12LP i)+ L(P fz)

(ii) By definition of supremum, we have

fi(x) <My,
and Hx)SM, Vxel,

= H@) + folx) SMy, + M,

= (i +f) ) s M, + My,

= M, + My, is an upper bound of (f; +£;) (x) on I,

= M, <M, +M, .

= M, 3, <M, 0, +M, 8, (Multiptying by d,)
n n n

= T MS,<T M8+ Z My§, (By summing the above result)

r=1 r=1 r=1 )
= U(P, fi +f2) SUP. f) + UP, f2).

Theorem 3. If f be a real valued bounded function defined on [a, b] and P\, P, € P(a, b),
such that P, is the refinement of Py, then '
L(Plsf) <L(P2’f) U(Pa,f) = U(P;,f).
Proof. Let P; = {a=xq<x| <Xy ... <X._], X ..., X, = b} be any partition of [a, b] and let P,
be any other partition of [a, &] such that
Pz = {a = XGe X1s X9 s Xp— s o, X, 5, X, = b]
contains just one point 0. more than P,(x,; <O <X,
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Now let, the least upper bounds of f in the subinterval [x,_,, x,], [x,.;, @] and [, x,] be
m,, ny, and n,, respectively. Then, by the definition of least upper bound, it is clear that

M, <M, and M.< M-, (1)

From the definition of lower Darboux sum, we find that M, (x, — x,_,) is the contribution of
the closed interval [x,_ 1, x,] to L(P;, f) and My, (& — x,_ ;) + M, (x, — @) that of the closed interval
[xr~ 1, x4 to L [P, 1.

Since a is the only extra point in P,, which is not in P, and x,_; < & < x, therefore, the
contribution of each subinterval except I, = [x,_ |, x,] to L(Py, f) and L(P,, f) is the same. Thus,

(P, /) 2 L(Py. f)

= L(P,f) SL(Py, f). ..(2)

In a similar manner taking the greatest lower bounds of f in the subintervais
[x -, %), [x%~y, 0] and [, x,] as m,, p1;, and m,, respectively, we may prove that

U(P. ) SUPLJ. .(3)

Also, we know that

L(P5, f) S U(P,. . ) )Y |

From (2), (3) and (4), we conclude that
L(P\, ) SL(Py, fy SUPy H S UPy, .
Theorem 4. Let f be a real valued function, defined on |a, b} and Py, P, € P [a, b], then
& LPLHSUPLH
(i) LPH)y<UP,, f)-
Proof. Let P, and P, be two partitions of the interval [a, b]. Then, it is clear that P, U P, is
the common refinement of P; and P,. -

Also PyCPUPy and Po,CcPiUP,
Then, from above theorem, we have
LIPLASLPyUP,f) ‘ (D
and U(P, ) 2 UP L Py, f). (2)
Using, theorem (3), equation (1) and (2) gives _
LPLASLPI U Py ) SUPy U Py, f) SUP, . - (3)
Similarly, we may prove that ,
L(Py, S L(Py U Py, ) S UPLP. ..(4)

From (3) and (4), we conclude that
(P, SUP,fH and L(P,, f) < UP,, f.

* 4.4. LOWER AND UPPER RIEMANN INTEGRALS

If fis bounded on the interval [a, b], then for every P € P(a, b), U(P, f) and L(P, f) exist and
are bounded. Then the lower Riemann integral is defined as .

b
~ f f=sup L(P.)
- P

and the upper Riemann integral is defined as

a

~ v
f f=inf UP,p.
P

Riemann Integrable Function :
Definition I. A real valued function f{x) is said to be Riemann integrable on [a, b] if and
only if their lower and upper Riemann integrals are equal.

ie., iff ':[abf= J:abf-

Riemann Integral
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The common value of these integrals is known as the Riemann integral of fon [a, b] and is

denoted by L fix) dx

ie., Jf fxydx= :Lbf(x) dx ;jabﬂx) ax.

Definition I1. A function fis said to be Riemann integrable over [a, b) if and only if for every

€ > O there exists a positive nuwmber 8 and a number I such that for every partition

P=[a “xb, X1y X9y vy Xp = b}
w:th || P |l <8 and for every te[x-n.x]

Z ﬂ‘r) xp=x- )1

Here 1 is said to be the integral of f over [a, b] and the class of all bounded functions f which
are Riemann integrable on [a, b] is denoted by R [a, b].

Theorem 1. (Darboux Theorem). Assume that f is a bounded function defined on {a, b]. Then
for every € > 0, there exists 8 >0 such that

. b
U(P,j)<.|‘a f+e and L(P,f)>L f-t

for every partition P with | P || < 8.
Proof. Given that, f is bounded on [a, b], then by definition of boundedness there exist
K > 0 such that
|Ax)|$£K YV x€ [a, bl

Also, since inf U(P, f) is defined as _L f

~for every € > 0 there exists a partition P =[a=xg, x|, X2, -y x, = b] such that

U(P,,f)<J‘a f+e/2. | (1)

If xo = a and x,, = b, then the partition P has (n — 1) points. Let 8, > O be any number such that
2k(n—1)8,=¢/2. .(2)

Now, let P be any partition with || P || < §, B

Also, let P, = PU Py, then clearly P, is a refinement of P and P| then P, has atmost (n — 1)

more points than P. Therefore,
UP. N -2Kn— 18, S UWP.LH -

SUPL P <L f+ 8/2 | ~[using (1)}
= /095 <J-a fre/24+¢€e/2 [using (2)]

=L £+ € for all partition P with || P || <8,
Similarly, we may easily shown that there exists a positive number 8, such that

L(P.f)> L f— € for all partition P with || P || < 3.
\\- .




Define 8 = min {§,. 5;}
Then for all partition P of [a, 5] with || P || <8, we have*

b b
U(P,f)<J.a' f+¢€ and L(P,j)>L f-t

Theorem 2. (Necessary and Sufficient Condition for Integrability).
A necessary and sufficient condition for R-integrability of a bounded function f : [a bl —»
over [a, b] is that for every € > 0, there exists a partition P of [a, b} such that
0K UPP.f—-L(P.H<e Y| P|<S.
Proof. (i) Necessary Condition. Let us first suppose f be Riemann integrable on’ [a bl.
Therefore .

_Lb s ‘Lb f= Lbf- | LR -]

Let & > 0 be given, then by Darbouk theorem, there exists & > 0 such that for evéry partition
P with || P|| <8

UP,f< L f+e/2 (2)

b .
and L(P, fy> L f-€72, ..{3)
Adding inequalities (2) and (3), we get - e -

b
U, H +L f—a/2<L(P,f)+J.a f+e2

which gives UP.H~LP,H<e . ‘ {using (1)]
which is the required necessary condition. ’
(i) Sufficient Condition. For every € >0 and for a partition P of [a 5] with [[P[<8, we

have
UP,f) - L(P,f) <E.
By definition of upper and lower integrals, we have

P f r<l, reves

= L f-:[, fSUPH-LP.H<E

= ,[, f- L fs0 : [ ¢ is arbitrary] ...(4)

Also, we know that lower Riemann integral can never exceed the upper Riemann integral,

therefore
b pb ’ ‘
L f- L f=<0. . (5

From (4) and (5), we conclude that

Riemann fntegral
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| _J:f—f:fw

Hence, the function fis Riemann integrable over [a, b).

Theorem 3. Let f be a bounded function defined on interval (a, b) and P is a partition of
[a, b] then :

b ry
lim LP,f)= I f and lim UP.f =f f
1Pj—0 va 1Pl-0 ¢

Proof. Since given that fis a bounded function defined on interval {a, b] and P is a partition

b
of [a, b] and J; [ is the supremum of L(P, f) for all partitions P

b g
= LP.pH 5.[: f (D)

b
and L £ is the infimum of U(P, ) for all partitions P

. Y
= U(P. f) = L f. ‘ -(2)
Now by Darboux theorem we know that for all € > 0, 3 8 >0 such that
- )
Ur.n <L f+e . )
b
L(P.f) > _L f-€ Y partition P with || P <8 ..(4)

From equation (1) and (4), we have

Jﬂbf—8<L(P,ﬂsIabf |

= J‘:f—e«:b(}’.f)sjlabf<:|‘:f+e
= :l.abf—s<l,(ﬁ,f)<:|.abf+e
- el

Similarly from equation (2) and (3), we have




r . b

jabf—e< U(P,f)<fa f+e

= , lim U(Pf) If

keln—
Theorem 4. If f: {a, b] > R is bounded function then
UP,-H==L(P,f) and L(P,f)=-U(P, .
‘Proof. Consider a partition P = {x, Xy, ..., x,} in interval [a, b}, where a = xg and x, = b.
Let M, and in, be the supremum and infimum of fin 1,
Since fis bounded on {a, 5] thus — fis also bounded on interval [a, b] and — m, and ~ M, will

~ be supremum and infimum of — fin /..

n .
Now L(P,-pH= Z (~M,) b, (Lower Riemann sum)

r=1
n
=— 2 M, dx,
.or=l

n
== (P, f) { 2 M, dx, = U(P, f) the upper Riemann sum of j}

r=1

n
Similarly. UP,f) = 2 (= m,) dx,
=1
=— 2 m, 8x, (Upper Riemann sum) |
=—L(P,f { L is the lower Riemann sum of fin

fa, b] such that L(P, /) = E m, bx, }

r=1

SOLVED EXAMPLES

Example 1. Find L(P,f) and U(P, f) if Rx)=x for x€ [0,3) and let P=10, 1, 2, 3] be the

partition of [0, 3].
Solution. Let partition P divided the interval [0, 3] into the subinterval

=[0,1], h=[1,2] and 15 =[2, 3].
The length of these intervals are given by

51=I—0=l
62=2—l:1
: 63=3—2=1.

Let M, and m, be respectively the Lu.b. and g.1.b. of the function fin [x,- |, x,], then we get
M,=1, ml-—O My=2,my=1, M3—3andm3—2

Therefore, U(P,f)= Z M, 8, =M 8, + M, 8, +M; 5,
r=1
=11+21+31=1+2+3=6
5
and L(P.f= Z m.8,=md; +myd, + nmyds
r=1

=01+114+21=0+1+2=3.
Example 2. Let f(x)=x,0<x<1 and let P= { 0, %,%,

UP.fand L(P, f).
Selution, Let the partition P divides the interval [0, ] into the subintervals

& (W

)1 } be a partition of [0, 11, find

Riemann Integral
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o), Jr] o, [1 3], 3
oy bt

Clearly, the length of each subinterval is %.

Now, let M, and m, respectively be the Lu.b. and g.Lb. of the function fin[x,_, x,], then, we

get . o
1 1 3
M;—4. Mg~2. M3—4, M;=1
and my=0,4 =1 mn g m =3
1= "’12_4‘ 3'2’ 4_4‘

4
Therefore, U [P,ﬂ =X M, 6,- = M,Sl + M282 + M383-+-M484
r=1 ’

RN
+
3
o
L]
+
3
w
[«4]
w
+
3
Sy
(=]
-

and LIP.fl=  m,=m

r=1

Example 3. Let f(x) =x on [0, 1].
: 1 !
Find _[0 xdx and IO xdx, by partitioning [0, 11 into n equal parts. Also, show that

feRIO, 11
Solution. Let the partition P divides the interval [0, 1] into n subintervals such that

p= {o. 12 r=lr n_
nhn

Clearly, here we have

m,:’;i, ,=ﬁ and §,== forr=1,2,..,n.
Now, by definition, we have
" "op-11 1"
LIP.A=Z m,=Z === X (r—1) °
. A r=1 " r=1 B n n2r=x( )
- 1 oy _(r=l.n n-1
. _n2[1+2+3+...+(n l)}— k2
o n ' n rl
and UP,A= T Mb=2Z — -
r=1 r=g 00
12 1
== Zr==[1+2+3+...+n]
n r=1 n
_n(ntl) _n+l
2n2 2n
1 i ‘l
. on-—
Therefore, Jl xdx= lim L(P,pH=1lim ——==
_0 2|0 ( n-~yoo 2n 2
( +1 1
and I xde= lim U@, fH=lim 2—==
' 0 1Pl now 22

From above, it is clear that ' i



Riemann Integral

<
N | —

xdx=

N |—

Hence,
. - .t - . - . . . . )

P : $ - . ¢

. . ’ . ) @
Example 4. Let fix) = x* on [0, a, a > 0, show that fe R[0, al. Also, find J.o f

Solition. Let P = [% r=0,1,.., nj, be any partition of [0, a]. Then, clearly, we have

9

22 22
LGV S S P o

Ht,. =
" n? n’
Also, 5,=£
n
n
Now, LIP.fl= £ m,3, .
r=1 '
n 2,2 3 n
=3 u’L‘LQ:% L -1y |
r=1 n- L :
|
3 _ _ 3
=a_{n(u 1)(2n 1)]=a_[(l_lJ(2_lﬂ /
n 6 6 n n /
‘ n n r2a2a ‘
and Upp= 3 M3§, =3 —~—
r=1 r=y) n
a o, a3ngn+l!g2n+l! !
:—3 Z r =—3 6 ]
n =1 n
3
a 1 1
_6(“”)(“”]
a
Hence, 0 f= lim L(@PpH
- IP—0 :
]
3 . 3
.. a 1 1 a
= —11-- —| ==
"]gnw 6( n]( nJ 3
and o f= lim U(P,f)
< IPl-s0

3 3
.a 1 11 a
=lim —|[l+—=|{2+=]==
e 6[ n]( nJ 3 -
a sa
Therefore, __[0 f= J; f

a 5 . .
which implies f€ R [0, a] and J.O f= % : ' '

e TEST YOURSELF
1. Sho§v that if fis defined on [a, b] by f(x) =¢ V x € [a, b], where c € R then fe R [a, b] and

Lbc:c(b—-a). |
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a 4
2.  Show that if fis defined on {0, al, a >0 by f(x) = x°, then fe R[0,qa} and .[0 f= %

0, when x is rational

3.  Let fbe the function defined on [0, 1] by fx) :{ 1 when x is irrational

Show that f& R [0, 11.
 4.5. INTEGRABILITY OF CONTINUOUS AND MONOTONE FUNCTIONS

Theorem 1. Every continuous function is R-integrable.
Proof. Let fbe a continuous function on [a, b], then clearly fis bounded.

{. Every continuous function is bounded]
Also, fis uniformly continuous on [a, b] [being the continuous function in a closed interval}.
Let € > 0 be given. Then there exists a partition
' P={a=xgxy, X35 ..., X, = b}
of [a, b] such that the oscillation (M, — m,} of the partition f in the sub interval (x,_, x.) is

less than for r=1, 2, ..., n. Now, consider

€
b_.
n n
UPH-LPH= S M (=% = = my (=%, 1)
1 1

r= r=

(Mr - ”lr) (JC, —Xr- l)
1

s

r

=

A

: g

b_a(xr_xr—!) ( Mr_mrzb%a

r

1
= UPH-LPH< g I (p=x-0)
- r=1

= UPN-LES< 5 1061 =30)+ (3= 0) + oo+ (= )]

b—
= UPH-LFP.H< b_fa(xn“xoj:ﬁ(b—a) [ x,=band x,=a]

= UPH-LP.fi<e
Hence, the continuous function f is R-integrable.
Theorem 2. Every monotonic function f is R-integrable.
Proof. Let f be the monotonically increasing function on [e, b}
ie., fa)<fx)<fb) VY xea,b)
Now, for a given positive number € there exist a partition
P =[a=xg, X1, ..., X, = b] of [a, b]
such that the length of each subinterval is less than

&
Rb) - fa)+ 1]

ie., (x,—x.-1)< forr=1,2,..,n (D

£
&) - fa) + 1]
Now, since the function f is monotonically increasing on [a, b] then it is bounded and
monotonically incresing on each subinterval [x,_,, x.].
Let M, and m, be the bounds of f on the subinterval [x,_, x,] then,
M, =fx,) and m,=fx,_). . (2)

For the partition P, consider
n

U(P;f)_l‘ (P,f)= ) (Mr_mr) (xr_xr—l)
1

r=

3 1 , ‘ ‘
<m E] Ax) — flx, - )] .. {using (1) dﬂd- 23

¢ .
= U@P.fH-LPNH< 7o) —fa@+ 11 {f(fn) - fxo)]

€
= U(P’I)_L(P’f.)<[ﬂb)—j(a)+1] A6
= UP.H-LPfi<e.

~ @) [ xo=a % =b]




Therefore, the function f is Riemann integrable on [a, b]. Similarly, we may prove that the
function fis R-integrable on [a, b] if £ is monotonically decreasing function.

Hence, every monotonic function fis R-integrable.

Theorem 3. A bounded function f is R- mtegmble in [a, b] ifthe set of its points of discontinuity
is finite.

Proof. Given that f is discontinuous on [a, b}, let [x|, x3, ..., x;] be a finite set of points of
discontinuity. Also, suppose that M and m be the supremum and infinium of f(x) respectively on
[a, b). Let £> 0 be an arbitrary positive number.

Now, let the above points of discontinuity of the function f be enclosed in k non-overlapping
intervals [x,", x,”], [x2’, 2277 ..., [x, x¢”] such that the sum of the lengths of these subinterval be less
than

-2—(—1‘%’")- (with M —m #0).

Since, as in each of these intervals the oscillations of the function f is less then equal to
(M ~ ), therefore, their total contribution to these oscillatory sum

< ﬂMe——m) M-m) ie, <e/2.

Now, consider (k + 1) subintervals [a, x; ', [x{", %], [xy”, 3], ..., [x”, b].

The function f is continuous in each of these subintervals. Now, each of the above (kK + 1)
subintervals can be further subdivided so that contribution of ‘each of them separately to the

. . . £
oscillatory sum of these (k + 1) subintervals is less than e )
Therefore, there exists a partition of [a, b] such that the oscillatory sum
‘ <s/2+2(k )(lc+l)
ie., sum <&€/2+¢/2
= sum <&€.
Hence, the function fis Riemann-integrable in [a, b].
Theorem 4. Let f be a bounded function on [a, b] and let the set of its discontinuities have a
Sfinite number of limit points, then f€ R [a, b].
Proof. Let {x}, x;, ..., %} be the finite set of limit points of the set of discontinuities of f on
[a, b] such that ‘
‘ . X <X < < Xy ‘
Let € > 0 be given. Now let the above points of discontinuity of the function f be enclosed in
k non-overlapping intervals [x;”, x,"1, [x2, %) ... [x¢, x)
such that the sum of their length is < DY Y ( ME_ )
where M = supremum of f and m = infimum of f.
Now the partition P of [q, b] is given by
P=la,x/,x"  xa", x" ... x/, x”, b]
which has (2k + 1) component intervals of two types.
(i) k intervals. [x/, x”], i=1,2, ... k each of which contain a point x; in its interior.
The total contnbuuon 1o the oscﬂlatory sum by these intervals is

Z (M my)b-a)< Z M-m)(b,—ay)
i= i=1
k
=M~m) Z (bi-a)

< (M — m) ZMeij =e/2.

(ii) (k + 1) subintervals. [a,x'], [x,", %], [x,”, 3] ... [x/”, b].

In the above subintervals, the function f has only a finite number of points of discontinuity.
Hence. these exists a partition P,: r=1,2, ..., (k+ 1) respectively of these subintervals such that
the oscillatory sum is less than €/2 (k+ 1) for r=1,2, ..., k+ 1.

Riemann Iregral
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Hence, the total contribution to the oscillatory sum by these subintervals is less than equal o

2 (k T &+D

ie., <e/2.
Therefore, for any partition P the total oscillatory sum
: <&/2+e/2=¢.
Hence, fe R[a. bl

* 4.6. ALGEBRA OF R-INTEGRABLE FUNCTIONS

Theorem 1. If fis R-integrable on [a, b]A, then | f| is also R-integrable on {a, b}.
~ Proof. Since the function f is R-integrable on (g, b], therefore fis bounded on {a, b}

[.- Every integrable function is bounded]

= [Ax)| €AV xe [a,b] for any positive number A.
-Also, since f is R-integrable on [a, b], therefore there exists a partition P of [a, b] such that
for any positive number €

UP.H-L(Pf)<e . (D .
Let the upper and lower bounds of |f| and f in §,=[x,_|, x,] be respectively given by
M, m,and M, m,’".
Then for all y, z in [x,_,, x,], we have

[Az) |- 1/ ) €| A2) - fy) |

= M, -m, <M —m ' (By taking supremum)
= (M, -m)d. & T (M -m')o,

r=1 r=1

n . n n
=5 )ZMS T md < M/ S - ZmS
r=1 r=1

= U(P f)~LEfDY <UEP.H~ L(P f) .
=5 UPFD-LP, | f) <€ 4 [using (1]
= | f] is R-integrable on (a, b).

Theorem 3. If f; and f, are R-integrable functions on [a, b] then f, £ f5 is also R—mtegrab(e
on [a, b}.
Proof. Let f;, /> be two R-integrable functions on [a, b].
Now f) is R-integrable on [a, 5]
= For given € > 0 there exists a partition P; such that '
U(Py fi) ~ L(P\. fi) <€/2. (D
Also, f; is R-integrable '
=for given € > 0 there exists a partition P, such that

UPo o) — L(Py o) <€/2. - (2)

Define the common refinement P of the partitions Py and P, such that
P=P/UP,. , ‘
Clearly P € P {a, b], where P [a, b] denotes the family of all partitions on [«, b].
Consider
UP. fi +f) = L(P, fi + o) SHUP, f) - L(P. )} + {UP. /o) ~ L(P. f) 1] ‘
<e/2+¢/2 [using (1) and (2)]

= UP.fi+f)-LP.fith) <t

= fi+f, is R-integrable on [a, b].

Similarly we can show that f; — f, is R-integrable on [a, b]. ‘
, Theorem 3. If f is R-integrable on [a, b], then cf is also R-integrable on [a, b], where

ce R. '

Also Lb cfx)de=c Lb Rx) dx.

Proof. Given that the function f is R-integrable on [a, b} therefore, there exists a partition P
on [a, b], such that



et UP,f—L(P,f) <k (D Riemann Integral
Let c € R be any constant, then we know that
' (ef) (x) = cfl).
Therefore, UP,cfy=cUP,fy and L(P,cf) = cL(P,f).
Now consider ‘
UP.cf)y—L(P,cf)=c[UP,f)~L(P,fll <ce

= Cfe R [a, [)] i
b ’ !
Also U(P, ¢f) <J.a cfx)dx+¢
b
“and cUP,f< L cfx) dx + €.

Now using (1), we get
b

cUP.H=UP, ¢f) <L cfxydx+¢€

b b
= cl, Ax)dx 2 J; cflx) dx. -(2)

Replacing fby —fin (2), we get

c'[l -f(x)dxzj.ab—cﬂx)dx

= c Lb fox) dx< Lb cfx) dx. . .(3)

Fron.i':'(‘Z) and (3), we conclude that

Lbcﬂx)dx:cfabﬂx)dx. o ' \

Theorem 4. If the function f is R-integrable and if M and m the supremum and infimum of
fonla, b, then -

b
rrz(bfa)s.l.a fx)ydx<M@B—a)ifb2a

a

and m(b - a) z.[ S dx> M -a) ifb<a.

b

Proof. Let P [a, b] denotes the -family of all partitions on [a, b]. If > a, then for all
Pe Pla, b], we have
m(b~ @) SLP,HSUP, ) SM(b - a)
= mb~a)SLP,/H<M(b-a)

) b
= m(b-a) S.J.a Lx)dx < M(b—a)

: b b b
= m(b—a)sL Ax) de < Mb - a) L f(x)dx=L Ax) dx for f€ R [a, b]

If b<a, then in a similar way, we may get

m{a — b) Sj.b fx)dx < M(a-b)

. b |
= -m([)—a)$—-J.a fxyde £-M(b-a)

= m(b-a)z L Axyde 2 M(b - a).
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Mathematics 1 Theorem 5. If the function f(x} is bounded and R-integrable over [a,b] and

b
fx)z0 Vxe [a,b],thenj‘a fx)dx 2 0.

Proof. Let M and m be the supremum and infimum of fon {a, b]. Then by above theorem if
b 2 a, we have .

b
m(b ~ Ez')s_L Fx) dx < M(b — a). : D

Here, it is given that f{x)>0 Vx [a, b].
Therefore m=0.
Also b>a = b-a20.

b
Hence, from (1), we conclude that J-a fixydx 20.

_ Theorem 6. (First Mean Value Theorem). If the function f is R-integrable over [a, b] and
M, m be supremum, infimum respectively of f on {a, b), then there exists a number K, (im< K < M)
such that

b
L fix)ydx = k(b — a).

Also, if the function f is continuous on [a, b}, then there exists ¢ € [a, b] such that

b -
L fx) dx=(b - @) fc).
Proof. We know that (From Theorem 8) -

b .
' m(b-a)sJ.a fxydx<Mpb-a), ifb>a

and. .m(b-a)ZIb f(x)deM(b—ﬁ), ifb<a.

If m £k £ M, then we conclude that

b
L fxydx=k(b-a). ' (1)

Also, if the function fis continuous on [a, b], then there exists a number ¢ in {a, ] such that
fey=k, where m <k <M. ' :
Hence, from (1), we conclude that

b ,
f,, ) de=(b - a) fle).

Theorem 7. If fand g are R-integrable over [a, b, then fg is also integrable over [a, b}.
Proof. Since fand g both are R-integrable over {a, b], therefore fand g both are bounded on
{a, b]
=> IM>O0suchthat|flx)|<Mand|gx)|<M, Vxe& [a,b]
Consider | (fg) (x) ] =]Ax) . g(x)} V=xe€ [a, b]
<M* VYxe [a bl ‘ (1)
=> fg is bounded on [, b].
Now, let € > 0 be given.
Since f€ R (a, b) therefore, there exists a partition P, of [a, b] such that

UP,H-L(P,fy<e/2M. ) -(2)
Similarly g € R (a, b), therefore, there exsits a partition P, of {a, b] such that
U@y,g)—L(Pyg)<e/2M. ..(3)
Let P =P, U P, be a refinement of Py and P, then we have
UP.f)—L(P.fy<e/2M ] @
and UP,g)-LI[P gl<e/2M .
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Letm, M, m/, M/, m”, M,” be the infimum and supremum of f, g and f g respectively over

the subinterval [, =[x, _, x,]. Then for all x, y € I, we have

[ (f8) () — (fe) ) | = | Ax) . g(x) = A) . 80 |
=] fx) - &(x) = f) gx) + Ry) 8(x) - Ay) ) |
=|g(x) [flx) - f)] + Ay) [8(x) - g |
< g AR =N+ 1) ] ] 8(x) - ) |

<MD -f) [+ M| g()-80) . - 5

Now, )~ I<M,-m, o -{6)

and | 8(x) - 8(v) |<M f-m. : (1)
: M —m” <MM,—-m)+ MM, -m). : .{8)

Mult:p!ymg both sides of (8) by J, and adding on respective sides, we get
UP. fe) - L(P fg) s M [U(P H- L(P NI+ MUP, g) - (P, g)]
<M 2 v, +M w =E.

Hence, fg is R-integrabie. , '

Theorem 8. If fand g are two R-mtegrable function on [a, b) and | g(x) |<k Vxe [a,b]
where k is a positive number then the quotient function f/g is also R-integrable on [a, b).

Proof. Since fand g both are R-integrable on {a, b}, therefore, they are bounded on [a, 5].
Also, we know that the quotient of two bounded function is again bounded, therefore f/g is also
bounded on [a, b].

Let € > 0 be given. Smce fe R [a, b), therefore, there exists a partition P, of [a, b] such that

— ——— 2 ‘ A

UPPLS L(Pl»f)<2mk~ , D

Similarly g € R [a, b], therefore, these exists a partition P, of {a, b] such that
UlP2 g1~ LIPy gl <355 k" w(2)

Let P= P, v P, be a refinement of P, and P,, then from (1) and (2), we have

E ,2
UiP,l1-LI[P.fl<—k (3
(P.A-LI[P.f] Y (3)
and UIP.g]-LI[P,gl<— i : ol
2m :

Now, let m,, M,; m/, M, m,”, M,” be the supremum and infimum of f, g and f/g respectiviey
over the subinterval I, = [x,_, x,]. Then for all x, y € I, we have

fia L £ _f) | _1fx)80) - e |
PR Il Py £ 20) |
_1Ax - + ~ X
l8(x) 0 |
_fx) = y) + [ - 2(x)]
|8(x) g |
X) — + X)—
I g 1180 I |g(0) || 8O} .
2 M0 -0 | ta 1 gx) -g0 |- (5)
Now m, and M, are the infimum and supremum of f respectively over I,. Therefore,
(A =N |<sM;~m, ¥ x, € la, bl ..{6)
Similarly lgx)~gO) |sM,/ ~mS Vx vE€E {a,b] (7
which implies . '
Loy-Lo)| <75 0,-m) - u ! =m) (®)
= M ~-m) < PP M, -m)~+ %{5 M -m)). ' (9

Multiplying (9) by 8, and adding on the respective sides, we get
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ULP.f/g} - LP.f/¢] S‘:‘Z (UP.f) - L(P.f] + % [U(P, g) ~ L(P, 8)]

<M8.k M ek’
T 2M R oM

f

Hence, . is R-integrable over [a, b]-.

-Some Important Definitions :

Primitive. A function F(x) defined on [a, b] called a primitive of a function f(x), if the function -
F(x) has fx) as its derivative at each x € [a, b]
ie., F'(x)=fix) Vxe€ [a,bl

Integral Function. Let f{x) be a R-integrable function on la, b] Then a function F(x) is
called the integral function of the funcnon fx) if

F(x) = Jj(t)dt V¥ x€ {a, b]

Theorem 9. Let f€ R {a, b1, then the integral funcnon F of fgiven by

' F(x)='.[1 fidt,a<x<bh

is continuous on la, b).
Proof. Let fe R [a, b] is R-integrable over [a, b], then obviously it is bounded on (a, b].
Therefore, there exists a positive number M such that
{AD|SM Vte [a.b]
" Let x;, x2 € [a, b] such that x; <x,. Then, we have
X . A

|Fi) = Fee) | = |, S0di-}, Ry

= J:f §i6)) dt+_[: A0 df

2 *2
= J;l fHde| <M le dt_“=M|(x2—x,)|.

Let | x, ~ x| < &/M for a given positivc number €. Then, we have
‘ | Fixp) — F(x) | <M .e/M

= | Fixg) | - Flx) f<e
whenever {x3—x;|<8 VYx;,x€ [a,b]
S
where o= 7y

= F is uniformly continuous on [a, &]. Hence it is continuous on [a, b]

[." Every uniformly continuous function is continuous]
Theorem 10. Ler f be a continuous function on [a, b) and let

Fx)= L fieydt, Vxe [a bl

Then - . F'(x)=fx); Vx€[ab) .
Proof. Let x € [a, b}. Then choose /t # 0 such that x + & € {a, b).
x+h

Consider Fix+h)-Fx)=],  findi- L fit) dt

x+h

x+h ’
=], f(t)dr+I f(t)dt-_[ A dt (D

Since f is continuous on [a, b], therefore, there exists a number ¢ € [x, x + /] such that




x+h

f) dt = ific). : «(2)

Clearly c—xas h— 0. : - T
From (1) and (2), we conclude that
F(x+ h) — F(x) = hf{c)

= lim Fleth) - Fx = lim fc)
h—0 h h—>0
= F'(x) = fx).
Hence, we have ~
S F'(x)=fx) Vxe€ [a bl .

* 4.7. FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

Theorem 15. Let f be a R-integrable function on [a, b] ant F be a differentiable primitive
Sunction on [a. b] such that F'(x) = fx), a<x < b, then

b
L ) dt = F(b) - F(a).

Proof. Let f be continuous function on [a, b].
By definition of primitive function, we have
F'(x)=fx); VYxe [a,b].
Also, f is R-integrable function on [a, b].
= F’(x) is R-integrable function on [a, b].
i.e., for a given positive nurber € there exists a partition P of [a, b] such that

i b .
 F{)(x—x_1)— L F'x)dx | <€ _ (D
r=1 -

where 1, € (x,_, x,).
By Lagrange’s mean value theorem of differential calculus, we find that there exists
t, € [x,.,x.] such that ?
Fx)— F(x,_ ) =(x.—x._) F'(t,)
= 2 e —x_ ) F'(t)) = 21 [F(x;) = F(x,-1)] = F(b) ~ Fla).

r=1 r=

Put this value in (1), we get

b
F(b) - F(a) —.L F'(x)dx| <¢

b b -
which gives F(b) - F(a) =J.a F(x)dx = L Sx) dx[ F'(x) =fx)]

b
=  fx) dx = Fib) - Fla). y

" SOLVED EXAMPLES

2 _
Example 1. Find J.l x° dx, using fundamental theorem of integral calculus.

Solution. Here, we have ;
fx) =x°, 1<x<2

Ciearly f is continuous on [ |, 2}
4

Now, if o(x =% (1sx<2)

Then o'(x) = X = fx). _ _
Therefore, by fundamental theorem of integral calculus; we have

Riemann Integral
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g 2* 115
.[1 x dx=¢(2)-¢(l)=z-*-=_,

Example 2. Let f be the function defined on (0, 1] by
fx) = 0 when-xi§ “irrational

1 when x is rational
Show that f is bounded but not R-integrable.
Solution. By definition of f{x), we have
0<fix) <1 Vxe [0,1]
f(x) is bounded on [a, b].
Define a partition P = {a = xg, X[, X3y cvo. Xpp oee Xy _ 1, X, = b} Of [a, b].
Let I, =[x,_y, x,] be any subinterval of P, wnth length. 3, (=x—x_1) Lct M, and my be
respectively the supremum and infimum of fin /,. Then, we have
M.=1and m, =0

Now, L= % m = §o.8,=o
and UP.H= 2M8->: 1. 8-28_[5,+8, 48,
. : r=1
“[xl‘xo]"‘[xz xr]*‘-q'*[xn—xn-i] =x,~X=b-a
b .
= ~,[, f=sup{L(P.H}=0 : (1)
and J.a f=inf {UP,H}=b—a. ()

From (1) and (2), we conclude that

[ el

Hence, fis not R-integrable over [a, b].

Example 3. If a function f is defined on [0,a),a>0 by Ax)y=x", then show that f is
R-integrable on [0, a] and
4

Ioa fox) dx = %’

Solution. Consider a partition P = {0, —;1;, 27:1, L"——_;I-)—Q, % = a} of [0, a).

Let 1, be the r™ subinterval of P such that

| =[¢:m m}

n ' n
with length §,= ,r-—l 2,.

Now, let M, and m, be respectively the supremum and mﬁmum of fin I.. Also, since fix) is
an increasing function in [0, al, therefore,

_ 3
=£r—l)~— and M,="}L3, r=1,2,..,n
n

3

n 4
=L 2 -0’ =500+ 24+ (- 1))
.n r=l 7]
_a_"' (n=Dn =a_4 l—l
_n 2 4 n




a £ 1 2 & . ’ Riemann Integral
= J.sz lim L(P.f= lim —(1~—) =%

N30 noe 4 n

Also, U(P.fy= = M,8,= X

r=1 r

4 n . 4
=L 5 P42+ )
n or=t - n

4 r 4
ainn+l) a 1

— =—l14+~

nt 2 4

- v
= J:)j(x)dx= lim U(P,f)= lim “—(H—] =2
n-)eo

neso & n 4.
a —a 4
Clearly J; f= fo f= %.

[f a*

Hence, fis R-integrable over [0, a} and Jo f0) . a= N

Example 4. Verify first mean value theorem for the function fix) = sin x and g(x) = € for
x € [0, n].
Solution. Clearly, both the function fix) and g(x) are continuous on [0,7] and

g(x)>0, Vxe [0,m/2] [ g(x)=¢" is an increasing function in {0, T/2]].

Then, by first mean value theorem
n

jo f)gx)dx=fc) ), gx)dx  O<cs<m

T T .
= J-O sinx.e‘dx:sincIO &' dx 0<c<nm
=(e"—1)sinc 0<c<m. (1)
b14
Now . J. & sinxdx = Le"sin x-Z
0 \Z 4
a3 1 o n
—\Ee sin 4 \Ee sm(O 4]
L4 11
V2 V2 V2 2
1 .
=5 (1), )
From (1) and (2), we conclude that
(e"—l)sinc=%(e"+l) O<c<n | ' (3)
= sin ¢ - l >£1+_l
yla |
it . n o
Now 0<:2— ";;-l- < |, therefore. there exists c € 0,5 < [0, 7] satisfying (3).
R

Hence, the first mean value theorem is verified. . ,
Example 5. Using first mean value theorem, show that -~

i ! 2 .
Ry

——< | ———dx<

32 Y0 Vivx 3
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1
fx)=——
VI+x
Clearly fix) is continuous on [0, 1] and g(x) > 0 on [0, 1]. Also, g(x) is continuous on [0, 1].
Therefore, by first mean value theorem, we have

and g(x)=x>

1, 1
X 1 2
j dx = I x“ dx, 0<c<1
0 VI +x Vi+e 0
1
1 x
-1, 0<c<l
\fl+cl:3l
1
= , 0<c<1 .
Wi+e 4
Now O0<cl=21<{l+¢)<?2
= > 1 >—1“ i< 1 <l
1+972 77 Nite
1 b oe
Therefore, —<3 dx< ]
7T
1 2
1 J. dx <
or —— —'
N2 VIl +x
+ SUMMARY

n
»  Lower Riemann Sum=L(P, )= » m,dx,

r=1
n

*  Upper Riemann Sum= U (P,fy= Y, M, 8,
r=1
s LP.HSUPLfFVYP
+  Upper Riemann integral :
b . n
I fdx=inf (U(P.p)= lim U(P.H= lim D M,
1% P Pl—0 n—e Ly

+  Lower Riemann integral :
n

b .
f fdx—sup (LP.P}= lim Y m, 8x,

i
1 p=

. Ifj fdx= fdx then f is R-integrable.

. m(b—a)SL(P,f)S UP.HsM((b-a).
«  Darboux Theorcm :

b
U(P,f)<J. fdx+e

b
L(P,f)>I fdx-¢€

s 0SUPNH-L(P.H<e V|[Pl<d & fisR-integrable.
+  Every continuous function is R-integrable.
= Every monotonic function is R-integrable.

. b
~+ First Mean Value Theorem : I fde=fley(b—a), m<flc)sM.

¢« Fundamental Theorem integral calculus : Let f be a R-integrable function on [a, b] and F
be a differentiable primitive function on {a, 5] such that ¥ (x) = f (x) on {a, b], then
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, B
I f(x)dx =F (b) - F(a).

 STUDENT ACTIVITY

1. Letf(x)=x,0$x$landletP={0,

-
SIS

L(P.f.

2. Prove that every continuous function is R-integrable.
AN d L Y

KR ToPRRVERE T

T

LR L L ; Lt

* . TEST YOURSELF

3. Find the value of upper and lower integrals for the function f defined on [0, 2] as follows -

fx) = {

x>, when x is rational
3 .
X, when x is inational

ANSWERS
1. 2/3,173 3. 31/12, 49/12
FILL IN THE BLANKS :
1. Partition of a set is also called ............
. 2. The value of x; — x, -1 is called ............ of the internal [x,— 1, x/]
3. Riemann sum is also known as ............ sum.
4. The supremum of the set of the lower sums is called the ............ integral.
5. The infimum of the set of upper sums is called the ............ integral.
b -
6. In computing the integrai L fx) dx, the internal [a, b] is known as ............ of the integration.

TRUE OR FALSE :
Write ‘T’ for true and ‘F’ for false statement :

1. Every bounded function is R-integrable. (T/F)
2. Every R-integrable function is bounded. (I/F)
3. Every monotone function is not necessarily R-integrable. (T/F)

1. Let fx)=x(0<x<1). Let P be the partition {0, %, % 1} of [0, 1], compute U (P,f) and'
L(P.f). '
1
2. Show by definition that .[0 Hdx= %

Riemann Integral
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Mathematics l. 4. A bounded function fis R-integrable in [a, b] if the set of its point of discontinuity is finite.

(TIF)
| MULTIPLE CHOICE QUESTIONS :

Choose the most appropriate one :
1. If P; and P2 be any two partitions of [a, b], then : - ‘ o

(@ UPLAHZLPLSH G UPLHA=LPLAH_ ... ..

(© UPLASL(P2P (d) None of these. «

12. Thevalueof lim L(PJf)is: SR " :
. fiepf—~o0
Y b b ' :

(a) J:, f (b) L f (©) L f (d) None of these.

3. Thevalusof lim U(P,f)is: L
. IPi-0 )
b g ; . pb '
(a) L f (b) J.O f ©) L f {d) None of these.
ANSWERS
| Fill in the Blanks :

1. dissection or net 2. length 3. Darboux 4. lower

5. upper 6. Range
True or False :

1. F 2T 3.F 4. T
Multiple Choice Questions :

1. (@ 2@ 3

Qa0
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UNIT

5

CONVERGENCE OF IMPROPER INTEGRALS
“STRUCTURE =

Improper integrals
Kinds of lmproper Integrals
Convergence of imroper integrals
Convergence Tests : First Kind
Convergence Tests : Second Kind
Improper Integrals of Second Kind
o Summary

a Student Activity

0 Test Yourself

e ¢ & o o

LEARNING OBJECTIVES

After going through this unit you will learn :
e What are improper integrals ?
e How to check whether the given integral is convergent or divergent ?

* 5.1. IMPROPER INTEGRALS

Definition. The definite integral J.a fx) dx is called Improper (or Infinite) integral if either

any one or both limits are infinite and function f{x) is bounded over the interval or neither the
intervals [a, b] is finite nor fx) is bounded over it.

* 5.2. KINDS OF IMPROPER INTEGRALS

By the definition of Improper Integrals we can divide or categorized it into following three
kind.

(1) First kind of improper integrals. First kind of improper integral is in which integrand
Sx) is continuous but limits are infinite.

Definition. A definite integral L fx) dx in which limits are infinite i.e., b =0, a =o0 and

integrand is continuous is called first kind of improper integrals.
This first kind of improper integral can be classitied into following three categones
(a) Upper Limit Infinite ;
For Example. J.O T—zdx, here it is first kind of improper integral in which upper limit
+x
is infinite and (1/1 + x) is bounded.
(b) Lower limit infinite :

0
For Example. J._ L € dx.

Here, the lower limit of function is infinite.
(¢) Both limit infinite :

For Example. _[ - 5
R

Convergence of Iimproper Integrals
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It is the example in which both upper and lower limits are infinite. v

(i) Consider L fix) dx. Here fix) is continuous in {a, oo[. There exists a definite number

&
b > a such that L Rx) dx as b — oo, This definite integral becomes the improper integral

¥y I
ST lb.

.L fxydx= tim | fix) dx. ——— e~ e e e
b—eo : .
If limit is finite, then improper integral L fx) dx is convergent, otherwise diver'gem’.‘
oo b .
(ii) Consider J’_w fx) dx, then there exist a < b. such that I_a fx) dx as a — — oo, then

I_b” fo)dx= lim Lb fix) dx.

a—=-o
If limit is finite, the improper integral is convergent atherwise divergent.
4+ oo

(iii) Consider |_ " fix) dx. It is the combination of above 2—proccdur§s so take a constant
‘a’ between ~ oo to + oo and expressed in the intcgfal in the form of

.[-: fix) dx = ,[.a o fX) dx +L+ i Ax) dx

I_: fixy d= lim Lb fix) d + lim. _Lb fix) dx

oo
If both the limits are finite then J:m flx) dx is convergent otherwise divergent i.e. If anyone

or both limits are infinite.

(2) Second kind of improper integral. Second kind of improper integral is in which limits
are finite but integrand is infinite. The point at which thé integrand is infinite is called a singular
point.

Second kind of improper integra! is classified into following four categories :

(i) Singular point at right end ‘6°. If x = b is only singular point of f{x) then there exists
€ > 0 (small positive number) such that '

b~¢

b
L flx)dx= lim B fx) dx.
€0
Here, fix) is continuous in [a, b — €].
(ii) Singular point at left end ‘a’. If fx) — = as x — a is only singular point of fx) then

there exists a small positive number € > 0 such that
b

b
L fxydx = lz!i:no ate Six) dx.

Here, f{x) is continuous in [a + €, b].
If [ Ax) dx = F(x) + ¢ then

b
L Ax) dx= lim |fib)-Rfa+¢€)|
=0

So, we can say the convergence or divergence depend on the limitof lim fla + €) respectively.
e=0 )



(iii) Singular point at ‘c’. If fx) = o as x — ¢ the singular point of f{x) where a < c < b,
b ’ .

then “ Sx) dx decomposed into following form :

.Lb ﬂx.) dx = ,[: Sy dox + Lb Ax) dx
= lim I Sx) dx + hm : o fx) dix.

£E->0

If one or both integrals in R.H.S. be convergent, then L fix)dx, a<c<b is convergent,

otherwise divergent.
(iv) Singular point at both a and b. If ‘a’ and *b’ are only singular point of f{x) then there
exists ¢ such that a < ¢ < b then

J.abf(x) dx= J:: Ax) dx + J;bﬂx) dx

b—¢
=lim | . _fl)dr+ lim J. £x) dx.
e—0 ate € -0 ¢

If each integral is convergent then the L fx) dx is convergent.
(3) Third kind of improper integral. Third kind of improper integral is in which
(1} infinite limits

(11} infinite integrand.
“It is the combination of both first kind and second kind of improper integral.”

Let L fx) dx is improper integral of third kind when f{x) has a singular point at x = ¢, where
a<c<dand ¢ <d<oothen
L fx) dx =L fx) dx +L fx)ydx. ..(1)
o (i

Here, _L flx) dx is convergent if both integrals are convergent otherwise divergent.

e 5.3. CONVERGENCE OF IMPROPER INTEGRAL

Definition. The integral L Rx) dx is said to converge to the value I, if for any arbitrary

chosen positive number €, however small but not zero, there exists a positive number N such that

L fxydx—1| <¢; for all values of b= N.

If the integral f{x) has a finite limit then improper integral called convergent and if having no
finite limit i.e., limits are + oo, — eo then it is said to be divergent and when havmg neither finite
value, 0, + o nor — oo, the improper integrals is said to be oscillatory.

SOLVED EXAMPLES

. o 7 dx .
Example 1. Discuss the convergence of the following integral J.I by evaluating them.
. n .

Solution. Since we have

Convergence aof Improper Integrals
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o X X
J‘ & J'dx . I 12
—= lim — = lim x dx
1 'X 1 QL\_ 1

X X =y oo
72 .
= lim |51 = lim (2% = lim @V -2) =<
X 300 = xX—>eo X —) oo

1
= the limit does not exists finitely
=sthe given integral is divergent.

’ ©o
Example 2. Discuss the convergence of the inlegral_[I % by evaluating them.
iz

Solution. Since we have
X

* x -1/2
L L im L ¥ dx= lim | X
X X300 X—yee | — *
2
X
2 2
= lim |-=—=| = lim |-—=+2| -
H»[ \!:7}1 ,_,,,[ Y J
==24222
4 .

=> the integral exist and finite

= given integral is convergent.
1

dx .
Example 3. Discuss the convergence of the integralj of evaluating them.
% Vi—x

Solution. Here given integral is J-o dx

‘Jl—x.

It is not bounded at limit x = 1.

1 1-¢
So I g = lim j dx
0 © I-x

1—x &-0
1-¢
= lim [-2\11-xl = tim [-2¥e +2)
€50 E—0
=2

which is a finite number.

=the given integral is convergent.
L. 1 d
~Example 4. Discuss the convergence of the given integral by evaluating J: S
X

Solution. Given integrand is ,[—1 %
. X

It becomes infinite at x=0,-1 <0< 1.

1 -¢,
So J._l _ lim J] Eytim | &

X gm0Vl Xt g0 x

T I
—mﬂ —mh“
= 15
L8 L8
1 .1
=
I = |
-
1" — o
+ +
fz e
3 =
28 L35
[ ———
' i
T i
—
illed

Since (I) and (IT) do not exist finitely = limit does not exist finitely




Hence given integral is divergent.

Example 5. [f J. —~? is an integrand then discuses the convergence of given function.
2 dx
Solution. The given integral fo (—7 becomes infinite at x=a and 0 < a < 2a.
x—a

S J- J. 2a e
O (- a) O -a) Y (x-ay

a—g, 2a
lim J; 4 lim J dr
(x—-a) 28 (x-a)

g —0 £,—0
lim + hm =
g0 (x a) &0 (x a)

lim i-}-L + lim L1
g0 |81 @ ,~0|8 a

I I
- Since the limit of (I) and (II) not exist finitely
= the given integrated is divergent. '

it

1l

1]

1

. . dx
Example 6. Discuss the convergence of integral 0 T—x

Solution. We have
| 1-¢
j L im I
0 1-x £E50 0

1 - o
= lim [-log(l~x)]0 “ = lim [~loge+0].

£€—0 =0

i

Since lim logeis — oo, therefore_'. —, meaningless i.e., limit does not exists. So the

e—=0 01

integral is said to be divergent.

* TEST YOURSELF

Evaluate the following integral and also discuss their convergence :

o oo 1 oo
e fews g oo
1 ‘ L . 2.}, € de 3 ), 7 4. § e

1 o0
dx dx
P
0 X 3 (x-2y
ANSWERS
1. oo, divergent 2. oo, divergent 3. 6, convergent 4. o, divergent
5. oo, divergent 6. I, convergent.

* 5.4. CONVERGENCE TESTS : FIRST KIND

Recall that, First kind of improper integal is in which limits are infinite and integrand is
continuous.

For Example. L Ax) dx or J._m Sfix) dx is the example of first kind of improper integral

which can not be actually integrétec}. To test its convergence we use the following tests.

Convergence of lmproper Integrals

Self-Learning Material 93




Mathematics |

94 Self-Learning Material

(a) Comparison Test :

lfJ‘a fx) dx and j; g(x) dx are positive, continuous (bounded) and integrable in the interval
la, o[ and V

(-i)' Jix) € g(x), for all x beyond a point x=c and also J.b g(x) dx is convergent, then

J.a flx) dx is convergent.

(ii} If g(x) S fx), for all value of x and J. b g(x) dx is divergent, then J.a Six) dx is divergent.
(b) Limit Form of Comparison Test :
- - , S )
If J.a fix) dx and .[b 8(x) dx are such that the integrands are positive and lim (%) =L
T e

then,

(i) J.a Ax) dx is convergent, when L=0 and L' g(x) dx is convergent.

(i) _L fx) dx is divergent, when L = co and jb g(x) dx is divergent.

(iii) both integrals are either convergent or divergent if L exists but non-zero. |

oo

. dx , .
Theorem 1. The integral _[ » when a > 0 is convergent when n > 1, and divergent when

a x”
n<].
Proof. We have
) d P
. J:: "§*= lim J.a x "dx (By definition of improper integral)
X X—> o .

lim x' "= lim - =L=0.
X—00 P el X’ o0
~.From (1), we have
i 1-n
&_8  itnsl
a  p-1

Hence the given integral is convergent when n > 1.
Now, If n<1,then (1-n)>0and (n—-1)<0

t—n :

and lim x " =oo. ) 7
X e0 Ce
. mdx
. From (1), J.a ;n* = oo,

Therefore, the given integral is divergent when n < 1.

. oc oo X
19
If n =1, then I _deJ' & im I E_ tim [logxl
a X" Y x yLhe vt X d

x— o0
= lim [logx—loga]=o—loga=-oe.
X >0



The given integral is divergent if # < 1.
LI

4 B
dx .
Hence L —, converges when 2 > 1 and diverges when n < 1.
x .

(c) Dirichlet’s Test :

If Rx), g(x) and g'(x) are all continuous in [a, oo and fix), g(x) satisfy the following three
conditions

(& lim glx)=0

x>0 v

(i) L | &'(x) | dx is convergent and
r .
(iii) F(r) = J.a fix) dx is bounded i.e., | F(r)| < M for some positive constant M.

Then L fx) g(x) dx is convergent.

(d) The p-Test :
Let f{ix) be bounded and integrable in the interval Ja, o[ where a > 0.

Then L Sfix) dx is convergent, if there is a number W> 1, such that lim P f(x) exists.
. X—)oo

Ve

oo
Ifthere is a number W< | such that lim x* fx) exists and non-zero, then L Rx) dx is dive
X
(e) Weierstrass M-test :
If there exists a positive continuous function M(¥) such that | fix,t) |[S M), t2a, c<x<d,

then the improper integral L fx, 1) dt converges uniformly and absolutely for every x in the interval

e, d] if L ;1;1/1(1) dt converges.

® A,I;el’s Test for the Convergence of Integral of Products :

The integral J; Sx) ¢(.x) dx is convergent, if L fx) dx converges and ¢(x) is bounded and "
monotonic for x > a. |

(g) Absolute Convergence :

If the integral L | fx) | dx is convergent then the infinite integral _L fx) dx is said to be

absolutely convergent.

* 5.5. CONVERGENCE TEST : SECOND KIND

b
We test the convergence of a definite integral J.a Sfix) dx for which limits (intervals) are finite

and integrand f{x) is not bounded at one or more points of given integral [a, b).
(a) Comparison Test :

b
Let L fx) dx be the given improper integral, whose limits are finite and fx) is not bounded
" . o
only atx =a. )
Let x = b be a singular point for both f(x) and g(x) in interval [a, b} and

.

Convergence of Improper Integrals

Self-Learning Material 95



o

Mathematics |

96 Self-Learning Material

b . pb
(1) 0 < fx) < g(x) everywhere, except at x=b then J.a fx) dx is-convergent if -_L gx)dx is
convergent. -
b b
(1) fix) = g(x) 2 0 everywhere, except at x = a then L fx) dx is divergent if L g(x) is

divergent.
(b) Limit Form of Comparison Test :

(i) If Rx) and g(x) are positive and lim ﬁ% = [, where L is neither zero nor infinite then
x=b

b . b
J' fx) dx and L g(x) dx either both converge or both diverge at singular point x=b.

a

b b
@) IfL=0and J.a g(x) dx converges, then J; fx) dx converges.

b b
(i) If L=oo and L g(x) dx diverges then L fix) dx diverges.
(c) Abel’s Test :

. . b
If O(x) is bounded and monotonic for a<x<b and L Rxydx converges. Then

b
.[1 Rx) &(x) dx converges.

(d) Dirichlet’s Test :
b

If ), , ¢ fix) dx is bounded and &(x) is bounded and monotonic in la, bl converging to zero

b .
as x — a, then J.a Fx) §(x) dx converges.

(e) Integrand is both +ve and —ve : :
Let the integrand be both +ve and ~ve in [a, b]. Let x = b be a singular point of fix). Now if

b b b
x) dx is convergent then | f(x)dx is absolutely convergent | fix)dx is convergent but
a a ' g a

a

b b
J | Ax) | dx is divergent then L fx) dx is conditionally convergent.

(f) The u-test :
Let fix) be not bounded at x=a and bounded and integrable in the arbitrary interval
la+¢, bf, where 0<e<b-a.

If there is a number W between 0 and 1 such thar  lim (x—a)" fix) exists, then
. ’ x—a+0 . :

b .
L Ax) dx is convergent.

If there is a number W21 such that- lim (x — a)* Ax) exists and is non-zero, then
x—=a+0

b .
i[a Rx) dx is divergent and the same is true, if  lim . (x — a)* flx) =+ o0 or — oo,
X—a+

SOLVED EXAMPLES

dx

‘Jx3+l

Example 1. Test the convergence of the integral L



Solution. We have f{x) =

1l _ 1
. .
e + 1
* % \’1+i3
x

Let us consider gx) = 31 il

X

1

" v\ 1 L

lim = lim ——-4;—
L xoe 8(X) P 1
72

= lim '—l—=l

X =3 oo : ’
‘1
1+ (TJ
X .
=limit is finite and non-zero.

-]

=1, Ax)dxand J.l 8(x) dx are either both convergent or divergent.

Now by comparison test-
J.} g(x) dx I =, Will be convergent{Since n > 1]
=>J. , fx) dx will be convergent.

cos mx
2

Example 2. Test the convergence of integral J. dx.

+a

Solution, Let fx) =

» Let &) .
d

x+a

Here f{x), g(x) both are positive in interval ]0, o[, and f(x) < g(x) for ali x> 0.

oa o l
Also, | 1=J‘0-g(x)dx= 0 mdx

b
. - dx L. 1 1 x
lim IO 5 5= lim [;tan ;:[

lim [Ltan_l‘[z—0]=l~
bow | a a a

dx
0 2. 2 is convergent.
x"+a

[

N3

, which is finite.

oo

€Os mx

Hence, .[0 7 7 dx is also convergent.
X+ a

Example 3. Test the convergence of the followmg mtegrals

(ii) A
0 (2 +a%?
Solution. (i) Let  fx)= » and g(x)=x 7
©+ 1
5/2 .
So that lim fx lim =1, finite,

Convergenve of Improper Iniegrals
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- T dx
and, J.l g(x) dx= Jl | F is convergent.
Hence, the given integrals converges. '

(ii)J. % =f{x) and let g(x) =x " so that,

0 (x
4
hm M_ “_\;

lim lim —=—==
N> g(x) x> oo (l +a) x—oee (1+a2/.x2)2

Sincej gx) dx = 0 %dx is divergent therefore given integral also divergent.

0
dx
Example 4. Examine the convergence of m
+
Solution. Let fix) = 2 !
. AU+ B A 1/x7%)

1
5. {1+ (l/xl/z)]

Rx) is bounded in the interval (1, o) then by p-test Y= % -0= %
. i
We have lim #fx)= lim ©° ————
T ox—oe 7 X—re x5/6{1+1/xl/2}
S = lim ——-17 =1 (finite and non-zero)
1w (1+1/x79) '
Since W = 5/6 < 1, so the given integral is divergent.
. Example 5. Test the convergence of the integral
J‘w sin x
@
sin x
Solution. We have J. —dx.
& | .
i
Let fix)=— and ¢(x) =sinx
Vx
1/3x is bounded and monotonically dccreasmg for all x>aand lim 1/Vx =0.
x— 0 .

<,_-

Also, J; Ox) dx| = J.a sin x dx =|cosa;coso°|52.
For all finite values of x the value of cos x lies between — 1 and‘ 1.

_L &(x) dx| is bounded for all finite values of x.
4

i . sinx , fi- ’
Hence by Dirichiet’s test the integral J; —— dx is convergennt.
N .

Example 6. Show that Il g dx is absolutely convergent.
X

Solution. Ifj smx dx is convergent, then integral I ——dx will be absolutely
convergent.
Let fix) = | 57| then fix) is bounded in the inteval 11, oof.
X

Now, we have
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sin x sin x 1 ) .
Sx) ==~ =J—T[5—4.-, (since | sin-x | < 1)
X x

. N .
. By comparison test, if I | dx is convergent then L fix) dx is convergent.
X

==
L 1, . L
But the comparison integral J | A dx is convergent because here n =4 which is greater then
X

El
'

Hence, L fix) dx is convergent and so the given integral is absolutely convergent.

TEST YOURSELF

1. Evaluate the following integrals :

o 1 1
. dx o ax J‘ dx

Ok Wiz @l
2. Test the convergence of the following integrals :

. cOoS mx .. COS mx
1) J. — dx. (ii) J ——dx.
0 24+4 0 14+

3. Test the convergerit of the following integrals-:

e 3,
@) I ,a>0 1 L (T‘w—dx

27 R
x(1+x X +a) ’ ‘

2
4.  Show that the integral J; e " dxisconvergent. = . . . | i

X
AL

~
T

ANSWERS
L (i) -o (i) o

. 2. (i) convergent (iii) convergent (iv) divergent
3. (i) convergent (ii) divergent

5.6. IMPROPER INTEGRALS OF SECOND KIND

b .
We know that an integral I§ ﬂx)"t-ix is $aid t0'be of second kind in which the range of

integration is finite and the integrand f{x) is unbounded at one or more points of the given interval
[a, b). Here, it is sufficient to consider the case when f{x) becomes unbounded at x = a and bounded
for all other values of x in the interval [a, &].

5

b .
We have I fx)dx= 11m J. p S dx, h>0.

Now we use the following test, to test the convergence of the given integral.
(a) Comparison Test :

LetJ~ f{x) dx be the given improper integral, in which the range of integration Ja, b[ is finite

and f{x) is unbounded only at x = a. Let ¢(x) be any positive funcuon in the interval Ja + /1, b[ such

that |fx)]<d)(t) ' s

Then L fix) dx is convergent if _L O(x) dx is convergent.

Convergence of Improper Integrals
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b b
Also, if |Ax) |2 ¢(x) V x& Ja+h, bl, then L fix) dx is divergent, provided _L O(x) dx is

divergent.

Theorem 1. The comparison integral L is convergent when n < | and divergent

(x - a)"

when n2 1.
Proof. Consider

b " b & b
L x~a)’ oy J.“"' (x—a)"= lim -L+h (x-a) "dx

h—0 h—0

|l

i

lim

h—0 L-n

b
I:Q:_a)il] ,ifn#l

ath

y-n t-n . ) : ‘
lim {“"“) L ] _ D)

h—0 t—n I~n

Now n<l = l-n>0 = lim &'""=0.
h—-0

Therefore, (1) gives
b i I-n
J. dx (b~a)
a (x—a)"- t=—n
= The given integral converges when n < 1.
Ifn>1thent-n<0 = n-1>0.

b i-n .
I B lim [(”““)' Pp— ,,-I]=°°-
¢ (x-a) e =R

s ifn<].

h—0

= The given integral divergent when n > 1.
Now, if n =1, then’ )
b b b
dx dx I o dx

= = tim |
@ (x—g)" Y0 (x=a) 4070t x-a

lim [log (x— a)]i h

n

h—0
= lim [log (b - a)—logh] =oe.
h—>0 +
Hence, the given integral diverges when n= 1. .
SOLVED EXAMPLES:-
. : S 1 /
dx
Example 1. Test the convergence of the inte. mlJ. -5
P § f 8 0 5 (1+ x?')
Solution. Here, it is clear that the integral
. 1 .
x)y=——7—— : “y
) 2 +x.2)
is unbounded at x=0. :
1
Let o(x) =~
. X

lim A = lim ! 5 =1, de, finite and non-zero.
x>0 ¢(x) =0 1+x° .

] ol
Then, by comparison test ‘[0 fx)dx and L &(x) dx either both converges or both diverges.

1
But clearly J:l % is convergent . [ n=3>1]
X




Hence, the given integral ,[0 is convergent.

(1 +5Y)

1:/2
05 X

2
X

Example 2. Test the convergence of the integral I dx.

Solution. Here, the integral fix) = <= is unbounded at x =0.

x
Let o(x) = i
x*
" Then lim M— lim {582
ro0 $) x>0 { %
= lim cos x = |, finite and non-zero.
X0
n/2 n/2
*. by comparison test the integrals o fix)dxand Jo  ¢(x) dx, either both converge or
both diverge.
/2 w2 \ n/2 1
But J x)dx= —dx= lim J. — dx
. v0 o) 0 52 hoo YM 2

n/2

k

n/2
& cos X
Hence, the integral '[0 —
X

O(x) dx is’divergcnt.

(b) The p-test : .
Let the function f{x) be unbounded at x=a and integrable in the interval
O<fi<b—a. If there is a number W between 0 and | such that

Ja+h b,

lim
x—2a+0

J‘“ Sx) dx is convergent and if there is a number W2 1 such that ~ lim  (x — a)* fx) exists and

x—=a+0

non-zero, then J.a fx) dx is divergent and if

dim (x—a) fix) =+ or —oo, then J- Ax) dx -
x2a+0
is ulso divergent.

(c) Abel’s Test :

If L Sx)dx converges and .§(x) is bounded and monotonic for a<x<b, then

b
L fix) ¢(A_') dx converges.

(d) Dirichlet’s Test :
b

If ath fx) dx be bounded and ¢(x) be bounded and monotonic on the interval a<x <b

b
converging to zero as x tends to a, then L Six) 0(x) dx converges.

(x - &) fix), exists, then |

Convergence of Improper Integrals
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) n<0.

SOLVED EXAMPLES

i ) .

Example 1. Show that the integral | ————— converges.
S N0} »
1 Y :
Solution. Here f{x) =——————/1s unbounded at x =0 and I.
Vix (1 -x))

Let a be any number such that 0 <a < 1.

! [
Then I dx _ Jm dx + J. dx
CNra-or T Va-ay T Vaa-a)
In the integral I;, the integrand f{x) is unbounded at lower limit of integration x =0 and in
integration /,, the integrand f{x) is unbounded at the upper limit of integration x = .

=I|+12.

To test the convergence of [y, taking u =% » we have
172
lim 2 fx)= lim ,-—l—= lim L = 1.
x>0 x=0 V{x(l-x)] * x>0 V]l ~x
So, the above limit exists.

Since, O<pu< %, so I is convergent by p-test.
]

To test the convergence of I taking p = %, we have

lim  (1-0*. A=l -V —t
x-»ll;n-o (1=0"-f9 x—:lxn—o ( X)' Vi{x (1 ~x)}
= lim == lim -1

x=1-0 Vx- ho0 VI—h
Since 0 < p < I, so I, is convergent by p-test.
Thus, the given integral is the sum of two convergent integrals. Hence, the given integral is
convergent. ’ '

1
 Example 2. Test the convergence of the integral IO X "] log x dx.

Solution. Since lim x"logx =0 where r> 0, the integral is a proper integral if n> 1.
x—>0
If n = 1, then we have
)

1
J; log x dx= lim J‘h logxdx = lim [x logx—x]1
h—>0 h—>0 £
=lim [-1l-hlogh+h]=-1.
h—0
So the given integral is convergent if n = 1.

If n < 1 and f{x) = x* ! log x then, we have

lim 2 )= lim " logx=0ifu>1-n (D)
£—=0 x—0 .
=—coif p<1-n : o ()

Hence, if 0<n< 1, then we can take p between 0 and 1 and satisfying (i).

Then if 0 < n < 1 then the integral is convergent by p-test. :

Again if n £ 0 then, we can take i = 1 and satisfying (ii).

Hence if n <0 then the integral is divergent by p-test.

So by the above discussion we get, the given integral is convergent if 7 > 0 and divergent if

Example 3. Discuss the convergence of the given integral .

J-O 7 e Y dx, ifn> 0.

Solution. Here given that ¥

1=J.0 K Ve Fdx




LS

1 . o o .
1=J.0 xl!"le-ldx+-|.1 xn_lé_xdx.

1
Let ll:,[g e dx

oo
12=J.l Xl X,

Here for discuss the convergence of given integral, we use p-test in /, and comparison test |

in f;.
i
Il ~_~J-0 x"_l e_xdx

f)=x""1e Tatx=0, it will be unbounded.
Let g =x"" '
lim £ _ lim e ”*=1.
=0 8X) 50 '
By comparison test if g(x) is convergent then f{x) will also be convergent or if divergent then
fix) will be divergent :

1 1 1
fo g(x)dx:J'O X""dx= lim L 7 dx

£0 A
1

n n

. . €

. =.lim 2 - lim 1 -

e-0 |1 e—0 [T N

| ..

= which is a finite real number.

1
= J.O g(x) dx is convergent

‘= fix) will be convergent.

Now IZ=J‘1 X"l " dx.
Here fix) =x" "' ¢, It is bounded in the interval (1, =) .
moon-1 +n-1
lim x = dim o g — 2 g
e o e 1+x+~;—~'+...

oo

For p.>1,wehaveJ. P

. e” " dx is convergent.

From the above result we can say / will be convergent because /; and /, both are convergent.

SUMMARY )

First kind of improper integrals :

f:f () dx, J‘_: £ dx, f:, £ dx.

L]

»  Second kind of improper integrals :

J'“ dx l.J"’-(’ dx
a x—a) a (x=b)

oo

. Whena>0.thenJ. éis

a xn

(i) convergent if n> 1
(if) divergent if n < 1

Convergence of Improper Integrals
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. * The integral J-

b

—is:
a (x—a)

(i) Convergent if n< 1.
(i) Divergent if n 2 1.

* STUDENT ACTIVITY

1
; dx
. 1 i 1 I
1 DlSCUSSuthe convergence of .the integra Io T

2. Test the convergence of the integral I ' Liog x dx.
' 0

* TEST YOURSELF

1 ,
dx
1.  Show that the inte ralj- —————— is convergent.
B0 A (1 &

Vit - 1
dx

* eV

x"~1 ¢ * dx is convergent if n > 0.

2
2. Test the convergence of the integral .[1

1
3.  Test the convergence of the integral

1
4. Show that I

0
" " ANSWERS - i
2. Convergent 3. convergent . . .\ : .
FILL IN THE BLANKS :
. b
L. The definite integral L fx) dx is called ......n...c... integral if either any one or both limits are

finite and function is bounded over the range of integration.

]

b . : A
2. Adefinite intcgralj.a flxydx in which limits are infinite and integrand is continuous is called

veceernennen. Kind of improper integral.

3. If improper integral having finite value, then it is called .............. .

4. The point at which the integrand is infinite is called .............. point.




dx .
T IS

I-x

1
5. The integral J.o

TRUE OR FALSE : A

Write ‘T for true and ‘F’ for false statement :

N [ >
1.  The integral J ————- 15 convergent.
) g_

(T/F)
o i N B '
2. The comparison integral o —n° When a>0 is convergent when 2> 1 and divergent when
X
n<l. " (T/F)
3. Inp-test the value of p is usually taken to be equal to the highest power of x in the denominator
of the integrand minus the highest power of x in the numerator of the integrand. " (T/F)

MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :

1.  The integral _[0 x"~' ¢ dx is convergent if :
(@) n>0 (b)n=0 ©)n<0 """ (d) None of these.

2. The integral IO _snz_x dx converges :

(2) uniformly (b} conditionally (c) absolutely (d) None of these.
ANSWERS
Fill in the Blanks :
1. Improper 2. First 3. Convergent 4. Singular 5. Divergent
True or False : »
1. F 2.T 3T
Multiple Choice Questions : -
1. (@) 2.(b)
aq

Convergence of Improper Integrals
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UNIT

6

FUNCTIONS OF A COMPL
sl T B - STRUCTURE

Complex Number

Algebra of Complex Numbers

Properties of Conjugate of a Complex Number
Modulus of Argument of a Complex Number
Properties of Moduli

Properties of Arguments

Geometrical representation of Complex Number
polar form of a Complex Number

Equation of a Straight Line in Complex Form
Equation of a Circle in Argand Plane

Condition for Four Points to be Concyclic
Analytic Functions

Cauchy-Riemann Equations

EX VARIABLE

R A o

The necessary and sufficient conditions for a function f(z) to be analytic
Construction of Analytic Functions

Q Summary

o Student Activity

D Test Yourself

» .. LEARNING OBJECTIVES =~ - ¥’

After going through this unit you will learn :
e ‘'What is a complex Number and how to represent it ?
¢ How to find the equation of a straight line and a circle in complex form.
e What are analytic functions ?
® What are harmonic functions ?

¢ & & & & & 0 & 0 0 0 0 0 4

* 6.1. COMPLEX NUMBER

The concept of numbers, as we now is gradually extended from natural numbers to integers.
Integers to rational numbers and from rational numbers to real numbers. We know that the square
of every real number is non-negative, therefore, there exist no real number whose square equal to
- L g

For example, there is no solution in real number of the equation X +1=0 and

x*=2x+3=0. Buler (1707-1783) was first to introduce the symbol i for the square root of — 1

ie., i=V=1 and #=-1. Soi’=i.i=(-1)i=—i
i*=(i)*=1 and so on.

Gauss (1777-1855) first proved in a satisfactory manner that every algebraic equation with
real coefTicient has complex roots of the form x + iy, the real roots being a particular case of complex
numbers for which the coefficient of i is zero. Hamilton (1805-1865) also made a great contribution
to the development of the theory of complex numbers.
Imaginary Numbers :

Definition. Square root of a negative number is called as imaginary number,

For example : V= 1,V-2,V-3 etc.



Complex Numbers : Functions of a Complex Variable

Definition. A complex number inay be defmed as an ordered pair x + iy, of real numbers and
may be denoted by the symbol (x, y).

If we write z = (x, y) i.e. x + iy, then x is called the real part and y is the imaginary part of the
complex number z and may be denoted by R(z) and I(z) respectively.

For example : 5+2i,3 + 6/, 2~1i, 0+ etc. all are complex numbcrs
Equality of Two Complex Numbers : . .

‘Two complex number are said to be equal if and only if their real as well as imaginary parts
are equal : if x| +iy  and x, + iy, are two complex numbers, then
Xty =xtiy; © x=x,and y =y
Xy + i)’l =Xy + 1y2
(n—x)+i(n-y2)=0

—x)=i(2-y)
2 2
x1=x)" == 0z2-y)
x) =X + (12— y1)* =0
-x=0 and y-y»=0 = x;=x, and y, =y,

or we can say (a,b)={c,d) & a=c and b=d.
Important Results :

(i) If x and y are two positive real numbers then

LUy gy

V=x xV-y =—xy.
(ii) For any two real numbers Vx x \f~ vy is true only when at least one of x and y is eithgr

positive or zero. -
ie. Vx X \/)T= ny is not valid, if both x and y are negativc.
(iii) For any positive real number x, we have

\Ex V= Txr = V= 1 xVr = k.
* 6.2. ALGEBRA OF COMPLEX NUMBERS

(A) Addition of complex numbers. Let z; =x +iy, and z;=x,+ iy, be two complex
numbers, then their sum z, + z; is the number (x, + x3) + i (y, + y2). '

From the definition, it is clear that the sum of (z; + z;) is

real (z; + zp)+ i imag (z; + 22)

where  Re (zy +23) =Re (z1) + Re (zp)

andimag (z; + z,) = imag (z,) + imag (z).

For-example : Let z; =5 + 3i and z; = 3 + 6i be any two complex numbers then, we have

7 +z=56+3)+i(3+6)=8+9i

Properties of the Addition of Complex Numbers :

(i} Commutativity. If z; and z; are two complex numbers, then

tz=2+2).

(ii) Associativity. For three complex numbers z,, z; and z;, we have

@t tn=a+(n+a)

(ifi) Additive identity. The complex number 0 = 0 + {0 is the identity element for addition

ie,z+0=0+z=z forallze C.

(iv) Additive inverse. Corresponding to every non-zero complex number z = x + iy, there exist
a complex number

—z=—{(x+iy)=—x~iy such that
: 2+(-2)=0=(-2) +=z
. Here, - z is called the additive inverse of z.
(B) Substraction of complex numbers. If z; = x| +iy; and z=x, + iy, be two complex
numbers, then their difference 7y ~ z, is the number z, + (— zp).
Symbolically :
The difference of two complex number z; and z, can be written as
H-n=u+Cn)=x+tiy)+(xn-iy) =0 -x) il -y
For example : Let z, =3 + 7 and z; = 1 + 5i are any two complex numbers, then
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21-2=C-D+i(7~-5)=2+2i .
(C) Multiplication of complex numbers. Let z; = x| + iy, and z;= x, + iv» are two complex
numbers then the product of z; and z;, given by

2. 22= (0 + i) . (o + iy) =x02p + Xy + vy €91 W3 = - 1)
= (X)X — Y1 o) + 1 (x1)p + X2y1)
={Re (z1) . Re (z) —im. (z1) . im. (z2)}+ i {Re () . im. () + Re (z5) -im (2)) }.
. For example : Le z; =3 + 2i and z; = 5 + 3i be two complex numbers, then
21-3=03+2).5+3)=(15-6)+i(9+10)=9 + 19i.
Properties of Multiplication of Complex Numbers :
(i) Commutativity., For any two complex number z, and z,, we have -
2122 = 224
(ii) - Associativity. For any three complex number z,, z, and z3, we have
@) =2 ( )
(iii) Multiplicative identity. The complex number 1=1+i.0 is the identity element for
multiplication :
ie., z.1=z=1.zforallze C.
(iv) Multiplicative inverse. Corresponding to every non-zero complex number z = x + iy,
there exists a complex number z; = x; + iy;, such that 1
Z.Z1=.1=Zl.Z. '
Here, z; is called the multiplicative inverse of z. _
(v) Distributivity. For any three complex numbers z,, z, and z3

2+ a)=u2+123 (Left distributive law)

1 and (Za+23) 21 = 22y + 234 (Right distributive law)

(vi) Cancellation law for multiplication. If z;, z; and z; are three complex numbers and
73 # 0 then, ' '
=28 = =2
(D) Conjugate of a compléx number. If z=x+ iy is a complex number, then conjugate of
z, denoted by 7 given by x — iy, which is obtain by replacing — i for i in z.

* 6.3. PROPERTIES OF CONJUGATE OF A COMPLEX NUMBER

0 @=z
(i) z+z=2Re(2).
(iii) z -z =2i Im (2).
- (iv) z=7 ¢ zis purely real.
(v) z+2=0 = zis purely imaginary.
(vi) = {Re (0)}* + {Im (2)}%.
(vi)z) + 2 =72, + 2.
(viil) Z) =2, =72, — 2.
(iX) Z;22 =71 . 2.

x) (‘—'] =L (provided z, # 0).
) 2 . .

'

(E) Division of complex number. Let z; = x; + iy, and z, = x, + iy, be two complex numbers,

e L. .
then division of z; and z,, denoted by Z—' is given by
) ;
7y _ Xty . -1
— == (xy iy (e +1i
% mvin (xy +iy)) (xp +iys)

, X2 . D
=(x|+l)'|){ 2 37173 2}
Xty X"ty

e

-

At



X1X2 Y12 & Y X,
= 1, 2t T3, 3|t 1lyz"' 22y12
Xyhyy Xty X4y Xty

XX+ Y, ¥2 ViXa— Y X ) :
2T 2 yzzlJ,provsdex22+y22¢0.

e 2
X2+ yo Xty

For example : If z; = | +4i and z, =2 ~ 3i, then
a_1+4i 1 +4ix2+3i
> 2-3i 2-3i 2+3
(4D 2+3)) 2+43i+8i—-12  11i—-10 _ lli;IO_ -10} .[11
T2 @?r 9-9% 4-(9 13 '_{ 13 ’(13J "
Dot and cross product of complex number. Let z; = x; + iy, and z, = x, + iy, be two complex
numbers (vectors). Then dot product (scalar product) of z; and z, is defined by

21022=]z;|.| 22| cos 8=x1x3+y y;

=Re Giz) =3 @z + 21%) A1)
where 8 is the angle between z; and z; which lies between 0 and 7 and cross product of z; and |
2z is
aXxn=lullzn|sin®=x,y,-y x
=Im (g z) = % @ n-u2) -(2)
By (1) and (2), it is clear that
Ln=(@on+iXy)=|zllznl . (3

If both z; and z, are non zero, then
() 2y and 2y is perpendicular if and only if z; 0z, = 0.
(il) zj and z5 is parallel if and only if 7y X 2, = 0.
|z102 |
|z}
(iv) The area of a parallelogram whose side z, and z3, is | z) X 22 |.

* 6.4. MODULUS AND ARGUMENT OF A COMPLEX NUMBER

(iii) The magnitude of the projection of z| on z; is

Let 2= x + iy be any complex number. Let x=r cos 8, y = r sin 8, then r =+ Nx* +v* is called
: Ly

the modulus of the complex number z written as | z| and 0 = tan” . is called the argument or

amplitude of z, written as arg z.
Thus, r=]z|=Vx*+y?

: 1_ 2,2 -
= . bz =x"+y"=2.2
= 2.5 =1 if z#0.

|z

* 6.5. SOME PROPERTIES OF MODULI

Theorem 1. The modulus of the product of two complex numbers is the product of their
moduliie, |z . 22]=|z|.|22)

Proof. We have, Iz [ =(z. ) (z) . 22)
=5.2.5.0=@.2) - @ .=l |uf
- 3
=> |31~22|2=|er-‘22|2
= |2z =z |z}

Theorem 2. The modulus of the sum of two complex numbers is less than or equal to the
sum of their moduli .
ie. lzi+ 22| <]z | +] 2|

Proof. To show}z+2,|<|z|+]|z |

Letz = rleio' and 7, = ng_e"e?, then
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1+ :',efe' + rze'.92 =7, (cos 8, + i sin 6,) + ry (cos 0, + i sin B)
=(r; cos 0] + ry cos 0,) + i (] sin By + r; sin 05)

21+ 2| = V() cos B, + r, 08 0,)% + (1, sin B + ry sin 8,)°
= \[[r,2 + 1'22 +2rry cos (8) — 0y)]
<N+ 2 +2ryr) (For cos (8, - 8,) < 1]
=1 +r2=|zl [+!ZZI.
Hence, lzg+ 221 2| +] 22 ]
Theorem 3. The modulus of the difference of two complex numbers is greater than or equal
to the difference of their moduli

ie. la-zl2lzal-|a]l .
Proof. Toshow |z;—z |2z |~ |z |
Let 7 =re® and z, = re™
then |z |=r and |z|=r ¢ 1e®l=1

g—5= rle‘e' - rze"’1 =r, (cos 6, + i sin 8,) — r; (cos B, + i sin B,)
= 73 —z3=(r] cos By — ry cos 8;) + i (ry sin 6] — ry sin O;).

Now |21 —z2|= \l[(rl 'cos 8, — ry cos 92)2 + (r;5in 8, — 1, sin 63)2]
= \l[r,2 + rzz —~2ryrp cos (8) — 6,)]
>N[n?+r = 2nr) [ —cos (8 -6)2—1]

=r-rn=|z|-|zul
Hence, lzi—z |2z -zl
Cor. Prove that |7y — 22| < |z |+ ]| 22|
Proof. We have,
|Zx“22|:|zl+(“22)|5|3_1f+|(“Zz)|:|Z|l+122|-
Hence, lzi—z| S|z | +] 22|
So, by above results, we get
o= lzz|Sla -zl <lal+]|z]
Theorem 4. Prove that |z) + 23| 2|z |- | 22|
Proof. To show |zi+z;[2 |2 | -]z |

Let 7y = 1€ and 2, = rpe™, then | 2y | = 1y and |z | =1y
7y +z,=r; (cos B, +i5in8,) + ry (cos B, + i sin )
= (rl COos 91 + rz COS 62) + r'_(r; sin 6. + r; sin 92)

Now , 21+ 2= \l(rl cos B, + r cos 8)* + (ry sin O + ry sin 8,)°
=V[r,% + 1,2 + 21,7, cos (6, — 0,)]
2N[r* + 1 = 2r11) [Since cos (8, — 8,) = ~ 1}
=n-n=|za|-|zl
' Hence, la+zlzlal-|z]
Theorem 5. Prove that .
|zt +la-ml=20al+l=f.
Proof. Letz; =re™, and z = re™ then | z;|=ry and | 22| = 1
71 +23=r (cos O +isin 6,) + rp (cos B, + i sin O)

or z) + 2o = (ry c0s 8 + ry cos 8y) + i (ry sin B + r, sin 6)
and 21— 23 =(r; cos 8, — ry cos 0y) + i (r; sin 8 — ry sin 6)
Now = |zy+z |2 =(r| cos 6, + r; cos 8,)* + (r) sin B, + ry sin 8,)*

| and |21~z |2 = (r; cos 8; — ry cos 8,)> + (r; sin 8, — ry sin 8,)%.

Taking jzi+ 2 +|z -2 |* = {(r, cos ©, + ry cos 0,)° + (r, sin 8, + r, sin 6,)°)
+ [(ry cos ) — rp cos 92)2 + (r sin B — r; sin 92)2]
={r2+ 12 + 2nry cos (8 — 0)] + [ 2 + ry” = 2ryr cos (8, — 0))]
=207 +r =210z [+ 21 o
Hence, |a+z[+la-nf=20al+l]




PR

6.6. PROPERTIES OF ARGUMENTS

their arguments

Le.,

of their arguments

ie.,

Theorem 1. The argument of the product of two complex numbers is equal to the sum of

arg. (), zp) = arg. (z;) + arg. (z3).
Proof. To show arg. (z), 2) = arg. (7)) + arg. (2p).
Letz; = rleie‘ and z, = r2e'.02 then arg. (z;) =90, and arg. (z;) = 8,.
Taking Z.za=r e &t
= . Arg. (z) - 72) = 0, + 0, = arg. () + arg. ().
Hence, Arg. (z) . zp) = arg. (z)) + arg. (z2)-
Theorem 2. The argument of the quotient of two complex numbers is equal to the difference

arg. [2—;) =arg. (z)) — arg. (z2).

‘ Z
Proof. To show arg. [Z—l] = arg. (z)) — arg. (z2)
2
Letz, = rle'ﬂ‘ and z,= r2e"91 then
arg. (z)) =9, and arg. (z3) =6,.

Taking . Z_l__’.:'.l-e_l ﬂ ei (e!“el)_
L e T2
z
= Arg z_I =0, -0, =arg (z;) — arg (zo)-
2
Hence, arg. (z_lj = arg. (z;) — arg. (za).
2

SOLVED EXAMPLES

Examble 1. Express 1+7i

in the modulus amplitude form.

2
2-9
. ' V478 1+7i  1+7i _(1-7) (3+4)
Solution. Here, (2—i)7'_ A 4P 34 374 3+4i
_3+4i421i+28% -25+25i
9-16i 25
Now let -1 +i=7r(cos0+isin).
On comparing real and imaginary part, we have
rcos6=-1 LD
rsin@=1. _ .2
Squaring (1} and (2), and adding, _ .
r=l+1=2 sor=2.
Now putting r= V2 in (i) and (ii), we have
1 | n
cos0=——— and sin0=-—" giving 0 =—
| 2 2 a
Hence M=\E cos3—ﬂ+isin-3-E .
- i 4 4

* 6.7. GEOMETRICAL REPRESENTATION OF COMPLEX NUMBER

co—ordinate; of P are (x, v) referred to rectangular axis OX and OY, where OX is called real axis and
OY is called imaginary axis.

imaginary number iy = 0 + iy correspond to the points on X-axis and Y-axis respectively.

A co}rlpléx number z=x+ iy can be representéd by a point P in the cartesian plane. The

The complex number 0+ :i.0 corresponds to the origin, the real number x=x+ 0 and
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Obviously, the polar co-ordinate of P are (r, 8) where
r=0P =Vx* +y* is the modulus and the angle 6 = tan” | ‘J% is

the argument of z =x + iy.
To each complex number there exists one and only one

point in the X-Y plane, and to each point in the X-Y plane there -

exist one and only one complex number, by this fact, the
complex number z = x + iy is referred to the point z in this plane.
This plane is called complex plane or Gaussian plane or Argand
plane. The representation of complex number is called Argand
diagram. The distance between the points z; =x, + iy, and

23 =X, + iy, 1s given by
l2 - 2| = Vitw - ) + 01 = 2.

‘Some Geometrical Interpretations :

i z1t+z Let z;=x;+iy; and
2 = X3 + iy, be two complex numbers, represented
by the image P and . Complete the parallelogram
OPRQ.

Let PK,QL and RM represents the
perpendicular from P, Q and R respectively on
X-axis. -

Since the diagonal of a parallelogram bisect

0

Y
- P(x,3)
/ +
/’/ lv
_Z l
- x » A
Fig. 1

each other, therefore, co-ordinates of the mid point

x14tx% yi+y
of PQ and also that of OR is [1—2 » MJ .

2 2

Therefore, the co-ordinate of R are
(1 + X2, y1 + y2). '
Hence, R represents the complex number
(1 +x2) +i(y +y2) - .-
=@ +iy)+ 0p+iy) =2+ 2
(ii) z; —z,- Let P and Q be two points
represents the two complex numbers yi,

Q (xz ,}’2)

P (X] >V )

z1=x +iy; and 25 = x; + iy,.
Since, the sum of z; and -2z, is
represented by the extremely R of the diagonal

. ‘&,

R(xy =% %1 -¥2)

OR of parallelogram OPRQ'. O (x0sv) 1
Hence, R represents the complex number > ¥
—x)+i(n—») Fig. 3
= {xt + iy1) — (x2 + iy)
=21 2.
¢ 6.8. POLAR FORM OF A COMPLEX NUMBER
Consider a point P in the Argand plane (or complex
plane) corresponding to a complex number z = x + iy.
put x=rcosf, y=rsinf P (x,)
then r=N2+y? =|x+iy|=|z| :
]
and o=tan"' % r Wy
. x }
It follows that . _ y
" z=x+iy=rcosO+irsin® X N . ) %
=r(cos@+isinB)= re® 0 M
z=re® . € =cos 0 +i sin 0) 3
which is called the polar form of the complex number z. !
' Fig. 4

18
AT

Lk

i3




r and O called polar co-ordinate of z. r is the modulus or abso]ute value of z and 8 is the
argument or amplitude of z.
It is also written as 6 = arg. (2) or 6 = amp. (2).

SOLVED EXAMPLES

Example 1. Find the modidi and arguments of the foliowing complex numbers
2

e o 33— 3+ o (241

9O T @ vt ('")( -i]'

Solution. (i) Here, we have

1-i_1-i 1—1_(1—,')2=i=_i
T+i 1+i 1-i j-72 2
}:‘ V0+( 1’ =1
and ar :-ar (_.‘)___
&1+ )
because —i=0_i=cos(_§J+isin(_g]_

(ii) Here, we have
3—i+3+i_(3-i)(2—i)+(3+1)(2+i)

248 2-i @2+)2-1i)
6-3i-2i-1+6+3i+2i-1 10
— .2 =_22‘
4 5
344
o 1ayita—i| T2

and arg, (g—i + ;i] =arg. (2)=0

(iii) Here, we have
(2+i]2_(2+i)2_3+4i_3+4z 8+6i 50i 1.

(. argument of a positive real number is 0)

=T ~=A

3-i] (3-i% 8-6i 8-6i 8+6i 100 2
2+ _1
3-i){ T2
Now, let % i=r(cos O+ isin 9),
then, rcos9=0, rsin9=%-
Squaring and adding above relation, we get
2_1 -1
r =% = r—2

Putting r = % » we have cos8=0,sin6=1.

The value of § lying between ~ %t and 7, which satisfies both these equation is g

A2
Hence, principal value of arg. (%] = g

Example 2. The real numbers A and B zf
3-2i
() A+iB= 7541
S .
(1-20) (2 +30)
Solution. (i) Here, we have
o 3-2i _(3-2)(7-4) _13-26i_13 26 1 2.
AN B 4T Tvan(1-4) 65 65 65 "5 5"

() A+iB=

L
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Equating real and imaginary parts of both the sides, we get

1 )
A=5 B=-3
(i1)) Here, we have
A4iBe—rl e o710 ]
(1-2)Q2+3) @2+3i-4i-67 8-i
8~1i _ 8+i 8+i 8+i 8 1

TB-D@+D) 64_f 64+1 65 657 65"

Equating real and imaginary parts of both the sides, we get

Example 3. Show that arg. z + arg. 2= 2nm, where n is any integer.

Solution. Let z =x + iy, then z=x — iy, where x and y are real.

Now we have

arg. z + arg. z =arg. (2 .E) =arg. {(x +1iy) (x - iy)} = arg. & +y%).

Now x°+y* is a positive real number, say ¢. Since c is a positive real number, so the
representative point of ¢ in the argand plane will lie on the positive side of the real axis. So the
principal value of arg. ¢ is 0 and the general values is 2am, where » is any integer. '

Hence, arg. z + arg. z = 2nm. ' :

Example 4. Prove that |z;+2z Palz ~zff=2]|zf+2]| ) interpret the result
geometrically and deduce that

o+ Vo2~ 7 |+ o= Vol - ¥ | = o+ B +] ot~ B
all the numbers involved being complex
Solution. We have,
la+znf+jz- ul =@+ @& +Zz)+(21—22)( -2
=@ +2) @+ + (@ -0 @ - D)
= 22[21 + 22222 2 l 21 | +2 I 22 I ()
Geometrical interpretation. LetA and B be the points

of affix z, and z, respectively. Complete the parallelogram f
OABC. c@) B
Then, we have
O0A=|z}, 0C=|z|
OB=|21+22|,AC=|Z|“ZZ. .
Now, from the property of parallelogram ' A(z))
- 0B + CA? =20A% +20C ' 0
or |le+12|2+|21"22|2=2|21|2+2|12|2- Fig. 5

Deduction. Lez;=a + o~ [32 and z; = o — Vo2 — BZ, then we have

Slatznlfizla-al=laf+laf (ffom (i)}
or HaaP+ 2 2V +B) P=o P+ o
or 0 2laf+2|@ =B = |n P
and so Dzl +lzlP=lal+|al+2)an]=2|af+2|d?-B*)+2|B]
=|la+B[+|a-BF+2]a’~p [using (i)]
- =llo+B]+|a-B %
So fz | +|zl=a+B|+|a-B]

Hence, |o+Vo?—p?[+|a-Vo2-P|=|a+pB|+|a—B]
* 6.9. EQUATION OF STRAIGHT LINE IN COMPLEX FORM

Equation of straight line passing through two given complex number. If z; and z, be any
two points (complex numbers) in argand plane and A(z) be the any current point. To find the equation
of a straight line passing through the point P(z)) and Q(z,). Consider the following figure :




a - .

e . - . : L
P(z;) : ) 06

Evidently, arg. [: - sz ] =0 or 7.
172

Z-Z
Consequenly, {- J ] is purely real. So, we have
4 -

or ) )@ -w)=E ) Z-7)

or 2@ - - @)= -0 -4 @)

or @) ~nutun=c(t-u) -1l +2 2

or 2 - ) -2 -+ (@ —20) =0 (D

which is the required equation of straight line in Argand plane.
Now multiplying (1) by i, we get

2@ -z)—iz(z - ) +i(z122 - 2221) =0. P .(2)

Now we take the coefficient of T is & and the coefficient of z, which is the conjugate of that
of z is 0. Agian z;z; is the complex conjugate of z;z,. So, the number z,z; - z,z; is imaginary and
the number i (z;z» — z52;) is purely real. So we have

' ' i(z1 227y 22) =k, where k is real.

Now from (2), we get _
or Oz +0oz+k=0,0#0and k is real.
where o and k are constant.

Which is the general equation of a straight line.
Some Important Theorems :

Theorem 1.- The equanon of any straight line passing through the origin and making an
angle o with the real axis is 7 = ré' where r is any real parameter. '~

Proof. Consider a point z = x + iy on the straight line passing tﬁrough the ori'gin and making
an angle o with real axis. Then, we have .

For xX=rcosc, y=rsint

z=x+iy=rcos o+ irsin 0 =r(cos O +isin &) = r (cos & + i sin a)....(4)
z= 1'% which is the required equation,

Theorem 2. The equation of any straight line passing through the point z; and making an
angle o with the real axis is z =z, + ré'™ where r is any real parameter.

Proof. Let z=x + iy be any point on the straight line passing through the point z, and making
an angle o with the real axis. Then

X—X|=rcosc

which implies (x—x)+i(y—y)=rcosa+irsino

= (x+iy)—(x;+iy))=rcosa+irsinq
= ~z—gy=r(cos o +1sin ), where z; =x; +iy;.
Hence -z = re™, which is the required equation.

Theorem 3. The equation of the straight line joining the point z; and z, is
z=1tz; + (! — 1) z, where t is any real parameter. -

Proof. Suppose that z be the affix of any point on the straight line joining the points z; and
zp. Again, suppose that the point z divides the join of z; and z; in the ratio A : 1, where A is any real
number not equal to - 1.

1+ Az
We have z= L 2 or z=[ ! Jzﬁ-( A ]zl. . (D)

1+A 1+A 1+X

Put —X=t ie, I—t= in (1), we get

I+ 1+A

z2=1tz) + (1 ~£) 5, which is the required equation.
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* 6.10. EQUATION OF A CIRCLE IN ARGAND PLANE

Show that the equation of a circle in the Argand plane is of the form

Z+cz+cz+k=0
where k is real and c is a complex constant.
Proof. Consider a circle, whose centre is ¢(b) where b is any complex number and r be the
radius of the circle and let A(z) be any point on the circle.
Then, the line CA = radius of the circle

|z-b|=p.
On squaring, we get A)
lz-b[=p’
=  @-be-bH=p = -be-b=p’
= Z-bz+bb—bT=p’
= zz—zz—b_z.+(|b|2—pz)=o, , ¥ig. 6

Taking — b = ¢ and (| b | - p°) = k = real number.
Then, we get zZ+ecztecz+k=0
where k is real and ¢ be a complex constant.

Which is the required equation of a circle.
Géneral equation of a circle. We know that the equation of a circle is given by -

Z+cz+cz+k=0 ' ' (where k is real) ...(1)
The above equation can be written as
(2 +c)E+0)=cc~k = |z+c|=cc—k.
Here, equation (1) represents a circle if & is real and
cc—k20.
Thus, the general equation of the circle is of the form :
zZ+ez+cez+k=0,kisareal and cc -k 20. N

* 6.12. CONDITION FOR FOUR POINTS TO BE CONCYCLIC

Let P(z;), Q(22), R(z3). S(z4) be the four points (complex numbers). Then the gwen four points
P, Q R, § are concyclic if ZPRQ, ZPSQ are either equal or differ by ©t

S (24)

R(z3)

P \R(zg)
P
(z; / ()
Q(Zz)

Q (z) TSz,

Fig. 7

23—2 ‘242 . .
= arg. 21, arg. L are either equal or differ by n
33— 2 42 :

B-% fu~2 '
= arg. 2.4 =0 orm
BB’ u-n

. 3—2 . . . . -
=y g u is real

3" U2

(z3-2) (za—29) .
= ————————=is purel real

(23— 29) (26— Zl) pHEY

E-2) @a-z)

is purely real.
@-2)@a-z) T T

Hence, four points z;, 23, 23, 24 are concyclic if




Cor. Equation of a circle passing through three points. = - .
Let zy, 23, z3 be any three points (complex numbers) on a circle and let z be any point on the
' (22~ 21) (2~ 23)

is purely real
(-2} (z2-23) purey

circle, then we know that the four points z,, 2, 23, z are concyclic if

(-u)(z-2) (@m-u)@Z—2) L e
= = (. zisrealif z=7)
G- @-3) =) G :

G-w)i-z) @-2)E-2)
G-2)(@-6) GF-7)@-2)
which is the required equation of the circle passing through three points.
Example 1. Find the region of the Argand plane for which
jz=1]+{z+1|<3.
Solution. We have z =x + iy, then
lz=1]{+|z+1]|=|x+iy—L{+]|x+iy+l|=](x=D+iy|+](x+ 1) +iy]
=ViG= D4y + Vi + 17 +57).
But it is given |z~ 1]|+]z+1]<3. So
C o Ve 1Py Vi )2+ <3
or Vi(x - 1) +y]<3—V[(x+I) +y]
" Squaring both side, we get ,
(= DP+y2S 9+ (x+ 12 +y2 - 6V[(r + 12+ 3]
or 9+4x—6V[(x + 1)* +% 20
or : 6 Vi(x+ 1 +5%] <4x+9.
Again squaring, we get
36 [(x + 1)*+*] < 16x% + 81 725 or 36x” + 36y° + 36 < 1627 + 81

=

2 2 . 2 _.L
br 20x" +36y° <45 or 9/4-I~5/4_1
Hence the region of the Argand plane is boundary and interior of the ellipse
X _.L
5/t 5aS"

Example 2. If P, Q, R are points of affix z, 25, 21 + 2, respectively then prove that OPRQ is
a parallelogram.
Solution. Let z,, z;, (z; + z;) be three points such that
=X YL =X iy, Lt = (X Fx) i (4 yo)
Thus the co-ordinate of O, P, @, R are (0, 0), (x;, y;), (%3, ¥2), (x; + x5, y1 + y,) respectively.
ntx nty
2 2

Now, mid pointof PQ= (
OR=[0+"1 +x2-’ 0+y +}’2J =(x; tr N "‘-"2]".

and the mid point of ) 2 2 2

Hence, OPQR is a parallelogram

Example 3. Show that <liflzf<land|z|<1.

I-'Z]Z2

Z)—

Solution. The given inequ-lity |- < 1 will hold if

) 1—_2-112
lz-2|<|1-Ziz2| or |z1-nf<|1-F 2,

@-2)(@-w<(1-7 zz) (1 -2 25)
(&1-2) (@ —2) < (1 - 72) (1 — 212)

=

=

= i3 - 22 - Zzzl +25< 1 -2 -2z + 217 - 2923
=

=

=

¢ =2

la PHizlP<i+|z flaf
o PHlzaf=1-]z Plzl*<0
(af-D-lznP<o.
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Now, the above inequality will hold if [z; {< 1 and [z [ < L..

Hence,

<11f|zl|<land|~2|<1
l—z,zz .

Example 4. Determine the region of fhe argand plane, for which . <l,=]lor>1

-C

where real part of c is positive.

Solution. Here, we have % <I,=lor>1

Z—-c

lz-cf<=>|z+c]

(z-c)(z—c)<=>(z+c)(z+¢)

(z-c)Z-0)<=>(z+0)(@+c)

(z-zZc—-cz+ce)<=>(Z+zc+cz+¢Cc)

Z-(c+c)<=>(z+zc+c)

—(@zc+cz)-(zc+¢c7)<=>0

(z¢ +cz)+(zc+c7)>=<0

z2{(c+C)+z(c+T)>=<0

(z+2)(c+)>=<0 = 2x2Re(c)>=<0

x>=<0 (.. Re (z) is positive)
Hence the required region is the right half of the Argand plane, imaginary axis and left half

of the Argand plane respectively.
Example 5. Show that the radius and centre of the cncle

B UULBULLLUY Y

z—i| _
2+
Solution, We have Zhi=s : : (D
zZ+1 )
o eilesten o [a)-ta
or Ix+iy—i|=5]x+iy+il
Squaring both sides, we get .
or |l x+i-D=25|x+i@y+Df
or e y=1P=25 [+ (v + 1)
or ey =2y +1=25[F+y* +2y+1]
or 24 (> +y)) +52y +24=0
or x2+y2+%y+l=0 (2

which is the equation of a circle.
Therefore the locus of the points on the Argand plane which satisfy the condition (1) is a
circle.

The co-ordinates of the centre of the circle equation (1) are {0, - %J and its radius is

2
2 (B3] e / 5 3
[(0) J{ 2] l} 144 " 12
Hence the locus of the given circle is the point whose affix is

z=0+(-13/12)i ie., (-13/12)i
and its radius is 5/12,

* TEST YOURSELF

1. Find the modulus and arguments of the following :
. L+2i oy 241
» —— (if) —=—
1-(1-9) di+(1+1)

-2.  For two complex number zi, z2 prove that | z1 +zz'|2 =|z |2+|z,z |2 if and only if. zi 22 is

purely imaginary.




6.12. ANALYTIC FUNCTION ' . r

Some Important Definitions

Single and multiple valued function. If we get only one value of w corresponding to one
value of z, then we say that w is a single valued ﬁmctton of zor f(z) is a single valued function.

For example If w=z%. Here, corresponds to one value of z we get only one value of w.
Hence, w = Z° is a single valued function of z.

On, the other hand if we get one or more value of w, corresponding to each value of z, then
we say that w is a multiple valued function (or many valued functlon)

For example. If w=1z, then we get two value of w, corresponding to each value of z.
Hence, w is a multiple valued function of z.

A multiple valued function can be considred as a collection of single valued functions, whose
every member is called a branch of the function. And a particular member is called a principal
branch of the mudtiple valued function and the value of the funcion according to his branch is'known
as principal value.

, Limits and continuity of a complex function. Let fiz) be a smgle valued function defined
in a bounded and closed domain D. Then a number 1 is said to be the limit of fz) at z = zy, if for
any positive number € (however small) we can find a positive number & such that ‘
{R)—1|<€ V zforwhich0<|z-z]|<8.
The limit must be independent of the manner in which z — z,.
Symbolically, we write lim (2)=1.

oy
Some important results on limits. If lim fz)=/and lim g(z) =m, then
' 23 -5
@ lim [(@tg@]=1lm R)* lim g@)=Itm
PR X7 - 22
(i) lim [A2).g(@)]=1lim Rz). lim glz)=1.m
1z 1y 19
lim fz)
3 I l
iy L z) _ -3 =X ifm#0.
v me 2@ lim g@) m'
-3z

Continuity. Let £2) be a single valued function of z defined in the closed and bounded domam
D. Then z) is said to be continuous at a point zg in D iff, for any positive number (however small)
we can find a positive number 8 such that

| R2) —flzg) | < € whenever |z—2zy| <.

From the definition of limit and continuity we can say that f{z) is continuous at z = zg if and

only if lim f{z) =fz).
93
Note. If f{z) is continuous at z = zy then this implies three conditions.
(i) lim Az)=1 must exists.
23
(i1} fzg) must exists.

(iii) fzp) =1.
For example. If fz) = =7%, Vzthen Az} is continuous at =1 because

lim fz)= lim P=i=-1
z—1i 1

D:scontmulty At any point z, at which fz) is not continuous then f{z) is said to be
" discontinuous at zg. If lim f{z) exist but not equal to f{zg), then this type of dlscontmunty is called
oz
removable discontinuity.

Continuiy in real and imaginary part of f(z). If Az) = u(x,y) + iv (x, y) is a continuous
function of z, then u(x, y) and v(x, y) are also continuous function of x, y and if u(x, y) and v (x,y)
are continuous function of x, y then f{z) is also a continuous function,

Uniform continuity. Let A function f{z) defined in a domain D, then f{z) is said to be uniform
continuous in D if for any € >0, 38 > 0 such that
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|Rz)) —fz2) | <& whenever 0<|z) —2;| < 3, where z,,2€ D.
Differentiability. Let f{z) be a smgle valued function of z defined in a domain D, then f{z)
is said to be differentiable at point z = z; of D iff .

fzo + ) = fzg)
f@= 1 Ty
provided that the limit exists and does not depend upon path which z — 0 or we can say
z
= lim TS ﬂ) f(zo)
sz

Theorem 1. Continuity is a necessary but not a suﬂicrent condition for the existance of a

finite derivative.
Proof. Let f{z) be a differentiable function at z = zy then

)= zli)mz0 }%{% exist.
Now, we can take
A2) - Az)

R~ fa) =@ -a) = = ifz#2
Taking limit of both sides,

lim [e) ~flz) = lim [(z 121 ]

9% 2y ] <
e 2 - )
B zllbnl, (Z ZO) ‘ zh—)ma, -2
=0.f(z)=0 Since lim (z—zo)=z0—20=0)

or lim [fz2) -Az)]=0 = lim fz)- lim fz5)=0
1o 193 232
= lim fz) =Aflzg).
-z,

Hence, fz) is continuous at z = zo thus continuity is a necessary condition for differentiability.

Now we shall show that continuity is not a sufficient condition for differentiability. It is clear
from the following example. Consider the function fiz) = | z [*, where z = x + iy.

The function | z |* = x* + y* is continuous at every point.

fa+8)-fu) _ | n+dzf-|nf

Now f(zp)= lim
f Az—0 Az 80 Az
- lim (20 + A2) 2o + A2Z) ~ 2020 _ i |:zoAZ+Az.ZO+Az.AE}
Az~>0 Az Az 0 Az
= dim |2 s 7eaz]= dim |23 (0 Az— 0= AT— 0)
Az—0 Az ar—o0 | Az : A

So at 7y = 0, Z = 0 so that f'(z0) = 0. |

Again at 25#0. Now let Az=r(cos B +isin 0)
Az _cosB-isin®
Az cosB+isin®
which does not tend to a unique limit. Since this limit depends upon arg. Az.

Thus the function f{z) is continuous everywhere but not differentiable for any non zero value

then, AZ=r(cos®—isinB) = =cos 20 - i sin 20

of z. ,
Analytic function. Consider a single valued funcion fz) defined in a domain D, then the
Junction fz) is said to be analytic at z = 3 of D, if it is differentiable not only at z, but also in some
neighbourhood of 2.
Or

A function z) is said to be analytic in a domain D. If z) is differentiable at every pomt of
a domain D.

Singular point. A point z = zy at which f'(zy) does not exists, is said to be singular pomr of

Rz)-




If a function f{z) is analytic in every neighbourhood of a point zy except z. Thcn Zg is known
as isolated smgularlty of fz).

If f{z) is not analytic at.z = 2 but it can be made analytic by taking a suitable value to f{z) at
point z, then f{z) is said to have an removable singularity at a point z, of D.

Afunction f{z} is analytic in some deleted neighbourhood of z, and has a removable singularity

at zo. Then the function fz) is said to be regular at z,.

* 6.13. CAUCHY-RIEMANN EQUATIONS

A necessary condition that w = f(z), where f(z) =u(x,y) +iv(x, y) be analytic in a domain D s

u(x, y) and v(x, y) satisfy the equation
du _dv and du _ ov
ox oy dy  ox
The above equation (1) is known as the Cauchy-Riemann equation.
If partial derivative in (1) are continuous then it is the sufficient condition for a function

Rz) to be analytic in D.

* 6.14. THE NECESSARY AND SUFFICIENT CONDITION FOR A FUNCION
f(z) TO BE ANALYTIC

(i) Necessary condition for f{z) to be analytic.
Theorem 2. If a function f(z) = u(x, y) + iv(x, y) is analytic at a point z=x+ iy in a domain
D, then the partial derivative u,, vy, u,, v, should exist and satisfy the equations u.=v, and

A1)

Uy =~V
Proof. Since fz) = u(x, y) + iv(x, y) is differentiable at a point z=x + iy then
73 . - - N
F@=tim = gy A28 A1)
Az =0 8250 Az :
must exists and unique as Az — 0 in any manner.
If z=x+iy and Az=Ax+iAy.
Now, using the above relations, equation (1) can be written as
lim Af lim u (x+ Ax, y+Ay) u(x_z) v(x+Ax y+Ay)-v(x,y) @
Taking Az to be wholly real (along real axis) so that Ay = 0 then, quation (2) gives
o u(x+Ax,y)—u(xy) , . v{x+Axny)-vix,y
A}\‘IE-)IO [ Ax +i Ax . .(3)

Now, since f{z) is differentiable, then the partial derivative %g and % must exist and the limit

ou .ov .
E™ +i5— 3 W + ivy. . «(4)
Again taking Az to be wholly imaginary (along imaginary axis) so that Ax =0, then equation

(2) gives

lim | %y +Ay) - ulx, y) [ Yyt Ay —vixy) | )
Ay—0 i Ay i Ay -

Since, f(z} is differentiable, then the partial derivative 9u and %;- must exist and the limit is

oy
1 0u v _ .
5 a_y + a_y =y~ iuy. -..(6)
Since, the limit given by lim Az is unique. So the limits given in (4) and (6) must be
ae—0
identical. Now equating the real and imaginary parts, we get
u=v, and u,=-v,

¥ y
or du_ _v and @ o
dx Oy dy  ox

Above two equation is known as Cauchy-Riemann partial differential equations.
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(ii) Sufficient condition for a function f(z) to be analytic.
Theorem 3. A single valued continuous function

fy=u(x, y) +iv (x,y) _ '
is analytic in a domain D. If the four partial derivative uy, vy, iy, v, exist, are continuous and
!

satisfy Cauchy-Riemann partial differential equations at every point of D.
Proof. Let w=fz)=u(x,y)+iv(x,y) be a single valued function possessing partial

derivatives gu g: g; il at each point of a region D and satisfying the equation i.c., gu g;
and g—: =" % » we shall show that f(z) is analytic, i.e. f’(z) exists at every points of the region D.

By Taylor’s theorem for functions of two variables, we have, on omitting second and higher
degree terms of &x and &y
Rz +82)=ulx+8x,y+8) +iv (x+8x, y + 8y)

Ju ou v v
=':u(x, )+ (a ox + g Sy}] + i l:v(x, y) +( Sx + 8—; SyH
du .dv du . dv
= [ux, y) + iv (x, )] +[a +1i o ]Sx +[3y.+l ay}ﬁy
du , .0v du , .ov
_f()+( +ta Sx+(ay+tayJ5y
(o u,
Rz+02)-f2) = ax+ E 6x+\8y+’8y]8y
au 3v dv . du
- 8x Yox B + —$+18x)8y
_ au ;v du , .ov o
= iz dx + ax+zax18y (- =-1
du .90 .0 ' .
= B_i-H'BZ ®x + i §y) = ( ta—gﬁz (. 52=.5x+t5y)
flz+82) - fiz) _ 3u av_
&z ot Fox
_ 213‘5‘84! - !!Z!
f@= hm oz 8x ax
Thus () exists, because g "I ’ exist. Hence Rz) is analytic.
Cauchy-Riemann Equation in Polar Form :
Here, we have
x=rcos® and y=rsin8.
So P=x +y2 (D)
and 9=tan " % : | 2)

Novif, differentiating (1) and (2) partially w.r. to x and y, we get

%-f_cose and %—X-sme
a_9=_1__ _y\___y __rsin®_ sin®
ax 1+12 2 [ 2 -
x
28 1 1 X rcos® cosbB 2 2. .2
and —|= 5= =— i +
" (1+X)2(x] P
x
Taking ,
Qu_du 3 3w 90 _du o dusind
ox or Ox g8 ox oOr 00 r )
du Ou or Ju 98 Ju . ou cos ©

ou ou or ou 98 _0od 9+ 22

dy or ay+ae dy or’ " B r



_dv dr v W _d . dvsind
and x or ax 98 Ox or cos 6 9 r : 4
dv_dv 3r w38 By o B oosh |- +(4)
dy or ay dody or 00
. . du_dv Qu __dv '
Now by Cauchy -Rlemc'mn equation, % 9y and 3 ox ..(5)
Using (3) and (4), (5) becomes
- du dusin® _dv v .
ar <% 0- % r "orSh 0+ 39 5% 6 ...F6)
du . Qucos® _ dv v sinf
and 3, 5P 0+ % r - or cos 0 + P = LT
Now multiplying (6) by cos 6, and (7) by sin 8 and adding, we get
o roe
Again multiplying (6) by sin 6 and (7) by cos 8, and substracting, we get )
l _a_li = — @, . (9)
roe or : .

Equation (8).and (9) be the required Cauchy Riemann equation in polar form.

Conjugate function. If fz) =« + iv is a analytic function. If & and v satisfy the Laplace’s
equation, then « and v are called conjugate Harmonic function or conjugate function.

Harmonic function. If « is a function of x and y and u has continuous partial derivaive of
first and second order and satisfies the Laplace’s equaion then u is called a Harmonic function.

Orthogonal system. If u(x, v) = ¢, and v(x, y) = ¢, be the two families of curves then these
two families are said to form an orthogonal system if they intersect at right angles at each of their
points of intersection.

Firstly, differentiaing u(x, y) = ¢\, we get

du du dy dy ou
F™ +ay e =0 = e ~—/—-—ml(say)

Now differentiating v(x, y) = C2y We get

v dv (lv dy v v_
+ =0 = =~ / 3y (Sa)’)

dx  dy dx

Now two families of curves intersect orthogonally if mpn=—1
ou dv 8_u I 0.
ax dy oy’

SOLVED EXAMPLES

Example 1. Show that the function fz) =7" is an analytic function, where n is a positive
integer.

Solution. Here, we have fz) =z",

+ A7) — (z+ )"~ !
then, F@= lim M’-—@_ lim @A =z
Az 0 Az— 0

Now f(z) exists if the above limits exists and does not depend on the manner in which

Az — 0. By Binomial theorem, we have
f@)= tim |nz*” l-l‘g(n -DITe H AT =0
Az—0 | 2

Therefore, f'(z) exists for all finite values of z.

Hence, f{z) is an analytic function. .

Example 2. Show that the function fy=|z} is continuous everywhere but nowhere
differentiable except at the origin.

Solution. Here, the function f{z) = | z |* is continuous everywhere. Since x* + y* is continuous |

every where.

w8z -]z
Now Flz)= lim [z0+Az] -]z
Az—0 Az
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(zo+ A2) (z + AZ) = 7z -

= lim
Az->0 Az_ _

= lim E{)+Af+z,og = lim ’z'o+zoéz— ¢ Az—>0=>Az=0)
Az 0 Az Az 0 : Az

Soatzp=0, f(0)=0.
When 7 # 0, let Az = r (cos ¢ + i sin 9), then Az = r(cos¢— i sin ¢) so that
Az EE’-S-Mﬂg—cosmj)—:smw

Az cosd+ising
which does not tend to a unique limit, since limit depends upon arg. Az. Hence, the function

|z [? is not differentiable for any non-zero value of z.

Example 3. If fz)=u +iv is an analytic function of z=x+ iy, then prove that the curves
u = constant and v = constant on the z plane intersect at right angles.

Solution. Let f{z) =1 + iv be an analytic function of z, then Cauchy- Riemann equation is
u, = v, and u, = - v, satisfied.

Now, let slop of tangent to the curve u = ¢} is my
and slop of tangent to the curve v =c; is m;.

To show that both the curve u = ¢; and v = ¢, is orthogonal we shall show that mymy = 1.

Taking differential of # = ¢; and v = ¢;, we get

du=0 and dv=0
Ju du dv ov

or : -a;dx+'é;dy 0 nd a—dx+a—dy 0
: Ay M Ay _ Vs
or ml—a— u and m= = v
—u,) v, wy "y
So mmy=|—= |- S = Tt 5 {(by C-R equation
172 {“YJ vty (m ) (1) OyE 9 )

= mymy=-— 1.
Hence, both the curve intersect at right angle on z—plane

* 6.15. CONSTRUCTION OF ANALYTIC FUNCTION

Milne’s Thomson’s method. We have z=x + iy so that x = ~’~2ﬂ
2~z
and T2 .
Now w=fD)=u+iv=u(x,y)+iv(xy)
z2+2z z~z), . (242 z-2
0’ ﬂZ)'”[ 2 ]*"’[ 2 2 ]

The above relation is formal identity in two independent variable z and z.
Taking x =z, y = 0 so that z =7, we get

R =u(z,0) +iv(z,0). (D
We know that

f’(z) = r=5es, +i iz =i 5 {by C-R equations)
Now taking 8_ =01(x, ¥) = 0:1(z, 0)
3

= 0a(x, ¥) = 02(2, 0)

we get - f (z) 01(z; 0) ~ i9(z, 0).
On integration, we get
1@ =[ 101z, 0) - ibafe. O dz + ¢
where ¢ is a constant. Now we can obtain fz) if # is known.
Similarly, if v(x, y) is given, then

A9 =] w1 0) + iz, O de + ¢




dv

where Yy = il and y=——
dy ox . -
Example 1. Obtwin. the analytic function fz) =u+iv, whose real part u is

¢ (xcosy—ysiny).

Solution. Here, we have  u=¢"(xcosy~-ysiny)

=¢" [~ xsiny~siny—~ycosy)

then '-g—=e’(xcosy ysiny)+é€ cosy
and ‘g—

C=xf = (x4 1)
and S| =e.0=0.

du
Now O x0)=5| =£x+1)
e (ax]m

(u
o, (x,0={5—| =0
> (aylﬂ)

Now, by Milne’s thomson’s method, we have
SR =[10/@0)~ i 0 dz

=J.[ez(z+ 1)-i.0] dz+c=I(zez+ez)dz+c

=ef(z—-1)+e+c=z+c.
Hence, A=z +c.
Exampie 2. Iffizx)=u+ivand u-v=_¢(cosy-siny), find fz).
Solution. Here, we gavc t~v=¢ (cosy-siny) .

u

v :
then . 3% 3 =¢€" (cosy —siny) (1)
: u_v_ «._
and - ay - ay =¢" (—siny —cos y)

=-~¢* (siny+cos y) (By C-R equations)

or ”a—éz

5 .
or 8: + %“ =¢" (sin y + cos y). . ()

Now, from (1) and (2)
ou v ..
a:e cosy=d>, (x,y) and b—=e siny =, (x, y).
Now f )-——+z ~¢| (z, 0) + iy, (z. 0)
ftz)—f 9, (2. 0) + ity (2. O)) dz +
—I(e cos 0 +ie? sm0)dz+c-je dz+c
or R =€+c.
Example 3. Ifﬂz)=—ML‘l’z¢Oandf(0)=0pmve ilmtﬂEL;&Q—)Oasz—)Oalong
S }’

any radius vector but not z —» 0 in any manner i.e., fz) is not dzﬁerennable at z=0.
Solution. Here, we have :
&tﬂ@l-j.@ﬂzﬂa xy(y x) _ —vcy(x+ty) —iXy
Tz 4 (x* +y)z & +y)z x+y2
Now we take the path y = mx (radius vector)

. - R0 . - ix® mx . — imx*
i B0 =i it

6

o0 4 =0 X +mx° ;50 mT+x
Also, along the path y = x*

. - RO Y Y

tim M= lim =—=%0.

70 Z 290 X +x6 2
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. ) -f0 .
Hence, lim £ -f0) # 0 along any path except radius vector..
z—0 2
Example 4. Prove that an analytic function with constant modulus is constant.
.Or
Show that an analytic function cannot have a constant modulus without reducing to a constant.
Solutnon Let fz) = u + iv be the given analytic function then u and v satisfy the equation
dv du _ dv .
ou = and = . 1)
dx ay ay Tax
We have, | f(z) | = constant = c.

Then Wvi=ch (i)
Now, differentiating (ii) partially w.r. to x and y, we get

du By du, w_

a”ax 0 and “ay”ay 0

o u du_ o
= uax—vay =0 and uay+vax-0, . [using (i)}
Now eliminating g in above equation, we get
du . o
(u +v)——0 a—xzo,provndeduﬂv#O.
- du dv_dv -
Similarly, we have 3y =0= o dy
Now, since 9u —aﬁ . & il are zero. So u and v are constant.
dx ay ox dy

Hence, fz) = u + iv is a constant function.
Example 5. [ffz) = u + iv is an analytic function, then show that u ana’ v are both.Harmonic
Junctions. : :
Solution. Let f{z)=u+ivis an analytic function then Cauchy-Riemann equation satisfied.
ie., . .
TN B
Ox ay dy . ox
Now, since u and v are the real and imaginary part of f{z). So partial derivative of « and v
exist and continuous function of x and y.

Now from equatlon (1), we have :
au v d?f.‘i:_ ézv_
A T xdy W dy dx
Adding both the equations, we have
u L9 u v %
o Oy 2" o dy odyox

2 2
Hence Ou T a
Ox ay
2 2
Similarly, we can easily shown that —a—: + 8_1; =0
ox” 9y
V) )
So the function « and v satisfy the Laplace equation % + g =0.
_ x N

Hence, u and v both are the Harmonic functions..

Example 6. Show that the function flz)=sinxcoshy+icosxsinhy is continuous
everywhere and analytic everywhere. ’ '

Solution. Here, we have

fz) =sinx coshy + i cos x sinh y. , .
Nowu(x, y) =sinx coshy and v(x, y) =cos x + sinh y.

Since, u and v both are the rational functions of x and y with non-zero denommators for all
value of x and y. So # and v are boh continuous everywhere.

Now to show f{z) is analytic everywhere, we have
Jdu du
-~ =008 x cosh y, ——=sinxsinhy

ox dy




and

Il

dv L
=~ =-—sinxsinh y,

ox
So. by above relations,

ou av ou ov

o ay dy )
So, « and v satisfying the Cauchy-Riemann equations.
Hence, f{z) is analytic everywhere,

Example 7. Show that the function u(x, y)=¢" cosy is harmonic. Determine its harmonic

cos x cosh y.

conjugate v(x, y) and the analytic function 2) = u + iv.

Solution. We have u=¢"cosy

= %*=excosy, %'"—'-e’smy
: 2 . 2
and %5=excosy and a'—;;—-e"cosy
. u %
which implies -5+ —5=0.
ox? 3y
Also, first and second order partial derivatives of u are continuous.
2~ u is a harmonic function.
Now, let v be the harmonic conjugate-6f u, therefore
—Q‘idx+§—2dy ____au dx+a—udy (By C-R equations)
ox dy dy ox
Tge smyd.x+e"cosydy
On mtegratmg, we gef ..
v= J siny + C.
Therefore, fA)=ut+iv=e‘cosy+i(esiny+c)
‘ A =é&* (cosy+isiny) +ic=é". e” +ic
=¢""Y +ic = ¢* +d, where d = ic, a complex constant.
* SUMMARY

Complex number = {z=x+iy:x,y € R}.
If z =X + iy, then |¢| = Vi +y?, arg (¢) = tan™ ( iﬁ )

z+7=2Re(2)

z-=z=2iIm(z)

z2=7 & zis purely real.

z+z=0 = zis purely imaginary

utn=z71+2n -
lZr+ 2 +z - 5[ “2[|21|2+|Zz|]

©arg (31 25) = arg (z)) + arg (z)

arg(z—:)=arg (z)) - arg (z3)

z= ' z | etG .
Equation of a straight line is & z + az + k =0, where o # 0 and £ is real.
Equation of a circle is 2z + ¢ z+ ¢ z+ k=0 where & is real and ¢ is a complex number.

. du _dv Ou__dv
¢ C-Requations are x 3y and 3 "o
e u=f(2) is harmonic if V24 =0.
» STUDENT ACTIVITY

Prove that [ Z1 + Z2 P +|Zi - 22 [P =201 Z1 P +| 22|31
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2. Obtain the analytic functions f(z) = « + iv whose real part u is & (xcosy—ysiny).

TEST YOURSELF

1.  Show that the following function are Harmonic and find their Harmonic conjugate :

ti)u = % log (,\c2 + yz)(ii)u = cos x cosh y.

2. Show that the function flz) = V|xy| is not a;nalytic at the origin, although Cauchy-Riemann
equations are satisfied at the orlgm

3. Iffp)= —X—M » z# 0, f0) =0, then prove thatﬂ—l—z—m — 0 as z — 0 along any radius
\' + V

vector but not as z — 0 in any manner.
4. Show that the following function are Harmonic and find the corresponding analytic function

u+ v

® u=sinxcoshy+2cosx.sinhy+x2~y2+4bcy () wu=e"cosy.

ANSWERS

1. () tan"l§+c (ii) —sinxsinhy+c

4. () sing+2-2i(sinz+)+c (i) €+c
FILL IN THE BLANKS : .
1. A complex number is defined as an ordered pair (x, y) of ..................... numbers. _
2. Two complex numbers x + iy1 and x2 + iy, are said to be equal if x =x2 and ......... cererei .

3. Every non-zero element having multiplicative ...

4. Two complex numbers are said to be equal iff thelr conjugate are .

TRUE OR FALSE :
Write ‘T’ for true and ‘F’ for flase statement :

1. Two complex numbers are said to be equal iff their conjugate are equal. (T/F)
2. A function, which is analytic is also called Holomorphic function. ' (T/F)
3. Continuity is a necessary but not a sufficient condition for differentiability. (T/F)
4. Argument of a complex number is unique. (T/F)
5. Conjugate of a complex number can be obtained by replacing ¢ by — i in the given complex’

number. _ (T/F)
6. A complex number is purely real if z - z=0. (T/F)

MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :

. 1 ..
1.  The conjugate of TR

2 + i 1 2-i

(@ B (b)2—i (¢} 5 (d)2+:
2. Argz+Argz(z¢Q)is: : ,

(a 0 . (bn (cyn/2 (d) 12m.

ANSWERS

Fili in the Blanks :

1. Real T 2y=y, 3. Inverse 4. Equal
True or False : - - -

L. T 2.T 3.T 4F ST 6T
Multiple Choice Questions :

1. (a) 2. (a)

0aQ




