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SEQUENCES

STRUCTURE
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Q Summary
□ Student Activity
□ Test Yourself

LEARNING OBJECTIVES
After going through this unit you will learn :

• What is meant by sequences ?
» How to classify the convergent, divergent and oscillatory sequences.

• 1.1. INTODUCTION
George Cantor (1845-1918) is known as the creator of the set theory. He made a considerable 

contribution to the development of the theory of real sequence, and found a firm base for most of 
the fundamental concepts of real analysis in the sequence of rational numbers. Though his lay-outs 
are not convenient in the initial stages, they are quite advantageous while making advanced 
investigations. The study of many important and advanced concepts becomes easy if the notion 
of the sequence is employed.
Set of Numbers

We shalll be using capital latters N, I, Q and R for the set of numbers as specified below : 
N= {n : /I = 1,2, 3, ...}, the set of natural numbers,
1 = {a: : = ... - 2, - 1, 0, 1, 2, ...}, the set of integers,

Q = {a: : -c is a rational numbers}, the set of rational numbers 
R = {a: : is a real numbers}, the set of real numbers.and

• 1.1. SEQUENCES
Let N be the set of all natural numbers and S be any set of real numbers. A function whose 

domain is the set of natural numbers and range is^a subset of S, is called a sequence in S.
Symbolically, if we define a function / : N —> 5, then / is a sequence. As in the case of 

function, we shall denote a sequence in a number of ways:
(i) Usually a sequence is denoted by its images. For a sequence /, the image corresponding 

to n G is denote by /„ or /(«> and is called the n’' term of the sequence f. For example
(1,4,9, ... > is the sequence whose n^ term is n^.

(ii) Using in order, the first few elements of a sequence, til! the rule for writing down different 
elements becomes clear. For example (1, 2, 3, ... > is the sequence whose n'^ term is n.
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Mathematics / (iii) Defining a sequence by a recurrence formula i.e., by a rule which expresses the n'' term 
by the {n - 1)'* term. For example, let

fli = 1, 1 = 2a„, for all n > 1.
These above relations define a sequene whose term is 2"” *.

Examples :
(i) < — > is the sequence (1,:^ ’ »7 )

ti 2 3 4 a/

1 i. j_1 1(ii) (~) is the sequence (^ ’

(iii) (- 2/1) is the sequence (- 2, - 4, - 6,... - 2/i, ... >
(iv) (^>isthesequence<i.|.^...,^^l .

Range of a sequences. The set of all distinct terms of a sequence is known as its range. 
Constant sequence. A sequence {s„ > defined by = a for all n £ N, is called a constant

sequence.
Equality of two sequences. Two sequences (s„) and (t„) are said to be equal, if s„ = /„

Vns N.
Operations on sequences. Since the sequences are real valued functions, therefore, the sum, 

difference, product etc. of two sequences are defined as follows :
(i) If < ) and () be any two sequences, then the sequences whose n'^ terms are s„ +1,„

s„-t„ and 5„. t„ are respectively known as the sum, difference and product of the sequences 
{s„) and (t„) and are denoted by < ), 1„) and (s„ t„ ) respectively.

(ii) If s„i^0, V /I e N, then the sequence whose n‘^ term is — is called the, reciprocal of the

1sequence {s„) and is denoted by (—).

(iii) The sequence whose /i'* term is 5„/r„ (t„*0, V « 6 N) is known as the quotient of,the 

sequence {) by the sequence (t„) and is denoted by (—).

(iv) The sequence whose n'^ term is ks„, where g R is known as the scalar multiple of the
sequence {s„)hy k and is denoted hy {ks„). - .

\

• 1.2. BOUNDED SEQUENCES
(i) Bounded below sequence. A sequence (s„) is said to be bounded below if there exists 

a real number / such that s„ > I V // g N.
The number I is known as the lower bound of the sequence ().
(ii) Bounded above sequence. A sequence () is said to be bounded above if there exists 

a real number .// such that s„<u\f ne N.
The number u is said to be upper bound of the sequence (s„}.
(iii) Bounded sequence. A sequence { ) is said to be bounded if it is bounded above as

well as bounded below.
Or

A sequence (j'n) is bounded if there exist two real numbers I and u (/ ^ w) such that 
l<s„<u\fneN.

Equivalently, a sequence is bounded iff there exists a real number k>0 such that 
\s„\<k hgN.

(iv) Unbounded sequence. A sequence (s„) is said to be unbounded if it is not bounded.
In sequences, terms with equal values can occur. Therefore, a sequence may have more than 

one term with the smallest value. In such a case any of those is taken for the smallest value. In 
fact while talking about the smallest value we are interested in the value of the term rather than the 
position of the term in the sequence. Similar explanation holds for the greatest value. Note that, 
like sets of real numbers, a sequence bounded below or above may or may not have a smallest or

2 Self-Learning Material



a greatest member accordingly. Clearly, an unbounded sequence can not have a smallest or a greatest 
member.

Sequences

(v) Least upper bound. If a sequence < > is bounded above, then there exists a number
Ui such that

s„<ui \/ ne N.
This number ui is called an upper bound of the sequence {s„). If < ui, then from (1) we

...(1)

find that
' Sn<U2 Vn€N

which implies, U2 is also an upper bound of the sequence {>. Hence, we can say any number 
greater than uj is an upper bound of (s„ ).

Hence, a sequence has an infinite number of upper bounds if it is bounded above. Let u is 
the least of all the upper bounds of the sequence {s„ >. Then u is defined as the least upper bound 
(l.u.b.) or supremum of the sequence {s„ ).

(vi) Greatest lower bound. If a sequence < ) is bound below then there exists a number
l]G R such that

li<s„ V n e N.
This number is known as the lower bound of < s„ >. If I2 < /i, then from (ii) we have 

/2 < V n € N
which implies, I2 is also a lower bound of the sequence {). Hence, we can say any number 
less than /j is a lower bound of (>.

Hence, a sequence has infinite number of lower bounds, if it is bounded below. Let I is the 
greatest of all the lower bounds of the sequence (s„ ). Then / is known as greatest lower bound 
(g.l.b.) or infimum of the sequence ().
Examples :

(i) The sequence () is bounded below by 1 but not bounded above.
(ii) The sequence (- y) is bounded as ^ ̂  ^ < 1 V n € N.

(iil) The sequence (- ) is bounded above by - 1 but not bounded below.
(iv) The sequence (“ > is bounded since ^ < 1 V n e N.

(v) The sequence {(- 1)") is bounded since | (- I)" | < 1 V « G N.

•••(ii)

(•.• ],(-l)"| = l Vne N)
(vi) The sequence {s„) defined by = 1 + (- 1)" for all n e N is bounded since the range 

set of the sequence is {0,2}, which is a finite set.
(vii) The sequence ((- !)"/«) is bounded since ] (- l)"/n | < 1 for all n € N.
(viii) The sequence (2") is bounded below and has smallest term as 2. Every member of 

]- 00,2] is a lower bound of the sequence and the sequence is unbounded above.
Theorem 1. A sequence is bounded iff there exists a positive integer m and

le R, <2 < 0 such that
\ s„ - l\<a n> m.

Proof. Let < ) be a bounded sequence. Then there exist two real numbers ci and C2 such
that

C] < < C2 V n G N

Cl +C2
\ /

C1+C2 C1 + C2
< -2- — VnG N< —2or

/ V

Cl +C2Cl -C2 C2-C1
VnG N<or 2 2

Cl +C2Cl - Cl
- a<{sn-1) <a V«gN where, a = —-— and I = ^

|5„-/|<a VnGN where m = 1 G N, / G R and a > 0.

or

or
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Mdlhemalic.s I Conversly, let there exists / e R, a > 0 and m e N such that 
i - /1 < a V n > wi

I - a < s„< I + a V n>nt
k] = min (ji,52, j, / - a}
k2-ma\ {^1, 52, ... 5„_i, / + fl}.
ki<Sn<k2 V n e N.

This gives
Let

and
Then
Hence,-<-5„) is bounded sequence.
Limit 'point of the sequence. A real number I is called a limit point of a sequence {s,^) if 

eveiy nbd of I contains infinite number of terms of the sequence. . .
. Thus /£ R is a limit point of the sequence {s„) if for given e>0 5„£ ]/-e, / + e[, for 

infinitely many points.
The limit points of a sequence may be classified in two types :
(i) those for which I = s„ for infinitely many values of n £ N.
;(ii) those for which / = s„ for only a finite number of values of n £ N.
But this distinction is not very much needed. As such we do not distinguish the above 

mentioned two types of limit points of sequences by different titles.
Examples on Limit Points :

1(i) The sequence (— > has one limit point namely 0.

(ii) The sequence ((- 1)" > has two limit points 1 and - 1.
(Hi) The sequence < n) has no limit point.

(- D"(iv) The sequence {1 +-^—has one limit point i.e., 1.

(v) The sequence { 1, ^ ’ 1,^ ’ 1, j ... ) has one limit point i.e., 1.

(vi) The sequence < n + I) has no limit point.
Sufficient Conditions for number / to be or not to be a limit point of the 
Sequence < sn).

(i) If for every 8>0, 3m£ N such that 5n£ ]/-e,/ + e[ Vn>m or equivelently 
15„ - i I < e V n > m, then I is the limit point of the sequence {s„ ).

(ii) If for any e > 0, 5„ £ ]/-£,/ + e[ for only a finite number of values of n, then / is not a 
limit point of the sequnece {s„ ). Such a condition is also necessary for a number / not to be a limit 
point of the sequence (5„).

Theorem 1. (Bolzano-Weierstrass Theorem for sequence).
Every bounded sequence has at least one limit points.
Proof. LetS={5„:n£ N} be the range set of the bounded sequence {5„). Then S is bounded 

set. Now there may be two cases :
Casel. Let Sbe a finite set. Then 5„ = p for infinitely many indices n. Here/? £ R. Obviously 

p is a limit point of (s„).
Case n. Let 5 be an infinite set. Since S is bounded, then by Bolzano- Weierstrass theorem 

for sets of real numbers, S has a limits point, say p. Therefore every nbd of p contains infinitely 
many distinct point of S i.e., infinitely many term of (5„) and hence pis a limit point of the sequence

• 1.3. LIMIT SUPERIOR AND LIMIT INFERIOR
The greatest limit point of a bounded sequence is called the upper limit or limit superior and 

is.denoted by lim s„ and the smallest limit point of a bounded sequence is called the lower limit 
or limit inferior and is denoted by lim s„.

• By definition it is obvious that lim s„ < lim s„.

• A bounded sequence {s„} for which the upper limit and lower limit coincide with real 
number I is said to converge to 1.
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Limit of sequence. A sequence {>w said to have a limit I if for a given e > 0 3, positive 
integer m such that

Sequences

I - / [ < e, V n >-m.

• 1.4. CONVERGENT SEQUENCES
Definition (1) : A sequence {s^) is said to converge to a number I, if for a given, e > 0 there 

exists a positive integer m such that
15„ - /1 < e, V n>m.

The number I is called the limit of the sequence (5„) and can be written as 
^/asw^oo or lim s„ = l or lim^„ = /.

n »
Definition (2) : A sequence < 5^, > is said to be convergent iff it is bounded and has one and 

only one limit point.
In such a case the sequence is said to converge to this limit point 1.

• 1.5. SUBSEQUENCES
Let < ) be any sequence. If < nj, «2» • • •’• • •) t>e a strictly increasing sequence of positive

integers i.e.. />/=»«/> nj, then the sequence
(s„^,s„^, ...,s„^ ... )

is called a subsequence of {s„).

SOME IMPORTANT THEOREMS

Theorem 1, If (s„) is a sequence of non-negative numbers such that lim s„ = I, then / > 0. 
Proof. Let, if possible / < 0 then - / > 0. Now lim s„ = I, therefore, for e = - ^ > 0, there 

exists a positive integer m such that

n> in.

In particular
/

Um-M <- 2 

, I , I=>

I

which is a contradiction, because s,„ > 0. Therefore our assumption is wrong. Hence, we must 
have / > 0.

=>

Theorem 2. A sequence can not converge to more than one limit point.
Or

Limit of a sequence is unique.
Proof. Let if possible, a sequence (s„ > converges to two distinct numbers /j and l2- 
Now li^ 1] ~

=>Wl-/2|>0.
Let e = ^ I - 4 |; then e > 0.

Since {5„) converges to /], there must exists a positive integer mi such that
|<e, Vn>mi;

Similarly {s„ > converges to I2, there must exists a positive integer m2 such that 
Un “ ^21 < £ V n > m2, 
m = max {wti, m2}.

Then result (1) and (2) hold for all n > m. So for all n > m we have
Ul ~ ^2 i - 1 “ ^1) “ ~ h) I

^ I -S'/! “ ^ 1 + Un “ ^2 I

•••(1)

•••(2)
Now, let-
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Mathematics I [Using (1) and (2)]<e + e
= 2e
-\h~h\

I ^1“ ^2 I < Ml “ ^2
which is absurd, hence we must have /i = I2 i.e., the limit of the sequence is unique.

Theorem 3. Every convergent sequence is hounded.
Proof. Let () be a sequence which converges to /. Take e = 1. Then there exists a positive 

integer m such that
I ^„ - / | < 1, V n >m 

{I - i) < s„ < (I + 1), V n > m.
ki=min{si,S2,...,s^.i,l-l} 
k2 = max {si,S2, 
ki<s„<k2 V H e N.

Hence the sequence (s„) is bounded.

i.e..
Let

and
therefore

Note. The converse of the above theorem is not necessarily true, i.e.,'a bounded sequence 
need not be convergent. For example < (- 1)") is bounded but not convergent.

Theorem 4. If{ s„ ) converges to I, then any subsequence of{s„) also converges to 1. 
Proof. Let (s„^) be any subsequence of (s„). Then by definition of subsequence 

«!, ^2, ...,nfc,... are positive integers such that
n\< n2< ... <ni(^< ...
/ij > 1 ^ > /:.

Since {s„) converges to I, so given e > 0, there exists a positive integer m such that 
I - /1 < e, V /: > m

Now (By induction)

for k > ni, we have
nic^k>m

1M for all nt- > mtherefore
(s„^) converges to /.

Theorem 5. The limit of the sum of two convergent sequences is the sum of their limits. 
Proof. Let {s„) and < ) be the two given sequences such that

lim s„ = f 
lim t„ = I2.

Since, lim s„ = l\, therefore for a given e > 0, there exists a positive integer m\ such that 
I ■s'li “ ^1 I < V n > m.

Similarly, lim t„ = I2, therefore, for a given e > 0, there must exists a positive integer m2 such

...(1)
and ...(2)

that
|/„-/2|<e/2, V/j>m2. 

m = max {mi,m2}. 
j - /] I < e/2, V n > m 
\l„-l2\<^/2, \/n>m.

Let
Therefore

and
Now, consider

1 + Q - {il + ^2) I = I (Sn - h) + i‘n “ k) 1^ V /! > m
^ I - A I + U/, - ^2 |. V n > m 
< e/2 + e/2 = E,'^n>m.

Therefore, the sequence (5^ + ) is convergent and
lim (s„ +1„) = /i + = lim s„ + lim t„.

Theorem 6. If lim s„ = /] and lim t„ = I2, then lim (s„t„) = /[ . I2. 
Proof. We have

[ I ^ I ^1^2 I
= I (^n~h) + i^n h) | 

^ Un 1 I ■Sn - ^ I + Ml ! U/i - ^2 I- ...(1)
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SequencesThe sequence < > is convergent, therefore it is bounded, (■.' Every convergent sequence is
bounded) so there must exists a positive real no c such that

1I < c, V Ai G N.
Since the sequences () and (r„ > both are convergent, there must exist, positive integers 

mi and nh siich that

•••(2)

I “ ^1 i < £/2c, V « > /Aij 
I - /2 ! < e/2c, V n > m2. 

m = max {/«], m2}. 
From (1). (2), (3) and (4) we have

IV/, - hh I < ^ ^ +1

..•(3)
and ...(4)

Let

'i n>m•2|c!
< e/2 + e/2 = e, \/ n>m.

Theorem 7. If Urn 5^ = l[, 1] ^0 and Sn^O, V e N then
Therefore

1 1lim
Sn

Proof. Since /i ^ 0, there exists a positive number c and positive integer mi such that 
] I > c, V « > mj.

Also lim therefore, for a given e > 0, there must exists a positive integer m2 such that 
I <.c| /i I e, \f n>m2.

...(1)

...(2)

Let m = max {mi,/a?2}- Then 
1 1 e, \f n>m

kn!|/ll c\tISn 11
= e, V n > m.

,.11 lim — = —• s„ l\
Theorem 8. If lim s„ = l\ and lim t„ = I2 {h V n G N then

Therefore,

Ulim — = T- 
tn h

Proof. We have
1lim — =lim s„ —
Intn

1= lim . lim —
tn

[': limit of the product of two sequence is equal to the product of the limits]

[By previous theorem]1
I

lim — = —• 
- tn h

=>
n

• 1.6. DIVERGENT SEQUENCES
Definition (i) A sequence ( ) is said to diverge to + «>, if for every real number k> 0, there

exists a positive integer m such that 
s„> k, V /I > m.
Definition (ii) A sequence { s„) is said to diverge to ~ <», if for every real number k<0, there 

exists a positive integer m such that 
s„<k, n>m.
Definition (iii) A sequence is said to be divergent sequence, if it diverges to either + ~ or

- 00.

Definition (iv) A sequence, which is not convergent, is known as divergent sequence.
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Mathematics I Examples :
(i) ( 3, 3^ 3^, ...) diverges to + «>.
(ii) (- 2, - 2^-2^, ...) diverges to - DO.
(iii) < 2,4, 6, ...,-2u, ...) diverges to +
(iv) ( - 2, - 4, - 6,..- 2n,... > diverges to - <».

\

• 1.7. OSCILLATORY SEQUENCE
A sequence {s„) is said to be an oscillatory sequence if it is neither convergent nor divergent. 
An oscillatory sequence is said to oscillate finitely or infinitely according as it is bounded or

unbounded.
In other words, we can say /
(i) A bounded sequence, which is not convergent is said to oscillate finitely.
(ii) An unbounded sequene which does not diverge, is said to oscillate infinitely.
(iii) A bounded sequence which does not converge and has at least two limit points, is said

to be oscillate finitely.
Examples :

(i) ( 1 + (“ 1)") oscillate finitely.
(ii) ((- 1)") oscillate finitely.

Y(iii) ((- i)" ^ ) oscillate finitely.

(iv) (n(-l) ) oscillate infinitely.

\

SOME IMPORTANT THEOREMS

Theorem 1. If a sequence {s„) diverges to infinitely, then any subsequence of {s„) also 
diverges to infinitely.

Proof. Let {s„^) be any subsequence of the sequence (s^). Then by the definition of 
subsequence < Ut, ^2,..., ... ) is a strictly increasing sequence of positive integers

^ ni > 1 => «^ > ^:. (By induction)
Take any positive real number C].
Now {Jn) diverges to for Ci > 0 3 m G such that > Ci for all n>m i.e., s^ > Cj, 

V /:> m for k > m, we have nj^>k>m i.e., > m.
Sn^ > c\ for all > m.

) diverges to <».
Theorem 2. If the sequence _{ s„ ) diverges to infinity and the sequence {t„) is bounded, then 
tn) diverges to infinity.
Proof. The sequence (/„) is bounded; therefore for arbitrary positive number ki such that 

I fn I < ^[.
Also, the sequence { s„) diverges to infinity. Therefore for arbitrary positive number k there 

must exists a positive integer m such that
s„> k + k\, V n > m. \

Now, for all n > m, we have
- I r„ I > /: + /:i - /:i = /:.

Thus for /: > 0, 3 a positive integer m such that • .
s„ + tn> k, V /I >m.\

=> The sequence (+1,,) diverges to infinity.,
Theorem 3. If the sequences (s„) and (t„) both diverges to infinity, then the sequences 
in) ■ in) diverges to infinity.
Proof. Since, the sequence () diverges to infinity, therefore for ky > 0, there must exists a 

positive, integer m^ such that s„> k^ V n >;«]. Similarly, the sequence (t„) diverges to infinity, 
therefore for k2 > 0, there must exists a positive integer mi such that

t„> ki, V rt > nij.
Let m = max {mi, m2}. Then
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s„ + t„>ky-\-k2 = k (say)
Sntn >h.k2 = l2 (say).

Therefore, sequences () and (s„tn ) diverges to infinity.

Sequences
and

SOLVED EXAMPLES
1Example 1. Show that the sequence (—) converges to 0.

lim lim

Solution. Let

1Now = 0
n —» »

1and lim ^2/,+ != lim
fi-»~

lim ^2/1 = 11m S2n
n «

lim ^„ = 0, V n e N.
, n —»«•

Since 0 is a finite quantity. Hence, the sequence < ) is convergent and converges to 0.

= 0
2n+I

Therefore = 0+1

Example 2. Show that the sequence ((- 1 )”/n) is convergent.
Solution. Let (.rJ = <(-l)Vn>.

(-1)^ 1Here lim ^2^ = 11m = lim
fl —»“2/1

2n+ 1(-1) - 1
lim 52/1+1= 11m

n —» oa

lim S2„= lim
fl —» ao

lim 5„ = 0, V /I € N.

and lim T----- - = 0
o. 2n + 12/1+1/I —»>»

which gives, •^2^ +1 - (^

=>
n —»«»

Since 0 is a finite quantity. Hence, the given sequence (5„) is a convergent sequence. 

Example 3. Discuss the convergence of the sequence (~).
3"

1Solution. Let
3"

1
Then lim 52rt = 11m

/I »

lim 52^+1= 11m

= 032n
-» eo ,

1
and = 02fl+ I~ 3

lim 52rt “ 11m 52/1which implies = 0+1
n—*’»

lim = 0, V /I e N.
n -»oo

Since 0 is a finite quantity, hence, the given sequence (5„) is a convergent sequence. 
Example 4. Show that the,sequence {s„) defined by 

s„ = ((V/i + 1 - V^) >, V « e N

/I —» OO

Therefore,

is convergent.
Solution. We have

5„=V/I+1 -
For any e> 0, | 5„ - 01 = V/i+T - < e

VnTT< (e + V«).
n+l<E^ + 2e'Jn+n.

1 < + 2e=$•
1i.e. if < n

4e^
1Thus, for any given e > 0, 3 m > 2 € N such that

4e
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Mathematics I I - 0 I < e, V rt > m.
Therefore, lim = 0.
Since, 0 is a finite quantity. Hence, the given sequence {^„) is convergent.
Example 5. Show that the sequence {s„) defined by .s„ = r" converges to0if\r\<l. 
Solution. If|r|<l. Then ' , ' . . '

1ki = » where h > 0.
l + /i

n {n - 1) ,2r+..,+/i"(1 +/i)"= 1 +nh +

> i -i-nh V n.

Since, 2 !

k/. - 0 1 = I INow
1=f^r=

(1 + /0"
1 V n.^ I+nh

Let e > 0. Then
1 1<8 or n> ~“1U„-0.1<e if 1 +n/i

N ■1Now, if we take a positive integer m such that m > — - 1 / h, then, for all n>m 

|S„-0|<E.
Hence, the sequence (5„) converges to 0.

3nExample 6. Show that the sequence (^„) = —^—
n + 5n

■ has the limit 3.1/2

Solution. Let e be any positive number. 

Consider,
1/2 153n 15n-3 1/2 .1/21/2n + 5n n + 5n n

15 2253n = 8 ifTherefore, -3 <8 or « >
n + 5«'^

If we choose a positive integer m >
8

1- 3 I < 8, V rt > m. 
lim J„ = 3.

n ~
Example 7. Show that lim "V^=l.

n ->«
Solution. Let '''^n = I + h, where h>0 ' 

n = {l+hf

= i+ nh +

n{n-\) 2 
2 ’

1/2 8^n
225 ’ then, we get

Hence

=>
«(n-l) h^+...+h"

2 !

{•.• h>0)V n=>. n >

1 for n>2

, for n > 2.

Let 8 > 0 (any positive number, however small) then
< 8 provided, —^, 

n ” 1
2If we take m e N such that m > -r + 1
8^

I /l I < 8 V rt > /«

j...<8^ or n>

then

10 Self-Learning Material



fV^r-l|<£ \/n>m'=^ lim 1. Sequencesor

•S'rt+ IExample 8. If {s„) be a sequence such that s„*0 for any n G N, and = 1. Then prove
Sn

that i/1 /1 < 1, then > 0.
Solution. Since !/|<l. Hence there exist Sj > 0 such that

I /1 + - /i < 1.
‘*'n+ 1Now ^ there exists a positive integer m such that

Sn

■y«+ 1 - / < e, V n > m.
Sn

We have
Sn+ 1 ■^0+ 1 Sn + ]-I +l <

Sn "Sn Sn

<El + I / [ , \/ n>m 

< h, n>m.•y/;+ 1i.e..
Sn

Replacing n by, w, m + 1,n - 1 successively in the above equation and multiplying the 
corresponding sides of the resulting {n - m) inequalities, we get

Sm + 1 Sm-\-2 Sn

Sm + 1Sm Sn-l

Sm +1 S„ + 2 Sn

Sm Sm +1 -Tn — 1

I I < A" --- , for all n > m. ...(1)=>

Since, 0 < /i < 1, therefore /i” —> 0 and hence, given e > 0, there exists a positive integer mj
such that

/i^'e|/z'‘|< V n > m,. ...(2)I vl ’
Now, let us choose a positive integer p such that 

p > max (mi, m2}.
From (.1) and (2), we get

I^j<e \fn>p.
Hence Sn —> 0.

• 1.8. CAUCHY SEQUENCES
A sequence {s„) is said to be Cauchy sequence if, given e > 0 there exist m G N such that 

I -Jn - I < £. V rt > m 
\s^-Sq\<E, V p,q>m 
+ I < Vn>m and p>0.

or
or
Examples :

(1) The sequence {— > is a Cauchy sequence.
2"
1(ii) The sequence.(— > is a Cauchy sequence.

1(iii) The sequence (~ ) is not a Cauchy sequence, 
n" . .

(iv) The sequence ((- 1)" > is not a Cauchy sequence.

Self-Learning Material 11



SOME IMPORTANT THEOREMSMathematics I

Theorem 1. Every Cauchy sequence is bounded.
Proof. Let < ) be a Cauchy sequence.
Taking e = 1. there exists a positive integer m such that

V«>m
{s^- l)<5„<(j„+ 1) Vn>m.

/: = min U,,,-I, i-i, i-2,
/i' = maxU„ +
k<Sn<K, n.

=> The sequence () is bounded.
Note. Converse of the above theorem is not necessarily true, i.e., a bounded sequence need 

not be a Cauchy sequence, for example, the sequence {(- 1)" > is bounded, but is not a Cauchy

Let
and

Then

sequence.
Theorem 2. (Cauchy’s General Principle of Convergence). A sequence is convergent if 

and only if it is a Cauchy sequence.
Proof. Let us first suppose () be a convergent sequence. Let, this sequence converges to

1.
.•.for a given e > 0 these exists a positive integer m such that 

I - /1 < e/2, V « > m. •d)v
In particular, for n~m

I ^ / i < e/2. •••(2)
Now, consider

I I = I - / + / - I

< e/2 + e/2, V n > m 
= e, n>ni 

l-Sn-'Sml<E, V/I>m 
=» (> is a Cauchy sequence.
Conversely, let {s„)bt tt Cauchy sequence.
=>( > is a bounded sequence
=> By Bolzano-Weierstress theorem (s„) has at least one limit point, say /. We shall show

i.e..

[By Theorem 1]

that the sequence < s„) converges to /.
Let e > 0 be given.
Since, () is a Cauchy sequence 
.-. B a positive integer w such that

i -Sb - -Jm I < V n > m.
Since, / is the limit point of < s„ >.

for above choice of e and m, 3 a positive integer k> m such that 
\sic-l\<z/3.

•••(3)

•••(4)
Since, k > m, therefore from (3)

...(5)
Now, consider

\Sn-l\ = \Sn-S„ + S„-Sk + Sk~l\ .

' ^ Un - I + Um - I + I -Syt - M
< e/3 + e/3 + e/3
= e

I s„ - /1 < e, n>m.i.e..
=» (J'n) is convergent.

SOLVED EXAMPLES
Example 1. If {s„) is a sequence in R, where
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y
, 11 1 

^,-l + 2 + 3+'-.+-

- |. Verify, if this sequence satisfy the Cauchy criterion.

^„-l + 2 + 3 

.11
•y« + l- l+ ^ + ^ + -- -+ “ + “,,23 n n+I

Sequences
n

evaluate, Urn \ a^

Solution. Here

+1

1
n
1 1

=j>

1
+ 1 ~ n+1

Jim |5„+,-jJ = 0. 

Also, here we have •

=>

1 1 11 1 1 ,11 1 
1 + 2 + 3 + ...++ ...+- + + + ...+ —^2n~ ^n- n n+1 n + 2 2h n

1 1 1+ + ...+ —n+1 n + 2 2n
1 1 1>n ■■ ------- r>:;“etc.n+1 2n2n ■

i > ^ Vn€ N.
1=> there exists a positive integer k such that | j'n - 5^. | > - whenever n>k 

=> Cauchy criterion is not satisfied.
Example 2. Show by applying Cauchy’s convergent criterion that the sequence {s„) given f

■ by
. 1 1*,-1 + 3 + 5 + ...+

1 diverges.2n- 1
Solution. Here, we have

ill•yn+l-l + 3+ 5 + -- - +
1 1+2n-l 2(n+i)-l

1 11 1= 1+-+-+...+

, I 1
^n+i~^n- 1 + 2 + 2 + ...+

+2n-l 2n + l------
1 1 1 1 11 + 3+-+...+ 1+2n - 1 2n + 1 2n- 1

1 > 0, V n e N. .2n+ 1 
Sn + \>Sn, Vne N.

=> The sequence < > is increasing sequence.
Also, we have

. 1 1- 1 + 2 2 + • • • +: 

1 1 1

1 1 1+ +... +2n - 1 • 2/1+1 4n- 1
1 1 1+ + ... +2n - 1 2n + 1 4n- 1

l
. 1 1 1 + 3+J+...+

1
2n- 1

11 1+ + ... +2n + 1 2n + 3 4n- 1

1 1 1T------> —etc. and there are n terms2n - 1 4nk J
^ 1-^2., - -Jn I > « e N . .

there exists a positive integer such that | - 5.^ I > ^ whenever n>k

^ Cauchy criterion is not satisfied.
The sequence (5„ ) can not converge '

=> The sequence (s„ > diverges to +

Self-Learning Material 13



SOME IMPORTANT THEOREMSMathematics I

Theorem 1. (Squeeze Principle). If{ s„ ),{t„) and { u„ > are three sequences such that 
(i) s„<t„<u„ y n

and (ii) (s„) converges to 1 and ( u„ > also converges to I, then { t„ ) also converges to 1.
Proof. Let e > 0 be given. Since the sequences (> and ( «„ > converges to I, there must 

exist positive integers m\ and m2 such that
I 5;, - /1 < e, V « > mi 

I - /1 < e, V w > m2-
...(I)
...(2)

Let m = max {/jii, m2}. Then for n> m,we have
l-'Z<S„<tn<U„<l + t

I - /1 < e, ■n>m
or
or

Hence lim ?„ = /
=> () converges to /.
Theorem 2. (Cauchy’s first theorem on limits). If lim s„ = I, then

5i +.r2+ ••• = /.lim nn —» “
Proof. Let us define a sequence (r„ > in such a way that 

't„ = s„-1
lim t„ = \im{s„~ 1) =\im s„ -1 = I -1 = 0

h + ?2 + ••• +
then

5| +52 + ••• •and = 1 +n n
In order to prove this theorem, we have to show that

fl + f2+ ■■ ■ + ^ Qlim n
Now, sequence (/«) is convergent ('.■ {5„ ) is convergent), therefore it is bounded and hence 

there must exists a positive number k such that 
] r„ I < /:, V n e N.

Also, () converges to zero. Therefore for a given e > 0 there must exists a positive integer
m such that

I I < e/2, V;? > m.
Now, consider

t\+h+--+tm . t„^^ + ...+t.h+t2+...+t. +nn

+ -Uni^ |r, I I f2i+ +|/m i I t>n
~ n

mk £ , ; w< — + x(/i“m), V n > m.
fX 2^

+1
n

Keeping m fixed, we have
mk 2mk<e/2 if n>

» Let, p, be any positive integer > > so that n > p. we have

en

mk e 
n ~2
X = max {m, p}.

Therefore, for each n > X, we have
ti +12 + ■•■ + ?»

Let

£ £
n

This gives
t]+t2+ ■■■+t„

lim = 0.,n
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Hence, we have ' Sequences

II ce fi

Theorem 3. (Cauchy’s second theorem on limits). Jf{ s„ )Js a sequence of positive,terms 
and Urn s,, ~ I, then

fl -4 oo

/

lim(suS2,
Proof. Let (/„) be a sequence, such that 

tn = log 5;,, V /I e N. 
lim s„ =! lim t„ = lim log\y„ = log I

= /.

Now

(•.• lim = /« lim log = log / provided > 0, V«and/>0)
Then, by Cauchy first theorem on limits, we have

+ h + +lim = lim t„ = log /n
log + log 52+ ... + log S„

lim = log/n11—*^

1
-log (Si,S2, J„) = l0g/

lim log(^i,i2......
iim(si,S2...,y„)^^"

Theorem 4. lf{s„) is a sequence such that

* = I where | /1 < 1
n —4 oo '^/i ■

lim s„ = 0.

Proof. Since [ /1 < 1, let us choose a positive small number e such that 
I / | + E< I.

= /, therefore for s > 0 there must exists a positive ineger m such that, for all

lim=>

= log/
= /.

lim

then

•5/1+ 1Now, lim
5/1

n>m
5/1+ 1 -/ <e

Sn

5/1 + 1 5/1+ 1-|/1< -/ <e=>
5/1 5/1

5/1+ 1 < I /1 + e = it (say).

Now, putting n = ni, m+ 1, 1 in the aboye inequality and multiplying them, we get
5/1

5/n

|5,„l .r.or

But ^ < 1 => A" —> 0 as « —> oo, which gives lim s„ = 0.

Theorem 5. If {s„) is a sequence such that > 0 and lim 

Proof. Let us define a sequence {t„ ) such that

5/1 + 1 = /, then lim"'i^ = 1.
Sn

52 5„
?! - 5i, t2 -

5l . 5„_i
Thenr, .r, •■•?/, = 5„.

5/7+ 1 5,1
Also lim = / lim = /-=» lim r„ = /

5/1 5„-]
= > 0 => = 0, V n G M

Hence we have,Jhe sequence < ) of positive terms and lim i„ = 1.
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Malhenialics I Now, Cauchy’s second theorem on limits we have 
lim ...,0

Theorem 6. (Cesaro’s Theorem). If lim s„ = li and lim i„ = li. Then 
S\tn'^S2t,,-! + ... + Vl ' .

l/n^l

or

lim - hh-n
Proof. Let us define s„-li + u„ and | «„ | = U„. 
Then lim = 0 and therefore lim U„ = 0.
Now, by Cauchy’s first theorem on limits, we have

1lim-.[C/i + C/2+... + l/J = 0. n \ ...(1)

Consider,
1 1 1
^ + '^2^-1 + ••• + Vl] - ^ [^1 + ^2 + ••• +^n] + + V)]' -(2)

Since, the sequence < /„) is convergent. Therefore, it is bounded. H^nce^ there must exists a
positive real number k such that

I r„ I < *, V /i € N.
Therefore,

^ («l^n +'“2^/1- I + ... + Vi -0

. 1̂  [| “l I 1 I + I «2 I Un-i I + ■■■ + I I Ul !l ^ 0 

- [| «1 j + 1 «2 I + ■■■ +1 P > 0

[U] + H2 "t" ^n\ ^

^ [«! + H2 + ■.. + M„] 0 as « —> oo [By using (1)]

1Thus lim“[«ir„ +v«-i + ••• + Vi] = 0.n
Since, lim t„ = I2, therefore

ti + t2+... + tnlim = h-n
Now, from (2), we have

lun^(sir„+S2f«-i + -- • + Vl) - hh

SOLVED EXAMPLES

Example 1. Prove that lim s„ = 1, where
n —>»

Solution. For
For

n = 1,
/2>2,

= 1 +1„, > 0,. V n > 2
« = V = (i+V”

1
S„>1.

Let

«(«-!)= 1 + nt„ +

^ n (n - 1) 2 
- 21

[By Binomial Theorem]2 !

=>
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<7 Seqiieiice\
Since —> 0 as « ^

- 1

r„ —> 0 as n oo. [By Sandwitch Theorem]
•. Hence —> i as n —>

Example 2. If # *
\n-|l/nn1 /3f(4t

2 3 ■■■

72 « + 1
1 n

\ / \ y \ /
then s„ ^ e. Hence show that

\/ii

Urn = e.
» n !

i'

^2Yf3Tflt f'' + 0"
1 2 3 ■■■ «

^ \ / V /

Solution. Let T

\/nso that •y,. = ■ *v..
• W)i.s/l + 1 \n+ 1

+ 1 n + 2 1-
Also, 1 +

« + 1 « + 1fn

^n + llimNow = e.
tnn OO

Hence, by Cauchy’s second theorem on limits, we have 
lim Sn = lim r„

/J -4 »

. ^
' ^

♦l/n = e.
n -»“»

\n-|l/nfaf. 14
2 ■ 3 ■■■

/ .\3 n+l
Also 2.

n
\\ /

l/n 1/n
(n + 1)" n”+ ir

n n !

1//I
n+l n"

n !n
\\/n-

« +lim s„= lim
n n !rr —» o® / V

1/rt
n"n+l

limlim
n !n—»oo

slA
n"

e = 1 . lim
n -»oo n !

l/n-."Ilim=> = e.
n '/l-»oo V /

Example 3. Show that the sequence (s„) where
1 11 + ... +=

V+1.Vn^ + 1 V„2+i
converges to 1.

Solution. Here, we have
n

'J7
:!7^+n

1

Vi +(i/«)

Now the sequence </„),( u„ ) are such that 
(i) t„<s„<u„.

:ia
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Mathemalics / and (ii) lim t„ = lim «„ = 1 

where,
1

and «n= 1-V N11+ -
n

From (i) and (ii), we have
lim i'n = 1. [By Sandwitch theorem]

Example 4. Prove that
(/!+ l)(>i + 2) (» + 3) ■■■ (n + n) _4lim

en-*oo

(n+l)(n + 2) ...(/t + zt) (2n) !Solution. Let
«"(«1)

(2n + 2) !
(n+(«+1) !

(2« +2) !«"(«!) (2n + 2) (2/i + 1)

Then ‘*'n + 1 “

, -^n+ 1Therefore,
(/l+l)''^‘(« + l)(2«)! (« + i)
{2» + 2) (2n + 1)«" 2(2«+ l)rt”

(«+l)

n + 2

n + 2 n + 1(«+ 1)
1 1

2x2/1 l+“ /i" 4/1 1+^ n
2n 2n

(/l+ l)(/2 + 1)" 1/I 1 + - (// + !)"
n

4 1
2/1 tyi

n
/I + 1

I +-
n

14/1 1+r^
2/1 1

1 11 +- 1 +-
n n

Now, taking lim n —> o®,- we have
1 .4 -1 +-^

2/1
1 4+1lim lim

1 nSn en —» “ « —» oo 1 +- 1
1 +-.n

n

Now By Cauchy’s second theorem on limits, we have
/ N

lim
rt —> oo

4•S/1+ 1lim
•J;, en —» ®o

(/I 1) (/I + 2) ... (/I + /i) 4lim
/l" e

Example 5. Prove that

lim-[I+2 
n

Solution. Lety„ = n

1/2 ^1/3 + ...+/2^^"] = l.

l/n

1//Jlim 5„ = lim /i 
Then, by Cauchy’s first theorem on limits, we have

= 1.
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1 Sequences
lim — (^1 + ^2 + ... + Jn) = 1

n

• 1.10. MONOTONIC SEQUENCES
(i) A sequence {5„ > is said to be monotonically increasing (or non-decreasing) if 

-S/i + l. V/2

Sn < Sm, y n> m.

(ii) A sequence.(s„) is said to be strictly increasing if

(Hi) A sequence () is said to be monotonically decreasing (or non- increasing) if
+ V/i . 

s„>s^, Vn<m.
(iv) A sequence (5n) is said to be strictly decreasing if

+ b N.

(v) A sequence () is said to be monotonic if it is either monotonically increasing or 
monotonically decreasing.
Examples :

(i) (2,2,4,4, 6,...) is monotonically increasing.
(ii) ( 1.2, 3, ... n ) is strictly increasing.

(iii) ( 1, 1, ^ ’ j ... ) is monotonically decreasing.
(iv) ( - 2, - 4, - 6, - 8,...) is strictly decreasing.
(v) (0,1,0,1,...) is not monotonic.
Theorem 1. (Monotone Convergence Theorem). Every bounded monotonically increasing 

sequence converges.
Proof. Let us suppose () be a bounded monotonically increasing sequence. Let

N}
denotes its range. Then, obviously 5 is a non-empty set, which is bounded above. Therefore 
there exists a number /, which is the supremum of S. We shall show that the sequence < >
converges to /.

Let £ > 0 be a given number. Since /-£</, therefore / - e is not an upper bound of 5. Hence, 
there exists a positive integer m such that j,, > / - £•

Now, since (s„) is monotonically increasing sequence. Therefore 
s„>s„> I - e, V n > m.

Sup. S = I s„<l<l + s, V n.

or

or

...(1)

...(2)
From (1) and (2), we have

l-e<s„<l + t, V n > m
I - /1 < e, y n>m=>

=> {s„) converges to 1.
Theorem 2. Every bounded monotonically decreasing sequence converges.
Proof. Let < ) be a bounded monotonically decreasing sequence. Consider a sequence

(/„ ) such that
V n e N.

Then, {t„) is bounded monotonically increasing sequence and therefore it converges [By
Theorem 1]

If lim t„ = /, then lim s„ = lim (- t„) = -l.
Theorem 3. A non-decreasing sequence (increasing), which is not bounded above diverges

to oo.
Proof. Let () be a monotonic non-decreasing sequence, which is not bounded above. Let 

c be any positive number. Since, the sequence ) is unbounded and monotonically increasing, 
therefore, there must exists a positive integer m such that
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*
■I

Mathematics / > c, V n > m 
Sn>c, Vn>m.

Hence, the sequence () diverges to <».
Theorem 4. A non-increasing sequence (decreasing), which is not bounded below diverges

to - oo.
Proof. Proof is exactly on same lines and left as an exercise for the students.

\
SOLVED EXAMPLES

Example 1. Show that the sequence (s„ > defined by
1i 1

n-\-n
converges.

Solution. Since, the sequence {s„)\s defined by
1 1 1+ ... +n+l'^« + 2 n + n
1 1 1+ + ... +■^/i +1 ~ n + 2 n + 3 2« + 2

1 W 1 11 11Now + ... + —+ +... + +‘J'n+l ^n- 2n + 2 n +1 n + 2 2n/I + 2 n + 3
1 1 1+

2n+i 2n + 2 n+1
1 1

2n + i 2n + 2 
>0, Vn.

Hence, the sequence {s„) is monotonically increasing. 

Now
11 1UJ = + ... ++

n+1 n+2 n + n

1 1
<- + -+ ... +“ 

n n
1 (upto n terms)
n

1
= n.-= 1

n
l5„|<l, Vn.

^ sequence (i'n) is bounded.
Then, by monotonic convergence criterion, the sequence {s„ > converges.

i.e..

\n
1 exists and lies between 2 and 3.Example 2. Show that Urn 1 + —
n

lYSolution. Let 's„= 1 + — 
n

= 1 + « “ +
1 n(n-i) 1 n(n- 1) ... 1 15 + ...+

2! « n !n
[By binomial theorem for positive integraf index]

iV1 1-^ n- 11 1
...(1)1-- +... + 1 --= 1 + 1 +

n !2 ! n nn n
/ \

Similarly
1 .1 11 i-1-+1 - 1 + 1 + + ... +

(n+1)! n+12 I n+1

Comparing (1) and (2), we see that j„ + i >s„, V n. 
The sequence < Jn > is monotonically increasing.
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Now from (1), we have Sequences
J_
2! 3!

1 12<j„<l + l +

,,,11 ^1 + 1 + -+ , + ...+ 
2 2.

+ + ... n\

, which is a G.P.1
2"”*

1
1

2"= 1 + I

1 <3, V«.= 3- -12"
=> The sequence (s„) is bounded.
Thus, the sequence < ), being a monotonically increasing sequence bounded above by 3, is

convergent.
Since 2 < < 3, V «

2 < !im < 3, V n.
« -* <«

=> limit of the sequence < ) lies between 2 and 3.
Example 3. Show that the sequence {s„) defined by 

si = yl2,s„ + i = ^s„)

=>

converges to 2. ____
Solution. We have5„+ , = V(2jJ 
For n = 1

^2 = ^(2V2)*

1 < -^ =i> 2 < 2^^ =:>Since
=> Jl < 52-

Now, let us suppose that +. ]

+ I < + 2-
How, by the method of Mathematical induction, we have

Vn€ N
/.e., () is monotonically increasing sequence.

Now, we shall show that () is bounded. 
ji = VT<2.

Let us suppose that s^ < 2. Then '^(Zsm) < ■'/(2 2) = 2 
+ 1 ^ 2

By the method of mathematical induction, we have 
s„<2, V ne N 

) is bounded above by 2.
=> < ) is monotonically increasing sequence which is bounded above.
Then, by monotone convergent criterion < > is convergent.
Now, let lim s„ = l ^ lim s„+i = /

n —* ®®

then

Since

n —♦ o®

S„+i=^S„)

lim Jn +. I = lim
/ = =>/(/-2) = 0 
/ = 2,/ = 0.

But, since (s„) is positive terms sequence with first term = VJ. Hence / can not be equal to

given that

=>
which gives

0
1 = 2.

Example 4. Prove that the sequence (> is convergent where : 

1 ! ^2 ! ■*'3 !

=>

1
a„ = 1 + 

Solution. Since

+ ... + + ... .
n !
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Mathematic.'! / 1 1 1 1 •+ ... +—r+ ...a„ = 1 + + +
1 ! 2 ! 3 ! n !
1 1 1 1 1and a„+i = l + •+2! + 3! + --- + +

1 ! n! (n+l)!
1then - > 0, V n £ N.+ 1 {n+l)\

Thus {fln ) is monotonically increasing.
Further,

1 ! '*‘2 !

2<fl„ <l + l-i—=• 
2“

i-i

3 !
1a„ = I + + + ... + + ...n !

1 1 1+ ^+ .. 
3^

'. + -12"

^ = 3 12 < a„< I + <3, V n-11 2"'-2

=> («„ > is bounded. 
Hence, («;, > is convergent.

• SUMMARY
• A function/: A^—> 5 is known as a sequence.
• A sequence () is bounded iff [ 5„ j < ife Vn.
• Every bounded sequence has at least one limit point.
• A sequence {i'n) converges to / if for given s > 0 /n G N such that - /1 < £ V n > m.
• A sequence {> is a Cauchy sequence 3 for given £>03 m, n in iV such that

I I < ^ ^
• Cauchy’s first theorem on limit; If Urn s„ = /, then lim

71 -> eo

• Cauchy’s second theorem on limit: If lim .?„=/, then lim (5152.....=
71 -» 00 -

• A sequence () is monotonic if either Sn'>s„OT s„<s„y n> m.

S] + S2 + Sn
= 1. ■n

• STUDENT ACTIVITY
1. Prove that every convergent sequence is bounded.

2. Prove that every Cauchy sequence is convergent.
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Sequences
• TEST YOURSELF
1. Discuss the boundedness of the following sequence (sn) where {Sn) is given by

(i) sn = 6 (ii) ^» = (- 1)".4
\ H2/1 + 3 1(iii) Sn = (iv)j',i= 1+- .3/1+4 n

1 1 1(v) ,?„ = — + 2 + .. . +
{2nfn (/I + 1)

(vi) Sn = (vii) sn=l + i~ 1)”
2. Discuss the convergence and divergence of sequences in Ques. 1.
3. Give examples of sequence (Sn) for which

J/I+ 1lim
n->eo Sn

= 1

and (i) Jn—(ii)j';i^2 
4. Verify the following :

3/i - 5 _ 3 
4-2/1 2

(iii) 5n->0.

(ii) lim [(/i^+l)*^^-(n + l)^^'^]=0(i) lim

1 11 = 0(iii) lim —r + -
/I («+.l)

+ ... +
(2/1)2

lY" n(v) lim(iv) lim 1 — = e= e 1/71n [n !]71 —» oo

l/x
(Vi) lim

e

5. Show that the sequences (sn) defined by = ^ • 5'7i +1 = 

find its limit.

= 1. I+ 1
^ V /16 N is convergent. Also1

ANSWERS

(i), (ii), (iii), (iv), (v), (vii) bounded (vi) unbounded.
(i), (iii), (iv), (v) converges (ii), (vii) oscillate (vi) diverges to

(iii) = “

1.
2.

2/1+1
(ii)3. (i) s„ = n

5. l=l
Fill in the Blanks :
1. Every convergent sequence is
2. Every bounded sequence is ...
3. The limit of a positive term sequence is always...........
4. Limit of the sequence is...........
5. A sequence is-Cauchy if and only if it is...........
6. Every Cauchy sequence is...........
True or False :
Write T for true and F for false statement:
1. Every convergent sequence is bounded-.
2. Every bounded monotonically increasing sequence is convergent.
3. If {sn + \ - Sn) oscillate finitely, then (sn) oscillate.
4. If given k (however large) we can find m for which am> k then Sn —> °®.
5. If ( + 1 - .s/i) oscillate infinitely, then {sn) oscillate.
Multiple Choice Questions :
Choose the most appropriate one :
1, An oscillatory sequence is :

(a) always bounded 
(c) never bounded

2, Formula for Sn, for the given sequences 1, - 1,1, - 1,... is :

n

convergent.

(T/F)
(T/F)
(T/F)
(T/F)

/ (T/F)

(b) may or may not be bounded 
(d) none of these.
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Matheninticx I n + 1(a) Sn = (- 1)" -V nE N 
(c) Jn = 1 it II is even

(b) Sn = {-1)
(d) none of these. •

3. If the sequence { Sn > converges to / then the sequence < | J/i |) converges to ;
(d) none of these.

4. A sequence of (5/j > of real numbers such that {j .v,i |) converges but (s„ ) does not. is given

V/ie A

(b)|/|(a) I (c) -1

by :
1

n -i- 1
(a) <(-!)") (b)<-> (d) none of these.n

ANSWERS

Fill in the Blanks :
1. Bounded 
4. unique 

True and False :
1. T 2.T 3.F 4.F 5. F

Multiple Choice Questions :
1. (b) 2. (a) 3. (b) 4. (a)

2. not necessarily 
5. convergent

3. non-negative 
6. convergent

□□□

>
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UNIT Infiniie Seriex

2
INFINITE SERIES

STRUCTURE
!

Definitions
Sequence of Partial Sums 
Convergence, divergence or oscillation of a series 
Comparison tests 
Cauchy’s Root test 
D’Alembert Ratio Test 
Raabe’s Test 
Logarithmic test 
Cauchy’s integral test 
Leibnitz Test
□ Summary
□ Student Activity
□ Test Yourself

LEARNING OBJECTIVES
'« ' ^ **4-vC’*

After going through this unit you will lewn ;
• What is an infinite series ?
• How to distinguishe the sequence and series.
• How to check whether a given series. Is convergent or divergent using the said tests.

• 2.1. DEFINITIONS
Let{u„) be a sequence of real numbers, then an expression of the form

WI + W2 + • • • + + ... "•
is called an infinite series. In symbols it is generally written as

I u„ or I«„.

•..(1)

n = i

If all the terms of (u„) after a certain number are zero then the expression
m

W] + «2 + • • • + u„„ written as S u„ is called a finite series.
n -1

The term u„ is called the term or general term of the series (1). The sum of first n terms 
of the series is denoted by s„. Thus,

S„ = Ui + U2+

• 2.2. SEQUENCE OF PARTIAL SUM OF AN INFINITE SERIES
An expression of the form U] + U2 + ... + u„ + ... which involves addition of infinitely many 

terms has in itself no meaning. In order to give a meaning to the value of such an.infinite sum. we 
form a sequence of partial sums. It is the limit of such a sequence which gives meaning to the 
infinite series.

Let us associate to the infinite series wj + + ••• + Wr, + •••» a sequence () defined by
S„ = Ui + U2 + ■■■ + u„.
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Mathematics I Then the sequence (s„) is called the sequence of partial sums of the given series
III + U2 + Ufi + .. ■ .

• 2.3. CONVERGENCE, DIVERGENCE OR OSCILLATION OF A SERIES

An infinite series X u„ is said to be :
n — I

(i) Convergent if the sequence < ) of its partial sums-converges to a real number 5 and in
' .... ^ • .v*. . ;

^ . , .©di -

that case S is called the sum of the series X and w6 write X u„ = S. In this case, we also 

say that the series is convergent to S.

(ii) Converges absolutely, if X | | converges.

n = 1 n = 1

n = 1

(iii) Converges conditionally, if X u„ converges but X | Un! not converge.
n =1 n = \

(iv) Diverges to ■» (or - 00) if the sequence (s„) diverges to «« (or - 00) and in that case

I = or X M„ = — 00

n = 1n = I

(v) Oscillate finitely, if the sequence {s„) oscillate finitely.
(vi) Oscillate infinitely, if the sequence {) oscillate infinitely.
(vii) Oscillatory if S„, the sum of its first n terms, neither tends to a definite finite limit nor 

to + or - 00 as « —> 00.
Examples :

.... ... 2 (2
(1) The series ^ J

1 1^1^
(2) The series t + + “T + .

2 2 2
(3) The series l+2 + 3 + ...+n + ... is divergent.
(4) The series 3-3 + 3- 3 + ... is oscillatory.

2 + is convergent.+ ... + 3
\ /

.. is convergent.
{.

SOME IMPORTANT THEOREM

Theorem 1. (Necessary condition for convergence. For a series Xw/t to be convergent, it 
is necessary that

lim u„ = 0. .'Ic
Or

For every convergent series ^u„ , we must have lim = 0.
Proof. Let us suppose, the series Xun convergent. Let S„ denote the sum of n terms of 

the series Xm„-
5„ = mi+U2+...+m„- 

5„_ 1 = Ml + W2 + ..• + Wfl-l
ti„- S„ _ 1 ...(1)

The series Xm^ is convergent, therefore S„ and j both will tend to the same finite limit, 
say / as n ^ 00.

Now, from (1)
lim M„ = lim - lim -1 = / - / = 0. 

Hence, for a- convergent series, it is necessary that lim u„ = 0.
Theorem 2. (Cauchy’s General principle of convergence for series). A necessary and 

sufficient condition for a series Xwn to be convergent is that to each e > 0, there exists a positive 
integer m such that

I 1 + M„ + 2 + • • • ■*■ “n + p I < 'whenever n>m and p> 1.
Proof. Let < > be the sequence of partial sums of the series Xm^- The series Xm„ will converge

if and only if the sequence < > of its partial sums converges. But by Cauchy’s general principle
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of convergence for sequences, we know that a necessary and sufficient condition for the convergence 
of <> is that for each E>0, there exists me N such that

Infinite Series

I I < e, V n > m
=> I W„+I + m„ + 2 +•■• + I <e, V « > m and,p> 1.
Theorem 3. A series of positive terms is convergent if S„, the sum of n terms, is less than a 

fixed number for all values ofn. "
Proof. Let wi + ^2 be the series of positive terms.
Then Sn = U\ + U2 + ■ ■■ + U„.

Obviously if/i increases, then 5„ increases and may tend to a finite limit or to + <». The series 
can not oscillate.

If Sn remains less than a fixed number for all values of n it can not tend to infinity and so it 
must tend to a finite limit. Hence the series is convergent.

Theorem 4. A series of positive term "Zun is convergent if and only if the sequence (s„) 
(where s„ = Ui + U2+ ... + u„) of its partial sum is bounded above.

Proof. Since, it„ > 0. V n, the sequence < j'n > of partial sums of the series is monotonically
increasing.

Now the series is convergent iff the sequence {s„) is convergent. 
i.e., iff the sequence {) is bounded above.

(■.' a monotonically increasing sequence is convergent iff it is bounded above) 
Theorem 5. (Convergence of geometric series). The geometric series 

\ + r+ + ... is
1(i) Converges to 1 -

(ii) Diverges to+ 00 if r>l.
(Hi) Oscillate finitely ifr= - 1. 

and (iv) Oscillate infinitely if r< - 1.
= 1 + r + + ... + r" -1Proof. Here

l-r^ if r=A 1
1 -r

if r= 1.n

Now, there are following cases : 
Case (i). If | /■ | < 1.
Then lim r" = 0

1so that lim S„ = 1 -rn »
1which gives, the series is convergent to

Case(ii). Ifr>l.
Then

1 -r

lim r" = oo

1-r" 1so that 5„ = + - ^ oo as « —> oo.i-r 1-r r-1
Hence, the series is divergent to oo.
If r=l, then 5^ = 1 + 1+ ... +1+ ... to n times = «
Thus, the sequence {s„) diverges and hence the series diverges. 
Case(iii). lfr = -l.

0 if n is even 
1 if n is odd

therefore the sequence (^„) oscillate between 0 and 1. 
=> The serLes oscillate finitely between 0 and 1.‘ 
Case (iv). If r < -1.
Let r = - fl where a > 1.

Then, 5.=
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Mathematics / 1 (- D" • a"Then 5.= I +aI +a
5’2n and 52„ +1 o®.

Therefore, the sequence < ) oscillate infinitely between - <» and + <».
so that

Hence, the series oscillate infinitely.
Theorem 6. A positive terms series either converges to a finite limit or diverges to <».
Proof. Let

5„ = M|+«2+-- + Mn 
5„ + i=Hi + M2+---+«n+l .

S/I + ] ~ = u„ + ] >0

+ t ^ ^ ^
^ ) is monotonically increasing sequence.
Since, a monotonically increasing sequence is either convergent to a finite limit or divergent 

to oo, the sequence < 5„ > of partial sums of the series is either convergent to a finite limit or 
divergent to

Hence, the series is either converges or diverges to <».

=>

1Theorem 7. The Auxiliary series Z — The infinite series
rf

1 1 
nr V y\

is convergent ifp>l and divergent ifp<l.
Proof. Case (i). p > 1.

We have

1
11^

i
I”
i 1 1 1---- h — < — + — =

nP 'iP 'yP nP nP

4P 5P gP 7P 4P 4P 4P 4P 4P 
= (2‘“0^

1 = 2'-^Also,

and

1 11 <(2'')‘''’ = (2’"T - ■+ ... ++
(2"*‘ - 1/{2T (2"+!)^

Adding, all the above inequalities, we have 

2^ 3^ 4^ 5^ (f 7^

This is a geometric series of n terms with common ratio

/. 11 1+ + ... + (2/.+ 1 _ j^p(2Y (2"+If

12'-" = (< 1 as p > 1)
2^"

1-2'-/' 1-2*"^ 1-2*''' 

= C (say).1<
i-p1-2

Now, since the series is of positive terms and 
2"^*-l>2">n, Vn.

We have
<C, Vn.S„<S2’-*

=> the sequence < S„) of partial sums of the series S1 is bounded above.

-1
1

n''
Hence, the given series is convergent.
Case (ii). When p = 1. Then the given series becomes
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V 1 , 1 1

Now, this series may be written as follows
1 fl n

2 4 4 
,12

-1 + 2 + 4 + ...

2 2
Now since lim ^ 9^ 0, the series is divergent.

Case (iii). When p<l. Then

Infinite. Series

1

+ ...

2^ < 2, 3^ < 3, 4^ < 4 and so on. 
Hence, the given series reduces to

V 1 , 1 11

Clearly, the series on the right hand side is divergent. [By case (ii)] 
Hence, the given series is divergent when p<l.

• 2.4. COMPARISON TESTS
The most important technique for deciding whether a series is convergent or not is to compare 

it with another suitable chosen series which is already known to be convergent or divergent.
First form. Let and be two series of positive terms such that 

u„<kv„, Vii
Then,
(0 5)v„ converges Xu„ converges 
(ii) diverges 2)v„ diverges.
Proof. Firstly we shall prove (i) Sv;, convergent =* is convergent 
Now, u„ < kv„, V n € N

(u, + M2 + ... + M„)<*(v, + V2 + ... + v„) .

But the series Xv„ is given to be convergent.
=❖ By the fundamental result for positive term series, 3 a positive number M such that 

V] + V2 + ... + v„ < Af, V rt G N.

-d)

•••(2)
From (1) and (2), we have

+ W2+••• + «/t<^ • Af = (say), VnGN 
=> Mj + m2 + ••• + “n < ^1 V/I e N, where/:i = m/: > 0 
=9 3 a positive number such that

Ml + M2 + ••• + VmgN
=> by the fundamental result for the positive terms series, 'Zu„ is also convergent. 
We shall now prove that if Xm„ is divergent, then Xv„ is also divergent.
Since, we are given Xwn to be divergent.

The sequence (j'n) of its partial sums is also divergent.
=> 3 a positive number ki (however large) and positive integer m € N such that

s„> k2, 'd n> m 
Ml + M2 + ... + M„>A:2» V/i>m. -(3)i.e..

From (i) and (3), we have
i2< M| + M2+ ... + M„ < ^:{Vi + V2+ ... + Vrt), V M >m

*2
.. + v„ > — (= k^), \/ n> mVi + V2 + .=>

T„ > k^, y n>m
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Mathematics / ki
— and T„ = Vi + V2 + ■■k,=where ■+v„

=> 3 a positive number ^3 (however large) and a positive integer m such that 7’, > ky,
M n>m and thus Tn is divergent and cosequently Svn is divergent.

Second form. Let and Xv„ be two series of positive terms and let k^ and ki be positive 
real number such that

kjy„<u„<k2Vn^ Vn
Then, the series and Yv„ converge or diverge together. 
Proof. We have

kxv„<u„<k2V„, V/i.
(i) If the series Xv„ is convergent, then is convergent and hence, from second part of 

the (i) the series is convergent.
(ii) If the series is convergent, then from first part of the inequality (ij, v„ isconvergent

.-(1)

1
and hence Xv„ isconvergent.

^1

(Hi) If the series 'Zu„ is divergent, then from second part of inequality (1) Uc2v„ is divergent 
and hence is divergent.

(iv) If the series Xv;, is divergent, then X^jv^ is divergent and hence from first part of the 
inequality (1), Xm^ is divergent.

Third form. IfY.u„ and "Zvn be two given positive term series such that 
u„<kv„, V n >m, > 0 and /n e N

Then,
(i) Xv'n is convergent => ^u„ is convergent
(ii) X«„ is divergent => Xv„ is also divergent.
Proof, (i) Let us suppose {s„) and () be two sequences of partial sums of the two given 

positive terms series Xm„ and Xv„ respectively.
Therefore, s„ = ui + U2+ ... + u„, V n G N 

r„ = Vl + V2 + . . . + V;,, V /I G N 
u„ <kv„ V n > m => s„ < kt,„ \/ n>m

< kt^ + {s^ - kt^) = kt„ + M 
M = s,j^-kt„, a fixed quantity.

Now, if Xvn is convergent (f„) is convergent and thus it is bounded above 
3 a numbersuch that < A, V n G N.

and
since

=>

...(1)where

...(2)
Now from (1) and (2), we have

s„< k . A + M = ne N
and therefore (i'n) is bounded above.

Moreover, (^„) is a monotonically increasing sequence, therefore, (s„) is monotonically 
increasing sequence which is bounded above and thus, it is convergent and hence Xv^ is convergent, 

(ii) Now if Xwn is divergent ^ ( ) is divergent and therefore 3 a positive number e > 0 and
m' G s„

Sn> B, V « > in'.

Let m = max [m, m'} so that s„>B, V « > m . 
Now from (i)

> T (•S'fi - jW) > T = C*, V n > m*, C^O.
K K

=> (r„) is divergent and hence Xv„ is divergent.
Fourth form. Let Xun and Xv„ be two series of positive terms and let k^ and k2 he positive 

real numbers such that kiV„ <u„< k2V„, V n > m,' m 'being a fixed positive integer. Then the series 
Xw/i and Xv„ converge or diverge together.

Proof. Proof immediately follows from the second form of comparison lest.
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Fifth form. Let and be two series of positive terms such that Infinite Series

««Urn — =1, (finite and non-zero)
n —»o=

then both the series converge or diverge together.

Proof. Since — >0, v«

Hm —>0 i.e., />0.
n -»oo

But / 5* 0 (by assumption) : therefore / > 0.
Now, let e > 0 be choosen in such a way that / - e > 0.

Since lim — = /, therefore 3 a positive integer m such that

Un/ - e < — < / + e, V n> m. ...(1)

Since, > 0 V n, therefore, multiplying (1) by v„, we obtain 
(I - e) Vn <«„<(/ + e) v„, V n > m.

Since / - e and / + e are both positive, therefore applying the fourth form of comparison test, 
we find that the series and Xv„ converge or diverge together.

Sixth form. Let "Zu,, and Sv„ are two series of positive terms and 3 a positive integer m such
that

Un

+ 1 + 1
then Zu„ and Zv„ both converge or diverge together.

Proof. Let us suppose {s„) and (t„) are two sequences of partial sum of the series Zun and 
respectively, such that

’ 'i n>m

r„ = Vi +V2+ ... +v„ V «.
Now for n > m, we have

«/n + 1 “n - 1
Un + I + 2

+ 1 + 2
+ 1 — 1

Vn
Vm

Since, m is fixed positive integer, — is a fixed number say k. Thus for n>m,we have 

u„<kv„
=> Zwn and Zv„ both converge or diverge together.

SOLVED EXAMPLES
Example 1. Test the convergence of the series 

2 3 4

n+l

n+l
n

1Takev,. = -^ 
^ n

Solution. Here Ur,= nn
a„ n+l /1 _ n + 1 n _ n + 1 

if- * n if \ n
Then

'’/T

n+l 1Therefore lim —= lim lim 1 +-n nn—» »
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Mathematics I = I, which is finite and non-zero.
Thus, by the comparison test the two series are either both convergent or both divergent. But,

the auxiliary series Sv„ = - is divergent. Hence, the given als9 divergent. ' '
n ’ ..

Example 2. Test the convergence of the series
1 1 1... + + ... .«(« + !)

1 1 iSolution. Here u„ - /I (/I + 1) n n + 1 
If Sn is the partial sum of n terms of the series then

S„^Ui+U2+ ... + ...+u„

(. 0 fl 1'= ^'2 ^ 1-3
'I 1 ^ 
n n +1+... +

{ "
= 1- n+ I

1Now, lim s„ = Urn
n

1 -
rt+ 1rt—»«»

= 1, which is finite and non-zero.
Hence, the given series is convergent.

Example 3. Show that the series

is convergent.

Solution. Since, we have _L^i 
2! 2

1 1
3 ! 2^

11
n ! ^ 2" -1

2 2^
Therefore, 1 + ^ ^

n
1The series on the right hand side is a geometric series with common ratio - and hence

convergent. So the series on the left hand side will also be convergent.
Example 4. Test for convergence the series whose general term is

-«].
Solution. Here, we have

~ n
n1/31

= /l 1+^ - 13n

\(\
f- 1

3 31 J J_
2!

- 11 + ^33n
= n

‘-v

± i_J_ + ...

Let v_ = ’ then the auxiliary series Xv„ = X
n- n^

1Un 1 1 . = — ’ which is finite and non-zero.Now lim + ..
- v„ 3 9n^n-*
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Infiiuie Scric'.y1Since the series 2)v„ = E— is convergent (p = 2> 1), therefore, the given series is also
n

convegent.
fExample 5. Test for convergence the series whose n'^ term is . i.

iV+i) -
Solution. Here, we have

X
«/. = V(n* + 1) - y(n‘^ - 1)

n1/2
1 12

^+ 4 1--7= n
n n\/ih 111 -1 2-11

1 2 2 2 21 12 1 + • += n
2n* 82 ! 3 !n

•-v
Lfi ,Vi11 r- 1T-1 2 2 22 2 1111- 2n^^ 8 3 !2 !

12 1
“T +

8/1
= /j

11 + ...— ' ■

2 n 10n 8/1

Let v_ = • then the auxiliary series is £v„ = S ’ which is convergent.
n n

Hm — = Urn
n -» e®

1

1 1Now /i^'^8/i‘® + .
n -»“»

11 += lim •+ ...
8n«rt

= 1, which is finite and non-zero.
Therefore, by comparison test, the given series is also convergent. 
Example 6. Test for convergence the series whose n" term is

VT+T-V?.
Solution. Here, we have

1/2
1 3/23/2 - n= n

J__ J_ 
2n^ 8n

= /i'^ 1 + 6 + '"

11 + ... .9/22//'''^ 8/1

(since, we know that, when u„ is in the form of series in powers of1Let us take v„ =

l/n, v„ is taken as the term of lowest power of l//i, by ignoring the numerical factor). 
Then, we have

3/2 .1 1lim nlim + ... ^1V/, n —»«

1 1= lim --„ « [2 8,j

= i, which is finite and non-zero.

3 + ...

2
1 is convergent (p = 3/2 > 1). Hence, the given series isBut the auxiliary series !Zv„ = X 

also convergent.
/i^"2

Self-Learning Material 33



EXERCISE 1Malheimtics I

Test the convergence or divergence of the following series : 

1. Z«„-l + 3 + 5+y+....

11 12. Zu„=l +

3. i:«„ = i+j+^+-+...+

4. =

5. 2“«-2 + T + T^+-

6. Zu„ =

7. K„ = —~—

+ + ... .+
V2 >/r

8 2n
«2+r--
+....

.. + +....
n + 1

VT V2 ^ VT
1+vr- 2+V2 s+vj +....

n8. u„ =
(fl + nbf'
Vn + 1 + V/j - 1

9. = n

ANSWERS

1. Divergent 
5. ConveTgent_ 
9. Convergent

2. Divergent 
6. Divergent

3. Divergent 
7. Divergent

4. Djvergent
5. Divergenl

• 2.5. CAUCHY’S ROOT TEST
Let S«;j be a series of positive terms and let 

lim
n —

Then if,
(0 / < L Sm„ converges;
(ii) / > 1, diverges;
(iii) / = 1, the test fails and the series may either converge or diverge. 
Proof. Case (i) Let = / < 1.
Since / < i, we can choose an e > 0 such that 

/ + e < 1.
Let/ + e = r then 0< r< 1.
Since lim uY" = /, therefore, there exists a positive integer m| such that

1 wF" - /1 < e, V /I > ffi]
l-S.<uY''<l + t, V n>mi

(i - e)” < u„ < (/ + e)", V n > mj.
Since u„< r", V /i> wj and since S/*” converges (being a geometric series with common 

ratio less than one). Then by comparison test, ^u„ converges.
Case(ii) Let =
Since / > 1, we can choose £ > 0 such that 

/-E> 1
/-£ = /? then R> 1.

Since R" <u„, V n > wi, and since X/?” diverges (being a G.P. with common ratio greater 
than one). Then, by comparison test, diverges. - '

Let
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Infinite Series
Case (iu) Let u„ = -•n

\/n
1\/nThen M/i n

lim =1.
n

Since L — diverges, therefore we find that if n
lim uY" = 1, then the series may diverge.

« -» oc

Again, let u„ = In this case also 

lim = 1
n —»“

but the series converges. Thus we find that if lim = then the series may
n-^oo

Then

\ /

1
n

converge. The above two examples show that if
lim

Then the lest fails,

• 2.6. D’ALEMBERT RATIO TEST ,

If be a series of positive terms such that
«n(a) lim------= /.

«n + l
Then, if
(i) / > 1. the series converges;
(ii) / < 1, the series diverges;
(iii) / = 1, the series may converge or diverge and therefore the test fails.

«« > t ~ as n —> oo. Then converges.(b)
«/i + i /

Proof, (a) Case (i) When/> 1, Let e> 0 be a positive number such that/-e > 1.

= l, therefore, 3 a positive integer m such thatNow, since lim
^n+ 1

< / + e, whenever n > m./- e <
««+T

Now, putting n = m+ 1, w + 2,p~ 1, in succession in the above inequality, we get

< I + e./-£<
+• 2 
+ 2 < / + e,/ - e <

^m+ 3

Up-Il-Z< </ + e.
Up

Multiplying the corresponding sides of the first part of the above inequalities, we get
Up-\Urn + 1 Upt + 2 

Urn + 2 Upi + 3 
^m+ I

-1- m<(/-er
Up

- i - m<=>
Up

m + 1
“p < + I (^ - e)
Up<k{l- e)~^, V p>m + 2 and k- u

=>

m + 1

Since, the series converges (being a geometric series with common ratio
(/ - e)”', which is certainly less than unity), then by comparison test it follows that converges. 

Case (ii) When / < 1, let e > 0 be a positive number such that / + e < 1.
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Mathematics I
= /, therefore. 3 a positive integer m such thatNow since lim

n -♦ »o ^n+ I

«n < / + e, V rt > «j.l-e<
+ 1

Putting rt = /« + 1, m + 2, - 1 in succession in the second part of the above inequality,
we get

Um + l </ + e.
+ 2 
+ 2 </ + e.

«m + 3

«p-l <l+t.

Multiplying the corresponding sides of the above inequalities, we have
- 1 -m"m + l <(/ + ey’

Up
m+ IUp > + I (f + e)

Up > A(l + e)~^, V /7 > m + 2 and A = i (/ + e)'"'*' *.

Since, S (/ + e) ^ is a divergent series (being a geometric series with common ratio 
(/ + e)”which is certainly greater than unity), then by comparisori test, it follows that ^u„ diverges. 

Case(iii) Let / = 1.
Now, first consider the harmonic series

2 3
^ .

n
1U„ n+l = 1 + — =* limThen

«. u„ + ]

Since, the harmonic series is divergent, we find that if / = I, a series may diverge.
n«n + l n n—*

Now, consider the series

-r+—r+...+ — + .... 
2^ .

1

_(n-f i)^_r 1 u.,Un 1 + — => limThen = 1.
2 n Un + IUn+i —♦ O"n

1Since, the series £ — converges, we find that if / = 1, a series may converge.
n

Un = + <» then there exist positive integers m and p such that(b) Let us suppose lim
n —»» Un + I

Un > p n>my p> \.
^n+ 1

Replacing n by m, /» + 1,/n + 2,- 1, we have
Um

>P
U/n + I 
Um+ 1

>P
Um + 2

Un-l >p.
Un

Multiplying the corresponding sides of the above inequalities, we have 

Un
^ m - n

Un<P -Unr

u„<A .p~'' 'i n> m and A = p’^u^.
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Since 2/7 " is convergent, then by comparison test the series Eu„ is convergent. Infinite Series

• 2.7. RAABE*S TEST
If be a series of positive terms is such that

Urn n -1 =f.
n ->o»

Then, if
(i) / > 1, the series converges,
(il) Z< 1, the series diverges,
(iii) / = 1, the series may either converge or diverge and therefore the test fails.
Proof. Case (i) When / > 1. We can write / = 1 + r, where r > 0 choosing e = r/2, we can 

find a positive integer m such that

l~e<n -1 </ + e, Vn>m.
“n+i

Now, from the first part of the above inequality, we have

—-1 , Vn>m1(l + r)--r<«
/

Putting n-m+ I, m + 2, ...,p - 1 in succession in (1^ we have 
|™;n + 2<(m + l)«m + l -(m + 2)«„ + 2

...(1)

1jrUf,<(p-l)Up.i~pUp.

Now, adding the corresponding sides of the above inequalities, we have

12 ^ («m + 2 + • • • + «p] < (W + 1) + I,

2 (/n +1) w ^
- +1 + «, + «2 + • • • + «m + b V p>m+ 2.Ml + «2 + ••• + “p <or

The above inequality shows that the sequence (> of the partial sums of the series 2w„ is 
bounded and therefore 2wn converges.

Case (ii) When / < 1. Let us choose e = 1 - then we can find a positive integer m such
that

- 1 < 1 {= / + e), V n > m}-z<n
\

u«„<(n + 1) M„ + i, Vn>m.
Putting n = m + 1, m + 2, ...,p - 1 (p> w + 2), in succession, we get 

(m+l)M„ + i<(m + 2)H„+2- 
{m + 2) «„ + 2<0” + 3) m,„ + 3,

or

{p-\)Up-x <piip.
From the above inequality, we have by transitivity 

(m + l)M„,+ i<pMp, Vp>m + 2
Up>k{i/p), Vp >m+ 2 and/: = (m+1) M„+1- 

(• Now, since the series 2 ” diverges, then by comparison test the given series diverges.

or

P\ /
Case (Iii) When / = 1. In this case the test fails to give any definite information. 

For example, consider the series 2 “ and 2 1 - then, we have
n (log n)
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Mothemalks I Unlim n - 1 = 1.
Mn+J

But the former series is divergent, while the latter is convegent•

• 2.8. LOGARITHMIC TEST
If X«/, be a series of positive terms such that

lim n log = /.
«n + ln —»e«>

then Sw,I converges if ;> 1 and diverges when/< 1.
Proof. Case (i) When/>1. In this case, we can choose e> 0 such that/-e> 1. Let 

l-e = p (say).

Since lim n log = /.
Mn + I

Therefore, we can fmd a positive integer m such that
.n -»oo

/ - e < n log < / + e, 'i n>m.
Mn+l

Consider the first part of the above inequality, we have

n log >p, y n>m
“n+i

—— > V n > m.
M/.+ 1

...(1)
\

lY. Since, a„= ^ defines a monolonically increasing sequence converging to e, therefore.

lYe> 1 + — , 'in. ...(2)n\
From (1) and (2), we have

lY> 1 + — , i n>niUn

^/?+ I n

Vn , i n>m. ...(3)>

1where

Now since p> 1, therefore Sv„ converges and from (3) it then follows by comparison test 
that converges.

Case (ii) When / < 1. Let the comparison series 'Zv„ = E be divergent, i.e., p<\.

4

1

Ur,
E«n will be divergent if >

Vn+l “n + l
yU„ ( . 1 0 [l 1 1<Hog 1+- +

1 Un< 1 + — log 
n + ...

3n^Un+\ “n+ I

1 1n log
Un + 1

Unlim n log = p< 1
Un+]_

will be divergent if / < 1.
f
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Some Important Limits : Infinite Series

= j(i) lim 1 + (ii) lim n
n-*'x>n

1^ = 0 1 + — = 1 if n is finite 
n

(iii) lim
n —»»

(iv) lim
n —> oo

\n + p
(v) lim 1+ — = e^, if p is finite.

nn-*o°

Some Other Important Test
(1) De Morgan’s and Bertrand’s test:
The series Ska of positive terms is convergent or divergent according as

lim ^ n - 1 [ logn >1 or < 1.
^/i +1

(2) Alternative to Bertrand’s test:
The series lu„ of .positive terms is convergent.or divergent according as

lim n log - 1 log rt >1 or <1.-7

SOLVED EXAMPLE

(i) Based on D’Alembert’s Ratio Test.
Example 1. Test for convergence the series 

y T,P aP

Solution. Here, we have
oi + iy^

Wh+I=n ! (/. + 1) !
-p ■(n+lf n I 1IW/i+i = limNow lim 7 = lim

»i-^»

1+-
n. ■(«+!){n+l)\ ,rPUn

Hence, by Ratio test the series is convergent. 
Example 2. Test for convergence the series

2 ! 3 ! 4 !
. + ~ + ,
3 3' 3^

Solution. Here, we have

(n+l)\ ^+ ...+
3”

{n+l)\ (n + 2)\
3" + 13"

1 ^-:r = 0 
^ n + 2

Now limlim
- 'tn •. IN - > •

Hence, by ratio test, ihc given scries is divergent. 
Example 3. Test the series

f 5 ■?.V JC .V
K ^ ...

3 ! .“v ! 7 !
for convergeiK e. for all positive value ofx.

Solution. .Since v is positive. Hence the given series is of positive term series
Zii *• i2» - I .

> -1

.V .VI icrc »' i - Co t 1) ' 
(2/2 ♦ 1) In (In -h 1)V

lim - = lim - = lim
In f I 2(2/2 -1)! ,

-•1-00. V positive values of .r.
X2i —• n «- > oo

Then, by ratio lest the given series converges for all positive values of x. 
Example 4. Test for convergence the series

I
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Mathematics / 3, X , 3^
1+ - +~r + — + .i.. 22 32 .2

X

4'
Solution. Here we have

-1

2n

=> ^/i +1
(n+1)'

.y-'cn+o^^i \211+-
n«n + l X

if 11lim = lim 1+- ZZ “•

n X+ I /I-)- ^

1Hence, by ratio test the series converges if — > 1 i.e., x < 1 diverges if x > 1 and the test fails

Therefore in the case the series X«n = is convergent. 
n n

ifx=l.

For X = 1, u„ =

(ii) Based on Cauchy’s Root Test;
Example 5. Test the convergence of the series x + 2x^ + 3x^ + 4x'‘ + ... . 
Solution. Here, we have 

u„ = nx”
\/n _ ^l/n

lim = lim (x .«*’") =x. 1 =x
n -4 00

(«/,) . X

n—

[■.■ log «'""=!]= x. 1 =x
Then, by Cauchy’s root test, is convergent if x < 1 and is divergent if x > 1.
For X = 1, the Cauchy’s root test fails.
In this case, the given series becomes 

1 + 2 + 3 + ... .
= sum of n terms of the series = n (n + 1).

Thus the given series is convergent if x < 1 and is divergent if x > 1.
Example 6. Test the convergence of the series

. 2 r4V

Solution. Omitting the first term of the series (because it will not affect the convergence or 
divergence of the series), we have

n + 1

''321
x^ + ... 00, X > 0.- + X +32

V'
.x".u„ = n + 2 / .

fl.ilxl
n

Therefore lim = lim
/) —»®o

= X.

n
\ J

Therefore, by Cauchy’s root test, the given series converges if x < 1, divergent if x > 1. 
For X = 1, test fails

\n
11 +-n

lim u„ = lim ^
fi —»« en -4 «

n

/. The series Xun diverges if x = 1.
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Infinite' SeriesHence, the given series is convergent if x < 1 and divergent if .t> 1. 
Exmaple 7. Test the series for convergence

, 111 1+-+,+ .+ ....
2^ 3^ 4^

Solution. Here, we have
1

Un = ~;;

1 'lim = lim — = 0 < 1.

Hence by Cauchy’s root test the given series is convergent.
(iii) Based on Raabe’s Test.

Example 8. Test the convergence of the series 
, 31 +TX + 3.6.93.6 X^-¥ xU......7. 10.137.107

Solution. After leaving the first term we have
3.6.9...3n

^n = 7.10.13...(3n + 4) 
3.6.9...3n (3w + 3)

Mn+1 = 7.10.13...(3« + 4)(3n + 7) -

3w + 3«/.+ ! = lim . _u„ 3« + 7Now, lim
n_»oo

X

'3 + 3/«
3 + 1/n ^lim

/I —> ~

Then, by D’Alembert ratio test the series is convergent if a: < 1, divergent if :r > 1 and the test 
fails if x=l.

For a: = 1, we have
u„ 3n + 7

3« + 3. “«4-7

43n + 7 
"^3/1 + 3

Wn - 1- 1nor 3« + 3Un+\
"/

4 4limlim- 1lim ^ 3 + 3/n^ 3n +3«/i+i n -»n —♦n —»«w
■“V

= f>i.
Therefore, by Raabe’s test the series is convergent when a: = 1.
Hence, the given series is convergent when x < 1 and divergent when a: > 1. 
Example 9. Test the convergence of the series 

a (1 + g) (1 +a) (2 +a) 
b'^ (l+b)'^ (l+b)(2 + b)""

Solution. Here, we have
(1 + g) (2 + g) .. ■ (n - 1 + g)
(l+^>) (2 + 6) ... (n-1+6) 
(1 + a) (2 + g) ... ( « + g)
(1+6 (2 + 6) ... (« + 6) 

n + b

=> Un+\ =

Un limlim
/I + g«« + ] /I

1+^
nlim

1+^n -*«»
n

= 1.
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Mathematics i Hence, the D’Alembert ratio test fails. 
Now, consider

n + blim n - 1 lim n - 1n +a/I — /I —» OO

^ *rb~a lim n —T n + b« —♦»

h - a= lim
1 + b/n in

= (6 - a).
Then by Raabe’s test the given series is convergent \f b~ a> li.e.,.b ><7+1 and divergent

• < 1 ^ 4lifb<a + l.
The test fails for ^> = <7 + 1.
Now for = <7 + 1, the given series becomes

1 +<7
2 + a

l+aa + ...=X:+<7+1 n + a
I

Taking by comparison test, we can easily show thk the series is divergent.

Hence, the given series is convergent if ><7 + 1 and divergent if 6<<7 + 1.
(iv) Based on Logarithmic Test.

Example 10. Test the convergence of the series 
,1 2 ! 2 3 ! . ■

4^ .
Solution. Here, we have

{« - 1) ! -1«„ =
-1n"

n !
^n+ 1 («+ir

-1(n+ 1)" (n- 1)W/.lim = lim
««+l - 1

1 1= lim
/I -> CO

1+- .
n X

e
X

eHence, the given series is convergent if “ > 1 if divergent if .v > e and the test fails

if x = e. In this case
iV-I +-n

lim n log = lim 
«-»«>

n log
+1 e»I -♦ CO

2 1 1 1= lim n 2n~ ^ 3n3 + ... — n
71 —» “

1 1= lim 2'^3n ■■■
n—*Bo

1
2

Hence, by log test the series ^u„ is diverget if x = e.
Thus the given series X«„ is convergent if x<e and divergent if x>e. 
Example 11. Test the convergence of the series

3V
3 !

2V .4 44 Xx + + + + ... .2 ! 4 !
Solution. Here, we have
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rtV Infinite Serik\
«n = n !

n+ 1 + 1..r"(n + 1)
■

«n+l = («+l)!
(« + 1) ! /tVTherefore, lim

„ c» + I
= lim

- («+!)''■'V +1 .n !<1 —»

I 1= lim
exi1+- X

n
1Thus, by D’Alembert’s ratio test the series is convergent if < 1 i.e., x < - » divergent if

1 1 1X > — and the test fails if — = i i.e., x = -• 

In this case
e ex e

elim n log = lim n log iT^rt+1n —> » 1 +-
n

1= lim n loge-nlog l+~
n

\-1 1 1= lim n \ - n — 2 3n“n 2n

1 1 I= lim

Hence, by Logarithmic test, the series is divergent if ar = —• Thus the given series Sw,i is
■ V" .: e

convergent if jc < — and divergent if jc S —■
€ €

Example 12. Test the convergence of the series 
(a + ;c) (n + 2x)^ (a + 2x)^

j<L

i

+ + + ... .1 ! 3 !2 !
Solution. Here, we have

(a + nxf
n !

/!+ I[a + (n + l).x]=> »,7+l = (n+1)!
pa/x1 +

n 1
p + 1/I X .a/x11 +- 1 +

«+ 1n
n

a/x1 +
n

1lim = lim=> n+1n«;i+l Xn ~ 77 —
a/x1 1 +1 +-

/j + in

1e
a/xX .e .e

1 1Hence, by D’Alembert’s ratio test the given series is convergent if — > I i.e., x<r and
ex > e

1 1divergent if jc> - and the test fails if x =.~
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Mailu'iiiatics I In this case

aci+— en
= iim n log

/I —» ea

lim n log n + In
Mn+In-» — r ae1 +- 1 + n+ln

r /■ ^ f fHG 1= lim n « log 1 + — + log e - n log 1 + - - (/i + 1) log 1 +
n-»- i ” J I " 1

ae
n + 1

3 32 .2

« 2n^ 3n^
ae _ a e a e 
n ■ In^ S/r’ ... +i-n ~= lim n

n~-» O'

n

/. ■2 2 3.3a e a eae-{n+l)
2{n+l)^ 3{n + lfn+l

2 22 2 1 a ea e + terms containing n in the denominator= lim 12 1 +-
n

2 2 2 21a e a e
2 2 **' 2

1= -<l.

Hence, by logarithmic lest, the series is divergent.

Thus the given series is convergent if .v < — and divergent if Jt > -■

EXERCISE 2

Test the convergence of the following series ;
2 311. 2 + + ... .

1 +2^1+2 I +2
2} 3^ 4^ 2n2. 1 + +... + + ... .+2 ! '3 ! 4 !
11 ±1 Yl22 32 + 42

1^2^ 2^ 3^

n !
n !3. 1 + + ... +
n'

5. + + ... .3 !1 ! 2 !

6, 1
n^+ 1

_ , 2(1) 2.4fl^
7. 1 + - - + 2.4.6

3.5.7 8 + ... .+3 4 3.5 6
V. y\ / \ J

ANSWERS

3. Convergent 5. Convergent1. Convergent 2. Convergent 
6. Convergent 7. Convergent

• 2.10. CAUCHY’S INTEGRAL TEST
Let fix) is a non-negative monotonically decreasing integrable function on [l,°°l then therseries S fid) and the improper integral
/i = i

Proof. LetX'T) is a monotonically decreasing on [1, <»[. 
Then we have

fix) dx converge or diverge together.

' fin)>fix)>fin+\), wherert<A:<rt+1.
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Also,^.v) is non-negative and integrable, we have
/•M+ 1

Infinite Series
rii+l rn+ I

J[n) dx > j{x) + 1) dxJn

Ml + I

An)>}^ Ax)dx>An-i-l).

Now, putting rt = 1, 2,1) in (1) and adding all these, we get

or ...(1)

1*2 i»3

Ax)dx + j^ Ax)dx+...J]

tm

+ }^_^Ax)dx>A2)+A^) + ... +An). ...(2)

Let us suppose
=Ai)+A2) + ...+An)

fill

and 4 = Ax) dx.Jl

Then (2) can be written as
5„-Ax)>In>S„~Al)

An)<S„-I„<Al)-
Un^S„-l„ V n e A^.

^n+\~ ^n'~ ("^n + 1 ~ 4 + l) (‘^it “ 4) 
“ i^n + 1 “ “^/j) “ (4 + 1 “ 4)

pn+ 1
=^n+l)-J^ Ax)dx

...(3)or
Let
Then

<0 [By using (1)]
Hence, we have {) is monotonically decreasing sequence.
Now, from (3) u„ ^^/i) > 0, V n € N. Therefore sequence < u„) is bounded below, Hence 

{un) is a convergent sequence and it has a finite limit.
Now, since 5„ = «^ + the sequence {S„ ) and (/„ ) converge or diverge together. Hence,

A OO

the series SA/i) and the integral Ax) dx converge or diverge together.Jl

Alternating Series. A series, whose terms are alternatively positive and negative is called 
an alternating series.

Thus, a series of the form
n -1

U] — ^2 + W3 —• M4 + ... + (~ 1)

where u„ > 0 V n, is an alternating series.
Absolute Convergence. A series is said to be absolutely convergent if the series 

^\u„\ is convergent.
Conditional Convergence. A series ^u„ is said to be conditionally convergent if is 

convergent but S| n,, I divergent.

u„ + ...

REMARK
• The conditional convergence of a series is also known as semi-convergent or 

non-absolutely convergent

SOME IMPORTANT THEOREMS

Theorem 1. An absolutely convergent series is convergent.
Proof. Let us suppose, the series is absolutely convergent. Then by definition S | | is

convergent.
2h„ , if u„ is positive 

0 , if is negative.+1 I =Now
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Mathematics I Therefore, every term of the series S(wn + | u,, j) is > 0 and less than equal to the corresponding 
term of the convergent series S2 1|.

Hence £ («„ + | «„ I) is convergent. Hence is convergent.
Theorem 2. If the terms of a convergent series of positive terms are rearranged, the series 

remains convergent and its sum is unaltered. -
Proof. Let us suppose "Zun be a convergent series, and let the terms be rearranged in any 

manner. Denote the new series by Ev^, so that every u is a v and every v is n n.
+ ^2 + ... +

= +V2+ ... +V„.
Then, for any definite value of n, s„ contains n terms each of which occurs, sooner or later, 

in the v series and so we can find a corresponding m such that /,„ contains all the terms of .y„ (and 
possibly other not contained in j„).

Now, since each term is positive,
~ inf

Also, suppose that the first m terms of Ev„ are among the first (n + p) terms of Zu„. Therefore, 
•J/. ^ in, ^

Let
and

and m tends to infinity with n.
Let converges to s, so that 

lim s„ =: lim s„ 
lim t,„ = s.

Hence, Ev„ is convergent and has the same sum as Zu„.
Theorem 3. If the terms of an absolutely convergent series are rearragned, the series remains 

convergent and its sum is unaltered.
Proof. Let Zu„ be an absolutely convergent series, and let its terms be rearranged in a different 

order. Let, the new series is denoted by so that every v occurs somewhere in the u series and 
every u occurs somewhere in the v series.

Now, we have + I “n i = or 0 according as u„ is positive or negative. Now E | j is a 
convergent series of positive terms, so also is the series E («« + ! u„ |), because its terms are less 
than equal to be corresponding terms of the series E 2 | |.

E|u„l = J and E(M„ + i«J) = j'
E«„ = s'~s.

Also, since E | I S («„ +1 u„ [) are convergent series of positive terms, their sum remains

= s

Let
so that

unchanged by any rearragement of terms (By Theorem 2). 
Accordingly,

5:ivj=. 
S (v„ + I v„ I) = 5'.and

Hence Ev„ = s' - s = Zu„, as asserted.

• 2.11. LEIBNITZ TEST
If the alternative series

u^- U2 + u^- ■■■ {u„>0,'i n Gi N)
is such that

(i) u„+i<u„ V«G N
(ii) lim u„ = 0.

, . n -*?®

Then the series converges.
Proof. Let = Ml - «2 + “3 “ • • • + (“ 1)" so that < > is a sequence of partial sums of the

jgiven senes.
Now for all n

IBy(l)]•S'2« + 2 “ -^2^ - + 1 “ + 2 ~ 0
which gives that (S2„) is a monotonically increasing sequence.

'S'2n = “l “ ^2 + H3 - + U2n - 1 - M2n
= Ml - (M2 + M3) - (M4 - Ms) - ... - U2„

Further,
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- “l ” [{U2 - «3) + ... + «2n]
= W| - some positive number
<«i.

Therefore, the monotonically increasing sequence (S2n) is bounded above and consequently 
it is convergent.

Infinite Series

Let jim ^2/1 - Si

S2n + \ = •^2/1 + “2n + 1
= lim S2„+ lim U2r, + r

n—*o«

Now
lim S2n+ I

= 5 + 0 lim u„ = 0
/I -» tw

= 5.
Thus, the subsequences (S2n) and < 52n + 1) both converge to the same limits. Now we shall 

show that the sequence (5„) also converges to 5.
Let E > 0 be given. Since, the sequenes { S2j, > and (52;,+1 > both converge to 5, there exist 

positive integers mj, m2 such that
152fl - 51 < e V n > m 

|52fl + i - 51 <e V»>m2.
m = max (m|, WI2). 

|5„-5|<e Vn>2/« 
which gives that the sequence (5„) converges to 5.

i’

and
Let
Then

-1Hence, the given series S (- 1)" u„ converges.

SOLVED EXAMPLES
Example I. Show that

I I1 + — +... H----- log n exists.lim 2 nn —» »»

1Solution. Let AX)=-’ XG[l,oo[.

Theny(j:) > 0 and monotonically decreasing on [1, “[.

S„=Al)+A2)+-+^n)= 1+5 + 1 + -+^

— dx = [log.r]”= log n.
X 1

Let

r"i»n

and Ax)dx^fn = Jl Jl

It can be easily shown that
An)<S„-I„<A^) VneN 

0<^.<5„-/;,<l V/isN

which gives that the sequence (u„), where u„ = S„ -1„, is bounded below.
Now, it can also be shown easily that the sequence <u„) is a monotonically decreasing 

sequence. Therefore it converges.
f 1 1Hence, lim 1 + —+... + —2 n

or

exist.

1Example 2. 5/10^^ by integral test that Z — converges ifp > 1 and diverges if p<\.
tf

iSolution. Lel^a:) = —’ p>0. Then/at) is positive valued and monotonically decreasing.
xF

ITherefore by Cauchy’s integral test X — and Ax) dx converges and diverges together.Jl
/•II

1 dxLet — dx~Jl Jl
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f 1 -p nMathematics I 1 , if p^l
i-p l-p

, ifp=l.logn

1
^-P = ^ 0 as p > 1If «—><», n In”-

and tends to <» if p < 1 and log n 

Hm /„ = -
n —»»«

11 ’if p > 1
l-p p-1

lim /„ = oo, ifp<l.and
n —♦ «

J{x) dx converges if p > 1 and diverges if p < 1. Then by Cauchy’s integral testHence, Jl

1the series S — is convergent if p > 1 and divergent if p < 1. 
tf

Example 3. Show that Cauchy’s integral test that the series X

p > 1 and diverges i/O <p < 1.
Solution. Let us suppose

1 converges if
n = l n (log nf

1 ’P > 0
x(\ogxf

and X € [2,««[; then obviously/(x) is monotonically decreasing on [2, «>[ and positive valued.
pn

dx
Let r, •» -•'2 x^iolxf ' 

1-pT

^"P i
[(log u)

(log-c) ,p*\Then /„ =
1 l-p 1 -p-(log2)‘ p^l

(l-p)

I„ = [log log x] , p = Iand
2

= [log log K-log log 2], p=l.
Therefore, we have

pn

lim I„= lim f(x) dx = if p < I

1 1 -p(log 2) ,ifp>l.lim /„ = -and
(l-p)n -4 oo

Thus the integral 2 Ax) dx converges if p > 1 and diverges if 0 <p < 1. 

Hecce, by Cauchy’s integral lest,-the series
1X y(-^)= X

/I = 2 n(log/i)^n-2

converges if p > 1 and diverges if 0 < p < 1.
Example 4. Test the convergence of the series 

1 1 1 x > 0, a > 0,+
X x +a x + 2a 

Solution. Since, the given series is an alternating series, 
the n’^ term

11-1
.= (-!)” >0.u„, where u„ = X + (n - 1) fla:+ (n ^ 1) a

1 1
Now ttn + I t{„ — x + na jc + (n - 1) n
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Infinite Series[x + (n - 1) fl] - [a: + na]
[x + na] [a:+ (« - 1) a] 

- a <0
[x + na] [x+(«- l)fl]

1Also, lim M„= lim
n —»o®

= 0.x + {n- l)a
Hence, by Leibnitz test, the given series is convergent. 
Example 5. Test the convergence of the series 

log 2 log 3 log 4
2^ 3^ 4^ ■■■■

Solution. The given series is an alternating series. 
Here, the n'^ term

log (« + l)
in+lf

log(n+l) 1 _
(« + l). (n+1)

t„ = (-!)" where u„ = >0

log (/r+ 1)lim u„ - lim
n —♦ oo

= lim
(« + 1)^ rt —»“n —»

Now, we shall show that
+ I ^ V n.

Let
X
2 1X . — 2x log X 1 - 2 log XX 1/2< 0 when x > e ./Xt) =Then

x^4X
1/2Therefore, the function/(x) is monotonically decreasing for all x > e .We know that 

2<e<3=>2'^==</^'
=.l</^<2

<31/2

sof{n + 2) <f{n + 1) for all n 
i.e.. U„^]<Un V n.

Hence, by Leibnitz test the given series is convergent. 
Example 6. Show that the series

111+vr VT VT
is conditionally convergent.

Solution. The given series is an alternating series. 
.•. the //' term

1?n =(-i)" ^ where u„ = >0. .

1 1Now M« + l -W„ =
Vrt +1

VjT - Vn + 1 <0.
Vn + 1

u„+i< u„.
1lim u„ = limAlso

by Leibnitz test the given series is convergent.

-1(- D" 11= 1But the series S is divergent p = — <\ .
\ J

Hence, the given series is conditionally convergent.
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Mathematics I • SUMMARY
n
2 Ur is known as the partial sum of the infinite series 2 u„.

1 •/•= i
• If lim u„ = 0, then 2«„ is need not be convergent.
• If lim u„ ^ 0 then the 2m„ is divergent.
• Cauchy’s root test : If lim =/, then

(i) 2t/„ is convergent if / < 1
(ii) Zu„ is divergent if / > 1
(iii) If / - 1, then the test fails.

D’Alembert Ratio Test: If lim = /. then
«/t+i

(i) 2«„ converges if / > 1.
(ii) 2w„ diverges if / < 1.
(iii) If / = 1, then the test fails.

Raabe’s Test: If lim n = /, u„ > 0, thenI «/.+ !- 1
(i) 2m„ converges if / > 1.
(ii) 2m„ diverges if / < 1.
(iii) If / = 1, thn the test fails.

• Logarithmic Test: If lim n log = 1, u„> 0, then
+1

(i) 2«„ converges if / > 1
(ii) 2«„ diverges if / < 1

f• De Morgan’s and Bertrand’s test : If lim n
(I -» OO -

- 1 - 1 log ti = /, u„ > 0 then

(i) 2«„ converges if / > 1
(ii) 2i<„ diverges if / < 1.

• STUDENT ACTIVITY ?• •y

11. Prove that 2 is convergent if p> i. 
n = 1 n

1 1 12. Test the convergence of the series — - , A' > 0, rt > 0.+X X + a X + 2a

\• TEST YOURSELF
1. Test the convergence of the following series.

, 1 1 i
1 -- + --7+ ... .2 3 4

2. Prove that the following series is absolutely convergent
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Injliiilc Sericx+I 2 3
. 1-1Show that the series S (- 1)”3. sin — is conditionally convergent... n
V-'.y -A

4. Test for convergence the series S 

5.. - Show that the series
It !

2__3_ _i_A
j2

converge conditionally.
Show that the scries S (- 1)” +1 " «] is conditionally convergent.

n 1
6.

(-1) — is not absolutely convergent.Show that the series £7.
/)S 1

ANSWERS

114. Convergent if x < — and divergent if ^ “1. Convergent

Fill in the Blanks :
1. Every absolutely convergent serieS is...........
2. The sum of an absolutely convergent series is of the order of terms. 

A scries whose terms are alternatively positive and negative is called an ... 
If £u/j is convergent, and Z | Wh | is divergent then series £//« is said to be .

3.
4.
True or False :
Write T for true and F for false statement
1. For every convergent series, it is necessary that lim Un = 0.

2. The series £—is convergent.

(T/F)
\

(T/F)n
3. If £/oi is a series of positive terms then Un > 0, V n e N.
4. If lim Un > 0 then series is convergent.
5. If lim Un - 0, then the series may or may not be convergent.
6. If lim Un - 0, then the series is always convergent.

(T/F)
(T/F)
(T/F)
(T/V)

Multiple Choice Questions :
Choose the most appropriate one.

If lim Un = 0 (u/i is the term of the given series) then :
(a) series is necessarily convergent (b) series is neccssairly divergent 
(c) may or may not be convergent (d) none of these.

2. If £m/j converges to /i and £v« converges to h, then £ (u,, + Vn) converges to :
(c) /1+/2

1.

(d) /|-/2.(a) /i
3. If £///i and £v„ are two divergent series having all positive terms, then £ (u,, + vn) is :

(d) none of these.

(b) l2

(a) convergent (b) divergent 
4. The nature of the given series will be change if :

(a) the sign of all terms are changed
(b) a finite no. of terms are added or omitted
(c) each term of the series is multiplied or divided by a non-zero number
(d) none of these.

(c) oscillatory

ANSWERS

Fill in the Blanks :
1. Convergent 2. Independent
3. Alternating series 4. Conditionally or semi-conVergent. 

True or False :
l.T 2.F 3.T 4. F 5. T 6. F 

Multiple Choice Questions 
l.(c) 2.(c) 3.(b) 4.(d)
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Mathematics I UNIT

3
UNIFORM CONVERGENCE

STRUCTURE :
Pointwise Convergence
Uniform convergence of sequences of functions 
Couchy’s general principle of uniform convergence 
CUniform convergence of a sequence of continuous functions 
Tests for Uniform Convergence
□ Summary
□ Student Activity
□ Test Yourself

LEARNING OBJECTIVES
After going through this unit you will learn :

• What is pointwise convergence ?
• What is uniform convergence. -
• How to determine that the given sequence or series of functions is uniformly 

convergent ?

• 3.1. POINTWISE CONVERGENCE
Let (r„ > be a sequence of real valued functions on a metric space {X, d). Let the function/^ 

be tends to a definite limit for all values of x e X as ;j —> •». Therefore, to each point t (= X. there 
corresponds a sequence of numbers (/„ (r)) with terms

fAt),hit)(()■■■■
Let this sequence </, (i)) converges to J(t)- T’hen pointwise converges can be defined as

follows:
Definition. Let (X, d) be a metric space and / be a function from X to R. Also, for each 

/I e N let/„ : X —> R. Then, the sequence of functions (/„ > conveges pointwise to the function/, if 
for each x € X, the sequence of real nubmers </„ (x)) converges to the real numbery(x).

Therefore (/„ > converges pointwise to/if
lim /,(x)-Ax) V xe X.

n —»«
For example :

(i) For each n e N. Let us define/„ : R ^ R by /, (x) = — V x G R 

Then {/„ (x)) converges to^-^) = 0 V x G R. ‘

(ii) The sequence (/„ (x) > = {x") converges pointwise to the function/: [0, 1] —> R defined 
0 if xG ]0, 1[
1 if x^ 1.

(iii) The sequence <x(l -x)” > converges pointwise to the function /that vanish identically.
(iv) The sequence +

yfx)= 1 V xe ]0,oo[.
(v) The geornetric series 1 + x + x^ + x^ + ... converges to (1 - x)

byA^) = :

■ -----) converges, pointwise to the function / defined by
1 + tix

-1 V xe ]- 1,1[.
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Unijhrfii ConvergenceTheorem wihout proof. Let {X,d) be a metic space and / be a function fro X Xo R and 
f„: X R'^ ne N. The sequence of function (/„) convenes pointwise to /if and only if for each 

X and for each positiv real number, E, 3 a positive integer m such that 
n > m => |/„ (a) -J[x) I < e.

SOLVED EXAMPLE

Example I. Let {f, > be the sequence defined : R R such that

\/ xe R.ne N.

Show lhai rhe sequence converges pointwise to the zero function.
Solution. Here, we want lo show the given sequence converges pointwise to the zero function 

i.e.,J{x) 0, A e R, then wc must show that given e > 0, wc can find m G N such that

i-oV /j > m ”> ...(1)
n n

1^-i.1..CI us choose m >
e

Then (1) gives
r

v.>,« =>.^-0 < e.n
Here, the given sequence converges pointwise to the zero function.

* 3.2. UNIFORM CONVERGENCE OF SEQUENCES OF FUNCTIONS
Let us suppose the sequence (/„ (x)) converges for every point x in X. Therefore,/„ tends to 

a definite limit as n —> <» for every xE X. The limit is also a function of a".
Then by definition of limit, we must have that for every e > 0 3 a positive integer ni such that 

n>m ^ \f(x)-fx)\<t.
Here, it must be noted that the integer ni depends upon .v as well as £.
Definition. The sequence (/„ (a) ) of functions is said to converge, nnifonniy on X to a 

function f if for every E > 0, we can find a positive integer m such that 
n>m => |/„W-/:^)l<e V agX.

Some Examples :
V(1) The sequence of function </„ > defined on R such that /, (a) V g N converges

pointwise to the zero function ii.e.,fix) =0) while, this sequence does not converges uniformly to 
this function.

We will prove that convergence is not uniform.
XLet us suppose the sequence (— > converges uniformly to the zero function on R, then there 

is some m G N {m depending only on £ = 1) such that
^\f„(x)‘fix)\=^<l V agR

kwhich is not true for all a G R for if n = m and a = m, then = i.m
(2) Let (/(a) > = < a" ) be the given sequence of function defined on [0,1]. Then we can easily 

verify that the given sequence </„ (a) ) converges pointwise to the limit function/, defined by
0 if 0<A< 1 
1 if A=1Ax) =

for every a G [0,1]. . .
To check that the convergence is uniform, we consider the interval [0,1]. Let £ > 1 be given. 
Then, we have

\fn(x) => i-v"-0t<e => A”<e
11 ,1,1 ->- ^ „log->log-=5-
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Mathematics I log(l/e)
log(lA)

Therefore, when I, niE N, such that
log (1/e)
log (1/a-)'

i.e., ..... (1)n >

m >

In particular, when a = 0, m = 1.
Now as X increases from 0 to 1, it is clear from (1) that n oo.
Therefore, it is not possible to find m e N such that 

n>m => \f,,{x)-f{x)\<E
for all X e [0, 1]. Hence, the given sequence is not uniformly convergent on [0,1].

Note. If we consider the interval [0,/:], where 0 </:<!, then the greatest value of 
log (l/e)/log (1/a.-) is log (l/e)/log {\/k) so that if we take/« > (log I/e)/Iog (1/^) e N, we have 

n>in [/„ (a) “/(a) I< e V a:g[0,/:].
Therefore, (/„ (a) > converges uniformly on [0, k].

(3) The sequence of function ( 1/(1 + nx^)) does not converges uniformly oh R to the function
/defined by

, if A 5* 0 
, if x = 0.

(4) Let a be any positive real number and for each n e N.
1Define fn (X) = V XG [fl, oof.

1 + nx^
The sequence (/„ (a) > converges uniformly to the zero function i.e.,_f{x) = 0 on [a, /;[, because 

of w G N, m > (1-e)/a^ then ..
1

n>m |/,(j:)-0| =
1 +/u^

1
< ----------5

I +mx 

1 + mo
< e V A e [fl, oof.

Point of Non>uniforni convergence. A point such that the sequence does not converge 
uniformly in any neighbourhood of it, however small, is said to be a point of non-uniform converges ' 
of the sequence.

Sum function of a series. Consider the series

M„(A) = Mi(A)-FM2(^) + ...+H„(A)-H...,Ae X
n = I

of real valued function defined on a metric space (X,d). This series gives rise to a sequence of 
function </, (a) ) where

fr,(x) = Ui(x) + U2(x)+ ...+U„(X).

The series (a) is said to be convergent on X if the corresponding sequence </, (a) > is 
convergent on X and the limit function j(a) of the sequence is said to the sum function or the .sum . 
of the series.
Uniform Convergence of a Series of Functions :

Definition. The series ^ (a) is said to converge uniformly on X if the sequence
n = \

(fn (x)), where fn (a) = «| (a) + uiix) + ... + u„ (a), converges uniformly on X.

• 3.3. CAUCHY’S GENERAL PRINCIPLE OF UNIFORM CONVERGENCE
Theorem 1. Let (/„) hea sequence of real valuedfunction defined on X. Then (/, > converges 

uniformly on X if and only if for every e > 0, there exists a positive integer m such that 
/i > m, p > wi, A e X => I/, (a) -fp (a) I < e. -.(1)

54 Self-Learning Material



Uni fori)} Coiiverj^enccProof. The only if part Let us first suppose, the sequence </„) converges uniformly to the 
function/on X, Then, by definition.

For given e > 0, 3 a positive integer m such that
\fn W 1 < e/2 V n>m,^ X E X.

Therefore, if p, n > m, we have for any x £ X
\f„ (x) -fp W = \fn (.V) -Rx) +Xa-) -fp (x) 1

^ \fn (x)-Jlx) I + |y{x) -fp (x) I
< e/2 -h e/2 = e.

Hence (1) holds for this in.
The if part. Let (/„ > be a sequence of function from X to B such that for given e > 0 3 a 

positive integer in such that (1) holds.
To show 3 a function/on X such that the sequence </„> converges uniformly to/on X. 
Now, for each fixed xe X, (1) gives that the sequence of real numbers (/„ (x)) is a Cauchy 

sequence and therefore lim /„ (x) exists for every x 6 X

(•.• Every Cauchy sequence of real numbers is convergent)
Define /:XR by/(x) = lim f„{x) V xeX.

n —»oo

We want to show that the sequence (/„) converges uniformly to/
If X £ R, e > 0, then there is some m e N such that

n,p>m ==> \fnix)-fp{x)\<t/2 for ail x e X.
For any fixed/;,/? >/Hand fixed xe X, consider the sequence (|/, (x) - fp (x) |: n £ N >. Since 

lim fn{x)=f{x) and |/„ (x)(x) | < e/2

for n > m, we have
• lim \f„ (x) -fp (x) I = \Rx) -fp (x) 1 < e/2.

n —
Therefore, if p> in, the

[Xa)-/;Cx) (<.£'V xe X.
Hence, the sequence </„ (x)) converges uniformly to/on X.
Theorem 2. The series ^ (x) converges uniformly on X if and only if for every E > 0 3 «

positive integer m such that
n>m => I 1 (x) +w„ + 2 (a) + ••• + w«+p (x) j< e, p^U2,...

for all XE X.
Proof. Let s„ (x) denotes the sequence of partial sum of the given series such that 

Sn (x) = U\ (x) + U2(x) + ... + U„ (x), X 6 X.
Sn-^p (X) - Sn (X) = + 1 (x) + «„ + 2 (x) + • • • + + p (x).Then,

The series ^ u„ (x) converges uniformly to/(x) on X if and only if </,) converges uniformly
n = I

on X.
But (.9,, (x)) converges to i(x) on X if and only if for given e > 0 3 a positive integer m such

that
n>iii =» i 5„+^(x)-5„ (x) I <6, p=l,2,...

for all X E X. Hence,
n>m 1m;,+ i(x) + «„ + 2(x) + .(x)|<e p=\,2,...

for all X £ X.

• 3.4. UNIFORM CONVERGENCE OF A SEQUENCE OF CONTINUOUS 
FUNCTION;■

Theorem 3. Let {f„) be a sequence of continuous real valuedfunction defined on the compact 
metric space (X. d) such that

/i(x)S/2(x)>...>/„{x)>... 
for every xE X. If (f,) pointwise converges on X to the continuous function f on X, then 

(f,) converges uniformly tofon X.

...(1)
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Matheivatics / Proof. Let
Then, from (1), we get

eachne N,

Also, since </„ ) converges to/on X, we have 
lim W = 0 V JT e X.

n —»<x>

To show, {§„} converges uniformly to0 onX. Let e>0 be given.
If a: € X, then from (3) 3 a positive integer m (x) such that 

0<g^Cx)<6/2.
Since (x) is continuous at x, therefore, 3 an open sphere S(x, r) such that 

y € j (x) (y) < e. Therefore, the collection
C = {5 (x, r) : X e X, r > 0}

forms an open cover of X. Since X is compat, therefore, by definition 3. a finite subcover of C 
i.e., 3 a finite number of open spheres S (x, r) say S (x], T]), S (x2, which also
cover X.

...(2)

...(3)

Now, let
m = max {m (xi),/n (X2),..., w (x*)}.

If y is any point of X, then yeS (xy, r) for some i- 1,2,
gn,(x,) (y)<^-

But since m(x,) < ni, therefore from (2), we have
gm (y) = gm(,x,) (y)
0<g„(y)<B \/ ye X.

Therefore,

=>
Thus, from (2), we have

0<g„(y)<t n>m, ye X.
Hence, {g„) converges uniformly to 0 on X. This implies that (/„) converges uniformly on 

Y to the function /.

• 3.5. TESTS FOR UNIFORM CONVERGENCE
Theorem 1. (Af„-test). Let (f„) be a sequence of function defined on a metric space X. Let 

lim f„ (x) =fx) for all xe X and let

Mn = {|/n W-Ax) I : X € X}.
Then (/„) converges uniformly tof if and only ifM„ —> 0 n —> 00.
Proof. Necessary condition. Let us suppose, the sequence (f,) of functions converges 

uniformly to/on X. Then by definition, for a given e > 0 3 a positive integer m (independent of x) 
such that

n>m U, (x)-y(x) j < e V x e X. 
Also, M„ is the supremum of [/„ (x) -Ax) 1- 
Therefore

\fn W ~Ax) |<e n>m VxgX 
= sup \f„ (x) -fix) I < e V n>m

xe X
» 0, as n —>

Sufficient condition. Let us assume that —> Oasn —>Thenforagivene> 03apositive
integer m such that

=> (

lM„-0l<e V n>m V xG X 
=> M„<e Vrt>m, VxGX 
=> sup |/„(x)-y(x) I =M„< e, V /i> m

xe X
=> \L (x)-Ax) V/I>m, VxeX

{fn ) converges uniformly to/on X.

4

£

SOLVED EXAMPLES

Example 1. Show that the sequence {f„) where
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I

f„(x) = nx(l- x)" ■ Uniform Convergence
does not converge uniformly on [0, 1]. 

Solution. Here, we have
nx OO,fix) = Urn /„ (x) = Urn Form —

- (l-x)-" OOn —»
X= lim

n —» OO
[Using L-Hospital rule]

-(l-xr"log(l--x)
• xd-xT 

log (1 -x)
= lim

n -!»-oo

. , = o
Ax)=0 V XG [0,1].

= sup {\f„ (x) -Ax) 11 : X G [0, 1]} 
= sup {;ix (1 -x)" ; X G [0, 1]}
= sup(l-x)'' VxGx[0,1].

[•.• (l-x)"^0 V XG [0.1]]

Now

1Therefore, Takingx = -e [0,1]n n n

iV' 1 ■
—> — as /I -4 OO.1 --

en

Hence, by M„-test </„ > does not converge uniformly on [0,1]. Therefore, 0 is a point of 

non-uniform convergence, since x = — —> 0 as n -4 oo.
n

Theorem 2. (Weirstrass’s A/-test). A series ^ Un{x) of functions will converge uniformly
n = 1

X if there exists a convergent series ^ M„ of positive constants such thaton
n - 1

I u„ (x) I < V n and V x G X.
Proof. Since ^ A/„ is convergent, therefore, by definition for a given e > 0 we can find a 

positive integer m such that
n>m M ...(1)n + 1

(for/?=l.2, 3,...)
I u„ (x) I < A/„ V /I and V x G X.Since •••(2)

From (1) and (2), we conclude that
I U/l+l W + Hn + 2 W+ +«« + ,; W [ ^ | «/, + 1 W [ + I 2 W | + ■ ■ • + | W |

1 -I- Af„ + 2 -F ... +A/;,+;,
< e, for every n>m and V x€ X.

Hence,^ «„(x) converges uniformly on X.

SOLVED EXAMPLES

Example 1. Show that the series
cos X cos 2x cos 3x cos nx+ + + ...•+ — +...

I” 2PIf . if '
converges uniformly on R ifp > 1. Also give the interval of convergence. 

Solution. Here, we have

<— V XG R.

Also, the series ^ is known to be convergent for p> V.

Hence, by Weirstras's’s M-test the given series converges uniformly on R for p > 1. 
Above is true for all xe R.

cos nx
,f
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So the interval of uniform convergence is [a, b] where b are any finite distinct reaJ numbers. 
Theorem 3. (Abel’s Test). The series u„ {x) v„ (a:) will converges uniformly in [(u h] if

(/) ^ u„ (x) is uniformly convergent in [«, b]
(ii) the secjiicnce ( v„ (a:) ) is monotonic for every xE [o.b]
(Hi) the sequence { v„ (.r) > is uniformly bounded in [a, b] by k i.e.,

h'n (■^) 1 < ^ ^ ^ ^ V /j e N.
Proof. Let Rn,p(x) be denote the partial remainder of the series J] ii„ (a) v’„ (a) and r„ p (x)

Malhemelics I

that of the series ^ »„ (a). Then
K p(x) = ^n^\ {-^) + 1 (a) + «„ + 2 (-^) V„ 2 (a) + ... + p (a) V„ ^ (a)

=^„.i(a) V;, + i(a) + V„ + 2(a) + {v 3(a) 2(a)) V„ + 3(a) f ...
S+ {r„,/A)|(a)} v„ + ,,(a)

= Tx. 1 (a) { v„ + 1 (a) - v„ + 2(a) } + r„. 2(a) {V;, + 2(a) - v„ + 3(A)} + ...
+ 'n.p-l (a) {v„+p-1 (a)-V„ + /a)} + Vp(a) V„ + ,Xa) ....(I)

Given that ( v„ (a) ) is monotonic, therefore.
{v„ + i(a) - V„ + 2(a) }, { V„ + 2(A) - V„ + 3(a) }, ..., { v„ + ^ , (a) - v„ + ^(a) } 

all have the same sign for fixed value of a in [n, b].
Also, given that ( v„ (a)} is uniformly bounded by k, therefore 

[ v„ (a) I < /: for all a g [a, b] and V n g N.

Also, since the given series u„ (a) is unifonnly convergent in [a, 6] for a given £ > 0, 3 a 
positive integer m, independent of a such that for n>m

•••(A)

...(2)

I r„,p (a) I = I «„+, (a) + m„ + 2 (a) + ••• + u„ + p (a) i < —• • -..(3)

From (1) and (3), we have
1 K. ^ (^) I < ^ I J (a) - + 2(A) I + " j .. 2(a) - V„ + 3(a) i ...

£ 6 ^ 1+ i(a) ~ +p (a) I + — I v„ (a) I+
6 6 = ^ I V„+ 1 (a) - v„ (a) i + — i v„ (a) |. -.(4)

Using (A), we have
I V„+i(a)-V„ + 2(a)| + | V„ + 2(a)-V„ + 3(a) 1+ ■■■ +1 (a)” V„ + ^(a) |

= |v„ + i(a)-V„ + 2(a) + V„ + 2(a)- V„^3(a)+ + + (a) - V„ + ^ (a) (

= |'^h+i(a)-v„ + p(a)|.
I V„+, (a)-V„,.p(A)|<| V„+i (a) | + |~V„^.^(a) !

<k + k 
<2k.

Now

...(5)
Then (4) can be written as

I Mn + 1 (a) . V„+, (a) I + ...+m„ + ^(a) v„-4p(A) I < e Vn>m VaG [«,/>], 
Hence, from (6), the given series ^ u„ (a) v„ (a) converges uniformly on [a, b].

-.(6)

i.e..

SOLVED EXAMPLE
-1

Example 1. Test the series ^ ^^ . x'^ for uniform convergence in [0, ij.
-1(- 1)"Solution. Let us suppose v„ (a) = a" and u„ (a) = ^^

Clearly, the sequence ( v„ (a) ) is uniformly bounded and monotonically increasing on [0, 1],
-1

Also, the series ^ u„ (a) = is convergent. Hence, by Abel’s test the series
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Uniform Converf’encc- ]

n
uniformly convergent on [0. 1].

Theorem 4. (Dirichlet’s Test). The series ^ (a:) v„ (x) will be uniformly convergent on
[rt, b] if

(/) The sequence { v„ (x) > is a positive monotonic decreasing sequence converging uniformly 
to zero for all X ^ \a,b].

i^Ofn W X uniformly hounded in [a, b] i.e..
/■= ]

\fn(x)\= Ur{x) <k
r= 1

for every value of x in [a, b] and for all positive integral values of n, where k is a fixed number, 
independent of x.

Proof. Proceed as in previous theorem, we have
= W V„ + , (x) + i/„ + 2 W V„ + 2(jr) + ... +M^+p (.t)
= K+1 W] V'n+I W + ['J,. + 2 + 1 +

+ + WIV
^5,, + j (X) [v„+i (.t)-V„ + 2 W] +i',. + 2 W [v„ + 2 W-V„ + 3(A')] + ...

■*'n f - 1 (-^) [^;i + p - 1 (.^) ~ ^n + p ^n+p (-^) ^it + p ~ + 1 (■^) ■■■( 1)
Now, since (v„ (a:) ) is a positive monotonic decreasing sequence, therefore, 

^1 W-W. ^'3 W ••• are all positive and

i

(•^)n+p

V, (.r) > V2 (x) > V3 (x) > ... > v„ (x) > ... .
Also (x) I < k for all x in [a, b] and for all n € N.

From (1), we have
W l^!/, + i W K + i (x)-v„ + 2(x)] + ... +1/, . -•i(x)|[V;i + p_i(x)-v„+^(x)]

+1 /« + p (x) 1 v„ + p (x) 1 + (x) I v„ +, (x) 1
n+p

<^[v„+| (x)-v„ + p(x) + v„+^(x) + v„+| (x)] 
= 2k (x).

Also, since ( v„+ j (x) > converges to zero, we have
...(2)

I *’« W I < :^ V n > m
2k

''/i(x)<^ V n>ni.

From (2) and (3), we conclude that 

\K.,ir)l<2k.~
|/?n.p(x)l<e for n>m V x6 [a,b].

Hence, the series ^ u„ (x) v„ (x) is uniformly convergent in [a, b].

..•(3)i.e..

for n > m

=>

SOLVED EXAMPLE

-1'E\attvp\e \. Show that the series ^ (-1)”

Solution. Let 1)”“\ v„(x)=x''.

0 if n is even 
1 if n is odd

. x" converges uniformly in0<x<k<l.
it = \

Sn{x)= £Since «r =
r= I

=» s„ (x) is bounded for all n e N.
Also ( (x)) is positive monotonic decreasing sequence, converging to a zero for all values

ofx in 0<x</t< 1.
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Mathematicx I ■ Hence, by Dirichlet’s test, the given series is uniformly convergent '\nO<x<k< 1.

—- does not converge uniformly 
1 + n'x^

Example 2. Show that the sequence {f„), where f„ (x) =

on R.
.1Solution. Here, we have

nx = 0 V X 6 R.f(x) = iim f„ {x) = lim
1 -{• /I V

Let if possible, the sequence converges uniformly on R, then for a given e > 0, 3 a positive 
integer m such that

n\x\
n>m,xGR = ...(1) •< e.

l^nV
1 1If we take e = — and x = ~ (n = i,2, 3,...). then 
3 n

1n — 1 1n
\fn (x)-fix) 1 = 2<3="--) 1 

n
Thus, there is no single m such that (1) holds simultaneously for all x € R. 
For if, such an m existed, we would have (on taking n = m)

1

f 1 iV
but if we take AT = — • we get a contradiction in this case-<- and therefore, the sequence

^1- ’ . .
is not uniformly convergent on R. Also since ““^0' therefore, 0 is a point of non-uniform 

convergence.
Example 3. Discuss the series

(n-l)xnxE 1 +(«- i)V1+nVn ~ 1

for uniform convergence.
Solution. Here, we have

Ki W = 7^ - 0 
1 +x

2x x
U2 (x) = I+2V l+X^

(n-l)xnxW = (l+in-lfx-)1 + n V
On adding, we get

nx
fn(x) = 1 + n^x

Now do same as example (1).
Example 4. Show that the sequence {f„ ) where

l+w?
converges uniformly on R.

Solution. Here, we have
X = 0 V jr e R.fix) = lim

1 +nx^n-400

y^fn(x)-fix) = -~ 2 
I +nx

Let

For maxima and minima of y, we must have
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i

(l+nx^)-2nx'^
^ ^ “ u

(i H- nx'f
1 2 1 ” HX

Uniform Convergence

= 0
(1 + «/)■

1x = ±=>

d^y 1Clearly, — is negative when x =

!/>/« 1Maximum value of y =

1 +tt
n\ /

1 + - 2V?r IX [1 1 X-l^hAlso,
2^ I+n:^ 

(l-IxlViT)-
2\^ 2-^(l+nx')

>0.S2

2V?r(i+rtx^) 
Mn= sup lAW-7(^)1 !Now, I

xe R
X = sup 1 y I= sup

A'e R 1 +n^ A€ R

1
■» 0 as « —> oo.= max.y =

2-In
Hence, by Mn-test the sequence is uniformly convergent on R.
Example 5. Show that 0 is a point of non-uniformly convergence of the sequence if„ (x)),

2

where f, (x) = nx e , x e R. 
Solution. Here, we have

2

y(x) = lim fn (x) = lim ./ix e

/IX oo= lim Form —1
oo I

X= lim (By L-Hospital rule)
2_/«/I —» oo X e

= 0.
Lei if possible, the sequence be uniformly convergent in a neighbourhood ]0, k[ of 0. where

-te N.
Then, for a given e > 0, 3 a positive integer m such that 

/j > m, X e ]0,/:[ => l/„(r)-^x)l=/ixe“'“ < e. 

In particular, the inequality (1) must be true for x = 

than m such that

-d)
1 ’ where /t is a positive integer greaterv;r

10< < k.-HI
Then (1) gives

-IH
< £.e

Now,^ince x -4 0, when n —^oo,we see that on taking x sufficiently near 0, we can take n so

> e, which is a contradiction. e
Hence, 0 is a point of non-uniform convergence of the sequence.

large that
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Mcnhanatics I 1
-nxAlitcr. Let y=fn{x)-f{x) = nxe 

For maxima and minima of y, we must have
dy n ~ 2 2 — nx' A“f- = 0 =» ne -2n X e = 0dx

1=» x = ±

1Also, = - ve, when .y =----- •

1 _L
^ ■ 2n

dx^

Therefore, maximum y^n-

M„ = sup \f„{x)-Ax)\
Are R

2-av= sup n\x\e
x£. R

^ sup I y I 
= Max. y

<fe —> oo as /I —> oo

=> does not tends to zero as n —> o®.
Hence by M„-test, the given sequence is not uniformly convergent.
Also ;c ^ 0 as n ^ therefore, 0 is a pair of non-uniformly convergence. 
Example 6. Show that the sequence (/„ >, where f„=x''~ (1 - a:). 
Converges uniformly in the interval [0, 1].
Solution. Here, we have

Ax) = lim /„ {.y)
n —» oo

= lim /"‘(1-.Y) = 0 V xe [0,1].

y=\fnix)~Ax)\=x" \l-x).
^ = 0

Let

For maxima or minima of y, we must have

(n-i)x"“^(I-x)-x"“‘=0 
x"“M(«-l)(I-x)-;c]=0

« 1 x = 0,—^—•
,2

Also, we can see that —4 is negative, when x =------ ■
dx^ «

sup !/„ (x) -Ax) i
•celO, 11

= sup |x’r'(i-x)i
xe |0, ri

= sup .|y|
X€ 10. IJ

= Max. y

dx

=> n

Now M,.=

n - 111 -- 1 - nn
1~ X 0 = 0 as « —> «=.
e

Hence, by Mn-test, the sequence is uniformly convergent on [0,1]. ,

Example 7. Show that the sequence {f„ ), where(x) = ~ > x > 0 /s uniformly convergent

in any interval.
Solution. Here, we have

oc

Ax) ^ lim A (.x) = lim Form —
oo

n —»
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i Uniform Converj^aricf
= lim

n—f —
= 1 \/ x>0.„ 1 + x/n

For an arbitrary choosen positive number e, we have
i/.(-v)-/{.0|<e

-A__ 1 
n+x

if < e

- Xi.e., if < en+x
Xifi.e.. < en 4- X

1i.e., if n> x\~ - \ .
e

Obviously, n increase with x and tends to «> as oo.
Therefore, converges is not uniform in [0, «>[.
But if 10, k[ is any finite interval, where k>0, however large then /n is any positive integer

>/:—-! t such thate
n>m,xe [0, k] => )/„ (x)-J{x) ] < t. 

Hence, the sequence is uniformly convergent on [0, k].
cos X cos 2x cos 3x 

2- 3^
Example 8. Show that the series ■ 

Give the inten'al of uniform convergence.

+ ... converges uniformly on R.

cos })X2 Un (•^■) = YjSolution. Let 2nn - 1 ;j= I

Then, we have
I , ,, cos /w , 1 ,, „
1 (■>^) \ = —— ^ — V A- e R.

n~ n

Taking Mn = > the series ^ is convergent.

Hence, by weirstrass’s Af-test, the given series converges uniformly on R.
Also, thfe interval of uniform convergence is o < a: <!;, where a and b are any finite unequal 

real numbers.

;

2n XExample 9. The sum to n terms of a series is f, (x) =
1+nV

Show that it converges non-uniformly in the interval [0, 1]. 
Solution. Here, we have

2n Xf{x) = lim /„ (at) = lim = 0 V XG [0, 1],
i + /I V

Let if possible, the sequence {f„ (x)) converges uniformly on [0,1]. Then, by definition for
a given e > 0, 3 m G N such that

2
n > m. X G [0, 11 =» \f„ (X)-Ax) j = ^

1 + n x^
< e.

1If X = — (« G N), then
n

2 1n . 2 1n

I + n . —

If we take E - ’ there is no single m such that (1) holds simultaneously for all x G [0, 1].

For if such in exists, we would have

1
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Mathematics / 1\fm(x)-Ax)\<^ V [0,1].

1In particular, when x = —we get a contradiction
m

in this case we would have \

Hence, convergence is non-uniform on [0,1].

• SUMMARY
A sequence </„ (x) > is said to be pointwlse convergent to A^) if for given e > 0 3 a positive 
integer m depending on x such that \f„ (jc) -A^) | < e V n > m.
A sequence {/„ (x) > is said to be uniformly convergent toAx),f{x) = lim/, (a:) if for given 
£ > 0 3 a positive integer m not depending on x such that | (x) -/(a:) j < £ V n > m V a'.
Cauchy’s general principle of uniform convergence : A sequence (/„ (a) ) converges 
uniformly on X if/for every £ > 0 3 a positive integer m such that

\fn (x) -fp {x) 1 < £ V n > ni, p > m.
M„-test: Let f(x) = lim/, (a) and M„ = sup {\f„ (a) -/(a) \:xe X}. Then {/, (a) > converges 
uniformly to/(A) iff —> 0 as n

Weirstrass’s M-Test: A series ^ u„ (a) of functions, will converge uniformly on X if there
n = I

exists a convergent series ^ M„ of positive constants such that | (a) j <M„ V ji and
n= 1

Vag X.

• STUDENT ACTIVITY
\

Show that the sequence (/,t (a) >, where/, (a) = /ia(1 - a)", is not uniformly convergent on [0,

!]•

—:r converges uniformly on R.
•1 +nA^

2. Show that the sequence (Ai (a) ), where/, (a) =
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Unijx}nh Convergence
• TEST YOURSELF

-1(- irTest the series ^
n= 1

Show that 0 is the point of non-uniform convergence of the sequence {f„ (jr)) when

for uniform convergence for ail values of a-.1.
n +x^

2.
. . /«(A) = e'“ A^O. ...

3. Show that 0 is a point of non-uniform convei^ence of the sequence {f„) where

4. Show that the sequence </,i (a) ) on X = (0,1] is convergent on every point of the metric space 
convergent on every point of metric space X but is not uniformly convergent on X, when 
f,i (a) = a" and

lim y* = 0, when 0 < A < 1
n-* —
lim A^-1, when A= 1.

n-»«»
5. Show that the sequence (fn) where

/„(A)=y'(i-A)
converges uniformly in [0,1).

ANSWERS

1. Uniformly convergent for all A.

□
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Mathematics 1 UNIT
i ' t ^

4
RIEMANN INTEGRAL

STRUCTURE
Some Definitions 
Rierhann Integral 
Some Theorems
Lower and Upper Riemann Integrals 
Integrability of Continuous and Monotone functions. 
Algebra of R-integrable Functions 
Fundamental Theorem of integral calculus
□ Summary

. □ Student Activity
□ Test Yourself 

- I \

LEARNING OBJECTIVES
After going through this unit you will learn :

• What is Riemann integral ?
• How to check whether the given function is Riemann integrable ona given interval.

• 4.1. SOME DEFINITIONS
Partition of a Closed Interval:

Let ! = [a, b] be a closed and bounded interval. Then, a finite set of points 
P ~ {xq, Xi,X2,such that

a = XQ<Xi<X2-.-<x„.\<x„ = b
is called a partition or division of the interval I = [a, b].
Segments of Partitions :

The closed sub-intervals /i = [n = j:o’h = [xuX2] ln-[^n-i^x„-b] are called the 
segments of the partition.
Length of the Subinterval:

The length of the subinterval f is denoted by Ax^ or 5^ defined by
dr = AXr = Xr~ Xr- j.

Norm of the Partition :
The norm of a partition P is the maximum of the lengths of the segnients of a partition P. 

denoted by \\ P\\, defined by
II PII = max {Ax„ r = 1, 2,...,«}.

Refinement of Partition :
If a partition P*'is a refinement of a closed and bounded interval [a, b] then 

P* = P^uP2
is called the common refinement of P] andP2-
Family of Partitions :

The family of all partitions of the closed interval [n, b] is denoted by P(a, b).
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Rienlann liiie^ralLower Riemann Sum, Upper Riemann Sum and Oscillatory Sum :
Let/be a bounded real valued function defined on a bounded and closed interval [a, b] and 

P= {a = jcQ,xi, b} be any partition of [«, b]. Also, let and Mr denotes the infimum and
supermum of the function/on the subinterval [Xr- i,Xr] respectively, then the two sums

UP^f)- 2; U{P,f)= S Mr&Xr
r= 1 /•=!

are respectively called.the lower Riemann sum and upper Riemann sum off on [a, b] with respect 
to partition P.

U{P,f) - L{P,f) = I [Mr- nir] dXrAlso,
r= 1

= L 03^ where cO;. = (Mr -
r= 1

Then sum Z a)^5A:r is called the oscillatory sum for the function f with respect to partition
r=\

Pof[a,b].
Upper and Lower Integrals :

The infimum of the set of the upper sums is called the upper integral of f over [a, b] and is

denoted by U = ^ fx) dx.

Also, the supremum of the set of the lower sums is called the lower integral of f over [a, b]
rb

and is denoted by L= ^ fx) dx.

• 4.2. RIEMANN INTEGRAL
From the above discussion, it is clear that the supremum of the set of upper sums is 

M(b - a) and the infimum of the set of the lower sums is m (b - a), where M and m be the bounds 
of/on [n, /)] such that for every value of/'

m<mr<Mr<M.

Definition. A hounded function f is said to be Riemann integrable, or simply integrable over 
[n, b]. if its upper and lower integrals are equal; and their common value being called Riemann 
integral or simply the integral denoted by

rb

Ax)dx.

• 4.3. SOME THEOREMS
Theorem 1. Let f be a hounded function defined on [a, b] and let m and M be the infimum 

and supremum off(x) in [n, b]. then for every partition P of [a, b], we have 
m(b - a) < L(P. f) < U(P,f) < M(b - a).

Proof. Let P “ {//= a'q. .tj, .r„_ 1,-v,, =/?} be any partition of [a,b]. Also, let
[Xr- ]. A',./ r= 1.2.....n be the subintervals of [a. b].

II M and m be the least upper bound and greatest lower bound of/on [a, then we have 
m <f{x) < M V A- G [//, b] (By definition of supremum and infimum) 

Now let Mr and nir by the supremum and infimum of/in /. 
ni < nir ^Mr'^M for r g; N

in 5r ^ nir Sr - Mr 5,- < M ^r

Then
(Multiplying by 5^)

Z m 5^ S Z nir 5r ^ 2^ Mr^r- ^ M 8^ •..(1)=>
r= 1 r= I r=l r= I

(By summing the above result)
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Mathematics /
L mhr-m % 5^ = m 2 {x^-Xr-x) {■: h, = x,-x,..x)Now

r=l r=l r= 1

-m [(Xi -Xo) + (X2-Xi) + (X3 -X2) + ... +(x„ -x„_,)]
(•.• Xo = fl,X„ = /j)= m{x„ - Xo) = m{b - a)

Similarly, we may find that

2 Mbr = M{b-a).
r= 1

Also, by definition of lower sum and upper sums, we get

r=\ r=l
Using all these values in (1), we get

m{b -a)< L{P,f) < U(P,f) <M(b-a) V PeP [a, b].
Theorem 2. Iff and fi are two real valued bounded  junctions defined on [n, b], then 
(0 L{P,f +/2) > UPJx) + LiPJf) 

and {ii) U(P,/i+/2)<U(P,/i) + t/(^/2) VPeP[a,Z>]
Proof. Let P = {a = A:o,xi,X2.....x„_,,x„ = i)} be any partition of [n,/?]. Also, let

lr = [Xf_i,xJ, r = 1,2,..., n be the subintervals of [a, b].
Since,/i,/2 both are bounded.

(•.• Sum of two bounded functions is also bounded)fi +/2 is bounded.
Let Afj^, mi^ and A/2p «i2r be the least upper bounds and greatest lower bounds of the

functions f + f2,f\ and/2 in for r = 1,2,n respectively.
(i) By definition of infimum, we have

f\{x) > niir
/2(x) > niir V X G 

Mx)+f2(x)>mi, + m2r 
(f\ +f2)ix)>mi, + m2r 

(mir + nt2r) is a lower bound of (fi + /2) (x) on f. But, since w, to be the greatest lower 
bound of (fi +^) on f, therefore,

mr^mir + m2r
5^ >/«];. 5;. + ni2r 5^

and
Therefore,

(Multiplying by 8,)

. (By summing the above result)2 m^r- ^ ^l/-Sr+ 21 m2r^r
r=] r = 1 /• = 1

L[PJx^f2]>L{P,fi) + L(PJ2)-
(ii) By definition of supremum, we have 

/,(x)<Afi,
/2(x)<Af2. VxG 

Mx) +f2ix)<Mxr + M2r 
(/■,+/2)(x)<Af„ + A/2.

Mir + M2r is an upper bound of (/i + fi) (x) on f 
Mr — M[r + M2r 

Mr 6r Mxr 5^ + M2r 5r

=>

and

=>

=>
(Multiplying by 6^)

(By summing the above result)2 MrK<'L 2 M2r^r=>
r= 1r= 1r= I

U{P,f+f2)^U{PJ{) + UiPj2)-
Theorem 3. If f be a real valued hounded function defined on 

such that P2 is the refinement of P\, then
[a, b] and P[, P2 € P(^. b),

LiPx,f)<L{P2,f),U{P2,f)<V{Px,f).
Proof. Let Pj = {fl = xo<xi <X2... <x,._i,Xr...,x„ = /7} be any partition of [n,6] and let P2

be any other partition of [a, 6] such that
P2 = [a = Xq, X,, X2, .... Xr-[, a, Xr. x„ = 6]

contains just one point a more than Pi(xr-1 < a <x^).
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Now let. the least upper bounds of/in the subinterval [x ^r]’[^r-hCt] and [<x,Xr] be 
ni„ nixr and ni2r respectively. Then, by the definition of least upper bound, it is clear that

Riemann Iniegralr-1*

Mr < Mir and Mr<M2r- 
From the definition of lower Darboux sum, we find that Mr {Xr - Xr-1) is the contribution of 

the closed interval i, Xr] to L{P\,j) and M^r (a - Xr-1) + A/2r (Xr - «) that of the closed interval 
[Xr-],Xr] to L [P2,f].

Since a is the only extra point in P2, which is not in P^ and Xr-\ <(X<Xr therefore, the 
contribution of each subinterval except / = [xr-1, Xr] to L(Pi,f) and L{p2,f) is the same. Thus.

^P2,/)>L(Fl.y)
L{P„f)<L{P2,j).

In a similar manner taking the greatest lower bounds of / in the subintervals 
i,Xr], [av- i, ct] and [a, a,.] as nir, niir and m2r respectively, we may prove that 

u(P2,j)<a(p,,f).

...(2)=>

•••(3)
Also, we know that

L(P2,f)<U{P2,f).
From (2), (3) and (4), we conclude that

L(/>„/) < L(P2,f) < U{P2,f) < U{Pi,f).
Theorem 4. iMfbe a real valued function, defined on {a, b] and Fj, 7*2 G P [a, b], then 
(0 L{P„f)<U{P2,f)
Hi) L{P2,j)<U{P,,f).
Proof. Let Pj and P2 be two partitions of the interval [a, b]. Then, it is clear that Pj u P2 is 

the common refinement of P| and P2.
P] c P, u P2 and P2 c P, vj P2 

Then, from above theorem, we have
L(P,,f)<L(PiuP2,f) 
t/(P„/)>[/(P,UP2,A 

Using, theorem (3), equation (1) and (2) gives
L(P,./) < L(P] u P2,f) < U(P, u P2,f) < U{P2,f).

...(4)

Also

-d)
•••(2)and

...(3)
Similarly, we may prove that

L(P2,y)<L(PiuP2,/)<f/(Pi,y). ...(4)
From (3) and (4), we conclude that

L(P„y)<t/(P2,/) and L{P2,f)<U{P„f).

• 4.4. LOWER AND UPPER RIEMANN INTEGRALS
If/is bounded on the interval [a, b], then for every P 6 P(a, b), V{P,f) and L(P,f) exist and 

are bounded. Then the lower Riemann integral is defined as
fib

^ ^ /= sup LiP,f)
p

and the upper Riemann integral is defined as

fib

^^/=inf U(P,f).
p

Riemann Integrable Function :
Definition I. A real valued function fix) is said to be Riemann integrable on [a, b] if and 

only if their lower and upper Riemann integrals are equal.

fib fib

i.e., iff f=Lf-Ja
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Mathematics I The common value of these integrals is known as the Riemann integral of/on [n, h] and is
/»b

denoted by f{x)dxJa

eb pb pb

j{x) dx = ]^ f{x) dx = j^ fix) dx.i.e.,

Deflnition H. A function fis said to be Riemann integrable over [a, b] if and only if for every 
e > 0 there exists a positive number 5 and a number 1 such that for every partition

P=[a=XQ, x^,X2...... x„ = b]
with II P II < 5 and for every t,. G ],

^ ffr)(Xr~Xr-i)~l <6. ,
r=l

Here I is said to be the integral of/over [a, b] and the class of all bounded functions/which 
are Riemann integrable on [a, b] is denoted by R [a, b].

Theorem 1. (Darboux Theorem). Assume that fis a bounded fiinction defined on [a, b]. Then 
for every e > 0, there exists 5 > 0 such that

pb pb

U{P,f)<}^f+E and LiP,f)>j^f-E ,

for every partition P with || P || < 5.
Proof. Given that, / is bounded on [a,b], then by definition of boundedness there exist 

K>0 such that
|/^)|</i' Vxe {a,b].

pb

Also, since inf U{P,f) is defined as /Ja

.•.for every E > 0 there exists a partition Pj = [a=XQ,X[,X2, •••, = b] such that

"pb

V{P,,f)< /+ e/2. ..•(1)Ja

If Xq = a and x„ = b, then the partition P has {n - 1) points. Let 5i > 0 be any number such that 
2k {n - 1) Si = e/2.

Now, let P be any partition with || P |1 < Sj 
Also, let P2 = P u P], then clearly P2 is a refinement of P and P| then P2 has atmost (n - 1) 

more points than P. Therefore,
t/(P,/)-2/C(n-ir5,<f/(P2,y)

-(2)

pb

<U{P,,f)<]^ /+e/2 [using (1)1

pb

U{P,f)<]a /+e/2 + e/2 [using (2)]

•h

= ^/+e for all partition P with II P II < 5]

Similarly, we may easily shown that there exists a positive number 82 such that
p b

L(P,f) > ^ /- e for all partition P with || P || < 82.
r
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Riemann IntegralDefine 8 = min {5i. 62}
Then for all partition P of [n, b] with |i P 1| < 8, we have-

!•• b
W,/)<J„/+e and

Theorem 2. (Necessary and Sufficient Conditioh for Integrability).
A necessary and sufficient condition for R’integrability of a bounded function f: [a, b] R 

over {a, b] is that for every e > 0, there exists a partition P of [a, b] such that 
0<U(P,fi-L(P,f)<E V|]/>i|<8.

Proof, (i) Necessary Condition. Let us first suppose /be Riemann integrable on'[a,b].
Therefore

rb • fb rb

f-ia f=}af- ...(1)Ja

Let e > 0 be given, then by Darbou'x theorem, there exists 8 > 0 such that for every partition 
P with IIP II <8

rb

/+e/2 ...(2)

rb

f- e/2, ...(3)and

Adding inequalities (2) and (3), we get

rbrb

/-e/2<L(P,/) + J^ /+E/2

UiP,f)-^P,f)<e [using (1)]which gives 
which is the required necessary condition.

(ii) Sufficient Condition. For every e > 0 and for a partition P of [a, b] with ([ P (| 5 8, we
have

U(P,f)-LiP,f)<s.
By definition of upper and lower integrals, we have

rb rb

U:P,f)< f< J<U{P,f)

fib rb

^^f<U{P,f)-L{P,f)<ELf-

rb rb
e is arbitrary] ...(4)/-Ja /SOJa

Also, we know that lower Riemann integral can never exceed the upper Riemann integral.
therefore

rb rb

f- /^O-Ja ■' Ja ...(5)

From (4) and (5), we conclude that
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Mathematics /, •
fb pb

f- /=oid •' id •'

pb pb

L f=Lf-
Hence, the function/is Riemann integrable over [a, b].

Theorem 3. Let f be a bounded junction defined on interval [a, b] and P is a partition of
[a, b] then

pbp b
lint L(P,f)= f and Urn U(P,f)=^f

||P||-»0

Proof. Since given that/is a bounded function defined on interval [a, b] and P is a,partition
• b

of [a, b] and ^ / is the supremum of L{Pyf) for all partitions P

pb

...(1)

~pb

and ^ / is the infimum of U{P,f) for all partitions P

pb

...(2)=>

Now by Darboux theorem we know that for all e > 0, 3 6 > 0 such that

pb

...(3)

pb

V partition P with j| F |j < 6 ...(4)

From equation (1) and (4), we have
pbpb

J„
pb pbpb

f<l /+e

pb pb

/-e < L(F,y) < /+e

pb

lim L{P,f)= /.
D^’l|-»o -

Similarly from equation (2) and (3), we have
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Riemaiin lnte}>rcilrb rb
^^/-e<C/(P,;)<J^ /+e

• b
Jim .(/(/>,/)= ^/.

Theorem 4. Iff: [a, b]^ R is bounded function then
V{P, -f)=~ L{P,f) and L{P,f) = - V{P.f).

Proof. Consider a partition P= {xo,Xi, in interval [a, 6], where a = and = Zj. 
Let and be the supremum and infimum of /in /.
Since/is bounded on [a, b] thus -/is also bounded on interval [a, b] and - ni^ and - Mr will 

be supremum and infimum of - / in /.

Now (Lower Riemann sum)
r=l

= "5^ MrbXr
. r= \

{ " ] ■. ■ ^Mrbxr = V{P,f) iht upper Riemann sum of /
r= 1

Similarly.
r=l

(Upper Riemann sum)
r= 1

L is the lower Riemann sum of /in

[(2, ^>1 such that L{P,f) = ^ bxr
r= i

SOLVED EXAMPLES
Example 1. Find L{P,f) and U{P,f) iff{x)=xfor x G [0, 3] and let P=[0, 1,2, 3] be the 

partition of[Q, 3].
Solution. Let partition P divided the interval [0, 3] into the subinterval

/i=[0, I],/2 = [l,2]and/3 = [2, 3].
The length of these intervals are given by 

6] = 1-0=1 
§2 = 2 - 1 = 1 
83 = 3-2= 1.

Let Mr and m^be respectively the l.u.b. and g.l.b. of the function/in [xr-\,Xr], then we get
Ml ~ 1, nil ~ 0’ ^2 ~ tn2 = 1, ^3 = 3 and m3 = 2 

3
U{P,f)= 1 5, = Ml 5, + A/282 +A/3 83

r = l
= 11+21+ 3-l = l+2t3 = 6

3

L(P,f)= L mrbr = mi6i +012^2 +ni^b^

Therefore,

and
r= 1

= 01 + M +2-1 =0+ 1 +2 = 3.

Example 2. Let f(x) = x, 0 < x < 1 and let P = • 0, 1 be a partition o/[0, l],find

U (P.y) and L (P,f}-
Solution. Let the partition P divides the interval [0, 1] into the subintervals
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Clearly, the length of each subinterval is

Now, let Mr and respectively be the l.u.b. and g.l.b. of the function/in \, jtJ, then, we

2’ 4 ’ A'4’ 2

get ■ f.
M3 = |, yW4=l

n 1 1 3
m,=0, m2 = -. '”3 = 2’ "*4 = 7

4-
C/[?,/]= 2 AfrSr = A^,5i+M262 + M353 + M454

_I 1 11 1 1 . ] 1“4'4‘^2‘4‘^4‘4^'4

__L 1 J_ 1^5 
"16'^8'*’16^4 8

M, =

and 4‘

Therefore,
r=l

4
L[F,y]= 2 mrSr = miS\+m2d2 + in^^z + tni&iand

r= 1
„ ] 11 11,31

= 0'‘7 + "7' .+7' . . ■4 4 4 2 4 4 4

Example 3, Letf(x) = x on [0, 1].

FiW . ;c^ anrf „ xdx, by partitioning [0, 11 into n equal parts. Also, show that
vO vU

/eR[0,1].
Solution. Let the partition P divides the interval [0, 1] into n subintervals such that 

n n
r~ 1 r

P =
n n n

Clearly, here we have

n
Now, by definition, we have 

"
2 mr.5r= 2 -

1r-i
, Mr = ~ and 5r = ~ for r = 1, 2,n.

n n

-11 1 "
— ■- = -2 5: (r-1) 
n n n\=i

(n- i). n n - I
r= 1r= 1

1
= ~2[1 + 2 + 3 + ... + («— 1)] — 

n

U[P,f]= S K3r= 2 - i
r=l r= 1 ” ”

= 4^ r = ^[l+2 + 3 + ...+n] 
n p = ] n

n (n + 1) n + 1

2n^ In

and

In In
rl - i 1

L(/>.y)=lim -2^ xdx =
vU

Therefore, lim
\\p\\~*o n —» »

rl n + 1 1
U(P,f)= lim.0 =

From above, it is clear that

limand 2/1 2IIPIHO n —»«o

I
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Rieiiiann Integral
<•1 r I

1Jo = •'* = 1

1 .Hence, Jo. ■' ‘* = 2'

Example 4. Letj{x) = :i:“ on [0, a], a > 0, show thatfe R [0, a]. Also, find f 

Solution. Let P= — : r= 0, 1,n be any partition of [0,«]. Then, clearly, we have

nir = ^^------

6. = -

t
!• ^

:
2 2

and Mr = ^
n n

Also,
n

n
Now, L[P,f]= 1 m^dr

/■= 1

” r=l
2

r= I n

(n- l)(2n- n' "/ \ / \"
1 11-- 2--3 6 6 /n nn / \

f

2 2n n r a aand U{P,f)= 2 2
n »

(«+l) (2n+l)
r= I r= I

3 na 2 a
6n

\ /
12 + - .

6 n n
y v

Hence, Jo ^ lim L(P,f)

I

3 y \ / 31 2-i= lim ~
n -4CO 6

a1 --
3’n n

/ \
1*0

and 0 /= lim U(P,f)

31 1 a= lim
n—*»«

I +- 2 + - =
6 3n n

/ v
/•a !•«

Therefore,
. 0 , 0

3
which implies fe R[0, a] and ^ I

• TEST YOURSELF
1. Show that if/is defined on [a, b] by/(x) = c V x e [a, b], where c 6 R then/e R [a, b] and

<>b

c = c {b - a).
Jo.
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Mathematics I fU 4
Show that if/is defined on [0,a],a>0 by/(j:) then/e R [0, a] and2.

0 , when x is rational 
1 , when X is irrationalLet/be the function defined on [0, 1] by/(a:) = 

Show that/g R [0, 1].

3.

• 4.5. INTEGRABILITY OF CONTINUOUS AND MONOTONE FUNCTIONS
Theorem 1. Every continuous function is R-integrable.
Proof. Let/be a continuous function on [a, b], then clearly/is bounded.

[■.■ Every continuous function is bounded] 
Also,/is uniformly continuous on [a, b] [being the continuous function in a closed interval}. 
Let e > 0 be given. Then there exists a partition

P={a=XQ,Xi,X2,...,x„ = b}
of [a, b] such that the oscillation (M^ - m^) of the partition fin the sub interval (.v,._ j, .r,.) is

less than ,
b-a

for r= 1, 2,.Now, consider

(/(P,y)-L(P,/l= Z MriXr-Xr^O- Z m, (x, - A:, _ i)
r= 1r=l

' =Z {Mr-mr){Xr-Xr-\)
r= 1

£
Mf-rUr-< Z b ~ ar= 1

b-a

b~ a
=» U(P,f)-L(P.fi< ]fr^(^r-Xo)=~(b-a)

=> U(P,f)-LiP,f)<e.
Hence, the continuous function /is R-integrable.
Theorem 2. Every monotonic Junction fis R-integrable. 
Proof. Let/be the monotonically increasing function on [«, b] 

J{a)<Jix)<Ab) VxG
Now, for a given positive number e there exist a partition 

P=[a=XQ,xi, ...,x„ = b] of [a, b]

such that the length of each subinterval is less than

[•.• x„ = bandx„ = a]

i.e.

e
m-Aa) + i]

e ...(1)for r = 1, 2,..., n.{Xr-Xr-i)<i.e.. m -/:«) +1]
Now, since the function / is monotonically increasing on [a, b] then it is bounded and 

monotonically incresing on each subinterval [x^- x^]-
Let Mr and m,. be the bounds of /on the subinterval [x^-i.Xrj then,

-.(2)Mr=AXr) and mr=fiXr-i).

For the partition P, consider

U(P,f)-L(P,f)= Z iMr-mr){Xr-Xr-^)
r=l

8 2 \A^r)-Ai-i)] . . [using (1) and (2)]
= 1

8
\AXn) -Kxo)]=> U{P,f}-L{P,f)< m -y(«)+ir'

8 ['.• XQ = a,x„ = b]m-Aa)]=> UiP,f)

UiP,f)-LiP,J)<Z.=>
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Therefore, the function/is Riemann integrable on [a,b]. Similarly, we may prove that the 
function/is R-integrable on [a, b] if/is monotonically decreasing function.

Hence, every monotonic function/is R-integrable.
Theorem 3. A bounded function/is ^-integrable in [a, /?] if the set of its points of discontinuity

Riemann Imegral

is finite.
Proof. Given that/is discontinuous on [a,b], let [xi,x2, be a finite set of points of 

discontinuity. Also, suppose that A/andm be the supremum and infinium ofJ{x) respectively on 
[n, £>]. Let e > 0 be an arbitrary positive number.

Now, let the above points of discontinuity of the function/be enclosed in k non-overlapping 
intervals [.r/, xf'], [.xi', a/T ..., [xf, xf'] such that the sum of the lengths of these subinterval be less 
than

e
(with M - 0).2{M- m)

Since, as in each of these intervals the oscillations of the function / is less then equal to 
(M - /«), therefore, their total contribution to these oscillatory sum

<----- ^----- (M-m) i.e., <6/2.

Now, consider {k -i-1) subintervals [a, xf], [xi", xf], [xf', xf],..., [xf', b].
The function /is continuous in each of these subintervals. Now, each of the above (k+ 1) 

subintervals can be further subdivided so that contribution of each of them separately to the

oscillatory sum of these (k+ 1) subintervals is less than

;

e
2(k+iy

Therefore, there exists a partition of [a, b] such that the oscillatory sum

< e/2 +

sum < e/2 + e/2i.e.y

sum < e.
Hence, the function /is Riemann-integrable in [a, b].
Theorem 4. Let fbe a bounded function on [a, b] and let the set of its discontinuities have a 

finite number of limit points, thenfe R [a, b].
Proof. Let l-X], xi, x^] be the finite set of limit points of the set of discontinuities of/on 

[«, b] such that
■ Al < Jt2 < ... < Afc.

Let e > 0 be given. Now let the above points of discontinuity of the function/be enclosed in 
k non-overlapping intervals {x{,x\'% \x{,x{'\ ... {xk,xf']

esuch that the sum of their length is <
2 (A/ - m)

where M - supremum of/and m = infimum of/
Now the partition P of [a, b] is given by

P = [fl, X\\ X\", xf, xf ... xf, xf, b]
which has {2k + 1) component intervals of two types.

(i) k intervals, [x', xf], i = 1,2, ...k each of which contain a point a, in its interior. 
The total contribution to the oscillatory sum by these intervals is

k k
= Z {Mj - nij) {b- a) < Z (M - m) {bi - «,)

1= I 1*1
k

-{M~ m) Z {bj ~ fli)
1= 1

e<(M- m) = e/2.2 {/W - m)
(ii) (k + 1) subintervals, [a, xf], [xf, xf], [xf'-, xf]... [xf, b].
In the above subintervals, the function/has only a finite number of points of discontinuity. 

Hence, these exists a partition P^: r= 1.2, ...,{k+ 1) respectively of these subintervals such that 
the oscillatory sum is less than e/2 (A: + 1) for r = 1,2,..., /(: + 1.
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Mntheiiinlics I Hence, the total contribution to the oscillatory sum by these subintervals is less than equal to
e (k+l)2(k+l)

<e/2.
Therefore, for any partition P the total oscillatory sum 

< e/2 + e/2 = e.

i.e.,

feR[a. b].Hence,

• 4.6. ALGEBRA OF R>iNTEGRABLE FUNCTIONS
Theorem 1. Iff is R-integrable on («, 6], then \ f\ is also R-integrable on {a, Z>j.
Proof. Since the function/is R-integrable on [a, 6], therefore/is bounded on [a, b]

[•.• Every integrable function is bounded]
|y(x) I < A V a: € [a,b] for any positive number A.

Also, since/is R-integrable on [a, b], therefore there exists a partition P of [n, b] such that 
for any positive number e

-.(1) •u{p,n-up^f><t.
Let the upper and lower bounds of [/| and / in 8^= [x^- i,Xr] be respectively given by 

Mr, m, and Mf mf
Then for all y, z in j, a'J, we have

[|/(z)|-lXy) \]^\fiz)-f{y)\
(By taking supremum)Mr - nir < Mr “ m/

2 {Mr-mr)^r^ 2 (A//- w/) 5,
r= Ir= 1

2 MrK~ 2 2 M/6,- 2 m/5,
r= lr= 1r=lr= 1

{U{P, i/1) - L{P, 1/1)} < V{P,f) - L{P,f) 
V{P,\f\)-L{P,\f\)<z [iising (1)]

1/1 is R-integrable on {a, b).
Theorem 3. Iff andfi are R-integrable functions oh [a, b] thenf ±/2 is also R-integrable

on [a, b\-
Proof. Let/j./i be two R-integrable functions on {a,b].
Now/] is R-integrable on [n, 6]
=> For given e > 0 there exists a partition P] such that 

[/(P„/,)-L(P„/,)<e/2. ...(1)
Also, ^ is R-integrable
=>for given e > 0 there exists a partition Pj such that 

f/(P2,/2)-aP2./2)<e/2. ..-(2)
Define the common refinement P of the partitions P] and P2 such that 

P = PlUP2.
Clearly Pe P[a, b], where P [a, b] denotes the family of all partitions on [«, b]. 
Consider

U(PJl +/2) - W/l +/2) ^ [{U(P,f) - L{P,f)] + {a(P,f) ~ L(P,f2)]] 
< e/2 -I- e/2 [using (1) and (2)]

t/(P,/l +/2) “ L(P,/| +/2) < £
/i-f/2 is R-integrable on [<s, i?].

Similarly we can show that/ -/ is R-integrable on [n, b].
Theorem 3. If f is R-integrable on [a,b], then cf is also R-integrable on [n,/?], where

C G R.
rb t>b

_ ^ cfx) (ix = c^^ fx) dx.

Proof. Given that the function/is R-integrable on [a, b] therefore, there exists a partition P 
on [a, b], such that

Also
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U{P,f)-L{P,f)<t. Ricnmnn l/ilc^ral...(1)
Let c e R be any constant, tlien we know that 

(cf) (x) = cj{x).
U(P,cf) = cU(P,f) and L(P.cf) = cL(P,f).Therefore. 

Now consider
U{P, cf) - LiP, cf) = c [U(P,f) - LiP,/)] < c e 

c/e R [n, b]=>
rb

Also U{P, cf) < ^ cfx) dx + e

t>b
and cU{P,f)< ^ cf{x)dx-\-t.

Now using (1), we get
pb

cU{P,f) = U{P, cf)<]^- cfx) dx + e

pb fib

c}^ Ax)dx> 

Replacing/by -/in (2), we get

cf(x) dx. •••(2)Ja

pb pb

^Ja -^Kx)dx

pb pb

cj^ f{x)dx<]^ cfix)dx. 

From (2) and (3), we conclude that

•••(3)

pb pb

^ ^ cfx) dx = c]^ fx) dx.

Theorem 4. If the function f is R-integrable and if M and m the supremum and infimum of 
foil [a, b], then

pb

m{b -a)<^^ fx) dx < M(b - a) ifb > a

pa

and m{b ~a)> ^ fx) dx > M{b - a) ifb < a.

Proof. Let P [n. 6] denotes the family of all partitions on [a,b]. If b>a, then for all 
P e P [n, b\, we have

m{b - ^0 < L{P,f < U{P,f) < M(b - a)
=> m(b -a)< L(P,f) < M{b - a)

pb

^ m{b -a)< ^ fx) dx < M{b - a)

pb pb pb
=> m{b - a)< fx) dx < M(b - a) fx) dx = j^ fx) dx for/e R [a, b]Ja Ja

If b<a, then in a similar way, we may get
pa

m{a - b)< ^ fx) dx < M{a - b)

pb

- in{b -a)<- ^ fx) dx<- M(b - a)=>

pa

m(b -a)> ^ fx) dx > M{b - a).

Self-Learning Material 79

d



Mathematics I Theorem 5. If the function f{x) is bounded and R-integrable over [a, b] and

fJ{x) >0 V X 6 [rt, b], then f(x) dx > 0.

Proof. Let M and m be the supremum and infimum of/on [a, b]. Then by above theorem if 
b>a,v/e have

m{b~a) < ^ f{x) dx < M{b - a). -(1)

Here, it is given that f(x) >0 x [a, b]. 
Therefore m > 0.
Also b>a b -a>0.

rb
Hence, from (1), we conclude that ^ f{x) dx>(i.

Theorem 6. (First Mean Value Theorem). If the function fis R-integrable over [a, b] and 
M, m be supremum, infimum respectively off on [a, b], then there exists a number K, (m <K<M) 
such that

pb

f{x) dx=^k{b-a).

Also, if the function f is continuous on [a, b], then there exists c 6 [a, b] such that
pb

f{x)dx=ib-a)f{c).Ja

Proof. We know that (From Theorem 8)
pb

m(b ~a)< fix) dx < M(b -a), if b> aJa

pa
.m{b~a)> ^ f{x)dx>M(b-a), if b<a.and

If ni < k < M, then we conclude that
pb

_ ^ fix)dx = k{b - a).

Also, if the function/is continuous on [a, b], then there exists a number c in [a, b] such that 
fic) = k, wherem<k<M.

Hence, from (1), we conclude that
pb

f{x)dx={b-a)fic).

Theorem 7. Iff and g are R-integrable over [a, b], thenfg is also integrable over [n, b]. 
Proof. Since/and g both are R-integrable over [a, b], therefore/and g both are bounded on

[a,b]
3 M > 0 such that |y(.r) | < M and | g(x:) | < M, ^ xQ^ [a, b]

Consider ) (fg) (jt) ] = j/A-). ^(a) j V a e [a, b]
<M^ \/xe[a,b].

fg is bounded on [a, b].
Now, let e > 0 be given.
Since/G R (a, b) therefore, there exists a partition P^ of [a, b] such that 

U{P,,f)-L(Puf)<^/2M.
Similarly g E R (a, b), therefore, there exsits a partition P2 of [a, b] such that 

U(p2,g)-L(P2,g)<E/2M.
Let P = Pj u P2 be a refinement of Pi and P2, then we have 

U{P,f)-L{P,f)<e/2M ~
U(P,g)-L[P,g]<e/2M •

•••(1)

-(2)

...(3)

-.(4)
and
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Ricthann hue^ra!Let nir, Mr, m/, M/, m'\ M" be the infimum and supremum off, g and/. g respectively over 
the subinterval Ir = Ur-1. •^;1- Then for all x,y& Ir we have

I (fg) U) - (fg) iy) 1 = lA-*) • g(x) -fiv). giy) \
= \Ax) • gU)-Ay) gix) -{-/(y) g{x) ~Ay) g(y) i 
=! g(x) lAx) -/O')] +Ay) [g(x) - g(y)] \
^ I g(x) I \Ax)-Ay) I + \Ay) I i gU) -.?()') I
^M\Ax)-Ay)\-^M\g(x)-g(y)\. ....(5)

\Ax)-Ay)\^Mr-mr 
\8(.x)-g(y)\<M/

Mr" - m/' < M{Mr - nir) + MiM/ - m/).
Multiplying both sides of (8) by 6^ and adding on respective sides, we get 

U(P,fg) - L(P,fg) < M [U{P,f) - ^P,f)] + M [U(P, g) - ^P, 5)1

Now, (6)
and (7)- mr •

(8)

<M^.^M^ = z.
2M

Hence,is R-integrable.
Theorem 8. If f and g are two ^-integrable function on [a, b] and \ gU) j < /: V x € [«, i>] 

where k is a positive number then the quotient function f/g is also K-integrable on [a, b].
Proof. Since/and g both are R-integrable on [a, b], therefore, they are bounded on [a,b]. 

Also, we know that the quotient of two bounded function is again bounded, therefore//^ is also 
bounded on [a, f»].

Let E > 0 be given. Since/e R [a, b], therefore, there exists a partition P, of [a, b] such that

Similarly g e R [a, b], therefore, these exists a partition Pi of [a, b] such that 

V[P2.g]-L[P:„g]<^k^.

Let P = P| u P2 be a refinement of Pj and Pi, then from (I) and (2), we have

U[P,f\-'L[P,f\<4~k^

...(2)

•..(3)
2M

U[P,g]~L[P,g]<^l^.and ...(4)
2/«

Now, let nir, Mr, m/, Mf\ m", Mr" be the supremum and infimum off, g and f/g respectivley 
over the subinterval / = [Xr^ 1, Xr]. Then for all x,ye Ir, we have

g(y)-Ay)g(x) I
«U) sO”)

’^(x)-^(y)
1 gix) giy) 1g g

_ I jg(v) - Ay) g(y) +Ay) g(y) - Ay) gix) I
! giy) i

_ I lAx) -yfy)] ;g(y) +Ay) UCy) - I
I giy) I

^ 1 g(y) \ 1 -Ay) I !■/(>’) 11 .gU) - ^(v) I 
kWlUO')! UWIUO').!

M M^fi\Ax)-Ay)\-^^\gix)-giy)\.

Now nir and Mr are the infimum and supremum of/respectively over /. Therefore,
\fx,yE[a,b].

I “ .?Cy) I ^ - w/ y X, ye [a, b]

...(5)

...{6)
Similarly 

which implies
...(7)

I L M M
iy) <-^(Mr-mr) + ~^iMr' 

k k

Multiplying (9) by 5;. and adding on the respective sides, we get

ix)- -'"/) ...(8)
g g

- m/). ...(9)
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Mathematics I M MU [PJ/g] - L [PJ/g] < ^ [U(P,f) - L{P,f)] + ^ [U(P, g) - L(P, ^)]
K K

M tk-
~k^ 2M

L is R-integrable over [a, b].

Some Important Definitions ;
Primitive. A function F{x) defined on [a, b] called a primitive of a function fix), if the function - 

F{x) has fix) as its derivative at each x £ [a, b]
F'{x)=fix) V^£[a,

Integral Function. Let fix) be a R-integrable junction on .[a,b]. Then a function F{x) is 
called the integral function of the function fix) if

Hence,
8

i.e..

pb

~ a fifl^L Vxe [a, i>].

Theorem 9. Let/£ R [a, b], then the integral function F off given by

P(x) =' fit) dt,a<x<b Jo

is continuous on \a, b].
Proof. Let/e R[u,Z?] is R-integrable over [a^b], then obviously it is bounded on [a,b]. 

Therefore, there exists a positive number M such that
\fit)\<M \ft& [a,b].

Let xi, X2 6 [a, b] such that x\ < X2. Then, we have 

\F(x2)-F{x,)\= I fit)dt-i^ fit)dt

par^2
fit)dt+ fit)dt 

•’*'1Ja

f^2 r^2
dt =M|(x2-x,)|.fit)dt <M

JXi

Let 1 ^2 - X] ] < e/M for a given positive number e. Then, we have 
I F{x2) - F{x^) \<M.e/M 

|F(x2)|-FM|<E
IX2 -;ci I < 5 V X], X2 e [a, b]

8 = ^.
whenever

where M
F is uniformly continuous on [a, b]. Hence it is continuous on [a, b]

['.• Every uniformly continuous function is continuous]
Theorem 10. Let f be a continuous function on [a, b] and let

px

fit) df, V X £ {a, b].F(x)- Ja

F'{x)^fix)\ ^xe[a,b].Then
Proof. Let x £ [a, b]. Then choose h^O such that x + he [a, b].

>X + li
F{x + h)- F(x) = I fit) dt - fit) dt

fit) dt + ^^ fit) dt = fit) dt 

Since/is continuous on [a, b], therefore, there exists a number c e [x, x + h] such that

pX

Consider

px + hpx + h
...d)

«a
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(‘X+ ll Riemaim liile^rd!
Mdt = hJ[c). ...(2)Ja

Clearly c —> a' as li —> 0.
From (1) and (2), we conclude that

' I'r-n'

F(x + h) - Fix) = liJic) 
F(x + h)~F(x)lim = Hm fic)hh-^O h-*0

F'ix) =J{x).=>
Hence, we have

F'(x)=Ax) Vag [a,b]. .

• 4.7. FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS
Theorem 15. Lei f be a R-integrable function on [a, b] ant F be a differentiable primitive 

function on [a. b] such that F'ix) -fx), a<x<b, then
rb

fit)dt = Fib)-Fia).

Proof. Let/be continuous function on [a, b].
By definition of primitive function, we have 

F'ix) = fix)- VAG[a,i>].
Also,/is R-integrable function on [a, b].
=> F'(a) is R-integrable function on [a, b].
i.e., for a given positive number e there exists a partition P of [a, b) such that

fbh

Z F'iL)iXr-Xr-])-j^ F'ix)dx ...(1)< e
r = l

where t^e ix,._i,Xr)-
By Lagrange’s mean value theorem of differential calculus, we find that there exists 

trE [Ar-.|,A,.] such that i
b'iXr) - FiXr^ i) - (a, - a,_ i) F'iQ

Z [(a,-a,_,)FU)]= 2 \Fix;)~Fix,.f)\=Fib)^Fia).
r= 1r= 1

Put this value in (i), we get
i>b

Fib)-Fid)F'ix)dx < e

cbpb

Fib) - Fid) =]^ F'ix) dx =]^ fix) dx[-.- F'ix) Ax)]which gives

pb

Ax)dx = Fib)-Fia).Ja

SOLVED EXAMPLES
1-2

A^ dx, using fmdamental theorem of integral calculus.Example 1. Find J\

Solution. Here, we have
Ax)=x\ 1<a<2 

Clearly / is continuous on f 1, 2]
4

ANow. if (1 <a<2)

Then
Therefore, by fundamental theorem of integral calculus; we have
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15

Jl 4
Example 2. Let f be the Junction defined on [0, i] by 

a \ _ [P- when-x Vs irrational 
^ 1 when X is rational

Show that f is bounded but not l^L-integrable. 
Solution. By definition ofj^x), we have

0<J{x)<\ Vxe [0,1]
fix) is bounded on [a, b].

Define a partition P= {a=XQ,Xi,X2, --Xr,.... x„_i,x„ = b} of [a, b].
Let f = [xr-\,Xr] be any subinteryal of P, with length 5r{=.tr-Arr_ i). Let M,.andm,. be

respectively the supremum and infimum of/in 7^. Then, we have 
A/f = 1 and = 0

n n
LiP,f)= 2m,5,= 2:0.5, = 0Now,

r=l1
n n n

fd{P,J)= Z MrSr= Z 1.5^= Z = [5i + §2 + ■.. + 5„]
/•= 1 ■

= [X\ - xo\ + [X2 - Xi] + ... + [x„- x„. i] =x„- Xo = b - a

and
r=I r= 1

eb
•••(1)/=sup {L (/’,/)} =0=>

pb

...(2)f=\n{{ViP,f))=b-a.and

From (1) and (2), we conclude that

• b fb

f*l f-• a

Hence,/is not R-integrable over [a, b].
Example 3. If a function f is defined on [0, a],a>0 by J[x)=x^, then show that f is 

R-integrable on [0, a] and
pa 4

.0 = T
Solution. Consider a partition F = Jo, —, —,

inn
Let 7^ be the subinterval of P such that

(r- I) g ra

(n - 1) g na «,
^ ^ , — = g[of[0,g].

nn

Ir = nn

with length 5;. = —, r= 1,2,.... n.
n

Now, let Mr and /n^ be respectively the supremum and infimum of / in Ir Also, since/x) is
an increasing function in [0, g], therefore.

r^g^
and Mr = r= l,2,...,n.mr = 3 ’3 nn

^ 3

n
LiP,f)= Z mr8r =Now nr=l r= 1 n

4 4n

. ;i r=i n

(n - 1) It
a4 1g 1 --424 nn

84 Self-Learning Material



Riemam liuegral/•a if4
Jq f= lim L {P,f) = lim ^ I --=?

4n

3^3n n r a at/(P,y)= S EAlso,
nr= 1r- 1

4 4/I

= ^ E r^=~[l^ + 2^+...+n^]
« r=l n

^(« + l)T ^ ^ J 1
4 n

]24a
24n

ita \24 41, 0f/(P,y)=lim y
n —* ca n ^

<31 +-. =»
4

/•a (>a 4
/•= /■=—.Jo ■' JO ■' 4Clearly

/•a 4
Hence,/is R-integrable over [0, a] and ^ ^ J[x) ■ * =

Example 4. Verify first mecui VfOue theorem Jar the function fix) = sin x and g{x) = e^ for
XE [0, TCj.

Solution. Clearly, both the function fix) and ^(a:) are continuous on [0, it] and
g(x) >0, V X e [0,71/2] [•.• g{x) = / is an increasing function in {0,7C/2]].

Then, by first mean value theorem
pn pTt

Jo Ax) dx =fic) Jq g(A:) dx 0<c<7t

pn pTl

Jq sin ;c . / dx = sin c q /tir 

- (e” - 1) sin c

e*sin X- —

0<c<n

0<c<n. ...(1)
pK ■n

1„ /sinxftc =
vU

Now
"^jJo

« . 371 e sin — -
V2 ^ ^

= -^e^ 11 1
V2 ' V2 V2

1 i 0 • ^ e sin 0-T 4. /•
+

...(2)

F-roni tl) and (2), we conclude that
- 1) sin c = ^ (e" + 1) 0 <c < 7i

1 1 
2 e”-\ ■

...(3)

sin C zr

- 1
2 ^ .

Hence, the first mean value theorem is verified.. 
Example 5. Using first mean value theorem, show that

71- < 1, therefore, there exists c e 0,— c [0,7t] satisfying (3).Now 0 < V

p I .v^1 i
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Mathematics / Solution. Here, we have
1 . 2

and ^(x) = X .
Vi +x

ClearJy^A-) is continuous on [0, i] and g{x) > 0 on [0, 1]. Also, ^(a:) is continuous on [0, 1]. 
Therefore, by first mean value theorem, we have

rl

-ii+x Vl +c •’
1

0 dx,

M';
VTTc L^i)’

0<c< ldx =

1 0<c< 1

1 0<c< 1
3Vi+7’

Now 0<c< 1 => 1 <(l+c)<2
11 11 <11> (l+c)^2 ^/2 Vl +~c

f I 21 X dx< 1Therefore, <3

7 , 1
r- ' n , ------  dx<--

3V2 ^fiT7 3

V2
» 1

1 <or

• SUMMARY
n

Lower Riemann Sum = L (P,/) = ^ in^
r= 1

• Upper Riemann Sum = t/(/*,/) = ^ M^^x^
r= 1

. L{P,f)<U{P),f\/P
• Upper Riemann integral;

n

fdx = mf[U(P,f)]= lim U{P,f)= lim /'d.dx, 
\\p\\^oPa /•= 1

• Lower Riemann integral:
n1* b

fdx = sup {L{P,f)} = lim ^ m^Sx^
pJ a ;i—» 00 r= 1

c b • h
fdx, then/is R-integrable.fdx =If

« a v a
• m(Z7-n)<L(R,/)<t/(P,/)<M(Z;-a).
• Darboux Theorem :

fdx + e
a

1* b
L{P,f)> fdx-z

v a
• 0<U(P,f)-L{P,f)<e V|tPj!<6 <!=?»/is R-integrab!e.
• Every continuous function is R-integrable.
• Every monotonic function is R-integrable.

pb
f(x) dx= f{c) (b - a), /fi < f(c) < M.First Mean Value Theorem ;

J a
• Fundamental Theorem integral calculus : Let /be a R-integrable function on [a, 6] and F 

be a differentiable primitive function on [n, b] such that {x)-f (x) on [a, b], then
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Rieiiiwm Inicgralrb
f{x)dx = F{b)-F{a).

' - t*.* •.•» a
r •.

• STUDENT ACTIVITY

1 \ 3
4’ 2 ’ 4’1- Let/(x) = a:, 0 < jc < 1 and let P = 1 0, — 1 [ be a partion of [0,1]. Find V {P,f) and

\

2. Prove that every continuous function is R-integrable.

■>rs . « -1 • : .. .f

• .TEST YOURSELF

1* Let = jc (0 < jc < 1). Let P be the partition - 0, 1 of [0, 1], compute U {P,f) and

L{P^f)-
• 1

2. Show by definition that ^ dx~—.

3. Find the value of upper and lower integrals for the function/defined on [0, 2] as follows 
, when X is rational 
, when x isinational

Ax) =

ANSWERS

1. 2/3, 1/3
FILL IN THE BLANKS :
1. Partition of a set is also called ..

. 2. The value of xr- xr-\ is called
3. Riemann sum is also known as .
4. The supremum of the set of the lower sums is called the
5. The infimum of the set of upper sums is called the........

3. 31/12, 49/12

. of the internal [xr-\, Xr] 
sum.

integral.
integral.

fib

6. In computing the integral ^ internal (a, b] is known as

TRUE OR FALSE :
Write ‘T’ for true and ‘F’ for false statement:
1. Every bounded function is R-integrable.
2. Every R-integrable function is bounded.
3. Every monotone function is not necessarily R-integrable.

of the integration.

(T/F)
(T/F)
(T/F)
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Mathemarics / 4. A bounded function/is R-integrable in [a, b] if the set of its point of discontinuity is finite.
(T/f)

MULTIPLE CHOICE QUESTIONS :
Choose the most appropriate one :
1. If Pi and P2 be any two partitions of [a, b], then : 

(a) U(PuJ)>L(P2,f)
(c) U(Puf)<L(P2.f)

2. The value of lim L {P,f) is :
tl/’li-.O

{^)U{Puf) = L{P2,f). 
(d) None of these.

r*
w J» f

• b pb

I f (d) None of these.

3. The value of lim U {P,f) is : 
KlHo

pb . .*6p >

W Ja / WJo/ (d) None of these.I f

ANSWERS

Fill In the Blanks :
1. dissection or net 2. length 
5. upper 

True or False:
1. F 2,T 3.F 4.T

Multiple Choice Questions:
1. (a) 2. (a) 3. (b)

3. Darboux 4. lower
6. Range

□□□
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Con\'cri>encc of Improper IntegralsUNIT

5
CONVERGENCE OF IMPROPER INTEGRALS

-r. ■ STRUCTURE c^V'.'

Improper Integrals 
Kinds of Improper Integrals 
Convergence of imroper Integrals 
Convergence Tests : First Kind 
Convergence Tests : Second Kind 
Improper Integrals of Second Kind
□ Summary
□ Student Activity
□ Test Yourself

LEARNING OBJECTIVES
After going through this unit you will learn :

• What are improper integrals ?
9 How to check whether the given integral is convergent or divergent ?

• 5.1. IMPROPER INTEGRALS

Definition. The definite integral ^ /(jc) rfAr is called Improper (or Infinite) integral if either

any one or both limits are infinite and function ^(Ar) is bounded over the'interval or neither the 
intervals [a,b] is finite nor/(a:) is bounded over it.

• 5.2. KINDS OF IMPROPER INTEGRALS
By the definition of Improper Integrals we can divide or categorized it into following three

kind.
(1) First kind of improper integrals. First kind of improper integral is in which integrand 

f{x) is continuous but limits are infinite.
rb

Definition. A definite integral ^ fix) dx in which limits are infinite i.e., b = °°, a = °° and

integrand is continuous is called first kind of improper integrals.
This first kind of improper integral can be classified into following three categories :
(a) Upper Limit Infinite :

1For Example. ^ dx, here it is first kind of improper integral in which upper limit
1+x^

is infinite and (I/l +a:^) is bounded.
(b) Lower limit infinite :

pO
e^ dx.For Example.

oo

Here, the lower limit of function is infinite.
(c) Both limit infinite :

A oo

dxFor Example.
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Mathematics I It is the example in which both upper and lower limits are infinite. *•
i* ^

(i) Consider ^ J{x)dx. Herey(x) is continuous in [n,There exists a definite number

fb

h> a such that j{x) dx as b-^ <». This definite integral becomes the improper integral
■ (

eba.AOO ■

f(x) dx = lim
® —> OO

J{x) dx.Ja

I oo

J{x) dx is convergent, otherwise divergent.If limit is finite, then improper integral
Ja

rb»oo

(ii) Consider _^fix)dx, then there exist n </>. such that fx) dx as a~^,.\hen

rbrb
Ax)dx.lim

n—> -<x>

If limit is ftnite, the improper integral is convergent othenvise divergent.
«• + “

(iii) Consider Ax)dx. It is the combination of above 2'procedures so take a consuint

‘fl’ between - <» to + “ and expressed in the integral in the form of
i» + e«r°itoo

. Ax)tix = ]_^Ax) dx + ]^ Ax) dx

rb

Ja

A«0

Ax)dx+ lim Ax)dx, _oo Ax)dx= lim
&—»«

If both the limits are finite then Ax) dx is convergent otherwise divergent i.e. If anyone

or both limits are infnite.
(2) Second kind of improper integral. Second kind of improper integral is in which limits 

are fnite but integrand is infnite. The point at which the integrand is infinite is called a singular 
point.

Second kind of improper integral is classified into following four categories ;
(i) Singular point at right end If x = ^ is only singular point of y^x) then there exists 

e > 0 (small positive number) such that
pb~erb

Ax) dx = lim
f--»0

Here.y(x) is continuous in [a, b - e].
(ii) Singular point at left end Ify(x) ^ as x—»a is only singular point ofy(x) then

there exists a small positive number e > 0 such that

Ax) dx.Ja

rbrb
Ax)dx~ Jim 

e-»0

Here,y(x) is continuous in [n + e, b]. 
If Ax) dx = F{x) + c then

Ax)dx.Jrt + CJa

rb
/(x)dx=: lim \Ab)-Aa + ^)\-

e-»0
So, wGcansay the convergence or divergence depend on the limit of lim fo ^) respectively.

e-»0

Ja
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Convergence of Improper huegmls(iii) Singular point at ‘c’. If j{x) —> «> as a: —> c the singular point of fix) where a<c<b.
rb

then j{x) dx decomposed into following form ;Ja

I'b fb!•(?

j[x) dx = j^ f{x) dx + f{x) dxJa

rb(• r - E

= lim 
£-»0

f(x)dx+ lim
£'->0 ''

J{x) dx.c+t'Ja

rb
If one or both integrals in R.H.S. be convergent, then ^ fx) dx, a<c<b is convergent, 

otherwise divergent.
(iv) Singular point at both a and b. If ‘a’ and ‘h’ are only singular point ofy(jr) then there 

exists c such that a<c <b then
rb rbr c

Ax)dx = fix)dx + j^ f{x)dxJa Ja

rb-£'r <■

= lim 
6->0

f{x) dx + lim
E'-»0

Kx) dx.£7 + £
rb

If each integral is convergent then the ^ f{x) dx is convergent.

(3) Third kind of improper integral. Third kind of improper integral is in which
(i) infinite limits
(ii) infinite integrand.
“/r is the combination of both first kind and second'kind of improper integral."

Let ^ ^ fx) dx is improper integral of third kind when/^x) has a singular point atx = c, where 

a <c<d and c<d<°° then
rd

fx) dx = Ax)dx + j^ fx)dx. ...(1)Ja Ja

(1) (II)

Here, fx) dx is convergent if both integrals are convergent otherwise divergent.Ja

• 5.3. CONVERGENCE OF IMPROPER INTEGRAL

IDcflnition. The integral ^ fx) dx is said to converge to the value I, if for any arbitrary 

chosen positive number e, however small but not zero, there exists a positive number N such that
rb \

fx) dx-1 < e; for all values ofb > N.Ja

If the integraly(x) has a finite limit then improper integral called convergent and if having no 
finite limit i.e., limits are + ©o, - oo then it is said to be divergent and when having neither finite 
value, 0. + oo nor - >», the improper integrals is said to be oscillatory.

j

SOLVED EXAMPLES

dxExample 1. Discuss the convergence of the following integral by evaluating them.Jl I-^x
Solution. Since we have
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Mathe.niaiics / r-*-00I, ^ dx
lim limJl

j:-+ »
f' I/2^•* 1/2^-^

= lim -
jr-4oo

= lim (2^7-2)=: CO.lim 2x1 1
X-*”^ A —» oo

2 I
=> the limit does not exists finitely 
=»the given integral is divergent.

mco

dx by evaluating them.Example 2. Discuss the convergence of the integral 

Solution. Since we have
' 7^-

•^-1/2T'‘px
dx X dx - lim

A—»oo
= lim

A-*®"
1Jl ^3/2 Jl
2 1

A
22 = lim + 2lim ^/7 A—» «A-^eo 1

_ 2
= ~ + 2=2

oo

=> the integral exist and finite 
=> given integral is convergent.

/• I
dx of evaluating them.Example 3. Discuss the convergence of the integral^ ° Vi-7

r I
ticSolution. Here given integral is ^ 

It is not bounded at limit x=l.
^ Vl-"7

rl -er1 dxdx
n .____ = lim nSo

VI -;r
____nl -e

= lim [- 2Vr + 2]-2V1-a:= lim 
e-»0 Jo e-»0

= 2
which is a finite number.

=>the given integral is convergent.
1*1

dx
Example .4. Discuss the convergence of the given integral by evaluating ^

1* 1
dx

Solution. Given integrand is

It becomes infinite at x = 0, - 1 < 0 < 1.
(•- er

/* Ir1 1 dxdxdx —r+ lim 
X e, 0

lim
£j 0

So JEj’ x^ -1

1
1

lim
e.-*0

+ lim
e,-»oLI

11lim — 1 + lim
ei-»0

- 1 + —
^2e,->0

III

Since (I) and (II) do not exist finitely => limit does not exist finitely
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Hence given integral is divergent. Convergence of Improper huegroh
p 2a

clxExample 5. is an integrand then discuses the convergence of given function.

p 2a
dxSolution. The given integral 2 becomes infinite at x = cr and 0 < < 2a.

(x-a)
p2.a p 2apa

dx dx dxSo •'O (x~af ■’0 (x-af (x-af 
pa-e p 2a1 dx tlx= lim Jo

Ei —> 0
7+ lim . ^
^ 6,^0 (x-a)^(x-a)I

-yj-e,
-1 -1lim + lim I . .

e,-»o -W + E,
-la-e,J_ j_ 1 1= lim

£l-»0
+ lim ,

e,-)0 [^2 ^
I II

Since the limit of (I) and (II) not exist finitely 
=> the given integrated is divergent.

f 1 dxExample 6. Discuss the convergence of integral Jo i-x
Solution. We have

r i i»l -e
dxdx = lim Jo 

e-»0Jo l-;c 1 -X
-il -e

= lim - log (1 ~x) = lim [-loge + 0].
JOe-»o e-»o

dxSince lim log e is - «>, therefore Jo -j—- is meaningless i.e., limit does not exists. So the 

integral is said to be divergent.

• TEST YOURSELF
Evaluate the following integral and also discuss their convei^ence :

pcor 1fOO

dx dx2. Jo dx, 3. e'^dx.1. 4.
Jl X J-l _,2/3 J— CO

r 1 • oo
dx dx5. 6.JO ^3 (x-2)^

ANSWERS

1. oo, divergent 
5. oo, divergent

2. ■», divergent 
6. I, convergent.

3. 6, convergent 4. oo, divergent

• 5.4. CONVERGENCE TESTS : FIRST KIND
Recall that, First kind of improper integal is in which limits are infinite and integrand is

continuous.
pb

f{x) dx or J_^ J{x) dx is the example of first kind of improper integral 

which can not be actually integrated. To test its convergence we use the following tests.

For Example. Ja
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Mathematics I (a) Comparison Test:

If ^ f{x)dxand ^ g{x) dx are positive, continuous (bounded) and integrable in the intenuil

]a,«»[ and

(i) f(x)<g{x), for all x beyond a point x = c and also ^ gix)dx is convergent, then

^ f[x) dx is convergent.

(it) If g{x) < fix), for all value of X and ^ g(x) dx is divergent, f(x) dx is divergent.

(b) Limit Form of Comparison Test:

ffx)
If ^ fix) dx and ^ gix) dx are such that the integrands are positive and liin = L

then,

(i) ^ fix) dx is convergent, when L-Q and gix) dx is convergent.

A <X>

(ii) ^ fix) dx is divergent, when L = <» and gix) dx is divergent.

iiii) both integrals are either convergent or divergent if L exists but non-zero. .

f dx
Ja ' when a>0 is convergent when n> I, and divergent whenTheorem 1. The integral

x''

n<l.
Proof. We have

fX/% cc

dx x-''dx (By definition of improper integral)limJa Jajr —♦ “
1I ~ n

= lim - if n ^6 1
1 - n

1 -« J -n
= lim T

a
-.(1)

^ 1 - n I - n

Now if n > 1 then (1 - /i) < 0 => (n - 1) > 0 therefore in this case, we have 

lim lim

.-.From (1), we have

1 1— = 0.-i~ x” OO
A* —^

I - ndx a
,a x"~n-l

Hence the given integral is convergent when n > 1. 
Now, If n < 1, then (1 - n) > 0 and {n - 1) < 0 

lim x^ "

ifn> 1.

and /= OO.

dx
From (1), -------- “ OO.

Ja

Therefore, the given integral is divergent when n< \ .
{•XA cc *

dxdx dx
lim

-iV

— = lim logjr
.V

= lim [log a:-log n] = - log « = OO.

If n = 1, then Ja Ja XJa X
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The given integral is divergent if /i < 1.

~ converges when n > 1 and diverges when n < 1.

Convergence of Improper Integrals
M CO

Hence

(c) DirLchlet’s Test:
g'i^) continuous in [a, <»[ andj{x),gix) satisfy the following three

conditions
(0 lim gix) = 0

\

I g'{x) I dx is convergent and(ii) Ja

i«r

{Hi) F(r) = ^ ^ f{x) dx is bounded i.e., \ F(r) \ < M for some positive constant M.

Then ^ f{x) g{x) dx is convergent.

(d) The ^-Test:
Letfyx) be bounded and integrable in the interval ]a, «[ where a > 0.

Then /(a:) dx is convergent, if there is a number > 1, such that lim exists.
x-»<»

■A -
A CC

If there is a number jj, < I such that lim x ^f{x) exists and non-zero, then j{x) dx is diveJa

(e) Weierstrass M-test:

If there exists a positive continuous function M{t) such that [/(a, t) [ < M{t), t>a, c<x<d,/ rthen the improper integral fix, t) dt converges uniformly and absolutely for every x in the interval

[c, d] if M{t) dt converges.

(f) Abel’s Test for the Convergence of Integral of Products ;

The integral ^ f{x) (1)(a) dx is convergent, if 

monotonic for x > a.

f{x) dx converges and (|)(a) is bounded andJa

(g) Absolute Convergence :

I/(a) I dx is convergent then the infinite integral ^ f{x) dx is said to beIf the integral Ja

absolutely convergent.

• 5.5. CONVERGENCE TEST : SECOND KIND
rb

We test the convergence of a definite integral ^ f{x) dx for which limits (intervals) are finite

and integrand/(a) is not bounded at one or more points of given integral [n, b].
(a) Comparison Test:

fb

Let fx) dx be the given improper integral, whose limits are finite andy(A) is not bounded 

only at A = rt,
Let A = 6 be a singular point for both/(a) and ^(a) in interval [n, b] and

■■
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Mathematics I rbfb

(i) 0<J{x)<g(x) everywhere, except at x = b then ^ j[x) dx is-convergent if ^ ^ g{x)dxis

convergent.
pbi* b

{ii)f[x) > g{x) > 0 everywhere, except at x = a then ^ J{x) dx is divergent if ^ ^(a:) is

divergent.
(b) Limit Form of Comparison Test:

M = L, where L is neither zero nor infinite then(i) Iffx) and g{x) are positive and Urn
x-*b six)

i* brb
fx) dx and ^ g{x) dx either both converge or both diverge at singular point x = b.

Ja

^brb
(ii) IfL = 0and ^ g{x) dx converges, then ^ fx) dx converges.

rbf g{x) dx diverges then ^ ^ fx) dx diverges.(Hi) If L = and

(c) Abel’s Test:
rb

If (t)(A:) is bounded and nionotonic for a<x<b and ^ fx) dx converges. Then

rb
g Ax) dx converges.

(d) Dirichlet’s Test:
rb

fx) dx is bounded and 0(jc) is bounded and monotonic in ]a, b{ converging to zero'fL*^
rb

as x—>a, then ^ fx) <K-^) dx converges.

(e) Integrand is both +ve and -ve :
Let the integrand be both +ve and -ve in [a, b]. Let x = 6 be a singular point of/(^). Now if

rbrbrb
f(x) dx is convergent but^ fx) dx is convergent then ^ fx) dx is absolutely convergent Ja

rbrb
^ \f(x)\dx is divergent then ^ fx) dx is conditionally convergent.

(f) The |i-test:
Let/(x) be not bounded at x = a and bounded and integrate in the arbitrary interval 

]a + e, 6[, where 0 < e < - a.
If there is a number p between 0 and J such that Urn (x - a)'  ̂fx) exists, then

x-*a + 0
rb
^ f(x) dx is convergent.

If there is a number such that Urn (x-a)^f{x)’ exists and is non-zero, then
x^a + O

rb
' y(x) dx is divergent and the same is true, if Urn (x - a)  ̂fx) = +

x-»fl + 0

SOLVED EXAMPLES

oo or — CO.

. 1*00

dx
Example 1. Test the convergence of the integral ^ 1
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1 Convergenve of Improper Iniegrals1Solution. We have f{x) =
V77T 1

^ . 3
X

1Let us consider 3/2

1

V 1
Ax)lim lim

1
3/2

X

1lim = 1V 3X
=>limit is finite and non-zero.

f{x) dx and ^(x) dx are either both convergent or divergent.Ji

Now by comparison test

dxg{x) dx = will be convergentfSince n > 1]Ji

/(a-) dx will be convergent.

icos tnxExample 2. Test the convergence of integral ^ jdx.2 ,X + a
1cos mxSolution. Let J[x) = • Let g(x) —

x^ + a^ 2 , 2 X +a
Here f{x), g(x) both are positive in interval ]0, <»[, and f(x) < g(xj for all x > 0.

M OO mQQ

1Also, / = Jo ^(x)dx = dx

pb
dx 1 -1 ^= lim

b-^oo
= lim — tana n

“ - 0 = — • —, which IS finite. a 2
1 -1= lim — tana a

dx
IS convergent.■ •'0 x^ + n'

cos mxHence, .JU dx is also convergent.
‘

Example 3. Test the convergence of the following integrals

x^ dx
Jo (x3nV

A GO

dx
(/) (ii)JI <7+1
Solution, (i) Let 1 ’ and g(x)=x ^3Ax)^

Vx3 1

.im
- 'UTi

So that lim = 1, finite.
~ 8(x) x~*
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Mathematics /
dx .

5(j:) dx =and, IS convergent.JiJl

Hence, the given integrals converges. 

dx =j{x) and let ^(a:) =.x ' so that.(»>Jo
4 1&A- X lim = 1.lim lim

oe (1 + 0'/^)

Since !„ ^(x) dx~\^ -dx is divergent therefore given integral also divergent. 

Example 4. Examine the convergence of

^ g(x) X-*X—*

fl oo
1

dx
] l/3vi , l/2x \ X (1 +x )

11
solution. Let =

1 }

f(x) is bounded in the interval (1,'») then by )i-test ^ - 0 = -I'

We have lim x^j{x) = lim x^''^ 1

x—♦ “
1 (finite and non-zero)= 1lim

^ (I + l/x'^^)
Since = 5/6 < i, so the given integral is divergent. 
Example 5. Test the convergence of the integral

X-*

sin x
dx, where a>0.Ja

sinx dx.Solution. We have

1
and 6(x) = sin X

1/Vx is bounded and monotonically decreasing for all X > n and lim 1/VF=0.
i- -»«

Kx)^Let

sin X ifx =1 cos a - cos «> | < 2.Also, ^ ^(x) dx Ja

For all finite values of x the value of cos x lies between - 1 and 1.

^ 6(x) dx is bounded for all finite values of x.
i

i

dx is convergent.sin X
Hence by Dirichlet's test the integral Ja

sin X— dx is absolutely convergent.Example 6. Show that _ 1 X

sin X dx will be absolutelydx is convergent, then integralSolution. If 1Ji X

convergent.

Let/(x) = theny(x) is bounded in the inteval ]1, «>[.
X

Now, we have
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I sinxi , 1 . . , . , ,'—(since I sin-A-1 < I)
Corn’ergence of Improper IntegralsSin A

4 •
A A A

1By comparison test, if — is convergent then f{x) dx is convergent.Jl

1But the comparison integral —^dx 'xs convergent because here n = 4 which is greater then

1.
^pb

Hence, j f(x) dx is convergent and so the given integral is absolutely convergent.

• TEST YOURSELF
1. Evaluate the following integrals :

r 1 /• 1dx dx dx
(i) (ii)(x-2f
Test the convergence of the following integrals :

Jo 1 -jf

2.

cos nix cos ntx(i) j dx. Jo dx.
•'0 A^+a

Test the convergent of the following integrals-:
1 +A

3.
3dx X

(i) »> 0 (II) dx
aV(1 +x)

2
Show that the integral ^ e ^ dx is convergent.4.

/ . -

ANSWERS

1. (i) (ii) oo— oo

2. (i) convergent
3. (i) convergent

(iii) convergent 
(ii) divergent

(iv) divergent

• 5.6. IMPROPER INTEGRALS OF SECOND KIND

is said to be of second kind in which the range of

integration is finite and the integrand X^) is unbounded at one or more points of the given interval 
[a, t]. Here, it is sufficient to consider the case when/(a) becomes unbounded at a = a and bounded 
for all other values of a in the interval [a, b].

We know that an integral

cb pb

f{x) dx - lim
/i-»0

Now we use the following test, to test the convergence of the given integral, 
(a) Comparison Test;

f{x) dx, h > 0.We have a+ A

pb

Let ^ J(x) dx be the given improper integral, in which the range of integration ]a, b[ is finite

and/(a) is unbounded only at a = a. Let ^(a) be any positive function in the interval ]a + h, b[ such
that |y(A) |<4)(a). !

pb ' rb

fix) dx is convergent if ^ (j)(A) dx is convergent.Then
Ja

Self-Learning Material 99



i* bMathematics I i>b

Also, if |y(^)l><l>(;t) Vxe ]a + li,b[, then Kx)dx is divergent, provided is

divergent.
i-b

dx - is convergent when n < 1 and divergentTheorem 1. The comparison integral ^
(a- * a)

when n > 1.
Proof. Consider

fibfibfib
dxdx (a - fl) ^ dxlim = lim

h-*0 a + hJa + h (a - a)"(x-aT /i-»0

(x-a)
= lim

h—*0 1 -n n + A

...(1)= lim
A-»0 l-n ■1 -n

! - " = 0.lim h 
h-*0

n< I => i-n>0 =>Now

Therefore, (1) gives
fib 1-/Idx (b~a)

if/i<l.
] -n(x-ayJa

The given integral converges when n < 1. 
If n > 1 then i-w<0 ^

fi b
(b-ay-'' ^ 

l-n
1dx lim = OO.- I(x-af

The given integral divergent when n > i. 
Now, if /I = 1, then

;l-♦o

fibfib fi b
' dxdxdx lim

(A-fl) ,,_»o x-aix-af Ja
•\b

= lira log (a - a)
h~^0 >-

= lim [log (b- a)- log h]
/i-»0

Hence, the given integral diverges when n = I.

. f? •» /l

= OO,

SOLVED EXAMPLES
1*1

dx
Example 1. Test the convergence of the integral ^ 

Solution. Here, it is clear that the integral

0 A^l+A-)

1Ax) = '•i

A^(i +A^)
is unbounded at a = 0.\

I
= —•Let

A
1 = 1, i.e., finite and non-zero.—r - = lim -

x-^O 1+A^,
lim
.t^O

fi 1fi 1

Then, by comparison test Qj{x)dx and (|)(a) iiic either both converges or both diverges.

1*1
dx . n - 3> 1]But clearly « ^ is convergent vu
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/*! Convergence of Improper Integrals
dxHence, the given integral is convergent.

x\l+x^) I

pn/2
cos XExample 2. Test the convergence of the integral ^ 2~

X

cos.vSolution. Here, the integral f{x) = — is unbounded at a: = 0. 
2

X
1Let 4>W = ^

jcos X 2 
x^

' Then lim
.(->0

lim
-T—>.0 m

= lim cos a: = i, finite and non-zero.
...JC—* 0

i.Ji/2

by comparison test the integrals ^ f^x) dx and ^ 

both diverge.

rn/2
(Ka:) dx, either both converge or

(>n/2 p7l/2

.0 =

i.7C/2
1But lim ^ dxJhh-*0

in/21 2 1
“ + Tn h= lim /,->o L = lim

/i->0
= oo.

j.n/2

Q dx is divergent.

pn/2
COS-VHence, the integral q 

(b) The ^i-test:
Let the function ffx) be unbounded at x = a and inlegrable in the interval \a + h,b{,

0<h<b-a. If there is a number ^ between 0 and 1 such that lim (a; - aYf[x), exists, then
+ 0

— tic is divergent.
x

pb

A^) convergent and if there is a number (X ^ 1 such that lim {x - a)^/(c) exists and
j:-K7 + 0

pb

non-zetv, then ^ f{x) dx is divergent and if

pb

lim {x - a)^ fix) = + oQ dr ~oo, then fx)dx
x-*a + 0

is also divergent.
(c) Abel’s Test:

pb

If ^fx)dx converges and .^(x) is bounded and monotonic for a<x<b, then

pb

^ dx converges.

(d) Dirichlct’s Test:
pb

fx) dx be bounded and <|>(a:) be bounded and monotonic on the intenal a<x<b

pb

converging to zero as x tends to a, then ^ fx) (t)(c) dx converges.
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SOLVED EXAMPLESMarlu.-imlics''I

dxExample 1. Show that the integral _
Ji)

converges.

1 is unbounded at x = 0 and 1.Solution. Herey(jc) =

Let a be any number such that 0 < a < 1.
<• Ie 1

dxdx dx
- /l + /2.Then

^ '^■(1 ° ^(1 -■^)T
In the integral /j, the integrand/(a:) is unbounded at lower limit of integration x = 0 and in

Ja
-X))

integration A, the integrand;^a:) is unbounded at the upper limit of integration x = 1.
1To test the convergence of I\, taking fi = - * we have 

Urn fix) = lim —■ -
A-»0

So, the above limit exists.
Since, 0 < p. < ^, so /[ is convergent by |x-test.

2 I

To test the convergence of I2 taking p. = we have

1/2 1
lim = 1.

x-*0 Vl -Xx~^0 V{x(l-X}j

1
(1-x) .{\-xf-Ax) =lim lim

x-»l-0x-»l-0

1 1
= lim _____

YX' Y-^0 VT-Zi ,
= 1.lim

1 “0

Since 0 < p < 1, so /2 is convergent by p-test.
Thus, the given integral is the sum of two convergent integrals. Hence, the given integral is

convergent.
c 1

Example 2. Test the convergence of the integral x” ' log x rix.

Solution. Since lim xMog x = 0 where r> 0, the integral is a proper integral if n > 1. 

If n = 1, then we have

1
log X dx = lim [x log x - x]

'' h-^O e

= lim [-1 - hlogh + h] = -

. log X «ic = lim

/1-4O

So the given integral is convergent if n = 1. 
If n < 1 and y(x) = x" " ^ log x then, we have 

lim f(x) = lim x^
x-^O

+ n - I ...(i). logx='0 if p> 1 - n
X—»0

...(ii)= - 00 if p < 1 - n.
Hence, if 0 < n < 1, then we can take p between 0 and 1 and satisfying (i).
Then if 0 < n < 1 then the integral is convergent by p-test.
Again if n < 0 then, we can take p = 1 and satisfying (ii).
Hence if /r < 0 then the integral is divergent by p-tesi.
So by the above discussion we get, the given integral is convergent if n>Q and divergent if

n<0.
Example 3. Discuss the convergence of the given integral

1 e ^ dx, if n> 0.Jo
Solution. Here given that i

1/ = Jq x''-‘e-"^x
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<•1 Convergence of Improper Iniegrals
- ] -I' = Jo e dx + e ^ dx.

1*1
-1A=Jo e-^dxLet

h = J\

Here for discuss the convergence of given integral, we use |a-test in ^ and comparison test
in /[.

I
f i

I-1'■=Jo
f(x) = x'^~ ^ at x = 0, it will be unbounded, 

lim
.v-»0

By comparison test if g(x) is convergent theny(x) will also be convergent or if divergent then 
f{x) will be divergent

e ^ dx

-1Let

lim e ^ = 1.
A —♦ 0

/•]
-1 x''^^ dx.0 ^W'^ = Jo dx = lim Jze -»0

1
1 e". = lim 

8-»0
= lim 

e-»on n nJe
1= which is a finite real number.n

r 1
Q is convergent

=> /(x) will be convergent.
>

x” ^ e ^ dx.Now h - J\

Herey^x) = x" ^ e It is bounded in the interval (1, <»)
x^x" -1 + rt- 1X^

lim x^J{x)= lim lim = 02
“ , X1 +X + —+ ...

.V—»oo

2 !

x" ^ e'^’^dx is convergent.

From the above result we can say I will be convergent because /j and I2 both are convergent.

For > 1, we have Jl

• SUMMARY
• First kind of improper integrals :

/* 0 • 00

/(x)dx, f(x)dx, f{x)dx.
a

• Second kind of improper integrals :
dx

.<1 x-af

dx .
— ISL x"

(i) convergent if n > 1
(ii) divergent if n < 1

dxor
Ja {x-bf

When n > 0. then
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Mathematics I dx• The integral IS :
(x - a)"* a

(i) Convergent if n < !■
(ii) Divergent if n > 1.

• STUDENT ACTIVITY
dx

, 0 Vi -jf ■
1. Discuss the convergence of the integral

1
2. Test the convergence of the integral log X dx.

Jo

• TEST YOURSELF
1*1

dxShow that the integral „ -
X

1. is convergent.1/3 (1+/)
i.2

dx2. Test the convergence of the integral Ji V/ -1
1

dx3. Test the convergence of the integral
(x+l)^{\-x^)

4. Show that ^ x" ^ e is convergent if n > 0.

ANSWERS

3. convergent2. convergent
FILL IN THE BLANKS :

rb
L The definite integral

finite and function is bounded over the range of integration.

2. A definite integral ^ J[x) dx in which limits are infinite and integrand is continuous is called

.............kind of improper integral.
3. If improper integral having finite value, then it is called
4. The point at which the integrand is infinite is called

integral if either any one or both limits aref{x) dx is called
Ja

point.
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f 1 Convergence of Improper Integralsdx .
Jo it;'*5. The integral

\TRUE OR FALSE :
Write ‘T’ for true and ‘F’ for false statement:

dx ■ .IS convergent.1. The integral
(1+.X) (T/F)

• OO

dx2. The comparison integral > when a > 0 is convergent when n > 1 and divergent when

n<l. (T/F)
3. In p-test the value of p is usually taken to be equal to the highest power of a: in the denominator 

of the integrand minus the highest power of x in the numerator of the integrand.
MULTIPLE CHOICE QUESTIONS :

(T/F)

Choose the most appropriate one :

The integral ^ x" * iiA: is convergent if :

(b) « = 0

2. The integral ^ dx converges :

(a) uniformly (b) conditionally (c) absolutely

1.

(c) n < 0 (d) None of these.(a) n>0

(d) None of these.

ANSWERS

Fill in the Blanks :
1. Improper 2. First

True or False:
1. F

Multiple Choice Questions :
1. (a) 2.(b)

3. Convergent 4. Singular 5. Divergent

2.T 3. T

□□□
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Malhemalics' I UNIT

6
FUNCTIONS OF A COMPLEX VARIABLE

' '■> .Si-i ■ STRUCTURE ... »T

Complex Number
Algebra of Complex Numbers
Properties of Conjugate of a Complex Number
Modulus of Argument of a Complex Number
Properties of Moduli
Properties of Arguments
Geometrical representation of Complex Number
polar form of a Complex Number
Equation of a Straight Line in Complex Form
Equation of a Circle in Argand Plane
Condition for Four Points to be Concyclic
Analytic Functions
Cauchy-Riemann Equations
The necessary and sufficient conditions for a function f(z) to be analytic 
Construction of Analytic Functions
□ Summary
□ Student Activity
□ Test Yourself

r K LEARNING OBJECTIVES
After going through this unit you will learn :

• What is a complex Number and how to represent it ?
• How to find the equation of a straight line and a circle in complex form.
• What are analytic functions ?
• What are harmonic functions ?

• 6.1. COMPLEX NUMBER
The concept of numbers, as we now is gradually extended from natural numbers to integers. 

Integers to rational numbers and from rational numbers to real numbers. We know that the square 
of every real number is non-negative, therefore, there exist no real number whose square equal to 
-1.

For example, there is no solution in real number of the equation +1 = 0 and 
-2x^3 = 0. Euler (1707-1783) was first to introduce the symbol i for the square root of - 1 

(■ = V- 1 and r = -l. So I) i = - /
= = l and so on.

Gauss (1777-1855) first proved in a satisfactory manner that every algebraic equation with 
real coefficient has complex roots of the form x + ly, the real roots being a particular case of complex 
numbers for which the coefficient of i is zero. Hamilton (1805-1865) also made a great contribution 
to the development of the theory of complex numbers.
Imaginary Numbers :

Definition. Square root of a negative number is called as imaginary number.
For example : V- 1, V-2, V-Tetc.

i.e.,
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Complex Numbers :
Definition. A complex number may be defined as an ordered pair x + iy, of real numbers and 

may be denoted by the symbol (:>£•, y).
If we write z = (a-, j-) i.e. x + iy, then x is called the real part and y is the imaginary part of the 

complex number z and may be denoted by R(z) and I{z) respectively.
For example : 5 + 2i, 3 + 6i, 2~ i,0 + i etc. all are complex numbers.

Equality of Two Complex Numbers :
'Two complex number are said to be equal if and only if their real as well as imaginary parts 

are equal : if x^ + iy^ and xj + iy2 are two complex numbers, then
X]+iyi=X2 + iy2 ^ Xi=X2,and yi=y2 .

Functions of o Complex Variable

xi +iy[=X2 + iy2 
(xi-x2) + i(yi-y2) = 0 
{xi-X2) = i(y2-yi)
(x\~x2f = (- 1) (y2-y\f
(^1 “ -^2)^ + (yi - .vi)^ = 0
x\ - X2 = Q and >2 “ >"1 = 0 ^1-^2 ^t\d yj = y2

or we can say (a, b) = (c,d) ^ a-c and b = d.

■ =4-

Important Results :
(i) If X and y are two positive real numbers then

V-a: X V-y = -
(ii) For any two real numbers Vx x ^^= is true only when at least one of x and y is eith< r 

positive or zero.
i.e., 'Ix X is not valid, if both x and y are negative,

(iii) For any positive real number x, we have
V-a: = V- 1 XX = V- 1 x^lx = i^.

• 6.2. ALGEBRA OF COMPLEX NUMBERS
(A) Addition of complex numbers. Let Zi=xi + /yi and Z2 = X2 + iy2 be two complex 

numbers, then their sum Z\ + Z2 i^ t/ie number (xj + X2) + 1 (yi + y2)- 
From the definition, it is clear that the sum of (zj + zi) is
real (z,+Z2>+1 imag (zi+Z2) 
where Re (zi + Z2) = Re (zi) + Re (z2) 
andimag (zi + Z2) = imag (z,) + imag (Z2).
For example : Let zi = 5 + 3/ and Z2 = 3 + 6i be any two complex numbers then, we have 

z, + Z2 = (5 + 3) + / (3 + 6) = 8 + 9i.
Properties of the Addition of Complex Numbers :

(i) Commutativity. If z\ and Z2 are two complex numbers, then
Zi +Z2 = 22 + 2i-

(ii) Associativity. For three complex numbers Z], I2 and Z3, we have
(2l + Zf) + Z3 “ Z| + (Z2 + 23)-
(iii) Additive identity. The complex number 0 = 0 + lO is the identity element for addition 
i.e.,z + 0 = 0 + z = z for all z G C.
(iv) Additive inverse. Corresponding to every non-zero complex number z = x + iy, there exist 

a complex number
- z = - (x + ly) = - X - /y such that 
z + (- z) = 0 = (- z) + z.

Here. - z is called the additive inverse of z.
(B) Substraction of complex numbers. If zi =xi + /yi and Z2 = X2 + iy2 be two complex 

numbers, then their difference Z\ - Z2 is the number zi + (- Z2)-
Symbolically :

The difference of two complex number z\ and Z2 can be written as
Z\-Z2 = Z\^ (- Z2) ^ (x + i'yi) + (- X2 - /y2) ^ (xi - X2) + / (y, - y2).

For example : Let Zi = 3 + li and Z2 = 1 + 5i are any two complex numbers, then
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Mathematics I Zi-Z2 = (3-1) + /(7-5) = 2 + 2i.
(C) Multiplication of complex numbers. Let zi = Xi + ivi and zi - X2 + iyi are two complex 

numbers then the product of zi and Z2> given by

Z\-Z2 = (xi + iyi). {X2 + iy2) = X]X2 + ixiy2 + i x^yi fyi yl = " 1)

= (^1-^2 - :Vi ^2) +' (J^iy2 +
= {Re (zi). Re (Z2) - im. (zO . im. (z2)}+ i (Re (zi). im. (Z2) + Re (Z2) - im (Z|)) 

For ei&ample : Le Z| = 3 + 2/ and Z2 = 5 + 3/ be two complex numbers, then 
zi . Z2 = (3 + 20 . (5 + 30 = (15 - 6) + i (9 + 10) = 9+ I9i.

Properties of Multiplication of Complex Numbers :
(i) Commutativity. For any two complex number z\ and Z2. we have •

ZiZ2“Z2Z|-
(ii) Associativity. For any three complex number Z|, Zt and Z3, we have 

(Zi . Z2) . ^3 = Zi • (Z2 • Zj,).
(iii) Multiplicative identity. The complex number 1 = 1 + L 0 is the identity element for 

multiplication
z . 1 = z = 1 . z for all z e C.

(iv) Multiplicative inverse. Corresponding to every non-zero complex number z x -t- iy, 
there exists a complex number Zj =x'3 + iy], such that

i.e..

(
Z . Z] =.l =Z] . z-

Here, zi is called the multiplicative inverse of z.
(v) Distributivity. For any three complex numbers zi, Z2» and Z3

(Left distributive law) 
(Right distributive law)

Zl (Z2 + Z3) = Z]Z2 + Z1Z3 
(Z2 + Z3) Zl =^Z2Zi + Z3Zi

(vi) Cancellation law for multiplication. If zi.Za Z3 are three complex numbers and
and

Z3 0 then,
Z}Z3=Z2Z3 Zl =Z2-

(D) Conjugate of a complex number. If z = x -1- is a complex number, then conjugate of 
z, denoted by z given by x - iy, which is obtain by replacing - i for i in z.

• 6.3. PROPERTIES OF CONJUGATE OF A COMPLEX NUMBER

(i) (^ = z.
(ii) z + z = 2Re(z).
(iii) z~z-2i Im (z).
(iv) z = z z is purely real.
(v) z-1-1 = 0 => z is purely imaginary:
(vi) zz= {Re (z))^ + {Im (z)f.
(vii) Zi +Z2 = Zi +Z2.
(viii) Z) -Z2 = Zi -Z2- 
(ix) Z^ = Z1 .Z2-

Zl Zl= — (provided Z2 0).(X)
Z2 Z2

I(E) Division of complex number. Let Zj =xj -h tyj and Z2 = ^2 + <>2 complex numbers.
Zl

then division of Zi and Z2, denoted by — is given by
Z2

Zl _ xi -h iyi 
Z2 X2 + I>2

-1
= (Xi + i>i) (X2 + iy^)

y2X2
= ix\ +iyi)

-/■

X2^+y2'X2’ + y2
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functions of a Complex Variable‘'(iXl >'l ^2

Xf + 72' Xi" + fz'\

X]X2 + yiy2 . .y\X2-y2Xi
2 , 2 

•^2 +>>2

~-yi:V2 -^2^1
1 y ' ‘y 9 ’

^'2“+>’2 ^2 +>'2
. - • / ■'

, provide X2^ + y2^ ^ 0.

/

+ /
•^'2' + .V2'

For example : If z, = 1 + 4i and Z2 = 2 - 3/, then 
1 -f 4i 1 + 4i 2 + 3i 
2-3i~2-3i^2 + 3iZ2

- -I-40 (2 + 3t) _ 2 + 3/ + 8i- 12 _ lit - 10
9-9/

11/- 10 - 10 . 11+12' - (3tf -2 13 ■
Dot and cross product of complex number. Lelzj = atj + /y, andz^ =^2 + complex

4-(-9) 13 13

numbers (vectors). Then dot product (scalar product) of z, and Z2 is defined by 
0 ^2 = Ui I • U21 cos 0 = X1X2 + }’i y2

= Re CziZ2) = I (2122 + ^122)

w'here 0 is the angle between zj and Z2 which lies between 0 and n and cross product of zj and 
Z2 is

...(1)

^1 X 22 = i Zi I U2 I sin 0 = Xi y2 - >*1 ^2

^ Im (zi Z2) =^:(f]Z2-Zi Z2). ...(2)2/
By (1) and (2), it is clear that

Z, Z2 = (Zi 0 Z2) + / (Zi X Z2) = I Z) I I Z2 I e'®. ...(3)
If both zi and Z2 are non zero, then
(i) Z\ and Z2 is perpendicular if and only ifz\ O Z2 = 0.
(ii) z\ and Z2 is parallel if and only ifz\ x Z2 = 0.

I Zi 0 Z2 I
(iii) The magnitude of the projection of Z[ on Z2 is

(iv) The area of a parallelogram whose side Z\ and Z2. is | Zi x Z2 j-
U2 i

• 6.4. MODULUS AND ARGUMENT OF A COMPLEX NUMBER
Let Z--X y iy be any complex number. Let x = r cos 0. y = r sin 0, then r- + "^x^ + y~ is called

^ is called the argument or
X

the modulus of the complex number z written j z | and 0 = tan

amplitude ofz, written as arg z. 
Thus, r=\z\ = yx^+y^ 

I z p = + y“ - z . z
1. if z^O.=> z ■

z

• 6.5. SOME PROPERTIES OF MODULI
Theorem 1. The modulus of the product of two complex numbers is the product of their 

moduli i.e., t Zj . Z2 i = | Zi |. | Z2 |- 
Proof. Wc have, 1 Z] . Z2 1“ = (Z, . Z2) (Z, . Z2)

= Zi .Z2.Z, .Z2 ^(z, -z,) -(Zz-Z:) = |zi I" . |Z2 P
I Z| ■ Z2 P = I Zi ■ I Z2 1^:=-•>

I Zl . Z2 I = I Zi I . I Z2 !■
Theorem 2. The modulus of the sum of two complex numbers is less than or equal to the 

sum of their moduli
|Z| +Z2I <|Z, | + |Z2|-

Proof. To showj Zi + Z21 ^ | Zi | + | Z21- 
l.et Zl = rje'®' and Z2 = rze'^', then

t.e..
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Z] + Z2- + ^2^^' ~ ^1 (cos 01 + / sin 6]) + /■2 (cos 02 + / sin @2)
= (ri cos 01 + ro cos 02) + i (^i sin 0i + r? sin ©2)

I Zi + ^2 I = "^(^I cos 01 + ^2 cos 62)^ + (r| sin 0, + r2 sin ©2)^

= + 12^ + 2rir2 COS (0| - ©2)]

= /•] + '•2 = Ui ! + U2 I-

Mdilu'nmtks /

[For COS (0] - ©2) ^ 1]

\Zi+Z2\^\Zi\ + \Z2\-Hence,
Theorem 3. The modulus of the difference of two complex numbers is greater than or equal

to the difference of their moduli 
i.e.. |Zl-22l^Ut|-U2l- 

Proof. To show | Zj - ^2 I ^ I Zi I ~ U2 |- 
= rje'®' and zz = r^^'^'Let

(V U'®|=1)|zi | = r, and |z2l = ^2then
10 - r2c'®- = /"i (cos 0] + / sin 0i) - r2 (cos ©2 + i sin ©2)t\-l2 = r^e

=:> 2:1 - Z2 = (''i COS 0] “ r2 cos ©2) + i (^i sin ©i - r^ sin ©2).
Zi “ Z2 I = n(ri COS 01 - ri cos ©2)^ + (n sin 0] - r^ sin ©2)"]Now

'^k!^+ ^2^"2ri/-2COS (01 - 02)]

> + r} - 2r,r^

= r, - /■2 = I Zi I - 1 Z2 I-
[•.• -cos(0i-■02)>-1]

Ul - ^2 I ^ I Zl i " U2 1-Hence,
Cor. Prove that | Z] - Z2 I ^ I I + U21-
Proof. We have,

I Zl " i:2 i = I Zl + (-' 22) I ^ Ul I + 1 (- ^^2) I ^ hi 1 + U2 |■ 
|z, -Z2|^Ui I+U2I-Hence,

So, by above results, we gel
hi I -1221 ^ Ui - ^2 h hi I + ha I-

Theorem 4. Prove that hi + ^2 h hi I “ ha !•
Proof. To show hi+^21 ^ hi h ha I-,
Let z\ = r^e^^ and Z2 = rie'^K then hi h ''i ha I = ''a

Z]+Z2 = I'l (cos 0] + i sin ©i) + r2 (cos ©2 + i sin ©2)
= (ri cos 01 + r2 cos ©2) + i (r] sin ©i + r2 sin ©2).

[ 2] + 22 I = cos ©1 + r2 cos ©2)^ + (#■] sin ©i + r2 sin ©2)^ 
= ^[ri^ + r2 + 2rir2 cos (©1 - ©2)]
> ^[ri^ + r2^ - 2rir2]

= ^i-'2 = 121 hhal- 
hi+zahhil-hal-

Now ,

[Since cos (©] - ©2) ^ - 1]

Hence,
Theorem 5. Prove that

hi+Z2p + hi-22|" = 2[|’Zi l^ + haft- "
Proof. Let z\ = rie'®', and Z2 = then hi I = ''i ha I = ''2

211 + 2:2 = ''i (cos ©1 + i sin ©1) + r2 (cos ©2 + i sin ©2)
Zi+Z2 = (ri cos ©I + 1-2 cos ©2) + i (/'i sin ©i + ri sin ©2)
Z\-Z2 = ('■] cos ©1 - r2 cos ©2) + i (/"i sin ©i - r2 sin ©2) 

hi + ^2 1^ = (''i cos ©1 + r2 cos ©2)^ + (r] sin 0, + r2 sin ©2)^ 

hi - Za I" = ('‘i cos ©1 - r2 cos ©2)" + (ri sin ©i - r2 sin ©2)'.
Taking hi + ^a I" + hi “ ^a I" = (('’i cos ©i + r2 cos ©2)" + (/"i sin ©, + r2 sin ©2)']

+ [(ri cos ©1 - r2 cos ©2)^ + (/"i sin 0| - ii sin ©2)^] 
= [''i“ + r2^ + 2rir2C0S (©i - ©2)] + ['‘i^ + r2 - 2rp-2 cos (©j - 0,)]
-2[ri' + r2']-2[hi|" + h2ft- 

Hence, hi +^a ^ + h’l “ ^a |^ = 2 [hi I" + I Zi f]- .

or
and

Now
and

‘1
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• 6.6. PROPERTIES OF ARGUMENTS
Theorem 1. The argument of the product of two complex numbers is equal to the sum of 

their arguments 
i.e.. arg. (Zi, Z2) = arg. (zj) + atg. {ziY 

• Proof. To show arg. (z^, Z2) = arg. (z,) + arg. (z2)-
Let z\ = r^e'^' and Z2 = r2e‘^- then arg. (Z]) = 61 and afg. (Z2) = 02' 
Taking i (9, + 9,)Zi . Z2 = ri . r2 e

: Arg. (zi . Z2) = 0, + 02 ^ arg. (z,) + arg. (Z2).
Hence, Arg. (zi • Z2) = arg. (zi) + arg. (Z2)-
Theorem 2. The argument of the quotient of two complex numbers is equal to the difference 

of their arguments

=>

— ^ arg. (z])-arg. (12)-i.e.. arg.
Z2

Z\Proof. To show arg. — = arg. (zO - arg. (Z2)
^2

Let Zi = r^e^' and Zo = r2e'^- then
arg. (zi) = 01 and arg. (Z2) = 62-

tO
Zl r^e

10, r2
Taking

Z2

ZlArg — =6i-e2 = arg(z,)-arg(z2).=>
^2

/ \
Hence, arg. — =arg. (zi)-arg. (Z2).

Z2

SOLVED EXAMPLES

>

1+7/Example 1. Express - in the modulus amplitude form.
{2-if

1+7/ _ 1+7/ _ 1+7/_(l-7/) (3 + 4/)
(2-/)-“4-4/ + /'“3-4/“ 3-4/ 3 + 4/ 

3+ 4/+ 21/+ 28/^ -25+25/

Solution. Here,
-b

= -! + /..2 259 - I6i
- I + i = r (cos 0 + / sin 8). 

On comparing real and imaginary part, we have 
r cos 0 = - 1 
r sin 0 = 1.

Squaring (1) and (2), and adding,
- 1 + 1 = 2

Now putting r= in (i) and (ii), we have

and sin 0 =

Now let

...(1)

...(2)

¥ :. r = -^.

1 1 371cos 0 = - — ' giving 0 = —-
f2 4V2

1+7/ 37t , . 371cos — + j sinHence
4 ■4(2-if

• 6.7. GEOMETRICAL REPRESENTATION OF COMPLEX NUMBER
A complex number z=x+ iy can be represented by a point P in the cartesian plane. The 

co-ordinate of P are (x, y) referred to rectangular axis OX and OY. where OX is called real axis and 
OY is called imaginary axis.

The complex number 0 + /. 0 corresponds to the origin, the real number x = x + iO and 
imaginary number iy = 0 + /y correspond to the points on X-axis and K-axis respectively.
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Mnthemalics I Obviously, the polar co-ordinate of P are (r. 0) where Y 
r = OP - is the modulus and the angle 0 = tan" ^ ^ is PU,y)

the argument of z = x + /y.
To each complex number there exists one and only one 

point in the X-Yplane, and to each point in the X-Yplane there 
exist one and only one complex number, by this fact, the 
complex number z = x + iy is referred to the point z in this plane. O 
This plane is called complex plane or Gaussian plane or Argand 
plane. The representation of complex number is called Argand 
diagram. The distance between the points Zi=X]+/yi and 
Z2 = X2 + iy2 is given by

Fig.l

Ui - ^21 = ^l(xi - X2f + (yi - y2f] ■
Some Geometrical Interpretations :

(i) Zi + Z2- Let Z]=xi + iyi and
P(^i +X2,y] +y2)Z2 = X2 + iy2 be two complex numbers, represented 

by the image P and Q. Complete the parallelogram 
OPRQ. I

I
ILet PK, QL and RM represents the 

perpendicular from P, Q and R respectively on 
X-axis.

I
I
I >

P!I
I ISince the diagonal of a parallelogram bisect x'^ 

each other, therefore, co-ordinates of the mid point
—►.VO K ML

x\+x2 yi+y2
of PQ and also that of OR is 22

Fig. 2Therefore, the co-ordinate of R are
(x, + X2, yi + y2)-

Hence, R represents the complex number 
(xi + X2) + i (yi + y2)

= (-^1 + '>|) + (xi + iyi) = + Z2-
(ii) Zi - Zz- Let P and Q be two points 

represents the two complex numbers x'- 
Zi = X, + /y 1 and Z2 = X2 + iyz-

Since, the sum of Zi and - Z2 is 
represented by the extremely R of the diagonal 
OR of parallelogram OPRQ'.

Hence, R represents the complex number 
(xi-x2) + ((yi-y2)

= (^i + iy])-ix2 + iyi)
= z, - Z2-

2(^2’>'2)

i

o •.V

->’2^

Q'i-xz-vi)

Fig. 3

• 6.8. POLAR FORM OF A COMPLEX NUMBER i
Consider a point P in the Argand plane (or complex 

plane) corresponding to a complex number z = x + iy.
X = r cos 9, y = r sin 0 
r = Vx^ + /^|x+iy | = |z|

0 = tan" ’

put P(x,y)
then

and
X

It follows that
z = X + iy = r cos 0 + i> sin 0 

= r (cos 0 + i sin 0) = re'®
('.■ e'® - cos 0 + i sin 0) 

which is called the polar form of the complex number z-

Xi A'MO X

10Z = re
Y'

Fig. 4
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r and 0 called polar co-ordinate of z. r is the modulus or absolute value of z and 9 is the 
argument or amplitude of z.

It is also written as 0 = arg. (z) or 0 = amp. (2).

Ftmctio\^-S of a Complex Variable

SOLVED EXAMPLESI
I

Example 1. Find the moduli and arguments of the following complex numbers

m .3 - j
1-j 3-i 3+i

2 + i'^ 2-i(0 (»•)1 + /
Solution, (i) Here, we have I

1 -1 ^ (1 - - 2/
I + / 1 + i ■ 1 - / 1 - ,-2 2
i-i

= -/

= |-,-| = Vo + {-l)2 = l
1 + 1

1 -/ / •\ ^ = arg. {- 0 = - -and arg. l + i
n

■ A • ^r = 0 - / = cos - — 2
71because +1 sin -- /
2 ■

V. /(ii) Here, we have
3 - / 3 +1 (3 - /) (2 - 0 + (3 + 0 (2 + /) 
2 +1 2 - I (2 + 0 (2-0 

6 - 3/ - 2i - 1 + 6 + 3i + 2i - 1 10-^ = 2.
A~i^ 5

3 - <• 3 + i
2 + / '*’ 2 - ISo = 2

3-i

\
(iii) Here, we have

3 + jand = arg. (2) = 0 (•.• argument of a positive real number is 0): +
!

(2 + if _ 3 + 4/ _ 3 + 4/ 8 + 6i 50t 1
(3-0^ 8-61 8-6/'8 + 6/"100 2

2 + i 1
= -/.3-1

.\22 + i 1 I

2'3-i
}

~ i = r(cos 0 + I sin 9),

r cos 0=0, r sin 0 =

Squaring and adding above relation, we get 
2 1

Now, let

)
then.

1=> r = ~-r 4 2
1Putting r = - ’ we have cos 0 = 0, sin 0 = 1.

7tThe value of 0 lying between - 7i and tc, which satisfies both these equation is —• 

Hence, principal value of arg.
.^22 + i 71

3-1 2

Example 2. The real numbers A and B if 

(0 A + iB = 3-2/
7+4/

1{ii) A+iB =
(1-20(2 + 3/) 

Solution, (i) Here, we have
3 - 2/ _ (3 - 20 (7 - 40 _ 13 - 26/ _ 13 _ 26 . 1 _ 2 .
7 + 4/ (7 + 4/) (7 - 4/) .65 65 65 ' " 5 5A + =
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Mathematics ! Equating real and imaginaiy parts of both the sides, we get
• 2

5
(ii) Here, we have

1' rA + =
(l-20(2 + 3i) (2 + 3/-4z-6f^')

8 " i____ 8 + i _ 8 + i _ 8 + f _ 8 ,
(8 - 0 (8 + 0 ~ 64 - " 64 + 1 “ 65 “65 65''

Equating real and imaginary parts of both the sides, we get

%-i

8 1

Example 3. Show that arg. z + arg. z = 2mz, where n is any integer. 
Solution. Let z = x + iy, then 'z = x- iy, where x and y are real.
Now we have

65

arg. z + arg. z = arg. (z .= arg. {(x + iy) (x - iy)} = arg. (x" + y^).
Now x^ + y^ is a positive real number, say c. Since c is a positive real number, so the 

representative point of c in the argand plane will lie on the positive side of the real axis. So the 
principal value of arg. c is 0 and the general values is 2/m, where n is any integer, 

arg. z + arg. z = 2nn.Hence,
Example 4. Prove that | Zi + Z2 f + I ” ^2 1^ = 2 | Z] ^ + 2 | Z2interpret the result

geometrically and deduce that
I a + 1 +1 ct “ | = |a + P| + |a-p|

all the numbers involved being complex.
Solution. We have,

. I Zl + Z2 P + I Zl - Z2 1^ = (Zi + Z2) (z]~+^) + (Zi - Z2)iZi - Zi)
= (^1 + Z2) (^1 +’^2) + iZl -Z2) (Z\ - Z2)
= 2z\Zi + 2^2?,= 2 i Zi p + 2 IZ2 P

Geometrical interpretation. Let A and B be the points 
of affix Z| and Z2 respectively. Complete the parallelogram 
OABC.

...(i)

B
Then, we have

OA = I Z; 1, OC = I Z2 I 
OB = \Zi+Z2 |, AC = |Z|-Z2 I- 

Now, from the property of parallelogram 
OB^+CA^ = 20A^ + 20C^

A{z^)
■Xo

I + Z2 P + i Zl - Z2 p - 2 1 Zi j“ + 2 I Z2 p.

Deduction. Le zi = cc + and Z2 = oc - then we have
^]Z,^ZX + ~\Z1-Z2\- = \Z, P + U,P

i|2ap + i|2V + P") |" = U, P + U2P

2|ap + 2|(a'-|3")| = U,|" + |z2p 
llz,\ + \z2lf = \z, p + |z2|" + 2|^,z2|=2|ap + 2|a^-|3"| + 2|P|- 

= |a + pp + |a-pp + 2|a^-13^'|
-[|a + P|.+ |a-Plf.

Uil + Uzhla + PI + la-PI- 
I a + I +1 ct-|==|a + p| + |a-p|.

Fig. 5or

[from (i)]

or

or
and so

[using (i)]

So

Hence,

• 6.9. EQUATION OF STRAIGHT LINE IN COMPLEX FORM
Equation of straight line passing through two given complex number. If Zi and Z2 be any

two points (complex numbers) in argand plane and A(z) be the any current point. To find the equation 
of a straight line passing through the point P(zi) and Q{z2)- Consider the following figure ;
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Fiihciiolhf of a Complex Variable
Q(Z2)P{Zt) ^(0

Z~ZiEvidently, = 0 or TT.arg.
Zl - Z2

Z --Z]
Consequenly, is purely real. So, we have

Zi -Z2

Z-Z[ Z- Z\ Z-Z\

Z\ - Z2 Z\ -■ Z2 Z\ - Z2

(z - Zi) (Z] - Zz) = (Zi ~Z2)(z- Zi)

Z(f\ -Z2)-Zi (Zi -Z2) = z(Zi-Z2)-Zi {Zi ~ Z2) 
z (F| -,42) ~ Z]Zi + Z1Z2 ~ z{zi- Z2) ~ ZiZi + Zi Z2 

Z (Zi -zi)-'z{Zi- Z2) + {ziZ2 - Z^i) = 0
which is the required equation of straight line in Argand plane. 

Now multiplying (1) by i, we get

or
or
or

...(1)or

iz (zi - zi) - i z (zi - zi + i (ziZ2 - Z2Z1) = 0. ...(2)
Now we take the coefficient of c is a and the coefficient of z, which is the conjugate of that 

of z is a. Agian Z]Z2 is the complex conjugate of zizz- So, the number z{z2 “ z-^i is imaginary and 
the number i {zizz - z-^\) is purely real. So we have

i\z\'zz-'zi Zz) = k, where k is real.
Now from (2), we get

az + a2 + A: = 0, ttjiO and k is real.or
where a and k are constant.

Which is the general equation of a straight line.
Some Important Theorems :

Theorem 1. The equation of any straight line passing through the origin and making an 
angle a with the real axis is z - where r is any real parameter.

Proof. Consider a point z = ;c + iy on the straight line passing through the origin and making 
an angle a with real axis. Then, we have 

x = r cos a, y = r sin a
z=x+ iy = r cos a + ir sin a = r (cos a + / sin C() = r (cos a + i sin a)....(4) 
z = re‘^, which is the required equation.

Theorem 2. The equation of any straight line passing through the point Z\ and making an
angle a with the real axis is <; = Zi + where r is any real parameter.

Proof. Let 2 = JT + iy be any point on the straight line passing through the point Zi and making 
an angle a with the real axis. Then

x-xx = r cos a
which implies (.^ -.^1) + i (y -yi) = r cos a + ir sin a 

(-T + iy) - (X] + iyi = r cos a + ir sin a 
z- Zi=r (cos a + i sin a), where 2i = X] + iyj. 

re'“, which is the required equation.
Theorem 3. The equation of the straight line joining the point zi and zz is 

z = tZi + (1 - t) Zz^ where t is any real parameter.
Proof. Suppose that z be the affix of any point on the straight line joining the points and

For

Hence Z- Z[ =

Zz- Again, suppose that the point z divides the join of Z\ and Zz in the ratio X : I, where X is any real 
number not equal to - 1.

Zi + Xzz X )1We have ...(1)Zi +or z =z = Zi-i + X \+X l + X
X1Put in (1), we get= t i.e., 1 - r =l+X i + X

z = tzi + {i ~ t) Zz^ which is the required equation.
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Mathematics I • 6.10. EQUATION OF A CIRCLE IN ARGAND PLANE
Show that the equation of a circle in the Argand plane is of the form 

^+cz + cz + ^ = 0
where k is real and c is a complex constant.

Proof. Consider a circle, whose centre is c{b) where b is any complex number and r be the 
radius of the circle and let A{z) be any point on the circle.

Then, the line CA = radius of the circle 
\z-b\ = p.

On squaring, we get

{z-b){z~b) = p^ => {z-b){z~b) = p^

^-bz-\-bb-bz-p^

zz~bz-bz-y{\bf= 0.
Taking - b-c and {\b\^-^~) = k = real number.

Then, we get zz + cz + cz + /: = 0 
where k is real and c be a complex constant.

Which is the required equation of a circle.
General equation of a circle. We know that the equation of a circle is given by*

:u + cl+cz + k-O 
The above equation can be written as

(z + c) (z + c) = cc - A: =❖ I z + c p = cc - A:.
Here, equation (1) represents a circle if k is real and

cc- k>0.
Thus, the general equation of the circle is of the form

zz + cz + cz + it = 0, A: is a real and cc-k>0.

=>

(where k is real) ...(1)

• 6.12. CONDITION FOR FOUR POINTS TO BE CONCYCLIC
Let P(zi), Qizi), R^zf), Sizf) be the four points (complex numbers). Then the given four points 

P. Q, P. S are concyciic if ZPRQ, ZPSQ are either equal or differ by n

^(^4)

Ri^i)
P(-3) p| 

(^1)

P
(^1

6(^2)
Q(Z2)

S(Z^)

Fig. 7

23 “ Z] Z4-ZI are either equal or differ by tl=> arg. ' arg.
23 “22 Z4-Z2

23 “2i/ 24-21
= 0 or Jiarg.

24-2223-22

23-21/ Z4-21 I- is real
23 - Z2 24-22

(23 - 2l) (24 - 22) is purely real.
(23 - 22) (24 - 2i)

(23-21) (24 - 22)
Hence, four points 21,22.23,24 are concyciic if is purely real.

(23 - 22) (24 - 2])
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Cor. Equation of a circle passing through three points.
Let 2]. Z2, ^3 be any three points (complex numbers) on a circle and let z be any point on the

(Z2-2|)(2-Z3) .■;------ rr------- 7 IS purely real
(^ - Zi) (22 - Z3)

Funclions of a Complex Variable

circle, then we know that the four points Zi,Z2, Z3, z are concyclic if

(Z2 ~ Zi) (z - Z3) (Z2 - zQ
(z - Zi) (Z2 - 23) ('.■ z is real if 2=^

(z ~ zO (^- 23)
(Z2-Z1) (Z-Z3) (Z2-Zi)(z-Z3)=>
(Z-Z,)(Z2-Z,) (F-Z,)(i2-Z3)

which is the required equation of the circle passing through three points.
Example 1. Finti the region of the Atgand plane for which 

\z-l\ + \z+l\<3.
Solution. We have z = x + iy, then

Iz-ll + |z+l| = | X + jy - 1 1 + U + iy+a| = [(j:-l) + ty | + | (jc + 1) + iy |
= V[(jc-l)" + /] +Vt(;t+lf+/l- /

But it is given | z - 11 + | z + 11 < 3. So________
■i[(x - 1/ + /] + V[(a: + 1)" + /r< 3 
V[(x-1)" + /J <3-V[(x+l)^+/].or

Squaring both side, we get
(x~lf + y^<9 + (x+\f + y‘^-6'^[(x+lf + y^] 

9 + 4x - 6^[(x + if + y^] > 0 
6 ^[(x+lf + y^] <4x + 9.

or
or

Again squaring, we get
36[(x:+l)^+y^]<16ix^ + 81+72r or 36x^ + 36y^+36 < + 81

202.^+ 36/<45 or ^ + ^Or < 1.

Hence, the region of the Argand plane is boundary and interior of the ellipse
2 2

9/4 5/4 < 1.

Example 2. If P, Q, R are points of affix Z\, Z2, Zi + Z2 respectively then prove that OPRQ is 
a parallelogram.

Solution. Let z\, Z2. (zi + Z2) be three points such that
Zi =x, + iy|, Z2 = X2 + iy2. Zi + Z2 = (a:i +X2) + i(y] +y2).

Thus the co-ordinate of O, P, Q, R are (0,0), (x,, y,), (x2, y2), (x, + X2, yi + y2) respectively.
'xi +X2 yi+y2'

Now, mid point of PQ =
2 2

O + X1+X2 0 + yi+y2'^ (x]+X2 yi+y2\ ,
and the mid point of OR = 2 2 2

Hence, OPQR is a parallelogram.
Zl -22Example 3. Show that < 1 i/I Zl [ < 1 and I Z21 < 1.

I - Zi Z2

Zl Z2Solution. The given inequality < 1 will hold if
1 - Zl Z2

|Zi-Z2|<| I-Z1Z2I or |Zl-Z2|^<!l-Z!Z2p

(V izp = z^=► (Z|-Z2)(Zl-Z2)<(l-ZiZ2)(l-ZlZ2)
=> {Z^~Z■^^^-'z^<{^-Z^Z2){l-Z^Z2)

=> ZiZi - ZiZ2 - Z2Zi + Z2Z2 < 1 - ZiZ2 “ 1-22 + Z\Z\ - Z^2

=> \z,\‘+\z2?<l+\z,\‘\Z2f
=> Ui P + Ur P - 1 - Ui P U2 P < 0 
=» (UiP-i)(i-U2p)<o.
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Malheiiinlics / Now, the above inequality will hold if [z] j < 1 and [ zt I < 1

< 1 if I I < 1 and |22l<l- 
1-Zi22 . . - ■ ;

z — cExample 4. Determine the region of the argand plane, for which .----3 < 1, = 1 or > \
z~c

zi -Hence,
i.

where real part ofc is positive.

Solution. Here, we have - - < I, = 1 or > 1
z-c

cp<=>U+cpz-

(z - c) (z - c) < = > (z + c) (z + ^
(z-c)(z-^< = >(z+^(z + c)
(zz- zc- cz + cc)< = > (zz + zc + c z + c c) 
zz - (zc + < = > (zz + zc + c z)
- (zc + cz) - (zc -i- c z) < = > 0 
(zc + c^ + (zc + c z) > = < 0 
z(c + ^ + z(c + c)> = <0 
(z + z)(c + ^> = <0 2;c2Re(c)> = <0
j:> = <0

Hence the required region is the right half of the Argand plane, imaginary axis and left half 
of the Argand plane respectively.

Example 5. Show that the radius and centre of the circle
z-i

=>

(•.; Re (z) is positive)

= 5.
z + i

z - / ...(1)= 5Solution. We have
z + i

Ui 1i z *- J (= 5 } z + i jor 1^2i^2

! X + iy -11 = 5 i jr + jy + /1.or
Squaring both sides, we get

U + ('(y-i) l' = 25|x + /(y+l)f

+ y^ - 2y + 1 = 25 Ijc^ + y' + 2y + 1] 
24 (x^ + y^) + 52y + 24 = 0
/ + y^ + ^y+l=0

o

or
or
or
or

..-(2)or

which is the equation of a circle.
Therefore the locus of the points on the Argand plane which satisfy the condition (1) is a

circle.
13^The co-ordinates of the centre of the circle equation (1) are 0, - — and its radius is12

V

V 25
144 " 12

Hence the locus of the given circle is the point whose affix is 
z = 0 + (-13/12)i i.e., (-13/12)/

and its radius is 5/12,

• TEST YOURSELF
1. Find the modulus and arguments of the following :

2 + /
4/ + (l + i)^

■ 2. For two complex number zi, Z2 prove th^t j zi + zi] =\z] \ +\z.2\ if iind only if. zi Z2 is 
purely imaginary.

1+2/
(ii)(i)
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Functions of n Complex Vnriable
•' F-• 6.12. ANALYTIC FUNCTION

Some Important Definitions
Single and multiple valued function. If we get only one value of w corresponding to one 

value of z, then we say that w is a single valued function of z orfiX) is a single valued function.
'2 **For example. If w = z . Here, corresponds to one value of z we get only one value of w. 

Hence, w = z" is a single valued function of z-
On, the other hand if we get one or more value of w, corresponding to each value of z, then 

we say that w is a multiple valued function (or many valued function).
For example. If w = VF, then we get two value of w, corresponding to each value of z. 

Hence, w is a multiple valued function of z.
A multiple valued junction can be considred as a collection of single valued functions, whose 

every member is called a branch of the function. And a particular member is called a principal 
branch of the multiple valued function and the value ofthefuncion according to his branch is known 
as principal value.

Limits and continuity of a complex function. Let j{z) be a single valued junction defined 
in a bounded and closed domain D. Then a number I is said to be the limit ofj{z) at z = Zq, if for 
any positive number e (however small) we can find a positive number 5 such that

/1 < e V z for which 0 < | z - zq I < S.
The limit must be independent of the manner in which z —> Zq.
Symbolically, we write lim (z) = /.

Z-»Zo

Some important results on limits. If lim j{z) = I and lim g(z) = m, then
z-^ Zo

(i) lim [/(z) ±5(^)] = lim y(z) ± lim g{z) = l±m 
z—» Zq ■

(ii) Urn [/(2) • <?(2)] = lim Xz). lim g(z)-l.m

Z-»Zo

Z Zq Z-*Zo

Z->Zo

lim fz)
fjz) /= — if w 0.(iii) lim.
8(z) lim g{z) m

Z-^Zo

Continuity. Letfz) be a single valuedfunction ofz defined in the closed and bounded domain 
D. Thenfz) is said to be continuous at a point Zq in D iff, for any positive number (however small)
we can find a positive number 5 such that

lAz) I < £ whenever lz-Zo|<5.
From the definition of limit and continuity we can say thaty(z) is continuous at z = Zq if and 

only if lim fiz) =f{zo).
Z-^Zo

Note. Ify{z) is continuous at z = Zo then this implies three conditions.
(i) lim fijz) = I must exists.

Z-»Zo

(ii) fizo) must exists.

For example. Ify(^) = z^ V z then/(z) is continuous at z = i because 
lim j{z) = lim z^ = i = -l.
z-*t

Discontinuity. At any point zq, at which fi^z) is not continuous then j{z) is said to be 
discontinuous at zq- If lim f(z) exist but not equal tofizo), then this type of discontinuity is called

Z-*Zc ■

z—» I

I

Iremovable discontinuity.
Continuiy in real and imaginary part of/(z). If/(z) = w(x, y) + iv (x, y) is a continuous 

function of z, then u(x, y) and v(x, y) are also continuous function of x, y and if u(x, y) and v (x, y) 
are continuous function of x, y then f{z) is also a continuous function,

Uniform continuity. Let A functionyfz) defined in a domain D, theny(z) is said to be uniform 
continuous in D if for any e > 0, 3 8 > 0 such that
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Malhenuitics I i/(zi)-^Z2)i<£ whenever 0 < 1 Zi-Z2 1 < 5’where Zi, Z2'^ D. 
Differentiability. Let^^) t>e a single valued function of z defined in a domain D, then_/(z) 

is said to be differentiable at point z = Zo of D iff
Azo + h)-J(ze)

f\z) = lim
/i-»0 h

provided that the limit exists and does not depend upon path which h—^0 or we can say
Az)-Azo)/'(z)= lim

Theorem 1. Continuity is a necessary but not a sufficient condition for the existance of a
Z-Z(S

finite derivative.
Proof. Lety(z) be a differentiable function at z = Zq then

Az)-Azo)/(zo)= lim 
2-»Z0

exist.
Z~Zo

Now, we can take
Az)-Azo)

Az)-Azo) = (z-zc) if z^zq.
Z-Zo

Taking limit of both sides.
Az)-Azo)lim [/(z) -X^o)] = (z - Zo) Z-ZqZ-»20 z-»Zo

Az)-Azo)= lim (z - Zo) • lim
3^20 z-zoz-»Zo

= 0./'(zo) = 0 Since lim (z-zo) = zo~zo = 0
:->Co

lim [/(z)-y(zo)] = 0 lim Az) - lim Azo) = 0or
Z ^ Zo Z-*Zo

lim Az)=Azo)-=>
z-^Zo

Hence,y(z) is continuous at z = Zo thus continuity is a necessary condition for differentiability. 
Now we shall show that continuity is not a sufficient condition for differentiability. It is clear 

from the fol lowing example. Consider the function f(z) = \zf', where z = .r 4- iy.
The function | z |" = is continuous at every point.

Xzo + Az) -^zo) I Zo + Az p - I Zo p
Now f'(zo) = lim 

az-+o
lim

Az AzAz-»o
(Zo 4- Az) (zo + A^ - ZoZo Zo Az + Az . Zo + Az . Az

- lim 
Az-^O

limAz Az

Az Az (•.• Az^0=>Az^0)lim 77Zo + z + Az = lim — Zo + Zo
Az-»0 AzAzAz—»0

So at zq = 0, Zo = 0 so that /'(zo) = 0.
Again at Zq 0. Now let Az = r (cos 0 + i sin 9)

Az =/■ (cos 9 - j sin 0) => ~= ^
Az cos 0 4- / sin 9

= cos 20 - i sin 20then,

which does not tend to a unique limit. Since this limit depends upon arg. Az.
Thus the function/(z) is continuous everywhere but not differentiable for any non zero value

of z.
Analytic function. Consider a single valued funcion f{z) defined in a donuiin D, then the 

function Az) is said to be analytic at z = Zo of D. if it is differentiable not only at zo but also in some 
neighbourhood ofzo-

Or
A function Az) is said to be analytic in a domain D. IfAz) is differentiable at every point of

N

a domain D.
Singular point. A point z^z^at which f'izo) does not exists, is said to be singular point of

Az)-
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If a functionis analytic in every neighbourhood of a point zq except zq. Then zq is known 
as isolated singularity of/z).

Ify(z) is not analytic at.z = Zo but it can be made analytic by taking a suitable value to f{z) at 
point Zq, then/z) is said to haye an removable singularity at a point zq of D.

A functionj^z) is analytic in some deleted neighbourhood of Zq and has a removable singularity 
at Zq. Then the function y(z) is said'to be regular at Zq-

Functions of a Complex Variable

* 6.13. CAUCHY-RIEMANN EQUATIONS
A necessary condition that w =f(z). where f{z) = ii{x, y) + i v{x, y) be analytic in a domain D,s 

u{x, y) and v(x, y) satisfy the equation
dll dv ■ , du 3v 
dx ~ dy dy~ dx 

The above equation (1) is known as the Cauchy-Riemann equation.
If partial derivative in (1) are continuous then it is the sufficient condition for a function 

y(z) to be analytic in D.

...(1)

• 6.14. THE NECESSARY AND SUFFICIENT CONDITION FOR A FUNCION 
f(z) TO BE ANALYTIC

(I) Necessary condition iorf(z) to be analytic.
Theorem 2. If a Junction f{z) = u{x, y) + /v(-c, y) is analytic at a point z=x + iy in a domain 

D, then the partial derivative Uy, Vy should exist and satisfy the equations = Vy and
Uy = - V^.

Proof. Sincey(z) = u{x, y) + iv(x, y) is differentiable at a point z = x + iy then

M. Az + Az)-Az)f\z) = lim lim ...(1)Az^ Ai->0

must exists and unique as Az —> 0 in any manner.
z = x+ iy and Az = Aa" + t Ay.

Now, using the above relations, equation (1) can be written as 
u(x + Ax, y + Ay) - u (x, y)

IIf

v(x + Ax, y + Ay) - v(x, y)lim ...(2)lim + i
Ax + i Ay Ax + i AyAz _»0 Az Az ^ 0

Taking Az to be wholly real (along real axis) so that Ay = 0 then, quation (2) gives 
u(x + Ax, y)- u (x, y) . v (x + Ax, y) - v(x, y)lim -.(3)+1Ax AxAt-»0

3vNow, since_/(z) is differentiable, then the partial derivative ^ and ^ must exist and the limit

IS

du . •••(4)

Again taking Az to be wholly imaginary (along imaginary axis) so that Ax = 0, then equation
(2) gives

u(x, y + Ay) - u(x, y) . , v(x, y + Ay) - v(x, y)lim ...(5)i Ay iAyA)>-»0

Since,/(<:) is differentiable, then the partial derivative and ^ must exist and the limit isoy dy

1^ + ^ 
i dy dy ...(6)= Vy~ Illy.

Since, the limit given by lim ^ is unique. So the limits given in (4) and (6) must be
At->0

identical. Now equating the real and imaginary parts, we get
Uy = - v.andKr = Vy

du dv , du dv 
Bx'dy ay"* dx

Above two equation is known as Cauchy-Riemann partial differential equations.

or
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(ii) Sufllcicnt condition for a function/(z) to be analytic.
Theorem 3. A single valued continuous Junction 

f(.z) = uix,y)^-iv(x,y)
is analytic in a domain D. If the four partial derivative u^, Uy, Vy exist, are continuous and 
satisfy Cauchy-Riemann partial dijferential equations at every point of D.

Mathematics I

Proof. Let w =f{z) = «(•*:, y) + iv (x, y) be a single valued function possessing partial
du 3vderivatives ^ ^ ^ ^ at each point of a region D and satisfying the equation i.e., ^ 

dx dy dx dy d.v dy
and ^ ^ » we shall show that/(z) is analytic, i.e.,f'(z) exists at every points of the region D.

ay dx
By Taylor’s theorem for functions of two variables, we have, on omitting second and higher 

degree terms of and 5y
fz + 5z) = u(x + 6x, y + 5y) + iv {x + 5x, y + 8y)

= u(jc, y) + 5.x + ^ 5y + i v(x, y) + ^ Sx + ^ 5y
d.x dy dx 6y

dvdv

r , . . , V, (du .dv^5j (du . dv''jj

„ . (du . dv^ e (du . dv'^ ^
Tx^'Yx ^^‘Tyr

V / V • /

\.
du . dv'l 2 ( dv .3m') 2

1 S . f - s-:^ + I-r- 6x+ T—I oy dx dx dx dx
du , . dv^ -2 , . ff X (du . dv'’ - 
dx dx ^ dx dx

\\ /
(V /^ = -l)

<
(■.' 5z = 5x + <5y)

/(z + 5z) -Kz) _ ^ ^ ^
5z dxdx

fiz + Sz) -fjz) _ ^
dx ‘ dx/'(z)= lim 

Az-»0
3u 3vThus/'(z) exists, because — ’ ^ exist. Hence y(z) is analytic.

8z

Cauchy-Riemann Equation in Polar Form :
Here, we have

x = rcos0 and y = rsin9.
r^=.xHy^
e = tan"'^-

...(1)So

...(2)and
X

Now, differentiating (1) and (2) partially w.r. to x and y, we get
dr X - j y— = ~ = cos 0 and ^dx r dy r = sin 6

39 r sin 0 sin 01
x^ + y^ 2dx / \ rrZ1 +

X
V /

(1de r cos 0 cos 0J X (••• r- = x^+y^)and “2 2 x^ + y-dy / r'Xz V^. r
1 +

X

Taking
dw du dr , du 39 du _
dx dr dx 30 dx dr
du du dr du 30 du . «— = — • — + — = T—.sin 9 +dy dr dy 30 dy dr

3u sin 0
30 r 
du cos 0 ...(3)

30 r
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9v dv dr dv 30 3v 3r sin 0 Functions of a Complex Variableand 3a: dr 3j: ^ 00 3.ir dr ^ 
^ ^ 3v ^ _ 3v . - 
dy dr 3>-^90 3>' ^

30 r 
3v cos 9 •••(4)
30 r

Now by Cauchy-Riemann equation, ^ ^ and ■“ =
ox oy dy dx

3\'
...(5)

Using (3) and (4), (5) becomes
du du sin 0 3v^ 3v■:r- cos 0 - ^ =^sin0 + —COS030 r dr

du COS 0 3v

-(6)3/' 30
du 3v^ sin 0and ^ sin 0 + - ^ COS 0 + ...{!)dr dr39 r

Now multiplying (6) by cos 0, and (7) by sin 9 and adding, we get 
du I 3v

30 r

...(8)dr r ae
Again multiplying (6) by sin 0 and (7) by cos 0, and substracting, we get

i. ^ ^
/■ 30 ■“ dr

Equation (8) and (9) be the required Cauchy Riemann equation in polar form.
Conjugate function. Ify{z) = u + iv \s a analytic function. If u and v satisfy the Laplace’s 

equation, then u and v are called conjugate Harmonic function or conjugate function.
Harmonic function. If « is a function of .v and y and u has continuous partial derivaive of 

first and second order and satisfies the Laplace’s equaion then u is called a Harmonic function.
Orthogonal system. If u(x, y) = C| and v(x, y) = Cj be the two families of curves then these 

two families are said to form an orthogonal system if they intersect at right angles at each of their 
points of intersection.

Firstly, differentiaing u(x, y) = Ci, we get

^_n <iy___ du / du _
3a- dy 'dx' d^' 3jc/

Now differentiating v(A:,y) = cz, we get
3v 3v dv „ dy 3y / 3v ^ :

Now two families of curves intersect orthogonally if m\m2 = - 1 
^ ^ du 3>’ 
dx dx^ dy 3y '

• •.(9)

(say).1

SOLVED EXAMPLES

Example 1. Show that the function fz) = z is an analytic function, where n is a positive
integer.

Solution. Here, we have f{z) ~ z”,
{z^^zT-z'Kz + Az)-Az)then. f'{z)= Urn

A;—»0
Now f{z) exists if the above limits exists and does not depend on the manner in which

lim
AzSiz-iO

Az —> 0. By Binomial theorem, we have
- 1f’{z) = lim nz" “ +

Az—^0

Therefore,/'(z) exists for all finite values of z- 
Hence,y(z) is an analytic function.
Example 2. Show that the function f{z) = | z P is continuous everywhere but nowhere 

differentiable except at the origin.
Solution. Here, the functiony(z) = | z is continuous everywhere. Since x^ + y^ is continuous

every where.

f'{zo)= lim
Az-»0

Now
Az
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Mathematics I (Zq + Az) (^ + - ZqZq
lim AzA2-»0

= lim zo + Az + Zo"^ = lim
Ai-*0

AiAE (••• Az^0=>Az = 0)ZQ + Zo~-Az Azaz-»0

Soatzo = 0,r(0) = 0.
When Zo 0, let Az = r (cos <|) + / sin (j)), then Az = r (cos (}) - i sin (j)) so that 

Az _ cos (j) - i sin (j)
Az cos (f) + i sin <1>

which does not tend to a unique limit, since limit depends upon arg. Az. Hence, the function 
I z P is not differentiable for any non-zero value of z-

Example 3. Iff{z) = u + iv is an analytic function of z=x + iy, then prove that the curves 
u = constant and v = constant on the z plane intersect at right angles.

Solution. Lety(z) = u + iv be an analytic function of z, then Cauchy- Riemann equation is 
Ux = Vy and Uy = -satisfied.

Now, let slop of tangent to the curve m = cj is mj 
and slop of tangent to the curve v = cj is mi-

To show that both the curve « = Cj and v = C2 is orthogonal we shall show that m,m2 = - 1. 
Taking differential of « = cj and v = C2, we get 

du = 0 and dv = 0

= cos 2<t) - i sin 2<j)

du , du , j , _dx +dy ~ 0 and dx +dy = 0 
dx dy . . dx dyor

.dy_ Wa
/«! — -j----- --------

dx Uy
f-Ux) Va _ »aVa

Vy UyVy (" Vj (Uy)

and m-y = , dxor
^.v

«.vVv (by C'R equation)So mim2 =
«y

tti\ni2 = - 1.
Hence, both the curve intersect at right angle on z-plane.

• 6.15. CONSTRUCTION OF ANALYTIC FUNCTION

Milne’s Thomson’s method. We have z = x + iy so that x = 

z-Iand ^ 2i
w' =/(z) = u + iv = u {x, y) + iv {x, y)

.V V z + z z-z . . (z + z z-z
Now

or 2/

The above relation is formal identity in two independent variable z and z- 
Taking x = z, y = 0 so that z = z, we get 

Kz) = m(z, 0) + iv (z, 0). ...(1)
We know that

dw ^ ^ ^ ^ ^
dx 9x ^ * dx 3x 3y (by C-R equations)nz)= ~

dz
duNow taking
dx
du^ y) = hiz, 0)dy

nz) = ^^iz,0)~iUz;0).we get
On integration, we get

Az) = J 0) - J(l>2(z. 0)] dz + c 
where c is a constant. Now we can obtain/(z) if u is known. 

Similarly, if v(x, y) is given, then
Az) = J [^\iz, 0) + i\\!2{z, 0)] dz + c
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3v 3v Functions of a Complex Variable.where Vi =V' and \\f2 = ^‘ dy dx
Obtain the analytic function f{z) = u-^iv, whose real part u isExample 1.

(x cos y-y sin y).
Solution. Here, we have u = e^ {x cos y - y sin y)

■^ = e* (x cos y - y sin y) + cos y

^ ^ X sin y - sin y - y cos y]

= x/+/ = /(x+ 1)

3mthen

and
3y

3x

3y•^> = 0
= . 0 = 0.and

^3m^
= /{x+l)Now <i-,(a:,0)= ^

> = 0
3u"^

= 0.
3y

V •^>=0
Now, by Milne’s thomson’s method, we have

y(z)= [0, (z,0)-ii^(z,0)]dz

= ^ [e’ (z + 1) - i. 0] + c = _ (ze^ + e^)dz + c
= e^ (z-l) + e^ + c = ze^ + c. 

fz) = zd^ + c.
Example 2. Ifffz) = m + /v and u-v = e^ (cos y - sin y), findfz).
Hence,

Solution. Here, we have u~v = e^ (cos y - sin y)
3m 3v X / • ,

du dv X, ■ ,-^ = e (- sin y - cos y)

then ...(1)

and 3y 3y 
3v 3m = -e^(siny+ COS y) (By C-R equations)or
3x 3x
3V 3m r , .^ + - = /(s.ny + cosy). -(2)or

Now, from (1) and (2)
3u 3v
— = / cos y - (t)i (x, y) and ^ = e'* sin y = ({>2 (x, y).

/'w=|j+'i^='i>,fe0)+i<i>2fc0)
f{z) = j [^i (z, 0) +■ iijj2 (z, 0)] dz + c

Now

= (€^cos 0+ sin 0) + c. = ^ e^dz + c
f(z) = e" + c. 

x^y (v - ix)
x^ + y^

any radius vector but not z —> 0 m any manner i.e.,f(z) is not differentiable ar z = 0. 
Solution. Here, we have

or
Az) -m)Example 3. Ifffz) = > z 0 andffO) = 0 prove that ^Oas z—^0 alongz

1
Az) -ffO) Az) - 0 Kz) x^y (y - ix) - ix^y (x + ly) _____ _

(/ + y')z x' + y'

.-.3- IX y
(x" + y')zz z z

Now we take the path y = mx (radius vector)
- ix^ mx - imx^Az)-AO)lim

z^O
Also, along the path y = x^

6 , 2 2 z-♦ 0 X +m X
~ 2 z -»0 + x

4^0.
z

.•..3Az)-AO) ~ IXUm
z—»0

= Um
z-»0 ^ +X^z
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Maihemaiks 1 Kz) -m ^ 0 along any path except radius vector.Hence, lim
j-»0

Example 4. Prove tliat an analytic function with con.Uant modulus is constant.
z

Or
Show that an analytic fimction cannot have a constant modulus without reducing to a constant. 
Solution. Le\.f{z) -u + iv be the given analytic function then u and v satisfy the equation

. du _ 3v 
dx dy dy dx 

We have, |y(z) | = constant = c.
i? + V- = <^. ...di)Then

Now, differentiating (ii) partially w.r. to x and y, we get
du dv ^ , du dv „MT- + v-:^ = 0 and «v” + = d
ox ax ay ay
du du ^ , du du ^wT-- V= 0 and u+ v-r— = 0,ax ay ay ax

Now eliminating ^ in above equation, we get

[using (i)]

dy
(u^ + v^) ^ = 0 => ^ = 0, provided u + iv^ 0. 

ox ax
_ n - — - —

3y dx 3ySimilarly, we have

.. 3m 3u 3v 3v - , ^ ^Now, since tt- ’ ^ are zero. So u and v are constant.
ax dy ax ay

Hence, y(z) = « + /v is a constant function.
Example 5. Iffiz) = u + iv is an analytic function, then show that u and v are both Harmonic

functions.
Solution. Lety(z) = u + iv is an analytic function then Cauchy-Riemann equation satisfied.

i.e..
du dv , du dv 
dx~dy 3y“"3;c 

Now, since u and v are the real and imaginary part of f{z). So partial derivative of u and v

...(1)

exist and continuous function of x and y. 
Now from equation (1), we have

3"» _ 3"v . 3^u
dx^ ^xdy

'd\and 0^2 dy dx

Adding both the equations, we have
d^u _ 3^1' _ d^v _. 

dy^ 3x 3y 3y dx+
dx^
d^u d\ . 
—+ —- = 0. 
3;c^ 3)-^

Hence

3~v 3^v 
3x^ 3y'

So the function u and v satisfy the Laplace equation

= 0.Similarly, we can easily shown that

^ + ^1 = 0. 
dx^ dy^

Hence, u and v both are the Harmonic functions.
Example 6. Show that the function f{z) = sin x cosh y + / cos x sinh y is continuous 

everywhere and analytic everywhere.
Solution. Here, we have

/(z) = sin a: cosh y + i cosx sinh y.
Nowm(x, y) = sinA:coshy and v(a:, y) = cos a: + sinh y.
Since, u and v both are the rational functions of x and y with non-zero denominators for all 

value of a: and y. So u and v are boh continuous everywhere.
Now to showy(z) is analytic everywhere, we have

3m3m — = sin a: sinh y— = cos a: cosh y. 3y3a:
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9v 9v Functions of a Complex Variableand ^ = - sin j: sinh y. = cos X cosh)'.dy
So, by above relations,

du dv , du dv 
9x dy dx

So, u and v satisfying the Cauchy-Riemann equations.
Hence,/z) is analytic everywhere.
Example 7. Show that the function u{x, y) = cos y is harmonic. Determine its harmonic

conjugate v(x, y) and the analytic function ff) = « + iv.
Solution. We have M = ^cosy

du X -r- = cos y, du = -/siny9x dy
9"« 92«

= e^ cos y and = - / cos yand
dx^ d/

d^u d^u
which implies X + —r = 0.

d.y^ dy^
Also, first and second order partial derivatives of u are continuous.

. M is a harmonic function.
Now, let V be the harmonic conjugat^df u, therefore

equations)

" f e^ sin y <ic + cos y dy.
On integrating, we get .

V = siny + C.
J{z) = M + iv = ^' cos y + i sin y + c)

= e^ (cos y + i siny) + ic = ^ . e^ + tc 
= '^ + ic = + d, where d = ic, a complex constant.

Therefore,

SUMMARY
Complex number = {z = x+ iy :x,y e R).
If 2 = X + ly, then \z\ = Vx^ + y^, arg (z) = tan ’ ^ .

z+'F = 2Re (2)
Z“I=2iIm(z)
z = z'^ ^ is purely real.
z + z = 0 =>2is purely imaginary

Zi±Z2 = Zi+Z2
\z{+Z2 P + Ui-22 P = 2[[2i P+U2PI 
arg (2i Z2) = arg (z,) + arg (22)

^ =arg(z,)-arg(z2)
^2

I I '3z = \z\e
Equation of a straight line isaz + az + ^ = 0, where a?* 0 and k is real.
Equation of a circle iszz + cz + cz-t-^: = 0 where k is real and c is a complex number.

du dvC~R equations are t— = tt- 
9x oy

u=f{z) is harmonic if V^u = 0.

and 9y 9x

• STUDENT ACTIVITY
Prove that | Zi + Z2 p + | Zi - Z2 P = 2 [| Zi p + | Z2 p]1.
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Mathematics / 2. Obtain the analytic functions /(.t) = u-h iv whose real part u is (jt cos y - y sin y).

• TEST YOURSELF
Show that the following function are Harmonic and find their Harmonic conjugate :

1 2 2(i)u = — log (j: + y )(ii)« = cos x cosh y.

Show that the function J[z) = ^xy\ is not analytic at the origin, although Cauchy-Riemann 
equations are satisfied at the origin. 

xy^ {x + iy)

vector but not as z —> 0 in any manner.
Show that the following function are Harmonic and find the corresponding analytic function
u + fV
(i) M = sin jc cosh y + 2 cos x . sinh y + x^-~y^ + 4xy

1.

2.

jiz) -m ^ 0 as z —> 0 along any radius3. liAz) = 1 z * 0,f(0) = 0, then prove that z

4.

(ii) M = e'*cosy.

ANSWERS
\

-ly (ii) - sin a: sinh y + c1. (i) tan + c
X

4. (i) sin z + -2i (sin z + + c (ii) + c
FILL IN THE BLANKS ;
1. A complex number is defined as an ordered pair {x, y) of
2. Two complex numbers ai + /yi and X2 + iyi are said to be equal if x\ = X2 and
3. Every non-zero element having multiplicative......................
4. Two complex numbers are said to be equal iff their conjugate are..................
TRUE OR FALSE ;

Write ‘T* for true and ‘F’ for flase statement:

numbers.

1. Two complex numbers are said to be equal iff their conjugate are equal.
2. A function, which is analytic is also called Holomorphic function.
3. Continuity is a necessary but not a sufficient condition for differentiability.
4. Argument of a complex number is unique.

(TJF) 
(T/F) 
(T/F) 
(T/F)

5. Conjugate of a complex number can be obtained by replacing i by - i in the given complex
number. _

6. A complex number is purely real if z - z = 0.
MULTIPLE CHOICE QUESTIONS :

Choose the most appropriate one :

1. The conjugate of is :

^ ^ 2 + i (a) -y-
2. Arg z + Arg z (z 5^ 0) is :

(a) 0

(T/F)
(T/F)

(0 —1(b):^ 2 -1

(d) 1271.(c) 7I/2(b)7t

ANSWERS

Fill in the Blanks :
1. Real

True or False :
1. T

Multiple Choice Questions :
1. (a) 2. (a)

4. Equal3. Inverse2. y, =y2

5. T 6.T4.F3.T2.T

□□□
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