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UNIT

1

POWER SERIES SOLUTIONS OF D.E.
fSTRUCTURE

¢ Power Series Method
e Power Series Solution
' a Summary

0 Student Activity

Q Test Yourself

e ’"i«i#"LEARNING OBJECTIVES. -

After going through this unit you will learn :

e What is a power series ?

® How to find the power series solution of a differential equation.

* 1.1. POWER SERIES METHOD

This method is very effective for the to linear homogeneous differential equation with variable
coefficients. This method gives the solution of the differential equations in the form of a power
series. Therefore, an infinite series of the form

2
T oan X" =agtaxtax .. Fa” +.
m=0
is called a power series. This power series is said to be convergent at a point x if
n

lim X a,p"

H=e m=0
exists. It is clear that the above series is always convergent at x = 0. To explain this method clear,
let us consider a general homogeneous differential equation of second order
¥+ Py + Q) y=0.
The solution y of this given differential equation is assumed in the form of a power series as
above with undetermined coefficient and these coefficients are determined by putting that series
and the series for the derivatives of y into.the given differential equation.

" Ordinary and Singular Points :
Let us consider a general homogeneous linear differential equation of order two :

2,
Tt pw) 40y =0

or Y+ PO Y+ y=0. ' (D

The main concept about the solution of (1) is that the behaviour of the solutions near a point
x = xy depends on the behaviour of P(x) and Q(x) near this point xp. If P(x) and Q(x} are analytic
at this point xo, then power series method is applicable in some neighbourhood of xg. Then this
point x, is called an ordinary point of the differential equation (1). Thus we can say that every
solution of (1) is analytic at xg. If x4 is not an ordinary point, then this point xg is called a singufar
point.

Regular Singular Points :
In the above sectioh, we have seen that if one of the cocfficient functions P(x) and @(x) is
not differentiable at x, then this point is called a singuler poins. Thus a point xy of the differential

equation (1} is called regular if the functions {x — xp) P(x): and (x — Xg)z Q(x) are analytic at x = x;.

Power Series Solutions of D.F,
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l
If a singular paint Xy is located at the origin, then the general form of an analytic function-at
|

o

x=x=0is I a,x"
m=0

This implies that the origin will definitely be a singular point of (1) of P(x) and Q(x) have'at
least one of the coefficients with negative subscripts non-zero. In this case we assume the solution
of the differential equation (1) of the form

] n _ m+n
y=x" Z a,x"= Z ax
m=0 m=0

where n may be a negative integer or may be a fraction or even an irrational number.

* 1.2. POWER SERIES SOLUTION

(1) Solution near an ordinary point :

Consider the differential equation i
2

4y dy - -
dx2+P(x) dX+Q(x)y—0 LD
Let us take a trial solution of the form ' r .
y= ;,; C,x" o A(2)

dy -1
= 7" hC, X
£ : h (3)
and - Zn(u—l)C,li"

Also, by letting P(x) and Q(x} are not polynomial in x, we can expand them as
P)= 2 p,¥ and Qx)= 2 g,.x" ' A4)
n=l n=0
Now putting all these values in equation (1), we get the required solution.
(2) Solution near a regular singular point :
Here, we assume a trial series solution of the type

y=x"(Co+ Cx+Coxl+..) )

=x". % C,x", where all C;'s constant with C; #0.
n=0

To find the values.of m and C’s, we proceed as follows :

,
(i) Put the value of % and i?}z in the given differential equation
TG By equating to zero the coefficients of the lowest power of x, get a quadratic equation in
m, which is called indicial equation. :
(iii) To find the values of the equations C;, Cy, ..., etc. in terms of Cy, equating to zero the
coefficients of other powers of x.
(iv) The nature of the root can be determine as follows ;

(A) If roots of the indicial equation are equal :
}
Let m = n, be two equal roots. Then putting n1=my, in y and in gﬁ we may get the two

independent solutions. ' ’
(B) If roots of the indicial equation unequal and not differing by an integer :
If the indicial equation has two unequai roots m = m; and m; which do not differ by an mteger
then by putting m = m; and m;, in the series we get two independent solutions. f
(C) If the roots of the indicial equation differing by an integer an making the coefficients
of some powers of x in the series for y infinity :



Let m = m, and my be two roots of the indicial equation which differ by an integer and some
of the caefficents of powers of 4 in the series for y infinity for m = m,. )
Here put C(;m — m,) for Cp, then we get two independent sqluliohs for m = nty. Then proceed
\

\

as in case L
(D) If the roots of the indicial equation differing by an integer and making a coefficient

of the scries for y indeterminate ;
If m =m, and 1, (m, > m1y) are two roots of the indicial equation which differ by an integer.

If one of the coetficients of the series for y becomes indeterminate when s = m,, the comp]eté
solution is given by putting # = m, in y, which have two arbitrary constants.

SOLVED EXAMPLES

2

Example 1. Solvex i}i + dy +xv=0.
dax dax

Solution. Here, the given equation is

2
dy dv . _
xdx2+dx+xy—0. (1)

Putting y =x™ in the LHS of (i), we get
sm(m=- DX e e x = el
Clearly, the common ditference of the powersis (m+ 1)~ (m - 1) i.e., 2,

Let v= 3 G T =G+ C M G L A{2)
r=0

is the solution of (1),
Then. we have

3

G_ C,m+2r) "t ¥!

dx r=0
Qz T Co{m+2r)(u+2r-1yntrL
dx”. r=0

Put all these values in (1), we get

z

Col(m+20) (m+2r= D" T i 2t 4 =0
r=0 .

e S C T 2 X" =0,
r=0

Equating to zero, the coefficient of the lowest power of x i.e., of x™ !, we have
C[}m?' =0

which is the required indicial equation,

Since Cy # 0, therefore m = 0, O are two equal roots.

Now equating to zero the coefficient of the general term i.e., of ¥t ¥+ we get

Cot(m+2p +'2)2Cp+ =0
1

:} C e T —————
i {m+2p+ 2)?
Putting p=0, 1, 2, ..., in {3), we get

1 l 2 I
== ———sCy Cy=- =C =1 —5——— C,
: (m +_2)2 o (m+4)y =D (m +2)° (m +4)2 o
1 .
= C=(-1) Cy ... and so on.
(m+6)” =61 (m+ 2)2 (3 + 4)2 {(m+ 6)2 0
Put all these values in (2), we get
' 2. . .4
X X
=C m '1— T 4+ T oeer |+ . ..-(4)
TR \: (m+2) (m+ 20 (m +4)? ]

o 3

Power Series Sotutions of D.E. .
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Putting m =0, we get
Xz x4 Iﬁ

=Cp|l -5+ -

TR T T g

= Cp . u (say), which is the first solution of the given equation (1)

2 o
X X4 X

2Ry el

when u=1-

!
|
- + ...
2%. 4%, 62]

Since, there are two equal values of m, therefore, second solution can not be obtained from

(4).
.Now, from (4)

d =y [mxm_ -

-
(m+2)x +

(m+ 2)2

(m+4)x" +3 3
dx

(m +2)% (n + 4)

- a")j _ G mgm-1) M2 (m+2){m+1) o
dx (m+2)

Put above two values in (1), we get
(m + 2 {m+1 N

(n+4)(m+3) "2
+ -]
(m+2)* (m + 4)?

m+2
LHS =xC, [m (m-1)x""*? (m tmt)x 7 }

(m+2)* (m +2) (m + 4)?
+C ”wm—l_ﬁ_!+2)xm+l+ (ahrt+;’1))~""+3
0 (m+ 2)2 {m + 2)2‘[m + -ﬂ-)2

xm+2. xm+4
+Ich fﬂ_ + ~ ...

(m+2)° (m+27 (m+4y

2 -
=Com X"

4 d 2 mel
. {xdx2+a+x:|yzcom x"

Differentiating both sides, partially, w.r.t. m, we get
9| & d
om |: 2 e dx * x}

de d a . 1
= [IE-'-E-’-'Y][_X}:CQ.ZW "y Com? 2" log x.

(C mz - ]}

om

Putting m = 0, we get

[ﬁl] satisfy the equation (1), therefore it is also a solution of ({).
m=0

om
Differentiating (4), partially, w.r.t., m we get
2 4
P =Coxlogx|1-——+ o S =
dm (m+2) (m+2y (m+4)

27 =2 -2 4
X 3t 3 5+ 2 .
(m+2) (m+2)y (m+4)y (m+2)y (m+4)y| -

PO S e Sl
S R PR PEVERE IS Sl

Putting m = 0, we get

2 4
)2 . XX
(am]m =;] Co log J{l 22 ¥ 2?4




where

, ,
- X 3 4
_~bu logx+b|:22—23.42x +]

= by (say)
x2 3 4
v=ulogx+ ?—ﬂx +... |and b is any arbitrary.

Constant which replaces C,.
Hence, the required general solution of (1) is given by
y=au+bv

where a and b are arbitrary consfants.

Example 2. Solve the following Legendre’s equation
1=y =2 +p(p+1)y=0

in descending powers of x.

or

and

as

Solution. Here, the given equation can be written as
2
N P - ,
(1 )‘)dxz Zxdt+p(p+l)y—0. D)

Putting y =x" in the LHS of (1), we get
(I=-Dmm-D"" 2. ™ 4 p(p+ 12"
(~n=m+p +p)x+m (= Dx" 2
Clearly, the common difference of the powers is m — (m ~2) i.e., 2.
Let the solution of (1) in descending powers of x be

Y=o+ C " 4 G = B Y {2
. r=0
d}’_ - _ m-2r-|
= pria rED C,(m-2r)x

= X Cm-20{m-2r—1)x""¥2 T
r=0 .

Put all these values in (1), we get

ta

aQ,
W W

: ;,0 C =X (m=20) n=2r— 1) X"~ ¥ 2= 2x m— 29 "2
: | +pp+ A" =0
_.:EO Cl{—m=2n(m-2r-1)=-2(m-2R+p{p+ 1)} x"~%

1 _ . +(m=20(m-2r-D2""¥ =0

= Clp* = m =20+ (p-m+2n)) X"~
0

r=

+(m=20(m-2r-DX""¥ =0

= I Clp-m+20(+m=-2r+ " ¥ +(m-2r) (m~2r Dx" ¥ =0.
=0 . '

r

Equating to zero, the coefficients of the highest power of x i.e., x™, we get the initial equation

Colp—miy{p+m+1)=0.
Since Cy # 0, therefore, we get
m=p,~(p+1).
Now, equating to zero the coefficients of ¥~ %", we get ,
Clp-m+2nN{p+m=-2r+ 1)+ (m-2r+2)(m-2r+ 1) C,_, =0
(m=2r+2)y(m—-2r+1).
(p~m+2ry(p+m=-2r+1)

= . I C,-= Cr— i+

Power Senies Sofutions of D.E.
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Special Function and Mechanics Putting r=1,2, ..., we get

C =- m(m~1) c |
f
|
|
|
'
[

p-m+Dp-m-1) ¥
Cr=- {m—-2)(m-3)
T p-m+ayptrm=3) !
mm—1)(m-2)(m-23)

=1 (p-m+2p-m+8)(p+m-1){p+m-3) G
o and so on.
Put all these values in (2}, we get
m m{m-1 =2
y=C0|ix _(p—m-{r(Z)(p+)m—l)Jc )
& . N mn-1)(m=-2)(m-3) LR }
p-m+2)p-m+d@E+m-1)(p+m=-3) T

Now, putting m = p, — (p + 1) successively, we get

elp 2ol o pC=DE-2(=3) pi_
y“c"[f 2(2p—1)"p tra Do }

= gu (say})
which is one solution of the given equation.
Also, _
e, DG ey @D+ (@A) ~pes
Y C"[x Y ped T T 2.4 @ets)
= bv (say). _
Here, the required solution of the given equation is y = au + bv, where a and b are arbitrary
constants,
e SUMMARY

n
» Powerseries:y= £ @

m=0

« STUDENT ACTIVITY

1. Define ordinary and singuiar points of D.E.
"=Px)y +Q(x)y=0

2. Solve: xi—i%+%+xy=0.

6 Seif-Instructional Material



TEST YOURSELF

i 2 d

1. Solvc%—b‘“i+4xy=xz+2x+2inpowersofx.
[4

2. Solve x%+%+xy=0.

d d
. Sol £s N 2y=0.
3 Solve x(&2+(l+1)dx+ y=0

‘Objective evaluations
Fill in the blanks :

&
l.  Theseries % a,2” isapowerseriesifk= ............
m=0

2. D.E.y"+P(x)y +Q(x) y=R is homogeneous of R=.........
True or False
[.  D.E.y"+PX)y +¢(x) y=0is homogeneous.

2. Series £ a,x"""

m=0
Multiple Choice Questions
1.  Ordinary point for D.E. y” + y =0 arefis :
(a) -1, 1] (b} set of all rals
{©)0 (d) 1

is called quasi-power series.

ANSWERS

- 232 6 S AN S DT S G S SV S
1. y—CU(l 3 ¥ 45x...}+(,‘1[x ra 63):]+x +3x +12x +45x + ...

2 4 6
X X x
2. =au+bv,where u=1-—+ -
’ 22 2.4 22 46
2
X 3 4
and - v=ulogx+|— - SX 4 ...
¢ [22 2.4
3. y=au+bv, where u=l—2x+%xz-—3§—‘x3+...

" Fill in the blanks
1, K=o0 2.R=0
True or False

1.T 2.T
Multiple Choice Questions’
1. (b)

(T/F)

(T/F}

[

Power Series Solutions of D.E.
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UNIT

2

LEGENDRE’S FUNCTIONS
STRUCTURE: e

Legendre’s D.E.

Generating function of Legendre polynomial P (x) '
Rodrigue’s Formula

Laplace Integral For Pr (X)

Orthogonal Properties of Legendre polynomial

Recurrence Relations

Christoffel's Expansion
a Summary

& Student Activity

o Test Yourself

After going through this unit you will feamn :

What is Legendre Differential equation ? -

The power series solution of Legendre D.E. is the Legendre polynomials.
How to generate Legendre polynomial.

What are their orthogonal properties and recurrence relations ?

¢ 2.1. LEGENDRE’S D.E.

Consider a homogeneous linear differential equation of order two of the form

2.
(I—xz)i%—hgﬂt(rul)y:(} (D)

where n is a real number. This differential equation is known as Legendre's differential equation,
and any solution of (1) is called a Legendre function.
Solution of Legendre Equation

Dividing (1) by (1 - X%, we get

dy 2x d 1
—e -4 pn{n+1}. =0
et 1-xdx { ) l—xzy

Now compare this equation with the standard form

n

By oady o
i +P{x)dx+Q(x),\ 0

2

P(x) = - 2x o) np+l)

-5 To-a
It is trivially obtained that P(x) and Q(x) are analytic at x = 0, so, for finding the solutions of
(1) we apply the power series method. Let us assume the solution of (1)

o

y= X a,x" -(2)

m=0
Now differentiating (2) w.r.t. x one time and then two times, we get,

b _ T ma, X"} ' ..(3)
X m=1 .



2 o0

and 2 = Eﬁ m{nt— 1) a, 2" * D)
m=3J2

Substitute the values of y, gx.and 4y from (2), (3) and (4) into equation (1), we get

dx dx’
. ) o R : o
(1-¥) Z mm-1)a,x" ?=2x S mapx" " +nm-1) T a,x"=0
m=2 m=1 m=0
. -2 s
ol I mm-1ya, X" "= X mm=0)aux"-2 L ma,"+nn+l) % a,¥"=0
nm=2 m=2 n=1 m=90

or  {21ax+32ax+a3aw’ 4.+ +2)(r+ Dap X+ ..
— (2.1 X +32ay’ v 4r(r-Dax 4. =2 {ax+2ax + ... +ra.x + ...}
+nm+ D) {g+tax+...+a.x+...}=0. .5
If equation (2) is a solution of (1), then equation (5) must be an identity in x. Thus in (5) the
sum of the coefficients of each power of x must be zero. We therefore obtain
2+ n{n+ ) ay=0,
6a; +{-2+n(n+ D} aq =0,
12a,+ {-2a,—4a, +n(n + a3} =0
P a{n-1) _ (2n)! [ o= (Zn Y J
T 2@ 1) 2 2y
n(n-D2r.2n-1).2n-2)!
2@n-1).2".nt.ntn-1.n-2)!
nm-D2n.2n-1D.C2n=-2)!
22n-1)2"n.(a-D'.am-1.n-2)"!
3 {2n-2)! _
2"m-1D!. (n-2)!
(n—2)(n—-3)
d@2n-3) 2
_ =Y n-3) ~2n-2!
O A@r=3) (- 1m-2)!
_ (=2 n-3).Cn-2)2n-3)Y2u-4!
_4(2:1-3)2”(11— D.tn-2)'(n=-2(n-3).(n—4)!
_ 2n-4)!
T2 @) (-2 (-4t .
Continuing in this way, we get in general,
' ' ' (= 1)" 2n—2m) !
_ 2y P =m) V(n=2m) !
Thus we obtain the first kind of Legendre polynomial of degree # and it is denoted by
P, (x) which is given as ' c '

Similarly, Aoy =—

Ay —2m =

» n=2m=20

n=2un
X .

P, (x)=

m

a
0

n=2m

M=

in general, we obtain
(r+2)(r+ Da. s+ {-r{r—-1)-2r+n@n+}a =0
for r=2.3,4, ...
or r+2)(r+ a2+ —-nNpn+r+1)a,=0
(h=n{u+r+l)
DI

This equation (6) is known as recursion formula. Now finding the coefficients successively
tor =0, 1,2,3. ...

r={0,1,2,...} N ()

ar ry2=

Legendre’s Functions
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ay=- n (;.: 1) P n ((r;)+!l) a9 |
-1 (n+2) -1 {n+2) :

%:—%al:—%a, *

='(i_"'i).(;;3)“2

__(=-2)(n+3) —nlk+1i)

= 4.3 2.1 ©®

_(n=2yn(n+1){(n+3)

= @)! a0

SUEDIET

=3 n-1(r+2){(n+4)

= )1 a

etc.

We observed from above coefficients that all the even numbered coefficients are obtained in
terms of agy -while all odd numbered coefficients are obtained in terms of a;. Thus we obtain the
solution as

y =gy (x) + a1 y2(x)
n{in+1) 2+(u—2)n(n+ Dn+3 B

where Mxy=1- 21 x @1
: “)(+2) 3 (1=N@-Dn@r+2)(n+4
und SRR (2 N IEDH S IS P

These both series are convergent if | x | < 1. Sometimes, we have observed that the parameter
n in the Legendre’s differential equation will be nonnegative. Then, from recursion formula (6), we
obtain

a,;,=0, whenr=n ie @,,2=8,4=...=0

Hence we can say that if » is even, y,(x) becomes a polynomial of degree n whereas n is odd-
y,(x) becomes a polynomial of degree n. Therefore if y,(x) ts multiplied by some constant, then this
polynomial is called Legendre’s polynomial of first kind and if y(x) is multiplied by some constant,
then ys(x) is called Legendre's polynomial of second kind. Now to obtain first kind of Legendre’s

polynomial we proceed as follows :
The recursion formula in (6) may be written as

f (D]

T o n-n)(r+r+1)

Also all a’s may express in terms of the coefficient a, which is the coefficient of the highest
power of x of the polynomial. This a, is an arbitrary and choose a,=1 when n=0 and:
_1.3.5.,.@n-1)_ 2n!

a .,; forr<n-2

. 7, foralln=1,2,3.... This a, is chosen in such a way that the

n! 2" ()
values of all those polynomial will be 1 when x = 1. Now finding the coefficients as follows :
__n@-1
A T T
or ' P,(x)= ; )" @n—2m)! X
g m=0 2" (m) ' (n—m) ! (n—2m)!
_| a2, if nis even
where N= { (n—1)/2, if nis odd.
* 2.2. GENERATING FUNCTIONS OF LEGENDRE POLYNOMIAL Pn(x)
' }
The functions of the type, ——l“‘"genemres Legendre polynomial P(x), is called
1-2x1+¢

generating function. Thus we obtained



L .5 p@r
Proof. LHS. = —t
: N1 -2x1+ 1
1 )
= (. s=2xt - 1)
¥l ~-s
=(1-35) 12 (Expand by binomial theorem)
1 1.3 1.3.5 3 1.3.5...20n-3) -
=l+-s+— —_
A YA WL IR S iy S 1
1.3. 5 (2:1—1) S
2. .. (2n)
since s=2xt -1

"=t -0 =1 (2x-0)"
=1 [ng, (20" - nc, T35 S S )

Similarly,
—1=!u—l[n—lco(2x)u—1__n-—lci(zx)n~2r+ ]
and suvz = f:—‘l[n—?.cﬂ (zx)n-z _.-:—’lcl {2.1’)"_3!‘ + :r—Ecz (zx)n—xltz :l
ete.
substitute these value in the above equation, we get
.1 _ 1.3 2. 2, 1.3.5
L.H‘S.—l+2f(2x r)+~—2.4t 2x-9 +2 Y 6‘ (2x - )

l-3.5---(2x__1 P 2 2 n=-2_n-2 "= 3
W INEr M 1 Ci ()

H—ZC (2x)ﬂ_4t2+ .“}

L 2n-3) g1 n- -1 n- -

< + @n-2)' [ 'Co () 'Cy (2%) ]
l 3. S 28 ny oA n_n n—

2. ((2 ))‘[CD(ZY)—Q(Zx) 'r+...]

Now collecting the coefficiems of "
e
s
O

1.3.5...(24!1—1)2,T o 2;1511—11 n=2
4 — 5 X
2.4.6...2n (2n-1)2°

2:1 Cn—-2){(n=2}{(n- 3)
(2:1 -HZn-=-3)(2)!.

_1.3.5...2n-1) LN 1) ,,_3+n(n—l)(u—2)(n—§)
- (n)! T2(2n-1) 2.402n-1)(@2n-3)

= P(x).

Hence we obtained

Legendre’s Functions
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L _ I P '

N1-2¢t+£ n=0

*' 2.3. RODRIGUE’S FORMULA

The expression for P, (x),‘ given by
1 &
.9 P, (x)= L
Pe n @) 2" (n) ! dx"
is called Rodrigue’s Formula.
Proof. Since P, (x) is a Legendre Polynomial whose expression is given as
4/2) _qym _ ]
T - - 1Y" 2n-2m)! e
m=02"(m}'(n—m) ! (n—-2m)!
where [1#/2] is an integral value of n/2 not exceed n/2, rearrange (1), we get
"‘g' 1" @rn-21)" a_m. .'

-1

P,(x)= A

P, (x)= . )
) m=0 2"y (n—-m)! (n—-2m!
_ [!;2] __(___D:_,__‘_d_ixzﬂ—m ~ -
m=0 2" (m)tn—m! dx"
.4 oo _@n=2m)t o
oA (2n=-2m-A"
(/2] |
1 (n) (xl)n m _ )m

T (m)! mzo my(n-m)! g
Now extending the range of m from 0 to »#. To do so no change wlll occur in the above
expression, because nth derivatives of those terms whose degree are less than n will be zero. Thus
above expression can be written as [
. —_-;i ¢ ﬂ__._(f)"'m(_ 1"
2"(n) ! dx” m=o (M) (n—m)! "~

1 (i!'l E‘ ncm (xZ)nl— m (_ l‘)m ( nCm _JL]

Y ) ! & - () ! (n —m) !
1 dt n—1 n-2 n - n
L - G, (- 1
fwww[ 0 0 "Gy () 4 "C (6 +g§)]
=1 i(xz— n - (By Binomial theorem)
27 X"
1
Hence P,(x)= 7 dx”(

s 2.4. LAPLACE INTEGRAL FOR P» (x)
(i) Laplace’s First Integral for P, (x) : .

A
P, (x)= L e+ ¥ 1 cos o1 do

where n is any positive integer.
Proof. Since we know that

T
d0 4
I e — . where £° > b° {

0] alibCOSB ,ﬂaz_bg

let us taking @ = | —tx and b =1 Vx*~ 1, then ,
aA-b=(l-f-rpt-1) '




PR P VNP ¥ Y-S S U
Thus (1) becomes

J‘" d8 B n
T )N -1 cos B V-2
since generating function gives

1

V1 -2 +¢ °

P,(x) 0
0

e

~(2) becomes

o T
Tz P,,(x)t"=I d
0

n= 0 -tttV -1 cosd

f =
0 1 TV cos 8]
:I:fx-:{ﬂxz-l cos 8}]7' 40

.(2)

k(4
=.[G (1—15)"" do, where s =x ¥ Vx*— 1 cos 8

4
:_I (L+ts+257+ ... +%5"+...)db
0
1 =
=I IS de
n=0
Ve -Tl

\ =5 | e

n=0

= T
= I K'J. xFVad - 1 cos 0]" dB
n=qQ 0

) o n
n X P@XF= I r’"[o [x ¥ Vx® =1 cos 8]" d®
0 n=0

n=

' n
TP, (x) =L [x £ V¥~ 1 cos 8] db

. ' n
or P, (x)= i L [x % Va? — 1 cos 8] 6.

(ii)Laplace’s Second integral for P, (x)

Pt — o
T \/[xi‘\}(xz—l) cos@ !

where n is any posifive integer.

Proof, Since we know that

n
I a9 u , where a’ > b

0 aibcosB:,fag-_bg_

Here taking a=xt— 1, and b=¢ Nx* - 1, then a* - b* = 1—2xt + .
=.(1) becomes

(b))

Legendre's Functions
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J"T da _ T (2)
¢ (r—1)2tVi—1cosO VNp—2x+rp
since n2=:0 P, (01" = \[‘l‘j“zlm
(2) becomes,
o o T0
d6
t I P =
n=0 YO = L +r{x2V¥—1 cos 8}
T
=f [t{xt¥e~LcosB}-17"d0
JO "
T
= o (rs—l)_ldB, where s =x+ Va® - | cos 8
~ T u
_ l[l_lJ d9
JOo Is - 18
~ T
=1 L +L+ ,,l,,+.. +L+... d9
Ju s A X rs
S8 i 1
=], (” X +f:+lsu+l ...]dﬂ
g ad
| \
=.(] rn+lsﬂ+1d6 i
o e 1 n dB
‘n L P= Z —I —
n=0 n=0 f+1 0 [xx _xz-—1C058]”+]
‘or n ! = E : In 40
a—— n+
Vi—om+r =0 790 a2 cos et
n 1 = 1 (" db
or —-. = Z =0 ' X
t n=0 0 [y 2| cos )t
[
l-2x.—+= i
[
T = 1 I & e |
or — 2 LPhWW= X 47 s '
I ,-0t n=0f+1 0 {xi _ﬁulCOSe]n*‘l
- R Y
or T I —=PW=2Z _J.
azo 17! =0 NI e T cos 0]t
n ) ' .
7t P, (x) =J.
0 x+vy>~1 coso)"' oo ,
1" do
Hence P, (x) ='J. '
T Ny -1 cos 0]

* 2.5. ORTHOGONAL PROPERTIES OF LEGENDRE’S POLYNOMIALS

1
(i) I ; P, (x) P, (x)dx =0, when mt+n.

' 1
ay [ e, otae =

2
2n+1

mrretr— ]2 | ——

, when m =n.



Proof. (i) Legendre differential equation is

2
(1—x2)j—"5’—2x§§+n(u+1)y=0
X

A ady -
or dx{(i .r)dx}ﬂ;(nﬁ—l)y—o
since P,, (x) and P, (x) are the solutions of (1), so, we have

4 {(l - P:;\( )} +m{m+1}P,(x)=0

dP, (x)
and {(l— T—}ht (n+HP,(x)=0

D

o(2)

(3)

Now multiplying (2) by P, (x) and (3) by P, (x) and then subtract, we get

;jix{(l— 5 ”'(}}P()- {(! “}P,,,(x)

+m{m+)—nn+D]P, ()P, (x)=0 ...(4)

Integrating (4) w.r.t. x fromx=-1tox =+ 1, we get

'y Py () ()
j‘_lg{a-) A }P()dxj { 2 }P,,,(x)dx

1
+(m—n){m+n+ I)J‘ | P,(x}P,(x)dx=0 (5

|
Let I L i—{(l— ) de (x)}P () dx

- |
and 12=I_17f;{(1— ?) "()}P (x) d.

(5) becomes

1
!,—!2+(m—n)(m+n+l)J. ] P, (x} P, (x)dx=0.

Now solving f, and £,

' 4 P, (2
“ZLZ{“‘) = }P()dx

1
_ 2 dPn )| (1 APl
_P,,(x)[(l-x) ix 11 f—l i (1-x%

1 dPﬂ (x) dPHI (x)
2
= —J-_l(l—x)—dx o dx

1 .
I=- L - —dpéjx) . —dpf’;‘x(x) dx.

(4 dP, (x)
frjla{(l— & }P.,,()dx

Taking I,

...(6)

dpP,, () 5

dx
(By Integration by parts}

[Pm(x) (I—I) dni)l J- - 2 de(-x) de:I)

Legendre's Functions
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4Py () dPy () o
~0 Il(l—x] = —dx 1|
! 2 dpm dPn :

L=~ J-_ | (1-x7) —‘__d‘c(ﬂ . “dx(x) dx.

Thus {, *};_r 0. Now {6) becomes
. 1 .
O+(m-n)(m+n+ I)J. | P,(x)P,(x)dx=0

if m £ n, then - '

1
o J-le(x)P,,(x)dx=0.

1
Proof. (i) _[_ e () dx'=

2 iftm=n
2n+ 1’ '

Since we know that

- .
— = 3 P,
N1 -2xt+¢7 =0 ,
1 )
or : =Py ()P )+ P (D) AP () .
VI = 2xt+ £
Squaring of both sides, we get
PP WP W P ()T
1—2xt+1¢
=[Py (O + [P, () + [P () + ... + ['P, () +
+2 [Py () Py () + P Py(X) Pa () + .. + O Py () Py (x) + ...
) PP P (PP )+ .+ P ()P )+
= E AP OF+2 TP, ()P, (%)
n= mn=0
‘ m#zn
1 - 2 2 - + 11
—_——= 3 PO 2 £ P, ()P
TTomie I [P, (017 + L m () Py ()
m=n

Integrating both sides w.r.t. x fromx=—1to 1, we get

1 d.x 1 L s L =
f — =f T AP dr+ 2I TP, () Py () dx
=1 ma=0

-1 1-2xt+r ~1 p=0
m¥*n
. > 1 , = |
=z :-"I 1 [P, (O] dx +2 = z’”*"f 1 P, (X) P, (X) dx
n=0 - wmon=0 -
Mm+En

oa 1
= F"J. | (P, (X)]>dx +0
=0 -

|
J. l PaX)P,()dv=0|whenm#n

o I ] -
z F"J. e (x}]zd.r=J. dx

=0 w1 1=2xt+ 7

1
L 2
z—z[lng(l—lw-i-t :|~|
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=—%[10g(1 ~ 214 - log (1 42t + )]

1 2 2
=—§{log(l -1 =log(1+1)7]

_ Al (1=e)
RETY Ras pe

I U 7Y S | B £
t gl+r ? gl—r

o« ] )
n 2 _ ' 2 n
,,Eo 7 L [P, (x)] dx—nfo ST
Hence .l.—l P, (x)) dx = Il
* 2.6. RECURRENCE RELATIONS
M Cu+DxP,=n+1D)P,+0P,_,.
Proof. Since we know that
(1-2xt+£) = = /P, (x). D)
n=0
Differentiating (1) both sides w.r.t. ', we get
—%(1—2xr+r2)'3’2.(—2x+2r): T P, ()
n=1l
2= 172 @
or (=204 67 S aeip
(I —2xt +¢7) n=)
or -0 (L=2xt+"*=(t-2x+7) Z a""' P, (%)
n=1
or G-1) = P, )=(1-2+7) £ " ' P(x) [from (1)]
n=10 n=1
or x AP - Z MR = T o P ()
n=0 n=0 n=]

-2 L P, (x)+ Z nf"t'P ()
’ =1

n=1 n

X (Pn ) +1P () 4 oo + B () + .. ) = (tPo () + EP () + . H P2 () +.00)

=(Py(x)+2Pr(x) + ...

+(rP

Taking the cocfficient of #* both sides, we get

+(n+ DIP )+ )
—Ox(tP )+ 20 Py () + ... +al Py (X) + )

LR 2P () 4 .. +-D P () +..)
|

Legendre's Functions
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IP” (X)—P"_| (.1'}=(H+ 1) P:H-l(x)_z”xpn ()")'I'(“'" l) Py (%)

or Cu+DxP, @)=+ )P, )+nP,_; (x)
or . Cn+DxP,=n+1} P, +uP,_;.
QD) nP,=xP, - P, _y, where P, = gﬁﬂ etc.
Proof. Since we have
] _ 3P, (D)

VI-2xr+ £ n=0
Differentiating (1) both sides w.r.t. 't and w.r.t. x, respectively, we get

=D {1=20+£y Y= 2wt e () . (2)

n=1

and t(l=-20+ 2= £ P, (x)
0

n=

From {2) and (3). we get

-0 P, =t Za""' P ()
0

n= n=1
or x T P, - 2 M P,= Z P, R)
n=0 n=0 n=1
or X (Po)+1P (O o+ P+ )~ (P )+ P )+ +8 P () +.0)
=P () + 20 Py () 4+ Al P) + .
Taking the coefficients of ¢ of both sides, we get
3P, () = Py (1) = 1 Py (1)
or nP,=xP,-P,_|
D 2e+DHP, =P, s—P,_1.
Proof. From recurrence relation (I), we have
Cn+ D xP,=(n+ 1) P, 0P, _|.
Differentiating this w.r.t. ‘x’ of both sides, we get
e+ D P, +Ca+DxP,=n+ NP +0P .
From recurrence relation II, we have
nP,=xP,—-P,_,
or xP,=nP,+P,_,
substitute this value of xP’, into (1), we get
Cn+ NP, +Cu+ D) (P, + P )=+ 1} P o +0P
or +DCa+ P, =+ DP . —Cu+ NP, +nf,_,
=+ DP -+ P, _
Cn+ )P, =P, 1 — P,
Avym+ 1) P, =P, . —xP,
Proof. From recurrence relations II and III, we have
h nP,=xP,—P,_4
and Cn+ P, =P, — P .(2)
substract (1) from (2), we get
2n+ )P, —nP, =Py —xP,

or (n+ Y P, =P, —xP,

(V) (1 -x) P, =n (P, —xP,).
Proof. From recurrence relations (I1) and (IV), we have -
nP,=xP', - F,_, (D
and (n+ D) P, =P, —xP, : (2)



Putting (n — 1) in place of n in (2), we get
nP,_ =P, -xP,_,
Now multiplying (1) by x and subtract from (3), we get
nPy_1—nxP, =P, -x" P,
or n(P,_,-xPy=(1-xH P,
or (L=x) P=n(Py_y—xP,)
VD A -x) P, =(n+1) (xPy— Py o)
Proof. From recurrence relations (1) and (V), we have
Cr+ 1) xP, =+ 1) Py +0Poy
and (l—xz) Po=n(Py_—xP)
substitute the value of nP,_, from (1) into (2), we get
(I-x) P =+ ) xP—(n+ 1) oy — nxP,
=n+DxP,-n+1)P, ..
(1= Py=(n+ 1) (xP, = Pyiy).

Beltrami’s Relation :
The jollowing relation

@+ D) E-D P =nn+1) (P - Pa-y)
is known as Beltrami’s Relation.
Proof. From recurrence relations (V) and (VI), we have
(1 =X) Py=n (P, = xP,)
and (L - x%) Po=(n+1)(xP, —P,41)
Eliminating xP, from (1) and (2}, we get
(1-x) P, L4 - P,

n n+1 "'PH—I_PH-FF
e+ 1y (1 =D P tn (-3 P,
or = n—l"Pr:+I
nip+ )
or Cn+ DA - Py=n(+ D(Pueey—Pos))
or n+1) (=D Py=n(n+1) Py~ Poy):

.A3)

(D)
..(2)

(b
()

* 2.7. CHRISTOFFEL'S EXPANSION

The following series

Ffl:(2"_I)Prr—l+(2“_5}P11—3+(2"_9)Pn—5+ e

3P, . ifniseven

where [= {PU , ifnisodd

is known as Christoffel’'s Expansion.
Proof. From recurrence relation (I}, we have
@u+ )P, =P, 1 — Py

Poa=@n+ P, +P

Now putting (# — 1) in place of n in (1), we get

Po=Cn-1P \+F 2

Now putting (n —2), (1 —4),(n-0), ... in place of /1 in (2), we get
Proa=Qn=5)P,3+ Py
Py s=(2n=-9P,_s+P,_4
Phos=Cn—13) P 3+ P, g

Pa=3P + P ifniseven

+1

(D)

. 2)

...(3)

Legendre's Functions
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Adding (2), (3), (4}, (5), ... , we get
Po=@n-1)P, 1+ 2n=-5) P, 1+ (20 - P,_s '
+(2H,— 13) Pn_7+ ...+3P]L‘P’g
=@n-D P, 1 +(n=-5)P, 3+ (2n-9P,_s+...+3P,
if n is odd, then
P’,,Z(Zn-—l)P,,_|+(2J1—5)P,,_3+(2n—9)f-’,,_5+...+5P2+P'|
=2n=-1D)P, 1 +2n=-5)P,.1+2n—-9)P,_s+...+5P,+ Py . Py=1 f‘P’.)
Hence, we obtained Christoffel’s Expansion. :

Christoffel’s Summation Formula : !
The following summation |

5 (2K+1>Px(x)rm)=(n+1)[”"+n(xJPnth—P,,Hcv)P,,(x)
K=0

x-»
is known as Christoffel’s summation.
Proof. From Recurrence relation I, we have
K+ DxPr()=(K+1)Pxy  (x)+ KPg.. 1 (x) (D)
and @K+ 1)y Pe0)=(K+1) Pgy \ () +K Py 1 () 2

Multiplying (1) by Py, (¥) and (2) by Pk (x) and then subtract, we get
K+ D x-y) P ) P (0) = (K+ 1} [Pxs 1 (%) Px () = P (x) P s ()]
+K Py (%) Px () = P (x) Py )]
Taking summation from K =0 to K =»n, we get

(x=» ’EO QK+ 1) Pg (x) Py ()

=KZ_‘.0(K+1)[PK+|(I)PK@)_PK(X)PKH()’)]

+ ;\Eu KIPx 1 (x) P () — P (x) Py ()]

={[P1 (x) Py () = Py (x) Py ] + 2 [P2(x) P (y) — P1(x) Po())
3PP 0) - P PO+ + 0 [Py (x) Py ) = Py (0) P ()]
+ @+ 1) [Pryy (0 Py () = P (x) P 0]}
+H{[Po B Py ()~ P {x) PaDMI+2 [P (x) P, (3) = P, (x) P, ()]
I[P () P30 -P3(x} P (] + ...
=) [Prea () Py (D= Ppoy (3) P2 (9]
0[Py () Py () =Py () Pyt (M}
=+ D[P )P, 0N -P, () Py 0] (All the terms cencel except above)
Post Pa () = Py () Py LvJ]
(x-y) '

;: (2K+1)PK(x)PK(y)=(H+l){
K=

0

SOLVED EXAMPLES

Example 1. Prove that | P, (x) | < 1, when - 1 <x < 1,
Solution. From Laplace first integral for P, (x), we have

- "
P, (x)zi'fo [x £ Ve? < 1 cos 8] 6. ()

Now taking -
|{xi\i)?*_l—cosﬂ]|=|xii\/1—::{cosﬁ|
=Vx?+ (1 -x%) cos? 8 = V1~ (1 ~x}) sin?
[xiﬁcos@kl except O =0 and 0 = .




e

From (1), we have

¥
| Pa(x)|= ijﬂ [x+Vx*—1cos0"d0

. :
S-JTEJ.O [xtVx’ -~ 1 cosB["dB

ki
<ij | .do=% p=1
TJo n

| P, (x)| <1.

Example 2. Show that P, (-x)=(= 1" P, (x) and P’ (~x) = (- )" P, (x).

Solution. (i) Since we have
tn/2} (- 1)" (21 -2m) ! -

Pﬂ (X) = - .
m=0 2" (m) Y {n—-m) ! (n-2m)!

putting — x in place of x, we get

or

putting x = 1 of both sides

or

ar

|n£.’.] (-— ])-’" (2!’1 - 2}!1) ! _ I)" -2m

m=0 2°(m) 1 (n—m) ' (n-2m) "

_ 1n/2] - [)"“ (2n-2m)! - ],,_.'jm L
m=02"(m) ' (n—-m)t(n=2m)" .
-1y '"g' (= 1Y (20 = 2m) ! o
m=0 2" (m)V(n—m) ' (n~2m)! '

= (= 1) P ().

Hence P,(-x)=(-1)" P, (x).

Pn('x):

(iiy Toshow P,(-x)=(-1)"*'P, ()
From above resuit we have

. P,,('—X) =(- l)n Pn(x)-
Differentiating both sides w.r.t. ‘x’, we get
P C0)=C0"P, M
Pu=x=CD""P, @

Hence proved the result.

Example 3. Show that P, (1}=1 and P, (- 1)=(- 1)".
Solution. Since we have

TP =2+
n=0

2P =(-2+=(1-0"
n=0
2 n

[P+ 2Py (D + ... + P D+ )={l+t++ .+ + ]

Taking the coefficient of ¢ of both sides, we get

Py()=1
Hence proved.
Next putting x = — 1 in (1), we get

S Py (- )= (24 A = (141

n=40
(Po(~ ) +tP (Dt ...+ P (= D+ ]=[1—t4+F — L+ (=1 + ..

Comparing the coefficient of /" of both sides, we get

(- D=1

LAD

Legendre s functiony
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P.(-D=(-1"
Hence proved.

n(n+1) _
Cu-0D2n+1)2n+3)

]
Example 4. Prove that J. X Py \Ppoydx=
-1

Solution. From Recurrence relation [, we have
Cu+DxPy=(m+ )P,y +n Py
Putting {2 — 1) and (» + 1} in place of n respectively, we get

Cn-DaxP,_=nP,+(n-1}P, .- I...(2)
Cn+NxP, =+ P2+ +1)P, 3
Multiplying (2) and (3), we get ) i
(n-1)2n+3) x> Pyyy Pay Vs

=P, + (= D) Py ) ({(n+2) Ppaat (n+ 1)P)
=n(+2) PPpiatn(n+ i) (P
+(”" l)k’l+2) PH—Z n+2+(”2_ l)Pﬂ-EPn‘

Now integrating from x=—1tox = | w.r.t 'x’, we get

1 1
(2n - 1) (2;:+3)_[_] PP, Po_1=n (n+2)-|:l P, P, dy
1 \ 1
+n(u+l}‘|. | [P,,]“dx+{u-l)(n+2}-|‘ | P, 2P, dx
, 1
+(u‘—l)j | P,_ 2P, dx
] a2
=r:(:1+l)j | [Pl dx+0+0+0

=n(n+ l)liﬁa—d (By orthogonal properties)

2un+ 1) _
Cn-12r+1)(2n+3)

t
J‘ lszn-ran—ld‘::

t
. 2 , __ 2n(n+D) .
Example 5. Prove that I \ G=1DP, P dx= n+1)(@n+3)

Solution. Since we have
@+ 1)~ DPo=n(n+1)(Pryr—Puy) (Beltrami’s result)
Now multiplying by P, ., and then integrating from x =~- 1 to 1, we get

1
2n + 1)I 1 x*-1)P,, P, dx

1 |
=n(n+1)f ] [P,,+,]2dx~n(n+l)-|. | Puei Py

2 .
=an+l) {—2” n 3} -0 (By orthogonal properties)
1
2 2n(n+1)
’) - =
20+ 1) ...-l (x* =1} P, P dx @n+3)

1
2 gpm— 2ot
,[—I (I I)Pn-l-lpﬂdx_(z}i-i‘l)(2J1+3)



[
Example 6. Show that J. PP, dx= En .
- 40" -1

Solution. From Recurrence relation I, we have
Cn+DxPy,=(n+ )P, (+nP,_\. (1)
Multiplying (1} by P, _; and then integrate fromx=—1to [

| 1 I
(2:t+l}‘[ ]xP,,P,,_|a'x=(ﬂ+ l)J. l P,,L]P,,“,|dx+ﬂjl_l [P"_,]zdx

_ 2
—-0+n[2n_ lil

(By orthogonal properties)

2
T -1
1
2n 2n
A P = = .
J:; P B S D G- D) a1
i P "
Example 7. Show that n (%) dx = .
2n+1

N -+

Solution. Since we have

I N
_— = 3 P!
Vi-2xt+f 7790

L =Py ()P () + o 4P+ T Py ()

or e
Vi~2u+7
Now multiplying this equation by P, (x) and then integrating fromx=-1to 1, we get
S /1C) ' ‘
—-—~———-dxzj Py (x) P, (x)dx+1 Prx)Pp(x)dx+...
VN[ 2at 4 - -1
1 1
+t"_[ I P, ()] dx+¢"" I Pop1 (P, () dx+ ...
l e}
= "-[ I [P, (x)]" dx {All integral except one is zero)
_of_2
T2+
1 P n
I ' £X) dx = 22:. l.
INI-2x 4P "
 SUMMARY

2
a 'n ? . —_ 2 ﬂ__ LIX o
Legendre’s D.E.: (1 -x7) e 2x e +n(n+1)y=0.

» Legendre's Polynomial :
N
Pu (X) = 20 ay -2y .\'" man

n=

ICER) _(2n)! . Te
where R X TE R T

_1n/2, if niseven
and N= { (n—1)72, ifnis odd.

1

j——?z E P, (01

«  QGenerating function :

~Legendre'’s Fiatction
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' *  Rodrigue’s formula : P, (x} =—— . —[(x" - 1))
2"n ! df"

»  Laplace first integral for P, (x) :
T
P, (x)=ij. [xx (Nx"~ 1) cos 0} dB
0

s Laplace second integral for P, (x): .
49

_1_ T
P (x)_ﬂ.[u Vix £ (x* = 1) cos 8] 7!

*  Orthogonal properties of P, (x) :
0, m#n

i
| neop - e

2n+]
¢+ Recurrence Relations

) @Eu+DxP,=(n+1)P, . +nP,_,

() nPy=xP, ~F,_,

(i) Qa+ ) Py=Ppy (- P, _,

(IV) (ﬂ+ l)Pn:P’ﬂ+l_xP’n

™) (=2 P, =n(P,_, - xP,)

Vi) (1~ 2 Py=(n + 1) (xPp = Ppyy)

STUDENT ACTIVITY

|
1. Solve that : I Pu(x)Pn(x)dx=0, m#=n
-1

2. Provethat: (2n+ 1) xPa=(n+ 1) Pys1+ 0Py~

« TEST YOURSELF
) 1-# < ,
1. Show mﬂlm— HED (2H+ l) Pn (I)f’

1

2.  Prove thatj | (P di=nin+l).

3. Show that 2P,(x) - 3P (x) P,(x) + 1 = 0.

-—
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4. Provethat 7, .+ P,= £ Q2r+ 1} P, (x).
!

r=

1 ntl 2
n A (OB
5. Prove that J: Y Py (x) dx = Qn+1)!

6. Prove that
I
(i) J- P(x)dx=0, n#0
-1
7. Find the value of the integrals
1
@ [ Pt a

8.  Prove that
@ P, =‘21'n {(n+1)

ANSWERS

1L () 0 (ii) 14—5

1
(ii) _[ Pl d=2.

1
(ii) J‘ 1 x° Py(x) dh.

(ii) P’n(—l):(—l)"_]%n(swl).

OBJECTIVE EVALUATION

Fill in the blanks :

1.  The sotution of Legendre’s D.E. is known as .........vunn.
2. Py (x), the Legendre’s polynomial has a degree ...............c....

3. |P,u(x)|( ........... if-l<x<l.
1

4. J' Po(x)dx=iunenes
-1 .

True or False
1. The equation Py (x) = 0 has its all roots real.
2. P (=0

1
3. I P, (x)dx=0.n%0.
-1

Multiple Choice Questions (MCQ’s) :
1. Py, (x) is an even function if n equals :

(@) -1 )0 )3
2. Pj(x)equals:

2 .
@ % byx (©)1

l 9
3. J. (P, (0)]° dx equals :
-1

! 1 2
(@) 2n+1 ®) n ) n+l

ANSWERS

Fill in the Blanks :
1. Legendre’s Function 2. Even 31

True or Flase :
1.T 2.F 3.T

MCQ
1.d) 2.(b) 3.(c)

if i is even.

(d 4

{d) —x

@ 2n-1

(T/F)

(T/F)

Qaa

Legendre’s Functions
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UNIT

3

BESSEL’S FUNCTIONS

Bessel's D.E. and its solution
Generat Solution

Linear Dependence

Definition of Jy (x}, when n=0
Generating function for Js (x)
Recurrence Relations

0 Summary

Q Student Activity

0 Test Yourself

EARNING!OBJECTIVES

After going through this unit you will learn :

What is Bessel's Differential equation ?

The power series solution of Bessel's D.E. is the Bessel's function.
How to generate Bessel's functions ?

What are their recurrence solutions ? -

» 3.1. BESSEL’S FUNCTION

The homogeneous linear differential equation of the form

2
2dy | dy N
xdx1+xdx+(x2 H.}) 0 e )

is known as Bessel'’s differential equation, where n is a non-negative real number.
Solution of the Bessel’s Functions :
Change the ditferential equation (1) into standard form by dividing (1) by <

dy Ldy [ 2}
peaborhd el bl (2)

Now compare this differential equation with following equation

&Y, pory @ _
C3PW 0wy =0

1 rlz
Py=~ Qx)=j1-—]|.
x X
It is obvious from P{x) and Q(x) that x = 0 is a singular point which is located at the origin.
Therefore we assume the solution of (1) in the form of a power series of the following type

y= I anT (@2 0) e

m=0

Differentiating (3) w.r.t. x, we get

dy - m+r=1
—_= +r
pp ”E . a, (m+r)x {4

Again differentiating (4) w.rt. x, we get



5 - .
dy -
5= L @y (m+ry(m+r- 1)s"42

m=0
L dv dy . .
Now substitute the values of y, ;E;, ? from (3), (4) and (5) into (1), we have
o
L ZoaymE)(mEr-Dx" "5 T oa, ()t

m=90 m=0

+ (xz - "2) z

n=

co

m+r

o«
S oa,mEny(m+r=-Dx"""+ T oa,(n+)x
m=1 m=0
o -]
2
-3 (I_.nli-).'m tre 3 a, Kt
m=0 m=0

. (5)

a, x"*"=0
0 .
=0 ..(6)

equation (6) will be an identity if the equation (3) is a solution of (1), then coefficient of each

terms in (6) will be zero. Thus taking the coefficient of ¥, x"* !
agr{r—1)+agr-—nay=0
a(r+1)r+a (r+ l)—r12a| =0.
In general taking the coefficients of x'*"
a(s+ris+r-D+a, (s+r)vnza,+ax_1=0
for
From (7), we have
ri{r— I)+r—n?'=0
or A-nt=0
or r=n,—n
From (8), we have
[(F+ Dr+@+1)-n"1a =0
For any value of » = n, — n, we get
a =0
From (9), we have
al(s+ry(s+r- l)+s+r-n2]+a,_2=0
or a [(s+ r)z - .'12] +a,_,=0
or a(s+r—-n)(s+r+n+a,_,=0
For case if r = n, then (1) becomes
a ((s+2n)+a,_»=0

1

or a=-———.a,..
T s(s+2n) T2

Puttings=2,3,4,5,"...

1
Q=TGP
1
R Y P R B
as=- 1 ay =~ 1 - L a
STTA@ )T 4(d+2n) 2Q+2m) 0
(e 12 1
=CD s FEvInaTam %
etc.
We observed that @) =a3=as=... = 0. Since ag is arbitrary. Let us choose

A7)
(8

...{%)
5=2.3,4,...

('.' ty # 0)

..(10)

Bessel'’s Function

(-a=0)
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1-
2'Tn+ 1)

where I'(n + 1) is a the Gamma function, therefore, we know that I'(n + 1) nT(n) and if n is
positive integer, I'(r +1) = (n) !. Thus,

gy~

1

BT T30+ 0
_ 1 1
2(1+n) 2"T(+1)
2
2 (n+2)
ay=(- 17 1 !
) 2 I +m)Q+n) 2 T(n+ 1)
=(- 1y '

_ "4 (2) I T(n +3)
and so on. Now From (3), we have

y= > amxm+r
m=0
sagx +a i v a ra T vag st
=agx +ay Xt a4+
1 2 1
=ag !+ - ———— " g Iy
P+ 2T +2) 2" 4 (2) 1T (n +3)
1 1 +2 1 xn+4

= - +
Tin+1) 2" +2) 242 '\ T +3)
L (_ l)m xn+?.m -
m=0 2" (m) ' D+ m+ 1)
This solution is known as Bessel’s function, which is denoted by J, (x). This function is also
known as Bessel’s function of first kind.

- xu+2m
Jn X)= 2 _lm ’
®) .w:o( ) 2 ey 1T +m + 1)
For case if r =—n, we have
oo _ gy -n+2m
J, )= % 1) x (12)

met 27" (@) IT(=n+m+1)
» 3.2. GENERAL SOLUTIONS E

The solution of the Bessel’s Hifferenria! equation of the type
y(x)y=Al, (x} + BJ_, (x)
where A and B are arbitrary constants, is called general solution.

* 3.3. Linear Dependence :

For an integer r=n, the Bessels functions J,, (x) and J_, (x) are linearly dependent, because

Jon @) =(-1D"J, (x) forn=1,2,...
Proof. Since
L (_ l)mx—n+2m

meo 2" I N—n+m+1)
if 1 is a positive integer, then the gamma functions in the coefficients of first 1 terms becomes
infinite and coefficients of (1) becomes zero. Thus the summation will start at ;e =# and in this
case I'(-n+m+ )=(m-n) L. .

From (1), we now have, }

I, ()= (1)




o (_ l)mx‘—n+2m
man TUT n mytm-n)!
°e n+& n+2k
IO G0 VM il L
_;EO 2HE Y (4 ) ! - m=n+k
(_ l)kxir+2k
2P E@ T+ k+ 1)

]

Vo ®)

T
k=0
J & =(=1"J, ).

* 3.4. DEFINITION OF J; (x), WHEN n=0

Putting n =0 in the Bessel’s differential equation, we get
e

x%+%+xy=0 . T ()
Let us asume the solution
y= EU a, X"’ (ay#0) (2
ms=
%zm%ﬂam(m-kr)x"'”"
and %z anm(m+r){m+r—l)x'"”_z.
m=

Substitute these values in (1), we get

XZ aym+r)mer—-D"" 7 % L apm+n) " T 4x 2 a,d" =0
m=0 . m=0 m=0
5l - oo
or T auymtrym+r-Dx"""" Ta, N+ 2 g, " =0 ..(3)
mn=_4 m=0 m=0

If (2) is the solution of (1), then (3) will be an identity. Thus coefficients of each terms will
be zero. So that taking the coefficients of x” ™', we get
agr(r—1+ayr=0
or % ap=0
or ' r=0 ¢ ap#0)
Now taking the coefficient of x”, we have
a{(l+nr+a(L+n=0
or ap (1+ J")2 =0

or a=0 (. r=0)
In general, taking the coefficient of x™*"
Quem+r+1y(m++a,, (m+r+D+a,_ =0
or am-+](r1:+r+l)2+am_1=0
8-
{m+r+ l)?'
For the case r =0,

or Qa1 ——

a _ Qp -1
e (m+ l)2
Puttingm=1,2, 3,4,5, ...
[43] 2
a3=_3:0 ('.'GIZO)
Qo
===
2 72

" Bessel's Function
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? a (-1 ap

as=0 e
Thus we obtained a; = a3 =as = ... = 0. Hence,

Xﬁ ).‘4 Iﬁ
yra|l- 5t 2 5 +J

If gy = 1, then y = Jo(x).

2 ¥ x5

J{](x):l—_ + aee l

2P 2 P4
Jo(x) is also known as Bessel’s function of order zero.

e 3.5. GENERATING FUNCTION FOR Jn(x)

The function of the form

¢ - E
generates J,(x), if taking coefficient of t". Thus this function is known as Generating functiont for
To(%)-

Proof. Expand ¢

2 7
RN L far
~[1+2+(2)![2]+...+(”)!(2}
n+ 1 n4+2
i xt | Xt I
+(u+1)![2] +(n+2);[2] +:'"J
x | xE ln 7" l"+1 i+l
=D (xY (=1 x
'[I"EE+(;3_)?£'27]+"'+(u)f{5]+(n+m{2z)

E_IJrH? in+2 ;
e+ 2) [2:} +}

Now collecting the coefficient of ¢, in above expression abtained after multiplication,

B 1 E_n_ ] £n+2+ | -_1_£n+4+
T2 (D)2 (n+2D! @12

- ., 1 x 7+ 2m
mEo(_ D (m) ' +m)! (2]

os (_ l)m 5 + 2m

il

R m'Im+n+l)

=J, (x). E

e = I M,
=0

. H
If taking the coefficient of ", we get

TV £ I Vit £3 RN CE AR NN £ R
T (2] T@m+D!2 (R+2)! (2112 '
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—(_— l)” _L :‘En-__l_ :x_u+2 1 _L_ £1'1|+4
- w2zl “mrnt2]l Tarnrerl2 “]

o (_ l)m X” +2m
m=0 2" () T+ m+ 1)
= (- 1" J, (x)

=J_, () -
Hence we obtained

R Y]

=(~ 1)

@ =(- 1Y J, &)

e = Z "), (%
* 3.6. RECURRENCE RELATION FOR J; (x)
(]) xJn’(x):"Ju(x)_-xJn+l(x)
where J,(x) = 47,
dx

Proof. Since we have

_ o o | x 7+ 2m
In ()= ,,,E(E 1y ) !'T+im+1) [2) ) (D

Differenttating (1) w.r.t. x. we get

. e+ 2=l
) ~ (= D" (n+2m) 1 {x
L) = mEU M) ! Tn+m+1) 22
. i+ 2m
| o 0" (n+2m) (x
ol X (0)= mao I+ +1) [ 2
7+ 2m

o D"+ 2m)

X
m=o MW TH+m+1) (2

n+2m =

_ ; (-D"n X 4 3 (- )" 2m x e
Cmeo ' T+m+ )| 2 moo M Tm+m+1) 7|2

oo n=1+2m
nd s D72 x(x
=l T me]) 2 (2}

_ - - 0"
S X e T Tutme D)

(_ l)m 1u—l+2m N
m-D'Ta+m+1)'|2 '

o kL w4+ 2
=aJ,X)+x Z ) [EJ
i 2

z=al,{(x)+x =

m=1

~—
i
y— -
~—
tt
)
N S

o T+ 1+k+1)°
=ndp () =5 Jps 1 (3).
xS, ) =nd, () -xJ, . ).
(In) xJ,x)=—-nd, (x)+x J,_; ).

Proof. Since we have

o m ' n+2m
y Gl S S .4
mep ' Tn+m+1) |2

Differentiating (1) w.r.t. x, we get

J, () = (|
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- n+2n-1
_ ~0)"@m+2m) 1 (x
I = m{‘o () ' Tn+m+1) 2" {2}

or xS, ()= Z =

S =) (n+2m) (x 1 am
meo M TR+m+1) 2

__E(" 2

D oGreat2men (xY |
me0 ' Tn+m+1) |2

=

- E ——ﬂm___u [i]n+2m
oo M IT+m+1)°|2

s (V" 2Antm) [x)

o M T+m+1) (2

2
oa " n+2m - |
eyt L 2 X [EJ

Im

— — —— -

+

o G ITOi+m) 2|2

oo n n—1+2n
=-nJ,@+x Z 1 (EJ

e ———

meo @D !Ti—1+m+1) |2
==ntJ, () +xJ,- x).
xJ, ) =—-nd, (x)+xJ,_, (x)

(1) 27 () =g () = Jaa 1 ().

Proof. From recurrence relations I and 11, we have -
xJ,)=nd,(x)-xJd,.; () (D
xIp@)=—nJ,(y+xJ,-1 (%) 2

Adding (1) and (2), we get

2, X)) =xd,_ () —x .1 (x)
- 2 @)=y ) = Sy ).
Iv) d, @) =x,_1 &) +Jp 1 ()]
Proof. From recurrence relations I and If, we have

X Le )=y () =x i (®)
. xJ,)=-nJ,x)txJ,_1 ) (2
From (1) and (2), we get '
nd, () —xJo @ =—nd,(xX)+x - (%)

or 2”‘"?! (x}:x[Jn—l(x)+Jn+l(x)]'
i -n Y
(V) dx [I er (I)]-— X J,”.l(x)-
Proof. LS. =-i~[x‘"1n @1

=X, @-nx ", )
="k, () —nd, ()]
=" e xd ()

==x "Jpui (%)

=R.H.S.

{from recwrence relation I)

L ) == e ()
VLR N EE e}

Proof. LHS.= 4 [x" 4, ()]
dx

=xX"J,x)+nx"" ! J,(xy =x"" "7, x)+nld, ()



=" d o @)
=x" Jn—l (X) = R.H.S.

Ly @) =y (0

" SOLVED EXAMPLES

Example 1. Skow that J, (x) is even and odd function for even n and for odd n respectively.
Solution. Since we have

I n+2m ’ - ..
-y =" (x) ‘
In &)= mzz“o () !'Tn+n+1) '(2}“ o A1),

Putting - x in place of x, we get

o ('_ I.)m ) ‘x n+2m
=2 = m)-_'?o myim+n+1) {_E)

oo m "+ 2m
.y - l)mm_(%)

mep ) ITH+m+1)’

Sl E ol VA [ﬁ)mm
2

meo M Tn+m+1)’
=(-1)"Jp ().

(i) Ifniseven, then(-1)"=1

Ju (=) =J, (3}

J, (x) is even.
(i) If # is odd, then (-~ 1)"=-1

S (=x)=-7,()

J, (x) is odd.
Example 2. Show that Jy/(x) =-J; (x).
Solution. From recurrence relation I, we have

KIP) =0 dy () = xJpsy () .
Putting n =0, we get '
‘ xJg(x)=—xJi(x)
Jolxy=-J; (x).

d ) +1
Example 3. Prove that = +2,=2 [% Jn— L o i 1] .

Solution. LHS. =% i+ a2 )]
=2Jn~rn+2-;n+l~rn+1 (1)

from recurrence relation I, we have
xJ',, =”Jn _fo|+l

Jr’n'_‘%-"'ln—‘}rm+1 _ (2)

From recurrence relation II, we have
xJp=—ndy+xdy
, n
oy . J’,,:—;J,,+J,,_|.
Putting (1 + 1) in place of n, we get
, n+1
er-l:_"_x_ i1ty - ..(3)

substitute the values of J', and J, 1 from (2) and (3) into (1), we get

' _I|
Bessels Fmrrrmn{ from
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and

R n+1
LHS. =2Jn]i;']n —Jns I}+2[_—;_Jn+ 1 +Jui|'!n+1

2
JH+| +2Jrr]u+1

:2£Jﬁ*2"'u‘fn+l -2 (wr )
X X

=2[EJ§—% ﬁ+1]= RHS.

X

4d . noa a+l 2
Hence a[‘!n+}3+l]:2(;‘fn_ ¥ Jn+|]-

Example 4. Prove n':ati (X Judnir) =x (2= 02, 0).

Solution. Lus. -4 dydpir) '
dx
=xy i1 2 Jnir + dnin D
From recurrence relations I and II, we have
xFp=nt,-xJ ' ..{2)
xFy=—-nd,+xJ, | ..(3)

putting (n + 1) in place of # in (3), we get

XFpa1=—m+ Dy +xdy, v (4)
Substitute the values of xJ’, and xJ', . ; from (2) and (4) into (1), we get
L.HS. =Jﬂ [_ (” + 1) Jr!+] +x‘]ﬂ] + Jn+l [”Jn "'-IJ:H- I] + J!:JrH I

:“”Jrl-]n-l-l _Jﬂ"(ﬂ+1+x"f§+n‘;njn+l_x~]§4;1 +Jn~lu+1.

=xJi-xJi,
=x{a=Jr1)
=R.H.S.

Hence 4 (uldye)=x (B L)

Example 5. Prove the followings :

(i) Jm(x)_= 2 L sin L x

X
(i) J (x) = 2 cos . x
' -1/2 = x . X.

Solution. (i) Since we have

x" % x*
I (x)::g” I(n+ 1)[1 2. (2n +2) +2.4(2n+2) (21 + 4) } D

Putting n=1/2 in (1), we get

L2 { 2 ;'x4
Jlfz(x)= }.— + - ...
L 1 2.3 2.4.3.5
25T l-+§

_.‘/ﬁ 1 1- X + x* _
I A 3! G T
i [x— X + X B } ‘
] G e
r

.,’g
X
, 3 s
= ﬁ—;.sinx [ T[i)=\f1?andsin9:0—9—+-§— ]

2 3! Gy



and

or

and

(ii) Putting n =—% in (i), we get

2 4
oeos=1 X 0 . ]

DI Y

_ —-1/2 x2 x4
12 )= 0 | {1_1.2’“1‘2.3.4“ }
2 F(l—:?”]
Af2 [
=N l[l_(2)!+(4)!_”}
r 2]
=w)i N
X 2! @
v (
= E.COSI
J ()= %.cosx

Example 6. Prove that
. 5 2
&) Wiz @+ 1 )= =

(i) J_p{x)=~ \/7%\: [icosx-rsmx].

Solution. (i) In'Ex. 6, we proved that

Jin(x)= \’ﬁ .sinx
J-]/E(X)= \!‘% . COS X.

Squaring these and add, we get
iy (01 + [J_ 12 0] ='fx— (sin® x + cos® x)
=2,
-IX
(ii) Since we know that

2nd, (@) =xJy_ 1 () +Jps (0]

2n
Jn-l (x) :?Jn (.I) _Jn+l (x) .
Now putting n=- 1/2, we get
1
2|=3

Joan ()= J—.vz—-fl/z (x)

1
== ;J_ 172 (x) _JI/Z (x)
Putﬁng the values of

Sinx)= \!Exz_ .sinx

2 .
Jo1nx)= \)E .cosx into (1), we get
S xy=- V}% [%Cos,§'+sinx}

()

Bessel x Function
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: »
+ Bessel’'s D.E. : . i“-;.
2 n 4 2 2. ' .
2y '+ +(x*—-nSHy=0.
+  Bessel’s Function of first kind : L <

n+ 2w

L= T "
0

m=

2" [+ m+ 1)

Iz x4 X() - ¥
o JSx)=1-=+ - + .. '
A AR AR i
*  (enerating function for J, (x) : :
5[;4] w ¢
e\ = T 1, (%) .
n=-—co

*  Recurrence Relations
G0y xJy ) =nd, ()= xJpsy (3)
(i) 2, () =—nd, () +xJ,_; {x)
i) 27, ()=o) = Tps  (0)
(iv) 2nJ, () =x Uy )+ T ()

0 L @l == @

(‘”) % .[xn Iy (x)] =x" ‘;n—l (x)-

iy
* STUDENT ACTIVITY . ) i
1. Provethat: xJa(x)=nJn(x)—xJu+1(x). | ‘ -
R | 13
i
LS

2. Prove that :
L cdudns ) =x U3 TR ) .

. T
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= _TEST YOURSELF

1.
2.

Prove that 44", (x) =J,. 2 (X) = 2J, (X) + J, 42 (%)

Prove that J,J_,—J_,J,=~— 2sin nn
X
hence deduce that i [JJ;:} =-— 2:;%?
Prove that
0] J’3=J"0~~}J"g (i) Ja—-Jy=2J",.
Prove that

Q) (x)=‘\/% [i sinx - cos x]

) D 3.

(i) Jos2(x)= - cosx+x sinx

(i) J (x)—'\f-z— 3=x ) -2 cosx
2Y 7 Ny e x '

OBJECTIVE EVALUATION

2
3-—x
2
X

Fill in the blanks :

Lo, =1 i
2-. J'ﬂ’ (x)= ...-...........‘“
3. J,.(x)is even function if nis v
True or False :
L, 0= 00 ). . (T/F)
2. | o<1, n2 1. ' C TR
2 .
3 Mia G+ U @ =~ -
Multiple Cholce Questions (MCQ’s) -
L (- )" Ja (3) equals : .
@) Jn(x) (b) J=n {x) €Y dn-1x (D Jn+1(0)

2. x[Jn-1+Ju+1) equals: ,

(@) 2n _J,; —1 (b) ndy () 2nJy () 2nJn+1

ANSWERS

Fill in the blanks :

1./, (x) 2.-4(x) 3. even
True or False :

1. F 2. T 3.T
MCcQ '

1. (b) 2.(c)

Qad

© Bessel's Function
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UNIT

- bt
4 :

AN INTRODUCTION TO PARTIAL
DIFFERENTIAL EQUATIONS i

PD.E. . i
Order and Degree

Classification of Partial Differential equation

Solution of P.D.E ’
Linear partial differential equation of first order

Derivation of P.D.E. by elimination of arbitary constants.

Derivation of P.D.E. by elimination of arbitrary functions.

Solution of standard forms

a Summary

0 Student Activity

Q Test Yourself

IR COR ."LEARNING OBJECTIVES &

After going through this unit you will learn :
e Whatis PDE. ?

e How to find its order and degree ?
® How to find its solution ?

4t

+ 4.1.PD.E. -

Here, we have already discussed the differential equations, with number of independent
variables are two or more. In such cases, any dependent variable is likely to be a function of more’
than one variable, so that it possesses not ordinary derivatives with respect to a single variable but.
partial derviatives with respect to several variables. The partial differential equation implies
necessarily the existence of more than one independent variables. We shall usually take z as
dependent variable and x, y as independent variables and throughout the chapter we shail denote

. . 3z o0z 9%z 9% &% .
the partial derivatives % 32 oy and a—yz by p, g, r, s and ¢ respectively.
Definition. The equation of the type
% P ¥ )
TE T

is called a partial differential equation.
e 4.2. ORDER AND DEGREE

Order. The order of the partial differential equation is the order of its highest derivative.
(i) First order PDE. A first order partial differential equation for a function z = f{x, y) contains

% o

ox ay

at least one of the partial derivatives - but no partial derivative of order higher than one.

For example :

*

L.



(ii) Second order PDE. A second order partial differential equation for z = f{x, y) contains

2

dz % ‘ oz
a2 0 xdy

at least one of the partial derivatives but no partial derivatives of order higher

than two,
For examples :

V4 2 2
W 20,90,90_,

ox’ 9y’ .97
o 92 _ 0% _
(i) 3 C Wi 0.
REMARK
> The second order partial differential equation may also contain first order term like
' % 9% etc
x oy

Degree of PDE :
The degree of partial differential equation is the power of the highest derivative in the equation.
For Examples : -
2 2 2
nTe, 20, 50,
ox* dy° 0Oz
A
(ii) FY C ych 0
% _
dy
2 2
) a—j’ = a—i
dt dy

3
9z) 9z _
\ (ax] +5‘x_0'

Equations (i}, (ii). (iii)} and (iv) are PDEs of degree one, and the equation (v) is a PDE of
degree 3. :

* 4.3. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

{A) Linear and Non-linear Partial Differential Equations :
A partial differential equation is said to be linear if :
(i} It is of the first degree in the dependent variable and its partial derivatives.
(ii) It does not contain the product of dependent variables and either of its partial derivatives.
and (iii) It does not contain any transcendental function.

err O
(ii) x a—; +y

For examples :

2 3 2
@ £0,9¢,90_,

-

v o A

Y
(ii) 3 K Py =0
2 2
i) 24 =2 24
o 3y

o u O

iv) S+ =fxy -

( )ax2 3 £xy)

The above all equations are linear.

Non-Linear PDE :

A partial differential equation, which is not linear is called non-linear eguation.

An Introduction to Particd Differential
Equations
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For example @
AR
(1 [8 ] 0.

Quaési-Linear :
Consider a non-linear equation .

_ Rr+Ss+Ty=V, o (D
where R, §|, T; and V, are the functions of p and g as well as of x, y and z. Then, we observe
that, it has a certain formal resemblence to a linear equation. Due to this rescmblence with linear
equation, equation (1) is said to be quasi-linear equation.

(B) Homogeneous and Non-homogeneous Equations :

A linear partial differential equation can be classified as follows :

(i) Homogeneous linear equation

(ii) Non-homogeneous linear equation
() Homogeneous linear equation :

If each term of a partial differential equation contains either the dependent variable {or
unknown function) or one of its partial derivatives, it is said to be homogeneous.

For examples :

@ F0,3% P,

Ay ot
e azz zaz
i) — =
W 57~ 5

(ii) Non-homogeneous linear equation :
An equation, which is not homogeneous is called non-homogeneous linear equation.
For examples :

. a?. 2
® F+a = %)
3 2 ou
iy Do dH _glo| _g,
® et 2o (8);)

* 4.4. SOLUTION OF PDE

A solution of PDE in some region R of the space of independent variables is a function all of
whose partial derivatives appeanng in the equation exist in some domam containing R and which

satisfies the equation everywhere in R. :

* 4.5. LINEAR PARTIAL DIFFERENTIAL EQUATION OF FIRST ORDER

A differential equation involving partial derivatives p and ¢ only, no higher derivative is called
of order 1. If the degree of p and ¢ are unity, then it is called a linear partial differential equation
of order one.

Some Basic Definitions : _

(i) Complete Integral. Let us consider the partial differential equation

feyapqy=0

where x, y are independent variable, andlz is dependent while p = -gf g= g—i then

A relation of type F(x, y, z, a, b) = 0 containing as many arbitrary constants as the number of
independent variables in the above partial differential equation is called complete integral.

(i) Particular Integral. In the complete integral F(x, y, z, a, b) = 0 giving the particular values
to the constants a and b, we get the particular integral.

(iii) Smguiar Integral. The envelope of the surfaces given by the complete integral
F(x,v,z,a,b)=0 is called singular integral. Therefore, the smgular integral- is obtained by
eliminating a and & from '

oF doF

Flx,y,z,a,b)= 0,:.:}——0 and 5‘0



(iv) General Integral. Let u = « (x, v, ) and v = v (x, y. 2) be two functions of x, y and z, then
the solution of the differential equation pP + ¢Q = R of the types i, v) =0 is called the general
integral, This also, can be taken as & =f{v} or v = f{u).

« 4.6, DERIVATION OF A PARTIAL DIFFERENTIAL EQUATIONS BY THE
ELIMINATION OF ARBITRARY CONSTANTS

Consider the equation

Flx,y,z.a,0)=0 : (1D
where, a and & are arbitrary constant. Differentiating (1} partially with respect to x, regarding z
as a tunction of two independent variables x and y, we get
. oF . OF oF oF

ax P70 M gyt 70 S
By the elimination of @ and & from (1) and (2}, we shall get an equation of the type
Flx,y,z.p,¢)=0 e

which is the required partial differential equation of the first oder.

SOLVED EXAMPLES
Example 1. Construct a partial differential equation, by eliminating a, b and ¢ from
=abxty)+b(x-y)+abt+c.
Solution. Here, the given equation is .
z=alx+Y+b(x-y)+abt+c (1)

Now, differentiating (1) partially with respect to x, y and ¢, we get
dz _ 0z Jz _
ax-aH;-,a =a- b ar ab o d2)

Now, using
(a+b)* —{a - b)* =4ab

. o 2 (o 2 . a
ox oy ot
which is the required partial differential equauon

e 4.7. DERIVATION OF A PARTIAL DIFFERENTIAL EQUATION BY THE
ELIMINATION OF AN ARBITRARY FUNCTION

Let ¥ and v be any two functions of x, y, z connected by the relation
o, v)=0 (1)
Now, it is to be shown that on the elimination of the arbitrary function ¢ from (1), a partial
ditferential equation will be formed and moreover, this equation will be linear.
Differentiating (1) partially with respect to x any y, regarding z as independent variables, we

have
a¢ 8u au az ﬂ a'v+ az -0
dulox "oz ax ox oz
00 (0w du), d0(dv
= u (ax+ az] av[ ] 0 (D)
dp(du  du 9z 8v
and aa[ay a-c. +a}’ ay a-r ay =0
o9 (ou du av
= au(ay+ az] [ J 0 . (3

Now, eliminating %‘E ! gﬁ between (2) and (3) by the method of determinant, we get

An introduction to Partial Diffeventiaf
Equationy
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ox P oz ) |ox P oz

du, o) (v, w\|
y Toz | lay 9% _
W B ) (Budv_du ) dv_ du dv |
dy 9z az'ayp dz dx dx 9z q*ax'ay oy " ox
d(u,v) L d(mvy) o)
30,07 T 3@n 17wy
which is the linear PDE of first order and first degree in p and ¢ which can also be written as

Special Function and Mechanics [ ou 3 HJ [av d v}

=

Pp+Qq=R !
_9(u,v) _8wv) —Q—@'—Vl-
where, P"a(y,z)'Q_a(z.x) and R_a(x,y) ‘

SOLVED EXAMPLES

Example 1. By means of a partial differential equation, eliminate the arbitrary function from
the equation

xty+z=f+y* + 2. (D)

Solution. Differentiating (1) partially w.r.t. x and y, we get
(L+p)=f'(*+y" +2) . (2x + 22p) (2)
and (L+@)=f&*+¥+2) . 2y +229) . (3)

. From (2) and (3), we have

(1+p) _ (1+g)
(2x+2zp) 2y+2zg

= : 1+ 0+ =(1+q) (x+2p)
= -p+z-xg=(x-y),
which is the required PDE.
Example 2. Eliminate the arbitrary functions f and g from
y=flx-a)+g(x+at)
Solution. Here, the given equation is ' -
y=fix~a) +g(x +at) . (D

= % =fx—a)+ g (x+at)

ox

ox?

Now %f =f(x~at). (—a)+g'(x+at) (@)

D%y
ar

and oy =f(x—a)+g"(x+at) .(2)

=f(x-a) (—af +g"(x+ar) (@

=a’ Fx - ad) + g"(x + ai)]
20

ox’
Py _ 2y
ar ox”
which is the required PDE.

* TEST YOURSELF

Form a PDE, by eliminating arbitrary constants for the following equations :
1. z=(x+a)(y+b).
2. z=ax+by+ab.
) 3. z=ax+a2y2+b.

42 Self-Instructional Material

=a

[using (2)]

=




4, f(x+y+z,x2+y3—z)
5. Ix+my+anz =ﬂxﬂJ +y ).

ANSWERS
L i=pq 2. z=px+qytpg
3. g=2yp" 4 0+a)p-(+x)g=x-y

S, (+napyy+z(lg—mp)=(m+ng)x
* 4.8. SOLUTION OF STANDARD FORMS (NON-LINEAR EQUATIONS)

In this section, we shall deal with some special types of equations which can be solved easily
by some special methods, other than the general method.

Standard Form (I) :

Equation involving only p and ¢ and no x, y,z :

The complete integral of equations af the type fip, q) =0 Le., in which x, y, z do not occur, is

z=ar+by+c (D
where a and b are connected by the relation
fa,b)=0 ' ...(2)

Since, we have p= %za and g :g—f,: b, which on substitution in (2) becomes the given

equation.
Let us suppose from (2), b = g(a) and replacing ¢ by §(a), the general solution is obtained by
eliminating ‘a’ betwecn the following equation .

z=ax+g(a)y + 0(a) ' E)
Differentiating (3) with respect to a, we get
C O=x+ye(a) + () (4

Now, to find the singular integral, differentiate
t=ax+gla)y+c
with respect to a and ¢, we get
O=x+ygla)
and 0=1
0 =1 = there is no singular solution.

Standard Form (ll} :
Equation involving only p, ¢ and z.
The equations which do not contain x and y i.e., which are of the form
fap.g)=0 (1)
Equation (1), can be solved in the following way :

Write X =x + ay, where a is an arbitrary constant and assume z to bc function of (x +ay)
i.e., of X alone.

z=fX)=fix+ay)

and q¥—=—-—-=a.--
Now, the equation (1), becomes
dz  dz
Flz [ X dXJ 0
which is an ordinary differential equatlon of the first order and can be integrated. So, the complete
integral will be known.

If f=0 is the complete integral involving two constants g and &, then replacing & by g(a),
the general integral is obtained by eliminating a form
4 _ , :
=0, da =0 )

An fmroduction to Partial Differential
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The singular integral is obtained by eliminating @ and b from

0 ¥ o _
=0, aa-(} and Bb_o'

SOLVED EXAMPLES

Example 1. Solve p*+¢*=1.
Solution. The given equation is of the form

fo.qy=0
The solution is given by z=ax+bytc
where a, and b are related by fla, ) =0
= a+b=1

L= p=V(1-a%
Hence, the complete integral is
z=ax+ V(1 - y+e

For the general integral write ¢ = p(a}
Then it is obtained by eliminating a from

z=ax+ V(1 - y + §(a)

and O=x+_7ay+¢'(a).
V(1 -d)
Example 2. Solve x’p*+y'¢* =7
Solution. Here, the given equation can be written as

2 2
z ox z dy

Putting %dz=dZ ie., 1=é°
1 . X
—dx=dX ie, x=¢
X
1 . Y
and ;dy=d}’ ie, y=e
in (1), we get |

9Z| . |19Z 1 _
RN
which is of the type fp, ¢) = 0.

Therefore, the complete integral is given by
Z=aX +bY + ¢

where a and b are related by @ +b=1

= b= -a%)

= z=aX+V(1-a% Y+¢

= logz=alogx+\‘(l~a1) logy+c
To find the general solution put @ = cos 8

=3 logz=cos@logx+sinBlogy+logc
= z=cxcosﬂ ysinB

Now, we eliminate 8 from
7= 8(9) xcosﬂ ysin 2] |
and 0=g (8) x°y"% 1+ g (8) X y*"® (~5in B) log, x

+g(9) xcmeysinﬂ

ALY

[
cos 8 log, ¥



which is the required general sotution.
To find singular integral, we climinate 6 and ¢, from

= x°% e ) ysin 0
z . i i
= 3=~ csin 850y 8 log, x + ccos 8. X% 5" O log, y=0
dz cos®  sind
and —=x" "=
dc y
= z =0 is the singular integral of the given equation.

Example 3. Find the complete integral of p° + ¢° = 27z.
Seolution. Here. .the given equation is

_ p+q =27z
which is in the standard form
fp.q.2}=0
Put X=x+ay
= z=AX)=fx + ay)
. o de
ox dX
and q= % =a b,
dy dX

&

dz . 09z ‘ . :
We may take x " place of 3 because z is a function of x only.

Hence, the given equation reduces to

3
(1 +aa)(d—7”] =27z
dx | —
1342 _ 4 173

3
= (1+a) i

= (1+a)". %z"” dz = 2dX
On integrating, we get
U +d)P=2X+c=2(X+b)
= (1+a) =8 (x+ay+b)’
which is the complete integral of the given equation, b
To find the singular integral, differentiating (1) partially with respect to @ and b, we get
30’ = 24y (.]£+ ay + d’:’]l2
and 0=24 (x+ay+b)*
By eliminating &, & from (1); (2) and (3), we get
z=0
which is the required singular solution.-

e
s

.(2)

» TEST YOURSELF

Solve ¢ = 3p”.

Solve p + 4" = npq.

Solve Yp +Vg = 1.

Find the complete integral of p2 =2zq.
Solve pz=(1 + qz).

Solve 9 (p*z + ¢*) = 4.

U R e

ANSWERS

5 ' x +n+ V(' -4)
1. :=ax+3a7y+c. 2. (=78 2(" .ay+c

An Introduction to Partial Differentiat
Equations
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3. z=ax+(l=Va)y+¢ 4. z=he™taD
5. Z2F [V -4d)) - 4a° log {z + V(Z' - 4a”) }] = 4x + day + 2¢
6. @+a)={(x+ay+b)
Standard Form it :
Equation of the form fi(x, p) =£;(y, ¢).
If the given equation is of the type fi(x, p) =y, ¢)
then, first write Site. p) =H0, gy =c).
Now, solving (2) for ¢ and p, we get

d
P=3e=gix.c1)

dJ
and q=£=gz(}’s€l}-
Now dz = pdx + qdy

=n(ne)dit g (v a)dy
which gives

2=[g1(x, e dx+ gy (e dy +b

(D)
(2

The general solution may be obtained from this complete integrai also, theré is no singular

solution.
Standard From IV :
Equation of the form z =px + gy + f(p, ¢)-
The equation z=px+qgy+£ip,q)
which is analogous to Clairaut’s form, has for its complete integral.
z=ax +by + fla, b)
For %:pza and g—;=q=b
In order to obtain the general solution, put 4 = g{e)
Therefore, z=ax+ygla) +f{a, g(a)}
Differentiating (3) with respect to a, we get
O=x+yg(@+f(a)
Now, eliminate & from (3) and (4} and get the required generat solution.
To obtain the singular solution, differentiating (2) with respect to f‘,ﬁnd b, which gives

0=x+§£
da
Lo
0—y+a£J

band eliminate @ and b between the equations (2), (5) and (6).

SOLVED EXAMPLES

Example 1. Solve p2 + qz =x+y.
Solution. Here, the given equation can be written as

2 2
pr-x=y-q.

Let us write

2 2
p-x=y—q¢ =a

= p=N(x+a) and g=V{y—a)..-
Now, putting the values of p and ¢ in
dz = pdx + gdy
we get dz=N(x+a) dx + Yy — «) dy.

On integrating, we have

(2)

«.(3)

...(4)

..(5

..(6)



Example 2. Solve 2 (p*+¢%) =x*+ )%
Solution. Here, the given equation is
2P+ =2+
Replacezdz = dZ : )

2
4

2

Therefore, the given equation becomes

= =Z.

P4 @ =+ where P =9 and @ =92

Q°=x"+y", where dxadQ dy
= F’2 ):2=y?'—Q2.
Let us write P - xz—y ~(Q*=q

= P=V{a+x) and g=V0"-a)

Now, putiing the values of P and @ in
dZ = Pdx + Qdy

= '\'(a + xz) ax+ \l(y2 -a) dy.

On integrating, we have

@+ +5 1og{r+\!(a+x)}+"\'(y - a)
—Elog{y+\‘(y.—a Y1 +b

2=y V(a+x§)_+a log {x+ Y(a +x2)}
+y \‘(y:—a) —alog {y+ \'(yz—a)}+c.

m|:-;

= e

Example 3. Solve z=px+qy+c V(1 +p*+4%.

Solution. Here, the given equation is of the standard form I'V. Thcrefore ‘the complete solutlon

z=ax+by+c V(1 +a +59) _ A

To find the singular solution, differentiating (1) partially with respect to & and b, we have
ac —X

V(1 +a2+b2) V(Cz—xz—yz)
be . y

el N E — --.(3)
V(1 +d*+ 5% Vit -5 -39
3 2_(az+b2)c‘2

which gives X+y' =

O=x+

and O=y+

1+a°+b*
- e
= ¥ —yh=
y) +b2
o2
= (l+.f!2-1-b2'=2722
—x =y

Now using (2), (3) and (4), (1) becomes

_ 2 B ¥ &
V@ -#-y) @-#-0) V-4 -9
(@-x-y) ma
=2 NP -2
V(e ~ 2~ ) :
= Bt oy?
2 2

-
+
‘=
(38

+
X
I}
[a}

= g=————— A2)

An Imtroduction to Partial Differential
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SUMMARY

»  Standard form I : fp.e)=0

. Its solution is
= Standard form I fz,p,g)=0

To solve such D.E., put
»  Standard form III :

z=ax+by+c, fla,b)=0.

X=x+ay.

fitepy=£f(x q)

To solve such D.E., we put ¢, =f; (x,p)=/> (» ¢}

»  Standard form IV :
Its solution is

=px+qy+£(pq)
z=ax+by+f(ab).

STUDENT ACTIVITY

1. Eliminate fand g from y=f(x—at) + g (x + ar)

2. Solve p3 +2 =27

* TEST YOURSELF

Solve the following equations :

1.

© N W

N oW

Vp +Vg =2x. 2.
pg=xy. 4.
2’4" =(x—y).

v X
pe =qe'.
py=2yx +logg.

Find the complete integral of z=px+gy + P qz_

z=px+qy—2p-3q.
Z=px+qy+pq.

e=la +20 +ay+b

L 22 2
zza(ax +y~ + 2ab)
z3”2=(x+a)"'/2+(y+a)3a+c
z=ax+by—-2a-3b
z=ax+hy+uab

2
. 1=px+qy-pa.

ANSWERS

2 z=ac‘+ac+b

l ’ ;
4. z=;(ax2+azx+e""'+a.b)

6. zzm‘--HJy-k-az+b2
8. z=a.\'+by-—n2b




OBJECTIVE EVALUATION

Fill in the Blanks :

1. The complete integral of the equation of the type f(p, ¢) =0 is z = ax + by + ¢, where a and
b are connected by the relation .......

2, The equations fi(x, v, z, p, ¢) = 0 and f2(x, y, z. p. ¢) = O are said to be compatible if (f], £5) =

3. The equation of the type fi(x, p) = fo(v. q) does not have any ...... solution.

True or False :

Write T for true and F for false : )

1. A partial differential equation does not contain any partial derivative. (T/F)

2., The second order partial differential equation may also contain first order terms. (T/F)

Multiple Choice Questions (MCQ’s) : '

Choose the most appropriate one :

1.  The equation of the envelope of the surfaces represented by the complete integral of the given
PDE is called :

(a) Particular integral {b) Singular integral
(c) General solution (d) None of these.
2. The complete integral of z = px+qy +p2 + qz is :
{a) z=ax+ by (b)z=a:"+b2
{c) z=ax+by+ a* + b* (d) None of these.
3. The complete integral of p =% is :
@ a=¢ _ (b) b= ¢
(€) z=ea (dz=ax+yloga+c.
ANSWERS
Fill in the Blanks :
. fla,b)=0 2.0 3. singular.
True or False :
1. F 2, T
Multiple Choice Questions :
1. (b 2.(c) 3. (d)

aaa

An Introduction to Partial Difterential
Equations

Sefﬁfnstr‘raetional Material 49

'l



]

Special Function and Mechanics

50 Self-Instructional Material

UNIT
SOME METHODS FOR THE SOLUTION OF
PARTIAL DIFFERENTIAL EQUATION

s STRUCTURE S i Mt =
e Lagrange's Linear differential equation
Geometric interpretation of Lagrange’s differential equation
Charpit's Method
2 Summary
0 Student Activity
a Test Yourself

After going through this unit you will leam :

What is the Lagrange’s D.E. 7
- How to find its solution ?

What is the Charpit's method ?

How to find the solution P.D.E. by using Charpit's method.

» 5.1. LAGRANGE’S LINEAR DIFFERENTIAL EQUATION

The partial differential equation of the type Pp + Qg = R, where P, Q, R are the functions of
0z
dy

x,yand zandp = % , § == . Then this partial differential of order one is called Lagrange’s Lincar

Differential Equation.
Lagrange’s Auxiliary Equations :
Let u and v be two functions of x, y, z which are related by the relation
flu,v)y=0Q ’ (D
Differentiating (1) partially w.r.t. x and y, we get

or gf[%+%§p]+§€(%+g—:p =0 ~..(2)
and gf(%*%%}*%[%*g_:% =0
or | gf[g—;+%q]+§{[g—;+g—:q =0 ..(3)

Eliminating 53_5 and -g{ from (2) and (3), we get

5

dx 0z

df/ e _

From (2), A P ()
o



av av Sume Methody for the Solution of Partial
From (3) of/du _ _ oy a’ : S Difterential Equations
’ of/ov [au % ] O .. {5)

dy %
From (4) and (5), we get

ou O (v dv du du \fdv dv
| (ax+a~ J[a *az‘?J [ay 32 J{aﬁ }

Solving this equation. we get
- [@ dv ' ov 81:} +[g\_: du au av] [au oy du av]
dy 9z Oy 0z ox " 0z "oz 9x "9y oy ox

or ' Pp+Qq=R ' ...(6)
du dv dv du d(mv)
e P70 %9 %900
_Ov Ou du Ov_0d(uv)
TOx 0z ox 0z _va(z,x)
R—Qﬂ dv  du ﬂ:agu,v[
ox " dy dy dx d(x.y)
Thus flu, v) = 0 is the general integral of the differential equation Pp + Qg = R. Now we shall
determine the values of & and v. For this, let « = a and v = & be two equations, where a and b are

arbitrary constants. That is '

w{xyv.2)=a and v(x,y,2)=b

(Jacobian of « and v wrt. y and 2)

and

This implies
du=0 and dv=0
du du au
But du= ™ dx + ay —dy a dz
dv adv av
and d‘.f—a dx+ay dy+a dz
Thus, we obtained
du on it
3 dx + 3y dy + az dz=0 (D
Jdv ov
and o dx + a dv % dz=0 ...(8)
Solving, (7) and (8) by cross multiplication method for dx, dy and dz, we get
dx dy dz

du Jdv v du du Ov du dv Ju ov Ou Iy

dv 0z Ov 0z 0z ox ox 097 0Ox dy dy ox
dx dy dz

o d(u, v) ) (u, v) T (&, V)
Iz d(x) 23(xny)
dx _dy _dz
or P 0 R ...(9)
Thus equations (9) are known as Lagrange’s auxiliary equatlons or Lagrange’s subs:dlary
equations. =

* 5.2. GEOMETRICAL INTERPRETATION OF LAGRANGE’S LINEAR
DIFFERENTIAL EQUATION

Lagrange’s Linear differential equation is |
Pp+Qg=R o (1)

where p = g g= g and P. Q, R are the functions of x, y and z

Equation {1) can be written as
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Pp+Qq-R=0 . |

or Pp+Q¢+R(-1)=0 . Lo
Lagrange’s auxiliary equations are - ,

dx_dy_ . . o L

P . Q R ' ’ o - "1“(3)

These equations represent a family ofcurves and P, Q, R are the dlrectlon ratio of the tangcm
drawn at any point on the curves.

Since f{u, v) = 0 represents a surfuce through these curves. where # = a (constant) and v=1»5
(constant) are the two particular integrals of the equation (3) and are the functions of x. y and z.

Further since, we know that the direction cosines of the normal to the surface f{x, y, z) =0 at
any point on it are proportional to

of of of
dx " dy oz
Divide by _2[ , we get ' :
Bf/dx /3y | @

df/0z " of/0z
9z _ _Of/dx _dz _ of/dy
Since p =5 =" a0 *™ 173, = " ap/a:
-pi-q:l
or pigi—|
" Thus equation '{2] represents that the normal at any point on the surface is perpendicular to
the tangent to the curve obtained by equation (3) through which this surface passes. Hence we can
say that the equations (1) and (3) give the same equtvalenl surfaces.

SOLVED EXAMPLES

Example 1. Solve the c}gﬁferemiai eqiationt yip + g = xy.
Solution. Compare the given partial differential-equation with

. then (4) becomes

Pp+Qg=R
We get P=yz,O=2zx and R=0xy
Then the subsidiary equations are
dr_dy _d
P Q R
or dx = & = LA (D)
yo = Xy
Taking the first two members of (1), we get
dx_dy
¥z X
or . xdx — ydv =0.
Integrating, we get
-y = (2)
Now taking second and third members of (1), we get
dy _de
X Xy
or . ydy —z2dz=0.
Integrating, we get
: y3~52=r:2 L3

Thus the general solution is
ol =3y -2y =0.
Example 2. Solve the partial differential equation pz — gz = = {x+ y)z.
Solution. Compare the given partial diffcrential equation with the standard partial ditfercntil
equation



or

or

or

Pp+Qg=R

We getP =z, @ =-z, and R:z2+(x+y)2' :
The subsidiary equations are given by

dv_dy _dz
P Q R
dx _d (o
= e (D)
: ZmT Sty
Taking first and second ratio of (1}, we get
dx _dy
. -z
= dx=—dy -
= dx+dy=0
= x+y=¢ (on integrating)
Now taking first and third ratio of (1), we get
b d
T 4 {x+ y)2
de=
T+H{x+y)
de =22 ' (7 x+y=c)
b ol

On imegrating, we get .
2x = log (ZF+c+loge,
e¥=cy (2 +c])

e =y [+ (x+y)]

e!x

=" 5 5 .
2 C v+ + 2y
Thus the genera!l integral is given by
e
x+y,———|=0.
f TRy + 2y
Example 3. Sofve xzp + yig=xy.
Solution. Compare this differential equation with Lagrange’s linear differential equation
Pp+Qg=R.
We get
P=1xz2,Q=yz. R=xy.

" Then, the Lagrange's subsidiary equations are .

@ _dy do

P Q R

- di_dy_dz

. Xz ¥z Xy

Taking first and second ratio of (1), we get
ax _dy
X Y2
. dx _dy
x oy
= dx _dy =0.
Xy

On inteprating, we get
log x—logy=log cy

(1)

Some Methods for the Solution of Partiat

Differential Equations
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x
or ~=C).
y ) .
Now taking second and third ratio of (1), we get _ i
dy  dz
vz oxy
. dy_d
z x
=3 xdy = zdz ‘
= cy ydy = zdz ( X=c V)

On integrating, we get

2 2 '
Gy —3 = l

I'OI' Eyz—zz—c
y i - '
l

or xy-=c,
Thus the general integral is

X 2
=, xy-7 =0
fy Y

Example 4. Find the general solution of the following differential equation
(mz-nyp+(nx—1z)g=ly—mx.
Solution, Compare the given differential equation with Lagrange's differential equation
Pp+ Qg =R, we get ’
P=mz—-ny,Q=nx—1Iz, R=1ly —nx.
Then Lagrange’s auxiliary equations are
di_dy_de
P Q@ R :
dx_ _ dy _  dz
mz-xy nx-lz ly—nix : Al
Taking the multipliers x, v, z, then {1) becomes
de  _dy _ Gz _xdx+ydy+zdz
mz—xy nx—iz’ ly-mx 0.
xdx + ydy + zdz = 0.
Integrating, we get

=

Aryted=c,. ,
Again taking the multipliers {, #1, n, then (1) becomes
dz __dy _dr _ldx+ndy+nd; -
‘mz-ny nmx-lz ly-mx 0

idy +mdy + ndz=0,
Integrating, we get .
Ix+my+nz=c,.

Thus the general solution is -
L+ + 2 v my +nz) =0.

* TEST YOURSELF
Find the general integrals of the linear partial differential equations :

TSNS

2
2 Llposmg=) i
x I H
z .
3, p+q=;- :b,
F



and

or

or

or

. 0T

or

dg=90
= g = b (constant).
Substituting these values of p and g into (1), we get
=ax+by+az+b2.
This is required complete integral.
Example 2. Find the complete integral of 2zx — px* = 2gxy + pg = 0.
Solution. Assume  f=2zx - pr -2qxy +pg =0,

Now finding partial derivativés of f with respect to x, y, z, p and g respectively.

%:22—2;9): 2(0’,—'£=-—-2qx'_-£__2x,_.£ x+6'§£"—2xy+p

oy dp oq
Then the Charpit’s auxiliary equation are .
dx_ . dy _ dz dp dg

AT A I I
dp dq dp ‘9g ox "9z dy 0z

de __dv_ _ dz _.a
F-q Z¥-p p-pq+2xyg-pg 22-2qy O
From (2),

L%

=

. dg=0.
Integrating, ¢ = a (constant).
Putting the value of ¢ = a into (1), we get
2zx ~ px* = 2axy +pa=0
_2x(z-ay)
p= s -a
Now substituting these values of p and ¢ into dz = pdx + gdy, we get

dz=M;—_ﬂldx+ady )
X —a ‘
dz—ady=£(:;aﬂdr

x'—-a
de-ady_ 2sdx
z-ay  x-gq
Integrating, we get
log (z = ay) =log (x> =a) + log b
z—ay=b(*-a)
z=ay+b (¥ ~a)
This is the required complete integral.
Example 3. Soive p=(z+ qy)z-
Solution, Assuming f=(z+qy)’-p=0
Now finding the partial derivatives of f w.rt. x, y, z,p and ¢

—'f —[ 20(:+qy)*£ 2(:+:?y)--£'- 5'[ 2y (z+gy).

* Then the Charplt s auxthary equations are

d.r dy dz - __dp __ dg
d af o of o d
- dx _ dy - dz ___d . dq
I =2yG+p) p-2qv(z+qy) 2p(z+yq) 4g(z+gy)
Taking second and fourth ratio of (2), we get
dy ___dp
-2y (z+qy) 2p(z+yq)

()

(2

(1)

«(2)

Some Methady for the Solution of Partial
Differentiol Equations
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= dp + dy_ 0.
Py
Integrating, we get
logp+logy=loga or py=a
or p= g
S y
Substitute the value of p into (1}, we get
2 a
z+t ==
(z+4qy y
a
or 2+ = -
(2 +qy) y
_Ya _z
or DZR
Now substituting the va]\ues of p and ¢ into
dz = pdx + qdy
dz= dx + [ i; ) dy
or ydz = adr + ’\,‘ dy — zdy
or yaz +zdy = adx+‘\} dy
or d{yz)= adx-l-‘\f dy
. Integrating, we get
yr=ax+2 Vay +b.
This is the required complete integral.
¢ SUMMARY
» Lagrange's D.E. Pp+Qqg=R.
; de _dy  dz
Lagrange’s A.E, P=0"R
. L dx  dy az dp dq
»  Charpitz’s A.E. = ;= = =
i AN T T A Y
' dp  og dp “dq ox "9z 9y oz
* STUDENT ACTIVITY
L Solve p2 + qz =X+
'2. Soilve yzp + xq = Xy.




¢ TEST YOURSELF-2

Using Charpit’s method, find the complete integral of the following differential equation :
L. P +Py=qz 2. p—-agx’+6x’z-2=0 3. yppl=q.

4, 2(pq+py+qx)+x2+}=2=0. S. 2z+p2+2y2+qy=0.
6. p-yYig+xi=)t 7. z=pq.
ANSWERS
1. (ax+b)+aV=ad 2. z=—ga3 9/ += L + ! +(ay-+-.!J).‘z?'/rz
’ 3 9 32

3 2o fatb)

(a-»)

2 : .

4. z=ax—x2+ay—y?‘+%(x—y)VZ(x-—_v)z-ra! +—a\’-:log[{\l'2(x—y) +V2(x-yY +a’]+b

2

Vd* ?+—sm [—E]—%—yﬂ-b.

ll

5 Y {(x-a)l+y +2z)=b. 6. L;-

7. 2\(z_=\fc7.x+qlgy+b.

OBJECTIVE EVALUATION

Fiil in the Blanks :

1.  The Lagrange’s method can be used to solve ...... order PDE.
2.  The general method to solve PDE is known as ......... method.
3.  The complete integral of px+gy=pgis.........

True or False :

Write T for the true and F for false : :

1.  The complete mehod of 4z = pg is az = (x +ay+ b)2 (T/F)
2. The complete integral of zpg=p + g is F=2 (a+ 1) (x+y/a)+b. ) (T/F)

Multiple Cholce Questions (MCQ’s) :

Choose the most appropriate one :

1. The complete integral of p, g} =0is:

, (@ z=ax+b () z=ax+by+c {(¢)z=ax+f(a).y+b (d) None of these.
2. . The complete integral of z=pg is : .

(a) 24z =Vax +5 (b)2€=xfa?+-\(1=y
. a
(c) z=\{a7+y (d)2‘12_=\!c_;x—+%y+b.
3. The complete integral of g = 3y2 is
(a) z=ax+b (B)z=ax+y "
() z=ax+ y3 +b (d) None of these.
ANSWERS

Fill In the Blanks :
1. fist 2. Champit's 3. az= % G+an)t+b

True or False :

.T 2. T
Multiple Cholce Questions :
1. (0 2. (d) 3 (¢}

- @Qa

Some Methods for the Solution of Partial
Differential Equations
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UNIT

6 B

THE LAPLACE TRANSFORM

- STRUCTURE. . =70

Definitions

Linearity property

Existence of Laplace transform

Laplace transforms of some elementary functions
Some important theorems

Laplace transforms of derivatives

Q Summary

a Student Activity

Q Test Yourself

2ineh .o LEARNING OBJECTIVES ' -

After going through this unit you will Jearn :
® Whatis Laplace transforms ?
e How to find Laplace transform of given functions using Laplace transforms ?

* 6.1. DEFINITIONS

. Definition 1. An integral of the form

oo

I_ k(p, O F(t) de

is defined as the integral transform of F(¢), provided it is convergent.
Differential Equations
1t is denoted by fip) or T {F(H)}.

o0

Ay =T(F) = | _ ko) P,

Definition 2. If F(¢) be a function of ¢ defined for all values of ¢, then thlace transform
of F{1), denoted by L {F(#)} or f{ip) is defined by

L{F(n) =ﬂp)=I0 eV F(t)dr w1

Definitlon 3. A function f{x) is said to be exponential order g as x = o= if lim ¢ “fx)=a
X .

finite quantity.
i.e., for a given positive integer n if a real number M such that
le“Rx)| <M, Vx2zn
which can be written as  fix) =0 (¢™), x = o= .
Definition 4. A function f{x) is called sectionally continuous (piecewise continuous) over the
closed interval x| S x € x, if the closed interval can be divided into a finite number of subintervals
a£x < bsuch that

1) flx) is continuous in the closed interval [a, b]
(i) lim Ax) and lim f{x) both exist.

x—=a+0 x=0-0



Definition 5. A function, which is sectionally (or piecewise) continuous over every finite
interval in the range r 2 0 and « of exponential order as t — oo is called a function of class A.

~« 6.2, LINEARITY PROPERTY

Theorem. The Laplace tmnsfoﬁna:ibn is a linear rrmzsfor;me-mon
Li{imF\(D) +a; Fa(h} =a) L{F\()} +a; L {FA)}.
Proof. We know that

on

L{An} =L e ¥ f1) dr.

Therefore,
Liay i)+ axfio) = [ @i+ aasit)

L]

=a, I: e ¥ [ dt+a, .[0 e P f5(0) dt

. =aq L{fiidl +a L { A}
* 6.3. EXISTENCE OF LAPLACE TRANSFORM -

Theorem. If F(1) is a function which is piecewise continuous on every finite interval in the
" range t 2 0 and satisfies '

_ | F(t)y| < Me®
for all t20 and for some constant a and M, then the Laplace transform of F(t) exists for all
pra ' . :
* Proof. We know that

L{F} = J‘: e P F(t)dr

{ oo
=I0°F(r) ewdeJ: F() e P dt D

0

fo
Now ‘L F(t) e dr exists since F(f) is sectionally continuous on every finite interval
01

and I Feye P dt *SI |F@y e ¥ | dt
7 e

(] 0

< I e ¥ Me™ dt, o | F(n) | < Me™)
If

0

=I &P M dt
f

B e—(p—a):
‘M[—(p—a)I

— M e'(#"“)»’u_
D — @
L

if p>a

= '[ eV N di| < e E= Vo if pya,
fo

p-—a

The Laplace Transform
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r
o= a ' _ .
Now Y a can be made small as we please by taking 7, sufficiently large. Hence, {rom

(1), we conciude that L{fir)] exists for all p > a.

* 6.4. LAPLACE TRANSFORMS OF SOME ELEMENTRY FUNCTIONS = |

) F@=1. i
Solution. We have L {F()} :J‘{) e P ) de L
" Here Fo=1.

Therefore, from (1)

L{1}=J‘:e_p'.1dt={—%wf - E

+ p>0

Hence L1} =

S = T e

@) F@=1".

Solution, We have L (F(r)} = .I.U e P F@t) dt

= L{{"} =I ey dr=J P BP0 oy
0 0
]
IE% I e du=T(n+1)
p ]
nt
:pn+1, P>0

n!
ntl

Hence Lif'} =
Gii) F() =1.

Solution. We have L{t) :ID e tdr

= —lte*"” +1J‘ e dt
P LT

v p>0.

-1
e
(iv) F() =e®.

Solution. We have  L{¢"} = .|.0 e e dt

=I e
0
If p £ a, integral diverges. For p > q, the integral converges. Hence, for p >a.

L= v
0




(V) F{r}-= sin at.

Solution. Li{sinat}= J;) e Psinatdt

| € ¥ (= psinat — acos af)
o+ d?

— a !
=3, 3 pra
p+a

Hence L{sinat} = 2“ >
pita

(vi) F{t} =cosat.

Solution. We know that )

™ (@ cos bx + b sin bx)
a*+ b

J.e“x cos bx dx =

Therefore, we have

L {cos at} =J‘0 e ¥ cosatar

_[e_’” {=p cos at + a sin at)[
- 2,2

a+p
~£ p>0.

2 2

pta

(vii)F{¢} = sinh at.
Solution. Consider

at _ _—at
L {sinhar)=L {i}

2
a1, w
—ZL{e] 2L[e 1
Lt 1 1
"2 p-a 2 p+ta
_ a
TT7 3
p —a
Hence L {sinh at} = ,,a 3"
p —a

(viii) F{¢} = cosh at.
Solution, Consider

L{coshat}=L B (" +e “’)} .

L {e(H] +_;_L [e— {H}

1
2
1oL,
2 p-a. 2

p+a’ praandp>-—-a

ED p>|a|

The Laplace Transform
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Hence, L {cosh at} = —2‘0—2
p —-a |
Table of Laplace Transforms of Special Functions ;
F@® L {FOI )
5. 1 _ L, 5o '
. p p
2 ®, ne Zt nt
wrl P >0
;i. M oa>-| Cla+ | . >0
P +1
4 & i L
o-a p>a
5. s at : « 1 p>0 I
p- +a
6. cos at '
‘ =P p>0 l
pe+a-
7. sinh ar e p>lal
proat
& cosh ar '
<t p>lal i
p--a L

SOLVED EXAMPLES

(.l.f_l

Example 1. Find the Laplace transform of the function F' {t}= e_a__-

Solution, We have

em"“l ].m __l_
L{F(r)}=L[ . ]=L[;e ~a}

D R § [
=L - KD

L)1t

“alp-al alp

__ 1

pp—a)

Example 2. Find L {(*+1)°}.
Solution. L {(F+ 1)} =L{+27+1)
=L {f'}+2L () + K1)

L A AYTY)
P popP P

Example 3. Find L (F(n)} where F(t) = (sin t — cos )°.

Solution. Consider

(By linearty property}

L{(sint—cosr)z}=L{sin2r+coszr—2sinrcosr}
=L {1 —sin 2t}
=L{1}-L {sin 2t} .

l_ ’!2 a7 P>0

p p+2 '

2 I
:L"LE +4. P>0-
plp”+4)
Example 4. Find L {6sin2t~5 cos 2t}.




Solution. L {6sin27~5cos 2t} =6 L {sin 21} — 5L {cos 2t} L The Laplace Transform

—6.—2—_5. £—. p>0
p+2 pr+2 .
L2290,
p +4

Example 5. Find L {2¢" —¢ '},
Solution. L {2¢% - My =2L (¢} - L{e ¥}

{ [
=2, - + pr3andp>-3
‘p—3/p+3_
+9
=£2=, 553,
p -9

- . !
Example 6. Find L{F()}, if F{t} = {g , ?:is 1

Solution. L{F®)} = J: e P F(t) dt

I oo
=L e“".e'dr+j e” . 0dt
| _

1
=J. e P 4
0
-@-nr]
— _e .
[ P-ll
1

-5l —e P, p1,

* TEST YOURSELF 1

Find the Laplace transform of the following functions :
1. sinzcosti. .

2. dcos t.
3. sinat.
4, 3 cosh 5t -4 sinh 51,
5. 3 -2 +4¢ ¥ -~ 2sin 5+ 3 cos 2t
6 6-2["‘6—3!
7 ,em—l_
a
_|sint, O<t<m
8. F(t)_{ 0 , t>m. n
ANSWERS
2 2
S » p>0 2. iﬂ%—t&-pbo 3 —%, p>0
p+d pp-+16) pp" +4d’)
4, _p____3’—20. p>5 . 5.%—1—3+ 4 _ ,10 + 23‘0 v p>0
p -25 p op pt3 pt+25s pi+a
) -
6. _’.__‘_,p>_2 7, 1 .s.e_ﬂ_‘*‘l
P +Spt6 plp-a) P+l

¢ 6.5. SOME IMPORTANT THEOREMS

Theorem 1. (First translation or shifting theorem). If Ap) is the Laplace transform of
F(f), then fip - a) is the Laplace transforms of ¢ F(1). i.e.,
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L{e"F))=fp—a), p>a+a.
Proof. We have, by definition of Laplace transform

L{F(®)} =f(p)=J.:_e"" F(tydt. i

Therefore, L {e¥ F(1)) =_[0 e . " R dt

= * —@-—a)r }
JAC’ e . F(2) dr _ .

=J.0 e Fl)ydr, where u=p—-a>0 i

= f{u) (By definition)
=fp-a).
Theorem 2. (Second transiation or Heaviside’s shifting theorem)
Fit-a), t>ua

If L{F®) =fp) and G{) ={ 0

, t<a.
Then L{GH)Y=¢ ™ Ap).
Proof. Let L (F()} =flp)

and G() = { Fe a a) ' iltf ::2
Then L{G{H) = J‘: e P G dt

a co .
iL e G dt+J- e P G@) dt
a
. a oo
:I e’P’.OdH_[ ¢ P F(t—-a)dt
0 a

=0+I eV R —a)dr.
a

Let 7 — a = u, therefore di = du.

If t = a, then n=t—-a,=a—a=0.
If = e, then [{=00—q=0v0,
Hence, LG} = _[0 e P D Bu) du

=g P .[0 e P Flu) du

=& fip).
Theorem 3. (Change of scale property).
IfL{FD} =fAlp), rh&n L {F(ah} =éf{§] .

Proof, By definition

—-———— -y

L {Flah)} = I: e P Flat) dt

7
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- = - pi/a d_“
J.O e F(u) a

Lo _14p
_aﬂs)_a [a]'

SOLVED EXAMPLES

e— af fﬂ -1
xample 1. Find L =11

Solation. We have

. AUl 1 (=nt o1
-DY @w-0D1 Ty
Therefore, using first shifting theorem, we have
e 1 } 1
Lie™ =flp+a)= .
{ EEY] A

Example 2. Find L {é cos® 1}.
Solution. We have

8 fims

L{coszr}=L{%(l+c052r)}= (L {1} +L {cos 21}
1 14;_2.10__1
2ip p*+2°
- ) - Y)
plp +4)
Using first shifting theorem, we have
' e-1*+2 P -p+3
p-D{p-1+4} (@-DE*-2p+3)

Example 3. Find L {e ' (3 sin2t -5 cosh2f)}.
Solution. We have '

L{é¢ closg.'} =f(p—-'fl)=

2
L{3sin2t—5cosh2t}'=3 .ﬁ“%aﬁp) (say).

po+2°
Using first shifting theorem, we have
Lie"3sin2t—5Scosh2)}=fp+1)

6 S(+l)
(p+1}+4 (p+1)Y-4
6 Spe+H

_p1+2p+4 p2+2p-—3
Example 4. Find L [F({)}, where

cos|t-27 t>'2—n
Fly= el R B
0 . :<2—n

3

(where at = u)

. The Laplace Transform
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Solution. Let G(t) =cos ¢ '

G[t—%ﬂ, r>~2?1r
Then F@) = . om
0 , r<?

We have L{G{t)}zL{cosr}¥—2%I¥f(p} (Sﬂy)ll'l.‘ L
Cop

Using second shifting theorem, we have

2n
%)
L{F}=¢ Sy
:'e—ZfrpG _pP
"2
p +1
* TEST YOURSELF 2 'L
1. Find L{Fe™)
2. Find L {e¥cos5t).
3. Find L{e¢‘sin’s).
4. Find L{sin’1).
5. Find L {e ¥cosh2s).
6. Find L {e ¥ (3cos6f—5sin6n}.
ANSWERS
-6 5 —P=3 3 2
p+3)° pr-6p+34 P+ 1) (P +2p+5)
22 5. 2p+4 6. 232-24 .
- -2p+5 P +8p+12 p°+4p +40 .

6.6. LAPLACE TRANSFORMS OF DERIVATIVES

F'(t) is of class A, the Laplace transforms of derivatives F () exists when p > a and

= [‘e"” F(I)I +p IO e P F() dt [On integrating by parts]
= F(0)+p L {F(D} [ lim & ¥ F(t)z‘{)}
K t— oo .
= oL [F()) - F(0).
REMARK
> } E

as t —> oo and if F' (1) is of class A and if L {F())} =fp), then

Theorem 1. Let F(¢) be continuous for all t >0 and be of exponential arder as t — o and if

L{F'(n}=pL{F®) - FO).
Proof. By definition, we have

L{F(®) = I: &P F ) dt

Proceeding same as abcljlve. we get
L{FO}=pL{F0)}-F'0)
=plp LIF(H} - FO)) - F/(0)
=p* L{F()} —p F(O) - F/(0)
=pAp) - p FO) - F'(O).

Theorem 2. If F(t), F' (), ... F -1 (8) are continuons for t 2 0 and be of exponential order

LUF 0} =p"fp) 70" FO = p" 2 F (0) ... pF ™D (0= F* D (0)




and

n—1

=p"fp)- X, " TR Q).

r=0
Proof. Usmg above theorem, we have .- .
L{F(}=pL{FH) - FO) : (1)
L{F" ()} =p’ L {F()} - p F(0) - F" (0) -A2)

Simiiar]y. we can find
L{F”(@)}=pL{F ()} - F"(0)
=p [P’L {F()} - p F(0) - F{(0)] - F"(0)
=p’L {F(t)} - p* F(0) - p F'(0) - F*(0).
Proceeding, similarly, we get
LIFM)=p"L{FO}-p"  FO)-p" > F(0) - ...~ F""(0)

n-1

=p"L{F@®}- Y, "' F0).

r=0
Theorem 3. If F(1) is a function of class A and if L {F(1)} = flp), then

L{t. F(n}=-f"(p).
Proof. We know that

) =L {F ) =f0 e F() di

Therefore fi =d%‘f0 e P F(p) dt

:J‘D 58‘6 {e” F{t)) dt (By Leibnitz rule of differentiation under
the sign of integral)

=~j te P F(ydt
0

- = - pt
= L e {1t F()} dt

| = L{r F(p)
= L{tFO}=-f(p).
Theorem 4. If F(t) is aﬁmcn’on of class A and if L {F()} =fp).

Then  L{/"FO)}=(~ 1) f(P)

Pr(;of. We shall prove this theorem by the Principle of Mathematical induction.
Step 1. Using previous theofem, we have -

ool A4
L{tFinl=(-1) dpﬂp)

=> Theorem is true for 7 = 1. )
Step II. Assume that the theorem is true for a particular value of » say k. Then, we have

&
LIFFOL =1 S d w0

=>I P Rt di = (- 1) f(p)

Step 111 leferentlatmg both SIdes w.rt. p, we have

The Laplace Transform

Self-Instructional Material 69

+



Special Function and Mechanics

-+ 70 Self-Instructional Material

dk+l
dpk‘f—l

N Ry’ = (= 1)
dp.[o et F)di=(-1) Ap).

Applying, Leibnitz’s rule for differentiation under the sign of integration, we have

A7 o _( ez dft!
L e R dr=(-1) dpmﬂp)

okl e dt

- J'O ef{r* FOde= (- "4 5 )
b+l

= L{F RN =(- i)"*'fgﬂ—,f{p)‘

= Theorem is true for n=k + 1 |

Hence by the principle of mathematical induction, it is true for every positive integral value
of n. '
Theorem 5. (Laplace Transforms of Integrals). If F(1) is piccewise continnons and satisfies

| Fty| s Me™, vr20
for some constant a and M, then '

L

_[(: Fix) dxl = f’ L (F())

Proof. Let F(t) be piecewise continuous such that
| F(e) | € Mc® S 1)
for some constants @ and M.

If (1) holds for some negative vaine of a, then it is also holds for positive value of a. Thercfore,
suppose that a is positive. ’

t
Let G = .l.o F(x) dx.
: 't
Then G(¢) is continuous (" Integral of an integrable function is continuous)
f t
Now, |G| < L | Flx) fdx < .[0 Me"™ dx
= , |G(r)|s%(e‘"—l). 450

Further G’(f) = F(z), except for points at which F(f) is discontinuous. Therefore, G'(f) is '
piecewise continuous on each finite interval.
L{G' () =pL{G(} - G(O)

=pL {G(H)} {- G(0)=0]
- LG =§L (G}

= L

¢ .
-1 |
J.O F(x) dx} o L {F(}.
Theorem 6. (Division by £). If L {F(t)} =RAp), then
L {-i— F(r)]» - L Fx) dx

provided lim {-i- F(t)} exists.

-0



1 . The Laptace Transform
Proof. Let G = 7 F(6 ie, F(=t1G()

Therefore, L {F()} =L {1 G()} =~ i L{G(®)

= ﬂp)——i’-L{G(rn

On mtegratmg both sides w1th respect to p from p to e, we get

o] = rorap

= - lim L{G(r)}+L{G(r)} ftp)dp

poree
o L

.’.:' 0+ L {G() =,J:°ﬂp} dp, by using lim L {G®)} = lim o ePGtdt=0

pore Pt

= L {% F(t)} = L Joo) dx.

SOLVED EXAMPLES

Example 1. Find L {t cos ar}.
Solution. We know that

L {cos at} -——p—,-~ p>0.

Py at
Therefore, L{tcosat} =— £ L {cos at}‘=—i __}&._2.
dp dpip +a
_ -
0+

Example 2. Find L {£ sin at}.
Solution. We know that

. a
Li{sinat}=
} p2+a2

- 2 I 2 dz ) _ dz a
Therefore, l_d{r sinat} =(~ 1) dp;L{Sm“f}“'&;’i{ 3 2}

_d | _=2ap | _2a03p*-d
“dp i+ ety =

Example 3. Given L {sin Nt 'J_} \]:2 e 'M"’, show that
2p

Solution, Let F(z)=sinr,
Then, we have F'(1) =cos i and F(0)=0.
2t

Put ali these values in
L{F'}=pL {F(f)} - F(0)
we get

L{ms\(_ = pL {sin N7}
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=p ﬂe—lfdp ) T e
25

=% V{g‘) e—|/4p.
Hence | L{%-_ﬁ}: \/(E] eV,

Example 4. Show that L {S%”} =tan”! ;1; and hence find L {_su;ral} Does the Laplace

cos at

transform of exists ?

Solution, Let F(?) =sin¢

Then - fim £ _ fjm 800
r—0 =0 !
We know that
, |
L{sint} = = {say) .
(st} = — 7 =1 (say |

Then, we have
sin f = = dx N
L{i— =I X air=j =[tan j
{ t } f ) P Xt b

=1 !
=5 tan p

et p=tan-! L l

..(fot-lp tan (p] :
Now L sin at —al sin at
' ¢ | at

o Lo (-1 iy Lz

o () a1

! [;] .

Also, since L {cosat} = —2‘2‘-“' =Ap) (say)

P +at
cos at X
Then L =I = dx
{ t } P ¥+t

1 2, 2 . ' :
[2log(x +a)I o ‘

lim log (x* + ) - % log (p* + a%)

l.
Z K e

which does not exists, since lim log (x> + a®) is infinite.
X

cos at L
Therefore, L {—e‘i} does not exist,



SUMMARY -

Laplace Transform of £ ()

L{F(H)}= J‘(}w e PR dt
u+1

R
L{t}=—, L
=2, Lif)=

Li{e

_p—a

L{sjnat}x%,p>0,L{ICOStﬂ}= 2 3»P>a
pta o pta

L{sinhar}="‘3-"a——,;, p#ta, L{coshar}=—,p—*§, p#ta
p-a . p-a
If L{F@®}=f(p) then
L{"F@®l=f(p-a), p>a

I L{F @) =f ) and Gy ={ T 670 124

If L {F()) = £(p). then L {F (an)} = if[%)

CL{F ) =pL{F@®}-FQ. .-

L{F’"’(r)}— P’L {F ()} = pF (0) - F' (0).
If L {F () =f (o). then L (" F (1)} = (- 1)”-(f<p>)

It |F (t)| < Me“"'\f 120 and F (nis piecewlsc continuous, then

L” F'(t)dr =.—L {F‘(r)}.

IfL{F(r)} =f(p). thenL{ F ) I £ ) dax.

e

then L (G (1)} =& f(p).

STUDENT ACTIVITY

(1

»

Find L {¢' cos®t}.

Find L {r?sin at}.

The Laplace Transform
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TEST YOURSELF-3

a
3

1. Showthat L{-asinat}=-—3
p +a
2.  Evaluate

(a) L {rcosh 3¢t} (b) L {¢sinhat}.

2p (p° - 3a°
3. Showthat, L{Fcosat}= S vy p>0.
+a
|
4,  Show that L{r"e”’}=m-p>a.

5.  Show that {p2 Ay

L (¢t (3 sin 2 - 2 cos 20y} =31 122 =2

_ @+ +ia-1a?

6. Showthat L{sinat+rcosou}=

' (p2+a2)2
ANSWERS
pr+9 . 2ap

OBJECTIVE EVALUATIONS |

FIll In the bfanks :

1. L{e“Y=.iinnnn.
2. Li{sinat}j=............
3, Lircosat}=.cnin.s

True or False _
1 n-‘L{F(:)}=f(:),thenL{F(m)}=;—Jf[f';).

2. WL{F@)=f@) then L (" F(1)} =f(p +a).
3. L{F@}=pL{F(O}-F(0). '

| Multlple Choice Questions (MCQ's) :

1. L(1)equals:

1 1 1
. {(a) ; (b) ? (c) —p_ I
2. L {tz} equals :
{ 2 [
(2) =5 ) s (¢) =
Pa P o
ANSWERS
Fill In the Btanks :
| 1 9, 8 p2 -a
p-a Pt T (prrad) -
True or False :
(. T 2.F 3T
Multlple Choice Questions :

L (a) 2. (b).

(i)
(1/F)
(T/F)

p+1

1.
d) —
7

([



UNIT

7

Inverse Laplace transform

Some Inversse Laplace transforms

Important properties of inverse Laplace transforms
Inverse Laplace transforms of derivatives

Division by p

Multiplication by p

Inverse Laplace transform of integrals

Convolution '

0 Summary
0 Student Activity
a Test Yourselt

1 EARNING.OBJECTIVES

After going through this unit you will learn :
What is inverse Laplace transform ?

How to find the inverse Laplace transform of given functions
What is convolution ?

How to find the inverse Laplace using convolution.

» 7.1. INVERSE LAPLACE TRANSFORM

If the Laplace transform of a function £t) is Ap) i.e., if L {F()} =Ap).
* Then F(f) is known as inverse Laplace transform of f{p).

Symbolically. 7(0=L""{Ap)}.
Where L™ ! is called the inverse Laplace transformation operator.

For example, If L {e'z'} =;- Then we can write L' | ——= |=¢"%.
p+2 p+2
Null Function :
A function N(7) of r such that

Fai
J.u N dt=0, V1>0iscalled Null function.

Unlqueness of Inverse Laplace Transforms : Learch Theorem :

Since, we know that the Laplace transform of a null function N(¢} is zero. Also, it is clearly
that if L {F{r)} =fp), then also

L{F()+N@O}=Ap).

It fallows that we can have two different functions with same Laplace transfrom.

If we allow nuil functions, we see that the inverse Laplace transform is not unique. It is unique,
however if we disallow null functions.

Learch’s theorem. If we restrict ourselves to functions F{¢) which are sectionally continuous
in every finite interval 0 £ ¢t S N and of exponentiat order for ¢ > N, then the inverse Laplace transform

of Ap) )
ie. L' (fp)} = F(), is unique.

The Inverse Laplace Transform
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* 7.2. SOME INVERSE LAPLACE TRANSFORMS

10) L~ 1{fp)} = F()
1. i :
P
2. : -
;
3. "]+._..l 'n=0,1,2,... D)
p
* | 1 e.mf
p-a
> ' L sin at
preat «
> L cos at
p? +a? é
" I sinh at E
Pz -a? n_ ﬁ
: 4 " cosh at
2_ g2
pi-a i

* 7.3. IMPORTANT PROPERTIES OF INVERSE LAPLACE TRANSFORM

(i) Linearty property. If C, and C, are any constants while f\(p) and f,(p} are the Laplace
transform F (1) and Faf) respectively, then
LHC AP+ A =C L (i)} + G LT AP
Proof. We have
L{C A+ CFRM}=C LA+ G L RN}

=C A) + G Ap)
= L {CLAP) + Cofilp)) = C Fi(0) + G Fa())

=G LU )+ G L {A0)
(ii) First translation or shifting theorem.
If L' (fp)} = F(3) then .

L' (fp-a) =" Fy=¢" L™ {Ap)}.

Proof. We have

s e

ﬁp)=-[:'e"” F(t) dt
= ﬂP-ﬂ)=J.:e““"""F(r)dr : L .

= J‘: eV (¥ Flo)) dt

=L {e" F(1)}).
Hence, L' {fp-a)=e"Fiy=¢" L (fim)}.
(iii) Second translation or shifting theorem.
L {fp)) = FO) then L' (& fp)} = G(2) where
| G(r}___{F(r—a) t>a

0 .t

768 Self-Instructional Material



“Proof. We know that

fip)= J: e " F) dr.

Therefore,

e fip) = ID P By dr

=J. e P Flx—a)de putting r+a=x = dt =dx
«

a oo :
=J‘ e_“.(]dx+v|. ¢ ™ F(x ~a)dx
0 a

a o0
=J.0 e, 0d:+j e F(t—aydt

a

:J‘: eV Gy di =1 (G()

Ft-a) ,t>a

where - G(r}={ 0 (e a

shows

L e fip)} = G(o).
*(iv) Change of scale property.

L' (o) = F(1), then U {fap)) =ip(i}_

a
Proof. We know that

flp) = ,f: e PR dr
= Rap)= I: e Y () dt

: 1
Puttingar=x = di= P dx, we get
1

(By the property of definite integral)

Hence,

L (flap)) == (ﬂ .

SOLVED EXAMPLES

Example 1. Find the inverse Laplace transforms of the following functions

iy 2L (i) =28
plp+1) ap” +25

The Inverse Laplace Transform
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Solption, (i} We have
L"{ 2p+ 1 }251{ +(p+1 }

plp+l)

(ii) Here, we have
L_l{_u},_zL_ll_L ot L

ExmnmeZ.Fmdif'{a%%zm ! }.
p
Sclution. Here, we have

i f3p=2 7 e[| e [Tl 1|
L {pszz 3p+2}ﬂ3[' {p_vz 2L psfz 3L p+(2/3)

2 4 6

11 1 S | rt
Example 3. Show that L {P casp}—l @ !)24-(4 !)2 © !}2+.... _
' 2 4 /o1
Solution. ! lncosi =L 1 1“(1/,?) +(1/p) _{7p) +..
pop P 21 41 6!
TS S SR U R S I ) R BT
=L {p}fzzL-{f}+4!L {f} ke {g o
2 4 6
=1~ r2+ t.,- r2+‘...
2n @y (©nH .
Example 4. EvaluateL™" {—-L—i} . ;
¢ +2) (- |

Solution. L™’ ——l-—', =0 . ! 2}
p+2){p-1) P-1+3)p-1)

(Dividing 1 by 3 + p till p* is a common factor
in the remainde;r)



1 -
9[(.’:r*l)e +e 7).

- 1
Example 5. Evaluate "' |———-1| |
P {(p+ 1)@—2)}

Sohition, Consider

i —— Y J S SR G U
L {(p+l)(P—2)}_L { 3 p+173 p- }

Example 6. Evaluate L™} —‘%— .
p+2)(p°+4)

Solution. We have

[ p+5 i3 3p-14
e+t +4) 8lp+2 pPi4

I YA LS G YL Y 2 QPP Y
8 p+2 pi+d pr+4

(3¢™* - 3 cos 2¢ + 7 sin 21).

OO | e

¢« TEST YOURSELF

1. Find the inverse Laplace transform of the following functions :

@ L b
= ®

2 +4
4 l
(©) —
) 6 \,;
3 2p—5
@ S+ 5t—+—s @ E=2
p+2 p*-16 p-3 p -9
2. Find the inverse Laplace transform of the following functions :
1 +b 3p+7
@ - ) —E5— © 57—
P —6p+10 p+b) ta p-—-2p-3
2
() - : & —2— ) _L_;'jﬁﬁ_
(P+a) w+1) -0 (@+])
ANSWERS
L@ o (b) = sin 21 ©ac® (¢ ——=
6 2 _ SN

(¢) cosV2 ¢+ 6 cosh 4z + 3¢ (f) 2 cosh 3t — % sinh 3¢

2. (@) ¢Vsint () e Y cos ar () 4e¥ — ¢’

n—1
@ ez @c'@r-rfva ["%] d3e

-t

e 7.4. INVERSE LAPLACE TRANSFORMS OF DERIVATIVES

Theorem. IfL" {fp)) = F(), then L™ {f* ()} = (= 1Y*. 1" F(2).
Proof. Since, we know that

The Inverse Laplace Transform
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L{f FO} = (-1 £ ().
Therefore, : .
R =L (- 1Y £ ()
C=EL Y (o))
Hence, C ey ==t F)

» 7.5. DIVISION BY p

f
Theorem. {f L' {fip)} = F(1). then L™ {ﬁﬁl} =L F(u) du.

Proof. Since we know that

.,
P

[insa

OIS
= L '{p.}—fu Flu) du

» 7.6. MULTIPLICATION BY POWERS OF p

Theorem. If L™ {fp)} = F(f) and F(0) =0, then L™ {pfip)} = F ().
Proof. We know that
L{F (0} =pL {F(}} - F(0)
= pL [F(0)]
=p Ap}
Hence, L {pRp)} = F(0).

[ FO) =

« 7.7.INVERSE LAPLACE TRANSFORMS OF INTEGRALS

Theorem, If L' (fip)} = F(), then
o '[f W dr} =10
P t
Proof. We know that
{ (-
L {? F(:)} = L flx) dx

provided lim {ﬂrﬂ} exists.

=0
[ 70 dxl=f@- |
P 14

R |
Hence, L

SOLVED EXAMPLES

Example 1. Find ! {—2273} .
P +a’)
Solution. We have

L—I P =L—1 _li 1
(p2+az)2 . 2 dp p2+a2




=—wr( nL

Example 2. Evaluare ! {!og ] ——1;]} .
e
Solution. Let us suppose

#p)=log 1—#}

log p_ﬂ _
P
DY B S
= L'-I {F(P)=-2( —coshp

= : -t flp)Y=-2 (L - cosh £)

= ! {Iog(‘l ——I:J}=z(l - cosh 7).
P 1

Example 3. Evaluate

() L_I{Iog[1+i2}} .
p

-1 |1 i
iy L' 1= logl 1 +—5|!.
(i) {P og{ +p2J}

{ L }-—r—sinm
2 _2 -
p +a a

-2logp+log(p*-1)

|

Solution. () Let Ap) =log [1 + i»] =~ log [ £ ]
P pr+l
=-2logp+log (p° + 1.

Therefore, Fp)= _2, 222

P pi+l
i L @)} =-2+2cost
= "fL_lU(P}=—2(l—cost)
Hence, 10tT (1 + —ZH M}
(i) Since log L Z_(b@s_*‘l

p'

Therefore, L™ log [1 + J -7 | J‘ Fo) d

=.[ ={(1 - cos x) dx.

¢ TEST YOURSELF-2

1. Evaluate the following inverse Laplace transforms :

(3) L" {_E_

(b) L"{—jp—z} (C)L_]{ L }

(Pz - az)z (p" - 10) p- a)3
, -
@ L {@fj—l“} e L l‘p——l
2p+2) (" +4)

2.  Show that .

The Inverse Laptace Transform
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+1 t
ANSWERS
1. (@ <L sinhat (b) L cinh e ©) 1 2o
2a 8 2
) %e" sin (€) %(sin 21+ 2t cos 24).

¢ 7.8. CONVOLUTION

t
+

IfL 1 {fip)} = F(t) and ! {g(p)} = G(1), where F(1) and G(1) are two functions of class A.'.
Then ’
t

I ) -8 = |

o ) Gt~ 1) du=F * G

we call F* G the convolution or falting of F and G.

s .
Proof. Let J‘O F (.?c) G(t — x) dx = H(t)

.+ Then . L {H@)} = J‘Ome"P‘H(:)d:

w0 :
=L} eV ."0 F(x) G(t ~ x) dx |dt

. _ e .
o = e F(X) Gt - x) dx | dt
o | [ 1] e reo G-y a

The integration being first with respect to x and $X

then 1. P
- The integration (l) is within the region lying Ax /
below the line OP whose equation is x =¢ and above OT, r

¢ being taken along OT and x along OX, with O is the / f
origin the axes being perpendicular to each other. If the

order of integration is changed, the strip will be taken
pérallel to O7, so that the limits of ¢ are from x to e

and of x from 0 to .
' ’ Therefore, o

~v

~y

L{H®) = J‘: dx f e P FR) Gt —-x)dr .

= J; e " Fx) (f.’CJ. eV G- x) dr.

X

Puttingz—x=8 = dr=d0
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= L (H(} = J.: ¢ P Flx) J.OM e G(0) de} dx

=[ e as

=p) g(p)

= L

L F(x) Gt - %) dx| = f(p) ¢(p)

t
= JO F(x) G(t—x) dx =L ' {fp) g(p))
=F*G.
Properties of Convolution :
(1} F* G is commutative ie., F*G=G* F
(2) F#* G is associative
(3) F* G is distributive over addition.

SOLVED EXAMPLES

- 1
Example 1. Using convolution theorem, evaluate L Homo——1
-1 +2)

Solution. We have

|

Lt {ﬁ} =¢' = Fy(f) (say)

-3

and L {p_j-ﬁfl_} =¢ = = Fy(r) (say).

Using convolution theorem, we have

-1 —I—L = * —J.r -
L {p—l p+2}_F1 Fy= OF,(x)Fz(r x) dx

4 ! I
=J. e 0 dx =e_2'J Eaxfirz"l”(e’—e_y).
0 0 3

Example 2. Using convolution theorem, evaluate L __21* .
P 4y (p+2)

Solution. We know that

L"’{ l }:é—sinm:F,(r) (say) /

p2+4

also, Lt {P JL 2} =¢ = Fz(r)- {(say).

Then by convolution theorem. we have

) I U O RPN
L {(p2+4)({=+2)}_!l(r) Faf) Jﬂfl(I)F_(f X} dx

)

&

fl .
=-[ Zsin2u. etV dx

=

(e ¥ +sin 2¢ — cos 21].

o | —

The Inverse Laplace Transform

Self-Instructional Materiul 83



Special Function and Mechanics

SUMMARY '

Inverse Laplace Transform : If* L {F (1)} = f(p), then L™ [f(p)} = F (1).
«  Shifting theorem : If L™ {f(»)} = F (7). then L™ {f(p — a)} =L {f(p)} = " F (1).
*  Second shifting thorem : If L™' {f(p)} = F (1), then L™ {&™ f(p)} =G (1),

whercG(r):{F(‘b—”} r>a

+  Change of scale : If ' {(£(p)} = F (1), then L™ [f(ap))} = ﬁ F( : )

» Inverse Laplace of Derivative : If ™' {f(p)} = F (), then L} {d(_i" (f(p))} =(~ 1) F ().

!

«  Division by p : If L™! {f(p)} = F (¢), then L™ {%ﬂ }:j F () du.

0
«  Multiplication by p : If L' {f(p)} =F (t), then L' {pf(p)} = F (.
+  Inverse Laplace of integrals : If ™' {f(p)} = F (:), then "' H fd J =52, |
P .
«  Convolution theorem : [f L™ @) =Fand L™ {g ()} =G (), then E

L {fp) g (o)} =L F)G{t—u)du=F=*G.

STUDENT ACTIVITY

1. 1627V {f(p)} = F (9), then show that L™ {f(ap)) :-}I-F(::-)_

2. Evaluate 171

o 1-2)
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TEST YOURSELF-3

1.°

®) L {——P—}=-—Ltsinqr

Use convolution thecrem, show that

p+DE-2) 3
P +ad?| 2a

16 7.

© L {—1“—}=‘L(l —tsin 2t — cos 2f)
p

OBJECTIVE EVALUATION

Flll in the blanks

1.

L ) =F@O. then L {fp-a)) = oo,

L'{=t=......

True or False

1,

- 1 }_ at
L {p-i-»a _e-

2. L)) =F () then L' {f(ap)} == F(é]

3
-1 1 4
3 L {?)=;

Multiple Choic Questlons (MCQ’s).:

1.

L { —ZJLZ equal to :
p—a : )
(a) cos at {b) sin at {c) -(l; cos at (@ % sin at

Fort>a,if L7 {f(p)} = F (1), then L™' (¢ f(p)} equals to :
(a)F[ﬁ-] (b) F(t - a) (c)%F(ﬁ) (d) F (at)

ANSWERS
Flll In the blanks
1.e" F(n) 2.t 3. sinat

True or False :

I.F 2T T

Multiple Choice Questions :

L {a) 2. (b).

(T/F)

(T/F)

(T/F)

Q0

The Iwverse Laplace Transform
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UNIT

8

APPLICATION OF LAPLACE TRANFORMS
TO SOLUTIONS OF DIFFERENTIAL
EQUATION S

¢ Solution of Ordinary Ditferential Equatlons with constant coefficients
a Test Yourself .
® Solution of Partial Differential Equation using Laplace Transform
0 Summary
a Student Activity
Q Test Yoursslf

B R LEARNINGIOBUECTIVES Bl i i
. i

After going through this unit you will learn :
¢ How o find the solution of Crdinary Differential Equation and Partial Differential
Equation using Lapiace transform

* 8.1. SOLUTION OF ORDINARY DIFFERENTIAL EGUATIONS WITH
CONSTANT COEFFICIENTS

Consider a linear differential equation with constant coefficients

| -1
i%-kAldﬂ—n_"li+...+A,,_1§‘2+A,,y=F(t) : (D)
dt df dr
where ¢ is the independent variable and F(¢) is a function of . _
Let . YO =C,y(0)=Cp.., Y (0)=C,o) (2)

be the given initial or boundary conditions where Cy. Ca ..., €,_ | are constants. Now, taking

the Laplace transform of both sides of (1) and using the conditions given by (2), we get an algebraic
equation from which y(p) =L {y (r)} is determined. The required solution is then obtained by finding
the inverse Laplace transform of y(p).

SOLVED EXAMPLES

" 2
Example 1. Solve -3% + y =0 under the condition that y = 1, % =Q whent=0,

Soluiion, Here, the given equation is
3 :
4 iy=0. D
dr?

Taking the Laplace transform of both sides of the given differential equation, we get
L (y”) +L(y)=0

= PLO)~py @)=Y O +L(y}=0
= (p2+ HL (y) p.1-0=0 (using the given conditions)
= L(y)=
24 1
Therefore,

.V=L_'{;2ji—i'}=cosr.



Example 2. Solve (D°+ 1)y =6cos 2t if y=3, Dy =1 when t =0.
Solution, The given equation can be written as
¥ +y=06cos2t
Taking the Laplace transform of both the sides of the given differential equation, we get
L)Y+ L{y)=06L [cos (20)}

‘Liyl=py O =y (@ +L{y} =65
+2 ) !
= (p2 +DL{y}-3p-1 =—26ﬁ (Using the given con’dil*it;ns)
7
= 1[.{3;}:—-49——23 + 21 +—3 sz
+1 p+l P +D@E+4)
3 ] 2p[(p +4)—(p2+_ll
P+l p2+l P+ 1) (PP +4)
3 1 l i
= + +2 -
p2+l p2+l p{pz‘f-l p2+4}
p +1 p +1 p ‘14 .
Therefore, y=setisf-la il |2
P+l p+1 p+4
= y= 5 cost+sint—2cos 2t

Example 3. Solve (D*+9)y=cos 2t if y (0) =1, %]:- L

Solution. The given equation can be written as

¥” + 8y = cos 2¢. (1)
Taking the Laplace transform of both the sides of (1), we get
L{y"}+9L {y} =L {cos 2t}
=" L {y} - py (0) - ¥ () +9L (y} ==&~
p +4
= (p2+9)L{y}—p-C=—2p—'whereC=y'(0)
.__E._
{y}-'°——
249, (p +9)(p +4)
__P_ C p__ _.p
= ot 2 ot 2 N
p’+9 p°+9 S5(p°+4) S +9)
Therefore, :
- 1 1 _ 1, - )
=L Pl R e W Y e
Y {p2+9} {p2+9} 5 pr+a] S pP+9
=c¢ 31‘+lein3t+l 2:--l os 3t -
= (oS 3 5 cos SC
=d cos 3t + L C sin 3¢ +’—l- cos 2t (2)

5 3 5

Now, since y g}= -1, therefore. from (1}, we have

B 1
‘1—5 52+3C1n2+5cosn
- 12
On solving, we get C=-2~

Put this value in (2), we get

4 4 ]
y—5c053r+ssm3t+5c0521. . ‘

Application of Laptace Transforms to
Solutions of Differential Equarionsy .
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TEST YOURSELF-1 ¢

1. Sn]ve%}i+y=lifv:2 when £=(,

2. Show that the general solution of the equation (D* + ) y= Qis
y=Ccos kt + C, sin &2.
3. Solvey’(+y@)=¢tify (0)=1, y(r)=0.
4.  Solve (D*-1)y=a coshns if y=Dy =0, when¢=0.
5. Solve (D2 + mz) x=acosnt, t >0 where x, Dx equal to xp and x;, when r=0, n# m.

ANSWERS

— g e w e

. y=¢'+1 3. y=mcost+t 4, y= 2(4‘ (cosh nt —cosh 1)

Xy, Pe
5. x=uxyco8mt+— sinmi + —— (cos nt — cos mr)
m m -

* 8.2. SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

The Laplace transforms is also useful in solving various partial differential equtions subject
to the given boundary conditions.
Laplace Transforms of Some Partial Derivatives :

M ¢ {%2} =Py (x.p) =3 (5,0)

a'Z
(2) L{—Xar }=P y(x.p)=py{x.0) -y x0)
o|_dy
£ L{ax} dx
¥y _dy
4) L a-x% =Z'2_. where — (bar) denote the Laplace transform of that function.

SOLVED EXAMPLES "

2
Example 1. Solve %r— =2 g—% rwhere y {0, 1) = 0=y (5, {) and y (x, 0} = 10 sin 47,
X

Solution. Taking the Laplace transforms of both the sides of the given equation, we get

2
-y
ot x?

2._
= py=-y(x0)= 2—2
= E;} Ey-'—Ssthx | (1)

The general solution of (1) is given by
o7 7y ¢, V@B SSinany

Cie
y= - @n)-p/2
= F=C, P Ay Gy WD, i20 . sin 4mx. {2
2n° + -
Given that
yO0,.0=0=y(51).
Therefore,

¥(0,p)=0.5(5.p)=0.
Put these values in (1), we get
0=C| +C-_3 (3)



vz o Ny N 10 Application of Laplace Transforins to

. — Sp/2 . .
and o 0=C e+ 0y m . §in 207 Selutions of Differentiod Equations
=C WD Ly Ly | @)
Solve (3) and (4), we get
C1 =0= Cg.
Therefore, from (1), we have
y= sin 47x
Y 30 4 p
= y=1"" ],0 . sin 47x
2n"+p

= 10e” %" _gin dmx.
E . . dy %
Cxample 2. Find the solution of FY -8-5 1x>0,1>0 where y (0,)=1, y (x,0) = 0.
X

Solution. Taking the Laplace transforms of both the sides of the given equation, we get

| _, 1l
"‘{ar} “L{af}

'2_
= p?(vr,p)—y(x,0)=—‘*a f
ox
&y
= *—:_,z—-py=0. (1)
dx

. The general solution of (1) is given by
y=C edp—x+ Cge'ﬁ.

By y {(x.t) must be bounded as x — .
Therefore, ¥ (x. p) = L {y (x. £)} must also be bounded as x — oo

g=C;=0
= =G if Vp 0. {2)
But y{0,9)=1. '
Therefore, '
L{y©.n}=L{1}
- I
= y (0.p) = : : -(3)

From (2} and (3), we get C; =i

L Vx
= =L =erf{——}
y {pe ,ru} 2%—
* SUMMARY
*  Consider
o B |
Fraleby=F@) (D)
with v{0)=¢c;, YO =c, : e (2)

"Taking Laplace transtorm on both sides of (1) and using (2), we get an algebraic equation,
from which y (p) = L {y (1)} is determined. The required solution of (1) is obtained by taking
inverse Laplace of y (p).
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« STUDENT ACTIVITY
2
1. Solve £ 4y=0 with y ()= 1, v (0) = 0. |
dr ‘ ]
- |
!

2. Solve E‘X+y =1 withy (0)=2.

dt
« TEST YOURSELF
1.  Solve QX =2 %X+ v, y{x, 0) = 6¢ ** which is bounded for x>0, #> 0.
B‘y dy _o (8} _q: -
2. Solve = 3 =3 5;— where y[z . r] =0, [ax]ﬁo— 0 and y (x, 0) = 30 cos 5x.
3.  Solve %r a—xs.y(x, 0)=3sin2nx, vy(0.N=0=y(1,0).0<x< 1, >0
x
§)1 8
4. Solve 3 az «{0,5)=0,y(5, =0,

¥ (x, 0) = 10 sin 4mx — 5 sin 67,

OBJECTIVE EVALUATIONS
Fill in the blanks :

2
1. The general solution of é—‘:— +ky=0is ..o

dt : i
2. Liy@l=.....
True or False -
Lo Ly ®y=pL{y®"} -py @ -y (0) (T/F}
i Q'X = i =2is ¢ -
‘2' Solution of ar +y=1withy(0)=2isée + 1. -
Multiple Choice Questlons (MCQ’s)
1.  Solutionof ¥ (H+y (=t withy(m)=0, y{0)=1is:
{a) msint+1 (b) meost+¢ (c) wsint+¢ (d)mcost—¢
ANSWERS
L oy(n)=6e4"% 2. y=30¢" " cos Sx
3 L2 2
30 y()=3¢ % sin2nx 4 y(x ) ==5e "' sin6mx+ 10. "3 sindmx
Fili In the blanks
1l.y=acos kt + b sinkt 2.pL{y(n}-y(0)
True or False _
1.T 2.T ' [
Multiple Cholce Questions (MCQ’s) :
1. (b) .
200



UINIT )
9

FORCES IN THREE DIMENSIONS

Equilibrium of forces in three dimensions
Reduction of system of forcas 1o & single Torce and a couple
Wrench

®
®

°

e Poinsol’'s Central Axis

¢ Wrench and Screw

& Invariants -

& Condition for a system of forces to be a single resultant force
& Eguation of Central Axis

e Procedure for finding X, Y, Zand L, M, N

a Summary

Q Student Activity

o Test Yourse!

After going through this unit you will learn ;
© How to find the resultant of a systern of forces acting on a particle
o What are the necessary and sufficient conditions of a rigid body to be in equilibrium
# What is poinsot’'s central axis and how to find its equation and the surface on which
it lies.

* 9.1. EQUILIBRIUM OF FORCES IN THREE DIMENSIONS

1. To find the resultant of any given system of forces acting at a particie.
- - -
Let F(, Fs. ..., F, be the given system of forces acting at a particle which is at O. Let us

choose three mutually perpendicular lines OX, OY and OZ through O as the axes of a co-ordinate
system. o .
The resultant of the forc_e)s Fl,Fz. ... F, is obtained by the repeated application of the

paraltelogram law of forces. If R be the resultant of these forces, then we have

- = - -
R=F\+F+..+F, : (1)

Let X. Y, Z be the components of R along OX, OY and OZ respectively and let :. J 4nd k be
the unit vectors along OX, OY and OZ respectwe[y then

R:a-Xi+Yj+Zk w(2)

A --> A -

X=i.R=1i, (F]+F" v+ Fp)
A= A = - A =
=i Fi+i. B+ 40 F,

' —> A== —

and Y=j.R=j. (F1+F‘| ot Fy)
- A= A= A D
=j.F1+j.F3+...+j.Fn

A= A D D -~

and 2=k . Rk . (Fil+Fy+... F)

Forces in Three Dimenstony

Self-Instructional Material -91



Special Function and Mechanics

92 Self-Instructional Maierial

A =3 A — A =
sk Fy+k.Frt . +k.F
—

" Thus the resolved part of the resultant R along any axis is equal to the sum of resolved paits
e I
of F\, Fy. ..., F, along that axis : 5
If R be the magnitude of the resultant R, then
- -

R*=R.R
A A A A A A
=(Xi+Yj+Zk) (Xi+Yj+2Zk
=X+ Y+ 7
= R=NX*+7V+ 2.

Now dividing of both sides of (2) by R, we get

A E) X A Y A Z A
_)

This is the unit vector along which the resultant R is acting, Hence

-
cosines of the line of action of the resultant R.

2. The necessary and sufficient conditions of the particle under the action of a system of forces
to be in equilibritan are that the algebraic sums of the resuliant purts of the forces along any thice
mutually perpendicular directions vanish separately.

are the direction

2>
X<

=N

-
Proof. Let R be the resultant of the system of forces acting on a particle at O and X, Y, Z be”
the algebraic sums of resolved parts of the forces along OX, OY and OZ axes respectively. Then

— A A A
R=Xi+Yi+2Zk A1)
. -5
Conditions are necessary. Suppose the particle at O is in equilibrium, then -the resultant R
must be zero.

- = o
R=0, O being the zero vector
A A A=
e Xi+Yj+Zk=0
= X=0,Y=0,Z=0.

Thus in a position of equilibrium of particle, the algebraic sums X, Y and Z along OX, OY and
OZ respectively vanish separately.
Conditions are sufficient. Suppose the sums of the resolved parts of the forces X, Y and Z
along OX, OY and OZ respectively vanish separately. Then
X=.Y=0,Z2=0
— A A A
R=Xi+Yj+Zk [using (1))
A A A
=0i+0j+0k
Y
- =0
Thus the resultant R of all forces acting on a particle is zero. Hence the particle is in
equilibrium.

» 9.2. REDUCTION OF A SYSTEM OF FORCES ACTING ON A RIGID
BODY TO A SINGLE FORCES AND A COUPLE

(i) When some forces act at different points on a rigid = -
body, this system, of forces reduces to a single force and a couple
whase axis passes through a point at which the single force acts.

o ) =
Let /M, Fy, ..., F, be the forces acting at the points ) ¢ P
PPy ..., P, on a rigid body respectively. Let O be any

arbitrary point treating as the origin of vectors and

S o N .
FiTar iy b€ the position vectors of the points Y -F

P\, Pa, ..., P, with respect to the point O (Base point).

Fig. 1



. 2 . ‘ e ' =
Let us consider a fom_g F; acting at the point P; with OP; = r;. Now apply two forces F; and

at O parallel to the forces £; and at P, in the opposite direction as shown in the adjoining fig.
On applying two and equal opposite forces at the same point, they will neutralise each other

therefore there will be no extra effect on the body.
= i ) ] - - -
Thus the torce_f;,- at P, is equif)alcm (o the single force F; at P; and two icgrces. ;and — F; at

0. Since the forces F; at P; and — F; at O will form a coupie of moment r, X F,.

__)
The force F; acLi)ng at the point P_,—_}of a rigid body is therefore equivalent to a single force
£, at O and a couple G; of moment r, X F,.

- = -
Stmilarly all the forces F|, Fy, ..., F, acting at the points Py, P. ..., P, respectively are
= - - -

- -
equig\em t& the 1'07(:;0_3) Fi Fy..,F, a8 O and the couples G|, Gy ..., G, of moments

- -
PyXFraX Fay o ry X Fp.

-

— e —
N If_§ is th:'_gesult;mt of Fy, s, ..., F, the n concurrent forces at O and G the moment of resuhtant

of G|, Gy, ..., G,, then we have
' - - - J -
R=F +Fy+ . +F, =3 F D)
o -
and C=G+G+...+G,
_ s B
=I'|XF|+r2XF3+...+I'nXF"
n - -
=Y xF. {2)

i=1

Hence the system of forces acting at the given points of a rigid body can be reduced to a
_)

— .
single force R acting at O and a couple of moment G, whose axis can be made 1o pass through the
point O. since the couple is a free vector. The point O is also known as the base point.

Remark

-3
> If L, M, N be the components of G about OX, OY and OZ respectively, then

A A A A
G=Li+Mj+Nk
—
The unit vector along G is

r G
G=-=
1G1
-'_> 2 2 el
since |G |=NL + M+ N° =G (say)
A LA MA Nf\
G=—i+—j+k
¢'"6¢’'7¢
Hence. L M N are the direction cosines of the axis of the couple G.

G G G

It has been observed from equation (1) that the single force Fdoes not depend on the poisition
of base point O. but from equation (2) it is obvious that the couple G depends on the points of base
point. N )
We shall now discuss about the change in ¢ when the position of the base point is changed.

(it) To find the change in couple when the base point is changed.
- —

_..)
Let O be the base point and suppose a bystem of forces FI, Fy. ..., F,acting at different points

of a rigid body is reduced toa single force R and a couple G with reference to the base point O,
then we have

_}

"F‘;.

Forces in Three Dimensiony
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- - o
R=3, F )
i=]
N =
and G= ? F; (2)

"
-

. . . .
where 7y s the position vector of a point P; at which a .

force F; is acting.

Let us suppose that the base point O changes to

—
another base point O such that 00’ =c.

Let s; be the position veclor the point P, with respect
to the hase point 0. Then

N
o i=5
Now in AGO’P;, we have Fig. 2

— e
OO0 + O'P, = OP; (By the property of addition of vectors)

- = —
= cts=r
-5 = 2
= S=ri—c (3}
- = '

Suppose a s}slem of fcur:cs Foo Fo - F acting different points of a rigid body is reduced to

a single force R and a couple G with reference to the base point 0.
Then we have

- - - ~>
R'=F]+F2+...+Fn
n > - !
=Y F=R (4
i=
2]
— -5 =
and G = 5, X F
=
n
- = 2 :
= {ri—¢) X F; [using (3)]
i=|
n
— o =
=Y (XF,-cXF)
i=1
# N
- -
= r,-XFI— CXF,
i=\ i=(
n __) RN -—_) n _} —_
= nXF-cX E F; (" ¢ is a constant vector)
i= =1
- - .
G'=G—-cxR .(5)
- _._) -—)
Thus R’-R and G'=G~¢X

-
Hence we get a conclusion that when the base poim changes, the single force R remains the
—

same but the couple G change to E? which is governed by the equation (5).

(iii) Conditions of equilibrium of a rigid body.

Theorem. 7The necessary and sufficient conditions of a rigid body 1o be in equilibriam under
the action of a system of forces acting at different points on it are that the swms of the resolved parts
of the forces along any three mutually perpendinlar axes and the sums of the moments of the forces
about these axes must vanish separately.



- > —
Proof. Suppose a rigid body is acted upon by a system of forces F, F,, .... F, at the points

Py, Py, ..., P, respectively.
o e .. , .
Let ry, ry, ..., 1, be the position vectors of the points P, Ps, ..., P, with reference to the base

- - -
point O. Then the system of forces reduces to a single force R and a couple G given by the equations:

> o D
R=3 F (D)
Ci=t
- 2 -
and G=Y rxF, 2

i=1
A A
Now consider three mutually perpendicular axes OX, OY and OZ through O and let 7, j and

A
& be the unit vectors along the axes OX, OY and OZ respectively.

Let (x; v, &) be the co-ordinates of a point P; on a rigid Izgdy with reference to the axes
OX, OY and OZ and let X, ¥; and Z; be the components of a force F; acting at P; along OX, QY and
OZ respectively. :

Since r, is the position vector of P; so that

AT
r=Exiity itk

— A A A
and FI:X‘.I‘*‘Y”!"!'Z‘IC.

Then from (1), we have

» A A A
S, Xii+ Yij+Zk).

. i=1

_)

— A A A
Also R=Xi+Yi+Zk
n n

. ., H
X=3Y X, Y=3 Y, Z=Y Z (3

i=1 i=1 i=1
Here X, Y and Z are the sums of the components of the given forces along the axes OX, OY
and OZ respectively.
Now equation (2) becomes :

— " Al A A A A A
G= Y, [(xi+yj+zkyx(X,i+Y,j+ZRk)]

n A A A
=2 W Zi—zY) i+ @ Xi~xZ)j+ (Y, -y X) k.

_)
If L, M and N be the components of G along OX, OY and OZ respectively, then
- A A A
G=Li+Mj+N£L

A A A 7 A A A
Li+Mj+Nk=Y, [0 Z-u¥)i+(gXi—xZ)j+(x Y, -y X)k
i=1

= L= (n:Zi-zY)
i=] -
=3 GXi-x2Z) . ' 4
=1
and N=Y (5 Yi=yX)
i=i

Equation (4) gives the sums of the components of couple about OX, OY and OZ respectively.

Forces in Three Dimensiony
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Conditions are Necessary :
Suppose the rigid body is in equilibrium, therefore, there is no movement in the body :e
there is neither the motion of translation nor the motion of rotation. .

- 22 =
This implies, R=0,G=0.

- A A A - A A A
Since R=Xi+Yj+Zk and G=Li+Mj+Nk

- —= A A A=
S R=0 = Xi+Yj+Zk=0={0,0,0)
=3 X=0,Y=0,Z2=0

—_ A A A =
and C=0 = Li+Mj+Nk=0={0,0,0)
= L=0,M=0,N=0.

—

Thus from (3) and (4}, we get

2. X:=0,2,%=0,37=0
and E(y,- Zi—: X)=0, E(ZF Xi—x;Z)=0

and 2 (5 Yi=yi X} =0,

Hence if a rigid is in equilibrium under the action of a system of forces, the sums of the
components of all forces and couple vanish separately.
Condition are Sufficient :

Suppose the sums of components of the forces along the axes OX, OY and OZ vanish and
sums of the moments of the forces about 0OX, OY and OZ vanish. Therefore,

X=0,Y=0,Z=0 k

and L=0,M=0,N=0 . '

- A A A
R=Xi+Yj+Zk=0
- A 43 A -
and G=Li+Mj+Nk=0.
I I
Thus R = O and G = 0. Hence the rigid body is in equilibrium.
+ 9.3. WRENCH ' {

Definition. When a rigid body is acted upon by a system of forces at different points on the
-

body, then this systcm can be reduced to a single force R acting at an arbitrary point O and « couple
- ~

G whose axis passes through O. In case. when the line of action R is same to the axis of the couple
- — - :
G, then R together with G form a wrench and common line of action of the single force R and the

__)
axis of G is said to be the axis of the wrench.

- -
If R be the magnitude of R then R is called the intensity of the wrench. Also if G = pR. then

p is called the pitch of the wrench.
Remark

» - - - =
If R and G are paralle], then R and G forin &« wrench.
Theorem. To show that any system of forces acting on a rigid body cun be reduced io a
single force together with a couple whose axis is along the direction of the force.
Proof. It has already been proved that any system of forces acting on a rigid body can be

— ‘
reduced to a single force R and a couple G whosc axis passes through O {base point} at which R
acts.
. _) . o _>
Suppose a single force R acts at O and along a line OA and a couple of moment G about a

line OB. Let ZAOB=0. !
Draw a line OC perpendicular to OA in the plane OAB and draw OD perpdendicular to the

plane AOC.



The couple of moment G (magnitude of E)) acting, 4 B
about OB is equivalent to a couple of moment G cos @ about
OA and a couple G sin 6 about OC as shown in fig. 4.

Since the line OC is perpendicular to the plane  *
AOD. Therefore the couple G sin 0 acts in the plane AOD
and it can therefore be replaced by two equal unlike parailel
forces in the plane ACD.

Let us choose one of these force R at O in the opposite e
direction to OA, therefore the other force must be equal 1o £ -7
R acting at some point O’ in OD along a line O’A” (say)
which is parallel to OA such that . Fig.3

R.OO'=Gsing
=Gsin9‘
R

Gcos @
= o
Since the two equal forces of magnitude R are

acting at O in the opposite direction, so they neutralise
each other. Thus we obtain a force R at O’ acting along

R
0
O’A’ and a couple of moment G ¢os © about a line parallel
fo AO. Let us take a line O’A” paralle]l to OA as shown D

in fig. 5.

Gsin @

“Tw

Fig. 4

) o

Fig. 5

Also, the axis of a couple can be transfered to 4
any parallel axis, therefore we take the axis of . '
(G cos B as O'A’ as shown in fig. 6. 4t

Hence a system of force acting on a rigid body Geos B
can be reduced to a single force R and a couple of LN
moment G cos 6 such that line of action of R and the
axis of G cos 0 are the same. This same line is called Rt
Poinsot’s central axis.

* 9.4, POINSOT’S CENTRAL AXIS C

1. Definition. A system of forces acting at f/O’ ) 1
different points of a rigid body can be reduced to a
single force of magnitude R acting along a line and a Fig, 6
single couple of moment G cos B about the same line.
This same line is called Poinsot’s central axis.

2. Properties of central axis.

(i) Central axis for a systent of forces acting on a rigid body is unique.

Proof. Let, if possible for a given system of forces, ther‘le are two central axes, Let O'A” and
O”A” be two central axes for a given system of forces, and p be the distance 0°0”.

Therefore. the given system of forces is equivalent to a single force along O’A” and a couple
about a {ine O’A’" and also is equivalent to a force along O”A” and a couple about 0”A”. But the
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single force will be same in magnitude and direction, because the single force does not depend on
the base point. Thus the line O’A” is parallel to O”A”. Hence the wrench (R, G) about O’A” is the
same as the wrench (R, G*) about a parallel line O"A”.

Since p is the distance between O’A” and O”A”, so that the single force R along OA” is
equivalent to R along O’A” and a couple of moment R . p about ar axis perpendicular to O’A”. Hence
the wrench (R, G') is equivalent to R along O’A’, a couple G’ about O’A” and a couple R . p about
an axis perpendicular to O'A”

This implies that the system (R, G’) is not same to the system (R, G). Which contradicts the
hypothesis. Hence the two central axes O’A” and O”A” must be same. Consequently central axis is
unique. i

(ii) The moment of the resultant couple about the central uxis is less than the moment of the
resultant couple corresponding to any point which is not on the cenral axis.

Proof. Since the single force R is same for any base point O while the single couple G is not
the same.

If O be any origin (not on the central axis) and G be the couple for O, and if its axis makes
an angle O with the single force R, then the couple for the central axis will G cos 8.

Since cos 6 < 1, therefore Gcos 0 < G.

Hence the couple G cos B about the central axis is less that the couple G corresponding 10
any point O (not on the central axis).

* 9.5. WRENCH AND SCREW

(1) Wrench. A system of forces acting at different points on a rigid body can be reduced to
a single force R acting at an arbitrary point O and a single couple G about an axis passing through
O. If the axis of G makes an angle 8 with the line of action of R, then G cos 0 is the magnitude of
moment of couple about the central axis. If R is the single force and K = G cos 0 be the single couple
whose axis coincides with the direction of R, then R and K together constitute a wrench of the
system of forces. '

The magnitude of single force R is called the intensity of the wrench and the ra{iu% - is called

the pitch of the wrench. If p be the pitch, then K =R . p. There are following cases depending on
p {pitch}).

(i) If p=0, then the wrench (R, K) reduces to a single force R.

(ii) If p = oo (infinity), then the wrench (R, K) reduces to a couple K only.

(2) Screw. The straight line along which the single force acts when considered together with
the pitch is called a Screw. Therefore a Screw is a definite straight line associated with a definite
pirch.

+ 9.6. INVARIANTS

(YWhatever origin or base point and axes are chosen, the quantities

X +Y'+2 and LX+MY+NZ
are invariable for any given system of forces acting on a rigid body

where X=EX,—,Y=Z Y,-,ZZEZ,-
a"d i L=2(yl‘zf_z[' YI) elc.
Proof. Let O be the origin and OX, OY and OZ are three mutually perpendicular axes then
-3 -
a system of forces acting on a body can be reduced to a singte force R and a couple G. Ifx J d]‘ld
k be the unit vectors along the axes OX, OY and OZ respectively, then
— A A A
R=Xi+Yj+Zk

- A A A
and G=Li+Mj+Nk
Now if we consider other origin O’ and OX O'Y and O'Z as mulually perpendicular axes.

.f\ A A

then a system of forces reduces to a single force R and a single couple G ¥, j, K be the unit
vectors along o'xX, oY and e respectlve]y, then

R=XT+V)+Zk



and

and

- A A A
G=Li+Mj+NF¥.
We now actually prove that '
X+ Z=x2+y?4 27
LX+MY+NZ=L'X +MZ +NZ.
Since single force R and R” does not depend on the position of base point, so that

¢

- -
R=FR
PR
= IR|=|R|
= VP42 = VX4 ¥2 4 22
= X+VP+Z=x*+ v+ 22

- } — -
On the other hand, the couple G depends on the position of base point. If OO’ = ¢ '(a constant

vector), then

R-0 (". Scalar wiple product is always zero if
two vectors are same)

= LX+MY+NZ=LX+MY+NZ
(ii) Pitch and intensity of wrench using invariants.
Suppose a system of forces acting on a rigid body reduces to a singie force R (X, Y,Z)and

a couple G (L, M, N).

and

) =
If this system reduces to a wrench (R’, G*), then we have

= =
R=FR
- -
G =pR.
-2 -
The magnitude of R’ = R is the intensity of wrench, so that the intensity of wrench
=
=R
_)
=[R]
=VNX*+ ¥* + 22 = R (say) 1)
= = :
Also, G’ =pR’
o e S S
= G .R=pR.KR _
2 - S-= =2 =2 =
= G.R=pR.R (w GC.R=G.R)
==
= G.R=pR

= LX+ MY+ NZ~-pR‘
- LX+MY+NZ LX+MY+NZ
p= R X+ Y+ 7

Equation (1} gives the intensity of wrench and equation (2) gives the pitch of wrench.

(2}
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Remark

» .
If K be the couple of wrench, then K=pR = gj—h?,—*'@

« 9.7. CONDITION FOR A SYSTEM OF FORCES TO BE A SINGLE
RESULTANT FORCE

Theorem. The necessary and sufficient conditions for a system of forces to reduce 1o a single
resultant force are

LX+MY+NZ=0 and X)+ Y +Z° 20

- - :
R=(X,Y,.Z) and G=(L, M, N) Lt

Proof. Suppose a system of forces acting at different pomts on the rigid body reduces 10 ¢
single force R (X, Y, Z) and a couple G = (L, M, N). The force R acts at O and the axis of G passe:!
through O.

Condition is Necessary :
Let O’ be other base point, and the system (R G) reduces to (R’ G) then

where

- =
R =R
and G’ G c_>xR where OO =c
- — :
If (R, G") reduces to a single force at &, then we must have
- -
R+#0 and G'=0
- - - - F
= R+#0 and G'.R' =0
- — - =
= R#0 and G.R=0
- =
- G.R=0 |
= LX+MY+NZ=0.

Conditlon are Sufficient :
Let us suppose that

LX+MY+NZ=0.

: : - =
Now take a point O’ on the central axis and suppose the system reduces to (R’, G') at O
-

—_
which forms a wrench, therefore G’ is parallet to R".

But LX+MY+NZ=0
‘ - —
= G.R=0
, - = - —
= G’.R’=0 C. G.Risinvariant

- -
Since G’ is paral!el to R then G’ R =0 will be possible if G O, because R # O. Hence thr

system reduces to onl R’ at @ which is a single resultant force.
Y Y g

« 9.8. EQUATION OF CENTRAL AXIS

To find the equations of the central axis of the any given system of forces acting at differen
points on a rigid body.

Central axis. A straight line which is the locus of the points referred to which as base point
the system of forces reduces to a wrench, is called the central axis of the system of forces acting or
a rigid body.

Let O be the origin (base point) and OX, OY and OZ be three rectangular axes. Under th|
co-ordinate system, suppose a system of forces acting on a rigid body reduces to a single forc

- -
R=(X, Y, Z) acting at O and a couple G = (L, M, N) about an axis passing through O.




Let P (e, B, v) be any point on the central axis and r be its position vector with respect to

0, then . .
- A A A
OP=r=0i+Bj+vk
. ] . . . H _)
Since P is on the central axis, so that the given system reduces to a wrench (R', G) at P, then
we have :
- -
R'=R (D
- o —
and G=G- A_§< R
- -
But (R, G’} is a wrench, so that

- -
G’ =p R’, p being the pitch of wrench

e e e

G-rxR=pR =pR [using (1) and (2)1

{\ .l'\ A A A A A A A A A A
LitMj+NE) - (Qi+Bj+YRIXXi+Yj+Zh)=p(Xi+Yj+Zk)

A A A A A A A A A
(Li+Mj+NRO-LBZ- N +jGX -0y +k @Y -BX) =pXi+pYj+pZk
L-BZ+yZ=pX. M —yX+0Z=pY, N-aY+PpX=pZ
L-PBZ+yY M-yX+0Z N-a¥+BX _

X y =~z ¥

Thus the locus of (a, B;y) is

L-yZ+z¥ M-zZX+xZ N-xY+yX
x Ty Tz ¢

This is the required equation of the central axis.

Here the degree of x, y and z are all one, so that this line represents three planes whose
ntersection is the above line. Hence the intersection of any two of these planes gives the equation
>f the central axis.-

9.9. PROCEDURE FOR FINDING X, Y, Z; L, M, N

Suppose a system of forces of magnitudes Fy, Fy, ..., F, acting at different points of a rigid
ody. Let O be a base point and OX, OY and OZ be three mutually perpendicular axes.
Suppose F, is acting at a point (x, y, z;) along a line

L |

K
= -{4)

X~ X =}"}’1 :Z'Zl
{ m " i

-vhere {;, my, n are the direction cosines of a line. Then the components of F| along OX, OY and
)Z can be determine as follows :

X\ =Fl,Y,=Fm,Z =Fn,.

Similarly, for other forces we can find X3, 15, Z; etc. Therefore, we find :

X=Y X.¥Y=Y ¥t and z='Zz,.
Also, we can find L, M and N as follows :

First we write the co-ordinates of points at which the forces are acting in the first row and
khen write the components of forces in the second row as shown below :
l 1

(i) x J’1§<: J’Z><Zz; . e,

X] Yl Zl; b) Y2 Zz, . efc.
Here we calculate L as follows :
L=y Zi— )+ -a 1) + ...

{ l
(ii) ¥ X >y'2<zz', . €tC.
X| Yl Z|; XZ Yz ZZ; .. ElC.

Here we calculate M as follows :
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M= (Z]X[ —XIZ]) + (Zng —Xzzg) +...
¢ 1)
iii) XN 2 X y2 22 . BtC.

. -Xl i Zys X, Ya . Zp; .. ele,
Here we calculate N as follows : I
N=x - nX)+ala-pX)+....
Remark
> If {,,m, 1y are not the direction cosines, then first make them direction cosines as
follows :

1 ny n _ '

, 1
'\[!,2+m,1+n|2 '\!.1’,2+J'n|2+1'1,2 \h,2+mlz+n]2 [

SOLVED EXAMPLES i

Example 1. Three forces, each equal to P, act on a rigid body; one at point (a, 0, 0) parallel
10 OY, the second at the point (0, b, 0) parallel to OZ and the third at the point (0, 0, ¢) paratie! ."io
OX axis, the axes being rectangular, find the resultant wrench in magnitude and position.

Solution. First force P is acting at (a, 0, 0) along a line paralle to OY axis, so that the direction
cosines of the line are 0, 1, 0. '

Then X,=0.P=0,Y,=1.P,.2,=0.P=0.

Second force P is acting at (G, 5,0} along a line paralle! to OZ axis whase-d.c.’s are 0, 0, 4
so that

X,=0.P=0,Y,=0.P=0,Z,=1.P=P.
And the third force P is acting at (0, 0, ¢) along a line parallel to OX axis whose d.c.’s are 1,
0, 0, so that i
X;=1.P=P, h=0.P=0,2;=0.P=0. ) \
X=X +Xo+X3=0+404P=P
Y=1+12+Y;=P+0+0=P

and Z=Z\+2Z,+Z,=0+P+0=P.
Now we shall calculate L, M, N as follows :
Points at which the forces: o, 0, G 0, b, 0 0, 0, ¢ .areacting
Components of forces: 0, P, G 0, 0 P P, 0, 0
L= nZi~7Y)=(0~0)+(HP-0)+(0-0)
=bP
M= @X ~x2Z)=(0-0)+(0-0)+(cP-0)
and N=Y (Y ~yX)=(@P-0)+(0-0)+(0=0) ;
=aP.

If R be the force and K the couple of wrench, then
R=NE+V+Z2 =P+ P +P =3 P

LX + MY+ NZ
R

_bP.P+c¢P.P+aP.P
Y3i.p

=\%(a+b+cj.

and K=

Now the equation of central axis is
L—yZ+z¥ M-X+xZ N-x¥+yX _
x v z °F




bP-yP+zP cP—zP+xP _aP-xP+yP _

= = =
P P P
= b—y+z=c-z+x—a—x+y"p
Since p:—z'—&(ﬂ+b+c) S
R V3 \l_p
=§(a+b+c).
b—y+z=c—z+x=a-—x+y=%(a+b+c)
a+2b+3c b+2c+3a ct2a+3b
= X+ 3 =y+ 3 =z+ 3

Thus the central axis is a straight line passing through the point
(_a+2b+3c _b+2c+3a _c+2a+3b)

3 3 3
and inclined at equal angles to the co-ordinate axes.

Example 2. A force P acts along the axis of x and another force nP along a generator of the

cylinder x* + y* = a*. Show that the central axis lies on the cylinder
7 (nx =22+ (1 +0) vy =n'a®, Z

Solution. Since the force P is acting along the x-axis

whose equation is '
XY _X
170 0

Thus P acting at (0, 0, 0) along a line whose d.c.’s are
1,0,0.

The axis of the cylinder x* + y* = a° is the axis of z, so
that the generator of this cylinder is parallel to z-axis. Let
{a cos 8, a sin 0, 0) be any point on the cylinder. Thus the
force #P is acting at the point (a cos 8, a sin 6, 0) along a tine
whose d.c.’s are 0,0, 1. . Fig. 7

The components of P along OX, OY and OZ axes are
respectively

(acos 6, a sin )

X, =P.1=P,Y=P.0=0,Z;,=P.0=0.
The components of nP along OX, OY and OZ axes are respectively
Xo=nP.0=0,Yy=nP.0=0,Z,=nP.1=nP.
Therefore, we get
X=X +X,=P+0=P -
Y=Y +Y,=0+0=0
2=21+Z,=0+nP=nP.

Now we calculate L, M, N as follows :

Points of application : 0 0 0 ; acos® asin® O
Components of forces P 0 0 0 0 nP
Thus, L=0@Z =¥} + (222 — 221)

=(0-0)+(anP sin 6 ~0)

=anP sin 0

© M =X - 0Z) + (22X — X2p)
=(0-0)+ (0-anP cos 9)
=—anP cos B
and N=(xY1 = nX)) + (22 - y2X)
=(0-0)+(0-0)
=0.
The equation of the central axis is

Forces in Three Dimensions

Self-Instructional Materigl 103



Special Function and Mechanics

104 Self-Instructional Material

L-yZ+zY M-X+xZ N-xY+yX

X Y 4
anP sin@ —ynP _-anPcos®—-zP+xnP _0-0+yP
P 0 nP
anPsin@-nyP v
P n

nansin®-ny)=y
an*sin@ = y(l+ ”2)
sing=21-71) (L +.,”2)
an
and —anPcos®—zP +xnP=0
- ancos 8=(xn—z)
xh-z.
Tan
Squaring (1) and (2) and adding, we get
(1 +n)? 4 (xn —2)*

cos 0=

sin’ 0 +cos? 8 =

a'n? a‘n’
2 2y 2
14+nY+{(xn-2
_ WE(ETOEICET
na
= V(3 + 08 40 (xn - 2P =

This is the required surface.

()

|+ SUMMARY

_,_>
*  The resultant of forces ?1, Fayuinin, , F, acting on a rigid body is given by
R=F+F+....+F= L F.
i=1

-
* If the forces Fy, ?3, ...... , ?,, acting at points wih position vectors 7;, 7y,
-body, then the resultant moment ?about O (origin) is given by

- I —
G= T FXF.

i=]
+ If E)and Eare parallel, then Rand 8f0rm a Wrench.
« Equation of cenral axis is
L—yZ+z¥Y M-zX+xZ N-x¥+yX &k
x y z R

, ﬁon a rigid
.

¢+ STUDENT ACTIVITY

k

1. The necessary and sufficient conditions of the pasticle under the actior of a system of forces
to be in equilibrium are that the algebraic sums of the resultant parts of the forces along any

three mutually perpendicular directions vanish separately.




_2.-

A force P acts along the axis of x and another force nP along a generator of the cylinder
.vz_ + y2 = a%. Show that the central axis lies on the cylinder
n? (nx ~ .a):Z +(1+ ”)2 y2 =it
» TEST YOURSELF
1. Equal forces.act along two perpendicutar diagonals of opposite faces of a cube of side a. Show
that they are equivalent to a single force R acting along a line through the centre of the cube,
and a couple —;- aR with the same line for axis.
2. Forces P, O, R act along three non-intersecting edges of a cube. Find the central axis.
3. Equal forces act along the axes and along the straight line :
x-a_y-B_z-v
l n n
find the equations of the central axis of the system.
4. Two forces P and Q act along the straight lines whose equations are y=xtanq, z=c¢ and

y = —xtan @, z =~ ¢ respectively. Show that their central axis lies on the straight line

2
}’=x.P_Qtanc1 and %= 3 P Q 5
P+Q ¢ p2_2PQcos20+Q

For afl values of P and Q, prove that this line is a generator of the surface

(x* + y%) 7 sin 200 = 2¢xy.
ANSWERS

1. With respect to three coterminous edges as co-ordinate axes, the central axis is
Q-yR-aQ xR-zP-aR _yP—xQ—aP

P 0 R
3 dl+my—y(l+m+@r—ym) _x(+n)-z(L+H+{yl-on}
’ (1+19) (1 +m)
_yU+D-x(L+m)+(oum~ph)

{1+n)

QQa
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UNIT

10

STABLE AND UNSTABLE EQUILIBRIUM

Definitions
e Nature of Equilibrium Using Z-test
Nature of Equilibrium of a body when resting on a fixed rough surface
D Summary
o Student Activity
a Test Yourself

‘LEARNING OBJECTIVES

After going through this unit you will learn :
o What are different types of equilibrium ?
e How to find the condition that the given body is either in stable or unstable equilibrium.

+ 10.1. DEFINITIONS

We thus now define all of three types of equilibriums :

(i) Stable equilibrium. A body is said to be in stable equilibrium, if it is slightly displaced
from its position of equilibrium, the forces acting on the body tend to move it back to its original
position.

(ii) Unstable equilibrium. A body is said to be in unstable equilibrium, if it is slightly
displaced fro.'n its original position, the forces acting on the body tend to move it still away from
its position of ethbrmm

(iii) Neutral equilibrium. A body is said to be in a neutral equilibrium, if it is displaced
from its position of equilibritan, the forces acting on sr are in equilibrium in any new position of
the body.

* 10.2. NATURE OF EQUILIBRIUM USING z-TEST

Suppose a body or a system of bodies are in equilibrium under the influences of their weights
only and supported by reactions with smooth fixed surfaces which do not present in the equation
of virtual work. . .

If wy. wo, ... be the weights of the different bodies and z;, z,. ... the heights of their ¢centre of
gravity above some fixed plane, then the equation of virutal work is

—W|52|_W2822 ..=0 ' {1}

If W be the total weight of the system and z be the helght of its centre of gravity, then the

equation (1) becomes :

-Wéz=
= §z=0
= g =0
: dz -
= 5"
Hence the necessary condition of a body to either be in stable or unstable equilibrisum is that
az
de

On solving (:B 0 we are supposed to get 8 = o, B etc. which give the position of equilibruim.



Nature of equilibrium at6 =0 :

2

d°z
Case I. Suppose
pp 52

is positive at 8 = ., then z is minimum at 0 = @, therefore, the height of

the centre of gravity is minimum, so that for a small displacement, the height of the centre of gravity
is incraesed and then on being set free the body will tend to come back to its original position of

équilibrium. Hence in this case the body is in stable equilibrium.
dz . . . .
Case II. Suppose — is negative at 8 = (, then z is maximum, therefore, the centre of gravity
0 &

of the body will be lowered, during a small displacement and on being set free, the force of gravity
will tend to keep the body away from its position of equilibrium.
Hence the body in this case is in unstable equilibrium.

Consequently, If % =0 gives the position of equilibrium, then the body will be stable or

unstable at 8 = 0L according as z is minimum or maximum at 6 = o.
Remark
> If z be the depth of the centre of gravity of the combined body, then the body will be
in unstable equilibrium if z is minimum and the body will be in stable equilibrium if

Z iS maximum.

» 10.3. NATURE OF EQUILIBRIUM OF A BODY WHEN RESTING ON A
" FIXED ROUGH SURFACE

Theorem. A body rests in equilibrium upon another, fixed body, the positions of the two
bodies in comact have radii of curvatures P, and p; respectively, and the straight line joining their
centres of gravity being vertical; if the first body being slightly displaced whose centre of gravity
is at a height h above the point of contact, then the equilibrium is stable or unstable according as

1 1 1 .
- > or £ —+ — (without proof).
h P P2 P f)

Remarks :

> If both the body are spheres, then we will take p, and p, as their radii.

> If the lower body is a fixed plane, then we shall take p; = oo,
» If the surface of contact of upper body is a plane, then we shall take p; = o,

> If the lower body at the point of contact is concave instead of convex, then p; is to be
taken negative.

SOLVED EXAMPLES

Example 1. A body consisting of a cone and a hemisphere on the same base rests on a rough
horizontal table, the hemisphere being in contact with the table; show that the greatest height of
the cone so that the equilibriwm may be stable, is V3 times the radius of the hemisphere.

Solution. Let G be the centre of gravity of the combined ¥
bodies and G, be the C.G. of the cone and G, the C.G. of
hemisphere.

Let AB be the common base of hemisphere and the cone
and COV the common axis which will be vertical in a position of
equilibrium and C the point of contact of the hemisphere to the
horizontal plane. ' B

Let & be the height OV of the cone and r the radius QA (or
OC) of the hemisphere. Then

H 3r
OG|-4, 0G; = 3

Also & be the height of C.G. of combined body consisting
of cone and a hemisphere above the point of contact C. Then
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W,xl + WzX: . Tk
W W,
Here W\ = weight of the cone

1 L .
=3 i Hw, w being the weight per unit volume

and ' W, = weight of hemisphere

and x = 0G, =[r+ J

1 2 2
31rer+3nrw

H) 52
H[r+4J+4r
(H+2r)

Now P = radius of curvaiture of the upper body at C which is hemisphere

=r

and P2 = radius of curvature of the lower body at C which is a horizontal plane
. The equilibrium is stable if
1.1 1
— — + —
hpi P2
1 I 1
= >4
h r o
S 11
T hoor
= hi<r
HY 5 1
H(l + 4]+ e
= Hv2y
= Hr+-4—“+%r2<r(h’+2r)
2
= Hr+ 03 2 ey
.4 4
H 3
=3 T < Z )‘2
= . H* <37
= H<V3r.

Hence in the position of stable equilibrium the greatest height of the cone is V3 times the
radius of hemisphere.

Example 2. A hemisphere rests in equilibrium on a sphere of equal radius; show that the
equilibrium is unstable when the curved, and stable when the flat surface of the hemisphere rets on
sphere.

Solution. (i) Let us consider the case when the curved surface rests on the sphere.

Let O and O’ be the centres of sphere and hemisphere of same radius r (say) and C be the
point of contact. ’



Since the C.G. of the sphere lies on the centre, so that C.G. of the lower body (sphere) is at

" O and let G be the C.G. of upper body.
In the position of equilibrium OCO’ must be vertical.
Now  p, = the radius of curvature at C of the upper body

=7

and P, = the radius of curvature at C of lower body
=r
1 1 1 1 2-
—_— —_————=—
PP v ror

Also h=CG

.5,
"8
1.8,
5T
Obviously, .’11 < pi + pi
1 P2

Hence, ir this case the equilibrium is unstable. .
(ii) Now consider the case when the hemisphere rests on the
sphere with flat surface in contact.
In this case the centre O’ of the hemisphere is the contact point
to the sphere. Therefore,
p; = the radius of curvature at O° of the upper body
which is hemisphere whose flat part is in contact.
=
and  p, = the radius of curvature at O’ of the lower body
which is a sphere
— r

1 1 t 1 1
Pr Py e 1 r
Also I:=O’G=%r
18,
ho3
1 1 1
Obviously, =>4+
Y h P P2

Hence in this case the equilibrium is stable.

Fig. 7

Fig.8

Example 3. A uniform cubical box of edge a is placed on the top of a fixed sphere, the centre
of the face of the cube being in contact with the highest point of the sphere. What is the least radius

of the sphere for which the equilibrium will be stable ?

Solution. Let O be the centre of the sphere over which a cubical box of edge a is placed. Let

C be the point of contact and G be the centre of gravity of the cubical box

and r be the radius of the sphere.
44

Therefore, h=CG= 5
Now, p; =the radius of curvature at C of the upper body
= oo . :
and p, = the radius of curvature of the lower body
=r
1 1 1 1 1
— =4 —=—
Pi P > T 1
a
. h=cc=2
Since 1=CG >

Therefore, for stable equilibrium, we have

/

p G

al2

‘ig. 9

Stable and Unstable Equilibrinm
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1 1 1
>—+
h pr P

/2" r

= r>2
2

Hence, for the stable equilibrium, the [east radius of the sphere must be %— E

Example 4. A uniform beam of length 2a rests with its ends on two smooth planes which
intersect in a horizontal line. If the inclination of the planes to the horizontal are o, and B with
o > B, show that the inclination 0 of the beam with the horizontal in one of the equilibrium position
is given by

tan® = % (cot B — cot «)

and show that the beam is unstable in this position. i

Solution. Let O be the intersection
point of two inclined planes in the horizontal
line and let A8 be a uniform beam of length
24 rests on two inclined plane with A on one
and B on other plane as shown jo fig. 14,

Suppose the beam AB makes an angle
9 with horizontal.

We have

LAOC=§, ZBOD = 0.

Let G be the centre of gravity of the
beam AB which is its middie point and let z
be the height of G above the fixed horizontal
plane COD.

z=GM—%(AC+BD)

:%(AO sinB+O0Bsincq). (D)
Now in AAOB, we have

AB .40 ___ BO (By sine rulc)
sin {m—(ct+P))  sin(c—-B) sin(B+6) Y )
2a ___ A0 _ BO
sin{ct+B) sin(w—0) sin(B+8) to :
O_Zasingoz—@} BO_2asin{[§+8]_"
Tosin(a+B) 7T sin(a+f)

Putting the values of AQ and BO in (1), we get

:l[2a sin {ct - 8) sinB+2a sin (B +6) sin a}

T2 sin(@+B) sin (0 + B)
. Z=Wl+ﬁ)[5i"{a—9) sin B + sin (B + 8) sin .
Thus z is a function of 8. ‘
%=m['c°s (o= 8) sin B +cos (B +6) sin o] .(2)
a'zz a F
and d<c__ @

o sn@1B) [- sin (0. — 8) sin B - sin (B + 8) sin a]. ...(.3)

For the equilibrium position, we have

dz _
@ °
= —cos(ot—~0)sinB+cos (B+0)sinc=0



= cos (& —8) sin P=cos (B+8) sinct

= (cos o cos B + sin @ sin 8) sin f = (cos § cos 8 — sin B sin 8) sin 6.

Dividing by sin ¢ sin 3 sin 6, '

= cotocot O+ 1=cotPcol0-1

= cota+tand=cotfB-tand

=> 2tan9=cotB-cota

= tan @ = ~21~ (cot § — cot ar). ...(4)

Equation (3) becomes :
d* - a
dot  sin (o +B)

[—sinc sin B cos O + cos o sin P sin 6

~sin o sin B cos 6 — sin ¢ cos B sin 8]
_asinasinBsin 6
© sin(a+p)
_—2asinasinfsing
sin (o + PB)

[ 2 cot 8+ cot 0 ~ cot 3]

[—é— (cot B — cot &) +cot a]

_~2asinusinPsing

sin (& + B)
dz _~2asinasinBcos®

d0* sin (& + )
Since 8, 0., B are all acute angles and o + B < 7, so that
d’z
49’
z is maximum when 8 is governed by the relation

[tan & + cot O]

[1+tan®0).

<0.

mn@z%(cotﬁucma)
Hence the beam is unstable if

tan @ = % (cot B —cot ).

SUMMARY

Nature of Equlibrium using z-test :
(i) If z is the height of the centre of gravity of the combined body, then the body will be in
stable or unstable equilibrium if z is minimum or maximum at 6 = ¢, where (j—; JH s 0.
(ii) If z 1s he depth of the centre of gravity of the combined body, then the body will be in stable
or unstable equilibrium if z is maximum or minimum at 8 = o, where ( *gé =0.

=qa
If /1 be the height of C.G. of upper body (to be displaced) from the point of contant, and p, and
{2 be the radii of curvatures of above and lower bodies respectively, then body will be in stable

or unstable equilibrum according as
py P2 h=pr P2

Stable and Unstable Equitibrivm

[using (4)]
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* STUDENT ACTIVITY

1. A uniform cubical box of edge a is placed on the top of a fixed sphee, the centre of face o

the cube being in contact with the highest point of the sphere. What is the ieast radius of the
sphere for which the equilibrium will be stable ? ‘

%

2. A uniform beam of length 2a rest with its ends on two smooth planes which intersect in a-

horizontal line. If the inclination of the planes to the horizontal are o and B with & > B, show
that the inclination 8 of the beam with the horizontai in one of the equilibrium position is

given by
tan 6 = % (cot B - cot &)

and show that the beam is unstable in this position.

* TEST YOURSELF

1. Asolid sphere rest inside a fixed rough hemispherical bowl of twice its rdius. show that however

large a weight is attached to the highest point of the sphere, the equilibrium is stable.
2. A heavy unitorm rod rests with one end against a smooth vertical wall and with a point in its

length resting on a smooth peg. Find the position of equilibrium and show that it is in unstable

equilibrium.

ANSWERS

173
2.8 =sin"' (;J . 2a = length of rod. b = distance of peg from vertical wall.

Qa0



UNIT

11

KINEMATICS IN TWO DIMENSIONS

Motion in a Straight Line

Motion in a plane

Angular Velocity and Acceleration
Rate of change of a unit vector
Relation between linear and angular velocities
Radial and transverse velocities
Radial and transverse accelerations
Tangential and Normal Velocities
Tangential and Normal accelerations
Q Summary

0 Student Activity

a Test Yourself

LRI el LEARNINGIOBJECTIVES

After going through this unit you will learn :
® What is the motion of a particle in a straight line and in a plane ?

* 11.1. MOTION IN A STRAIGHT LINE : VELOCITY AND ACCELERATION

1. Velocity. Let a particle move along a straight line and the positions of the particle are
determined from a fixed point on the line. Let this pomt be O and at any 1nstant ‘r’, the particle is

at a point P, whose distance from O is x, i.e., OP = x.
X B¢

(e} P o
Fig. 1
Now at subsequent interval of time 8¢, the particle reaches to a pomt 2, whose distance from
O is x + 8x, i.e., OQ = x + 8x. Therefore, PQ = 8x. Thus PQ/8 = 8x/8t is known as the average
velocity of the particle during the time interval &. As &8¢ becomes smaller and smaller so that dx
becomes smaller and smaller, the point @ — P, then dx/8¢ gives the rate of displacement of the
particle, and thus 8x/8¢ gives the velocity v of the particle in the limit when &7 — 0. That is.

v={im i—*d'-]r"—.rc
_5f-—)0 & dr

2. Acceleration. 1t is defined as the rate of change of the velocity.

Let v be the velocity of a moving particle at any time ¢ and v + dv be its velocity at time
t + &t, then §v is the change in velocity in the interval 8¢. Thus the acceler.ltson of the particle is
given by ‘

a= lim éz"ﬂ
C &0 & dr
Since, \'=E
dx .
ﬂ — 5 :x .
dr”

Kinematicy in Tive Divenrstonts
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‘| plane, it traces a curve. Let O be the fixed point

Remarks
> o . . . .
Velocity is a vector quantity, whose magnitude gives the speed. }
> Acceleration js also a vector quantity.
» Negative acceleration is known as Retardation.

11.2. MOTION IN A PLANE : VELOCITY AND ACCELERATION Z’

1. Velocity. When a particle moves in a

¥ A o
and OX, OY be the two fixed lines which are . 8s
perpendicular and let A be another fixed point ¢ &
on the curve and P be the position of the particle s '
at any time ¢ on the curve, Let AP =3,

Let Q be the position of the particle on 4
the curve at the time ¢+ &r. Therefore, during
0z, the displacement of the particle is the chord
PQ, which is shown below : 0 >\

Hence the velocity of the particle at the
time ¢ is given by

Fig. 2

v= lim chord PO
=0 &t .

= lim chord PO . Arc PQ "

w0 APQ ot

_ . chord PO &5 )

“hm TS ¢
As 8t — 0 so that 85 = 0, then we have
chordPQ .. &

v=lim < lim — E
Ay =0 -53 d—0 3t . . M
., ds i.. . chord PQ
=1 dt [ ﬁElTu & :
dt
Remark 0

>

© Arc PQ =8s)

As O — P, then the chord PQ becomes the tangent at P and hence the direction of
. the velocity at P is along the tangent at P to the curve.

Components of the Velocity :

Let the co-ordinates of the points P and @ be respectively (x, ¥) and (x + dx, y + 8y). Thus the
component of the displacement PQ are respectively PR = &x parallel to OX and QR = 8y parallet to
oY. [

The component of the velocity parallel to OX is given by

and the component of the velocity parallel to OY is,

. QR
vy = lim -
¢ & =0 ot
- lim 2%
- 5}11")10 & dr
=y o
If v be the magnitude of the velocity moving in a plane, then



Vz = ‘Ir*’x2 + vyz

or V=it 4y

If y be the angle which gives the direction of motion, makes with x-axis i.e.; OX, then
_y_dy/dt _dy '
O = T A/ dx
.2. Acceleration. The rate of change of velocity is the acceleration,
Let @ be the acceleration of a moving particle in a plane, then we have
dv

a=—

dt
_dfds .. . _ds
dt| dt Y
s
-4

dt ,
¢ 11.3. ANGULAR VELOCITY AND ACCELERATION

1. Angular velocity. The rate of change of angular
displacement is known as angular velocity. ' Q
A particle is moving in a plane. Taking a fixed line OX

as initial line with O as pole. Let P and Q be the positions of 2 g, 59 P

moving particle at any time ¢ and ¢ + 8¢ respectively as shown

in ﬁg 3. ' O 8 >y
And corresponding to P and @, the angles ZPOX =0 and_ '

ZQOX=0+30 respectively. Therefore, ‘the angular Fig.3

displacement of a moving particle during the interval ¢ is 50 and thus the average angular velocity

of P about O is 5—9

&
As 87 — 0, Q — P, then the angular velocity of the point £ about O is
lim %0 _d0
&—o O dt
. - é-

Since 8 has direction as well as magnitude so that it is a vector quantity, which is perpendicular
to the plane OPQ and the magnitude of this angular velocity vector is represented by . That is,
_d
Tt
2. Angular acceleration. The rate of change of angular velocity is known as angular

acceleration.
Therefore, the angular acceleration is given by

_d(d8)_d%
B E dt - d;z
=0.
* 11.4, RATE OF CHANGE OF A UNIT VECTOR

A fet 2 and b be two unit vectors lying in a plane, and let ¥4 %
i and j be the unit vectors along X and Y axis respectively.

Let us suppose vector @ makes an angle 8 with the positive
X-axis and the unit vector b is taken to be perpendicular to the }\ A
unit vector a, as shown in fig. 4. %4 P

— _ '.. T

In the fig. 4. Let OP=a, such that OP=1 and g L5 0
ZPOX =6. o 7 > X

~In AOPM, we have i

" OM=0PcosB=cos B Fig. 4

Kinematics in Twe Dinicasions
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and MP = OP sin 6 =sin 6

PR— A —_ A
OM=(cosB)i and MP=(sin9)j

= =
Then a=0M+MP
_ A A
a={cosB)i+ (sinQ)j.

Thus the unit vector a is obtained a function of 8, where 0 is a function of r.
Simtlarly, the unit vector & is given by

i 19 BAR A
b—COS{B+2]I+SID[B+2]j

-— A A
or b=-sinBi+cosBj
Differentiating (1) wrt. ‘f’, we get

da PEA A db .
dt—(~sm8:+cosﬂ_;)dt (
da do-
dt  at b

Remark

>

The unit vector b is perpendicular to a in the direction of 8 increasing.

[using (2)]
fi

* 11.5. RELATION BETWEEN LINEAR AND ANGULAR VELOCITIES

Let v be the linear velocity vector of a moving particle at any point P which is along the

tangent at P. Let OX and OY be the co-ordinate axes.

Also ¢, and gy be the unit vectors along the radius vector and perpendicular to the radius vector

as shown in fig. 5.

7 v
a . N <
¢
P (r.9)
.
: :
0 >
Pn/
4
Fig. S
de, do
dt  dr®
Since T=0Pe, =re,
_ dr
N V= .
ow . . V==
d . —
B dE,+¢_
o T
r—q.i_é +¢*
a4
v=¥s B3
@t a4

t
...{1)

(.. OP=r)

[using (1))

f
(2)



Let ¢ be the angle between vande, and the components of v along e, and ¢ be vy, vg
respectively. Thus (2) becomes
; =V Er + Vo Ee

Vg 3; _éa Y
dr_ ag)- | - “ .
[dr [r dr]eg] . €p [using (2)]
db - - - -
=r; ' [ e .eg=0 and eg.eg=1]["
do vy e o
or - OP (. OP=r)
If o is the angular velocity of a moving particle at P about O and ZPOX =6, then
.48
T dt
R
“=or
component of velocity v at P perpendicular to OP
or W=
oP
Also V.eg=vcos{90° — @) [ Angle between v and eg is 90° — §]
or . vg=vsind
ar ro=vsing [ va;g)
r
or _ _vsin 92
A e
or . p=rsin
| . N _ ( ‘? 9
where p is length of the perpendicular drawn from O to the tangent at P.
Remarks '
»>

If the particles P and Q are both in motion, then the angular velocity of Q relative 1o
P is given by

_ the resolved part of the velocity O relative to P L to PQ
= PO
e 11.6. RADIAL AND TRANSVERSE VELOCITIES

To find the components of the velocity in radial and Transverse direction.
Let a particle be moving in a plane and at any instant the particle be at P with velocity v along
the tangent to the curve at P, as shown below :

0 > X
Fig. 6
Let e, and gy be the unit vectors along the radius vector 7 and perpendicular to the radius

vector respectively,

[R—
T=re (. OP=rand OP =)

r

Kinematics in Two Dimensions
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Now v="y
=2 %)
dr _ de,
T l
=£E +r£i_e_gﬂ |: @=@Ej]
dr™ 7 dt dt dt °

Radial component of the velocity at P = %

and Transverse component of the velocity at P=r "

Hence

Radial velocity = %

and Transverse velocity =r —~- %

Since these two velocities are perpendicular to each other, therefore, the resultant velocity of

ﬂ'le‘particle at P is given by,
\/( & T { & } |
= +

dt dt
Remarks

> . Lo dr . VR — . .
Radial velocity = . will be positive in the direction of r increasing.

dr

Transverse velocity = r% will be postiive in the direction of 0 increasing. |

* 11.7. RADIAL AND TRANSVERSE ACCELERATION

To find the components of the acceleration along and perpendicular to the radius vector.
Leta be the acceleration vector of the moving particle at P, where the velocity vector be v.

Then

A Q;@Jrg[de} (dﬁ}dea

T ae “ta dt dt| dt

g () (o Pl (d0)( a0 E

"drze’+dr(dteJ+(dr dt+rd;’}9+{rdx]\ re’J b
.. dE"_.g:gE dﬂ" @"
Codt dr® dt ar

L (Ao fodedd d“e -
Tl ar | e dr dt “o

Coodr_ (oY [1df ,de .
U g de | 15TV rd| T ar

Thus a is obtained as the linear combination of unit vectors e, and ¢. Therefore,

Radial acceleration =a - ¢,




' 2
or RA—i—-— (dl—]]

ar dat
and Transverse acceleration =4 - eg
_1df ,d8
or T.A.—rdt(r d!] |

Since Radial Acceleration (R. A.) and Transverse Acceleration (T. A.) are perpendicular to
each other, then the resultant acceleration of the particle at P is given by

=V(R.A) + (T.AY \

a
or a—’\j dzr_r @ i + li rZ@
) - dfz d.f r df df '
Rgmarks

» . - s . . . .
R. A. will be takenpositive in the direction of » mcrea!smg.

> T. A. will be taken positive in the direction of § increasing.

SOLVED EXAMPLES

Example 1. A particle describes a parabola with uniform speed, show that its angular ve!ocny
about the focus S, at any point P, varies inversely as (P2,

Solution. The equation of a parabola with S as pole is
pi=ar ' )
Since v = constant =¢ (say) :

Angular velocity =

n‘N‘_q
8]

(" v=c¢ and p2=ar)

o
S

/2
j,_3

cNa
(sP)*>
Hence, the angular velocity varies inversely ($P)
Example 2. If the radial and transverse velocities of a particle are always proportional to
each other, show that the path is an equiangular spiral,
Solution. Here, radial velocity o transverse velocity

(. SP=r)

3/2

ie dr =Kkr 9
o dr dt
where k is some constant
or & _kae.
Integrating, we get
log r=40+c¢
where ¢ is a constant of integration
or log r= k0 + log A (let c =log A)
or r=Aae"

This is an equiangular spiral.

Example 3. The velocities of a particle along and perpendicular to the radius vector are
 Ar and ub; find the path and show that the accelerations along and perpendicular to the radius
vector are

2n2
Ar— “—f— and 18 (h+ p/r).

Kinematics in Two Dimensions
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dr

e Ar ‘ A1)
() ;
d )
an P =ue (2)
Dividing (1) and (2), we get |
Ar M ' '
rdd  pue
or pdr_d8 oo |
A2 6
Integrating, we get
B '
o log8+A l
where A is a constant of integration and also taken to be log ¢
bk
A log 8 +loge
or N log (6¢)
or D= ™V !
or 0 =ae”’, where g and b are constant.
This is the required equation of a path.
2 z
Now, radial acceleration = dr_ r @
dr? dt
_d{d) 1f 4 |
de| dt r| dar ’
. d 1 2
=2 () - — (u6)
dr },_1292
= l —
dt r
252
= (hr) - }%-
252
=A% - L.
¥
and transverse accelerati = 1d ( r 49 ]
rat dt
d . N
=ral o { ’"d;““e]
1) e, %
B r[ue dt hiad dt }
=%[u87w+ W o]
=pb (A +p/e).
¢ -TEST YOURSELF i
1. Prove that the angular velocity of a projectile about the focus of its path varies inversely as
its distance from the focus.
2. Arod moves with its ends on rectangular axes OX, OY. If (x, y) be a point P on the rod and
if the angular velocity ® of the rod is constant, show that components of acceleration of P
along the axes are - xw” and —ymz and the resultant acceleration is OP . w° towards O.

120 Self-Instructional Material.



3. If a point moves along a circle with constant speed, prove that its angular velocity about any
point on the circle is half of that about the centre,

4. A straight line of constant length moves with its ends on two fixed rectangular axes OX, OY
and P is the foot of the perpendicular from O on the straight line. Show that the velocity of
P perpendicular to OP is OP . % and along OP is 2CP . %, where C is the middle point of
the line and 9 is the angle COX.

S.  The line joining two points A. B is of constant length a and the velocities of A, 8 are in the
directions which make angles o and B respectively with AB. Prove that the angular velocity

of AB is ﬁiﬁ_[_im‘ where ¢ is the velocity of A.

6, A wheel rolls along a straight road with constant speed v. Show that the actual velocity of P
isv.{AP/CPF), where A is the point of contact of the wheel with the road and C is the centre
of the wheel. Also find its direction. Find also the angular velocity of P relative to A.

7. A point P is moving along a fixed straight line AB with uniform velocity v. Show that its
angular velocity about a point @ is inversely proportional to oP*.

8, Two points are moving with uniform velocitics &, v in perpendicular lines OX and GY, the
motions being towards O. If initially, their distances from the origin are & and b respectively,
calculate the angular velocity of the line joining them at the end of ¢ seconds, and show that
it is greatest when

au + by

Wy
* 11.8. TANGENTIAL AND NORMAL VELOCITIES
A pglftic]e is moving in a plane curve and at any time ¢ ya
the particle is at a point £ on the curve, whose position vector _

is  with respect 10 some fixed point O. Let A be a fixed point
on the curve such that AP =5,

Let 7 be the unit tangent vector along the tangent ar P to
the path and 7 be the unit normal vector in the direction of

increasing. Then we have 0 > X
a1 _dy - Fig. 9
—_—— s . e
dr  di " 0
But we know that
dr _
— r- o
ds . 2
Let v be the velocity of the moving particle at P, whose position vector is 7. Then,
Sodr_dr ds
Y d Tds e
T8y
Tt
— _ds_ _
=—i+U.n
or v & O.n 3

Thus v is a linear combination of the unit vectors 7 and n. Therefore. the tangential component
ds
dt
zero. Hence, we obtain

of the velocity is = in the direction of s increasing and the normal compoenent of the velocity is

Tangential velocity = %%

and Normal velocity = OJ

Kinemarics in Two Dibtensions
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Remarks
Tangential velocity = & s taken to positive in the direction of s increasing.
> , CoL , 7o ds
The resultant velocity of a particle is always along the tangent to ts path i.e., v = o

»* 11.9. TANGENTIAL AND NORMAL ACCELERATIONS

Let a be the acceleration of the particle at any point P, whose position vector is 7 and the
velocity vector is v. Then

&
T odt
=i g‘z? e ”p—r:i{?
dt| dt ) 1
Ao ds d
R O
2
=ﬂ7+$ﬂ{§ ézﬂﬁ
dt  dr dt t dt
_ sy (@) du
dar dt| ds i
=37, V5 . cEand p=
Tt P Codt vy

N }
Thus @ is obtained as the linear combination of the unit vectors 7and n. Therefore the

coefficients of 7 and i give the tangential and Normal accelerations respectively.

v . §
Hence, Tangential acceleration = —
a¢
vl
and Normal acceleration = E
If @ is the resultant acceleration, then b

a= \[(Tangemial acceleration)? + (Normal acceleration)”

5 \2 2
. ds v
Lé., as A + |

dr? p
Remarks

: __ds . e . : .
» Tangential acceleration = :f? is taken (o be positive in the direction of s increasing,

- z .I
> Normal acceleration = o is taken to be positive in the direction of inwards drawn

normal.

’ 2
> Other expressions of the tangential acceleration are % = %[ ds ] X and

dt - d!z

. Vv . .
> In normal acceleration F @ is a radius of curvature.



SOLVED EXAMPLES

Examp!e 1. A point descnbes a cycloid s=4asiny with uniform speed v. Find its
acceleration at any point.
Solution. The intrinsic equation of a cycloid-is

s=4asin\4.-‘ (1)
=——=4
p= d‘if & coS .
Since particle moves on the cycloid with unifrom speed v, then
2
Tangential acceleration = d—: ~dv_ 0
¢ dt
v Vo
and Normal acceleration = — = —————
p dacosy

2 2
. 2 2
. as v
- The resultant acceleration= { —-2 J + ( —J

e p

V

4a cos

2
Vv

4aN1 -sin®y

= — lusing ()]

4a cosw}

V164" - 5°
Example 2. Prove that the acceleration of a point moving in a curve with uniform speed is
P & 2
dr )’
Solution. Since the particle is moving with unfirom speed, so that the tangential acceleration
is zero. Now the normal acceleration is
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Example 3. A particle is describing a plane curve_If the tangential and normal acceleration
are each constant throughout the motion, prove that the angle , through which the direction of
motion turns in time t is given by :

W =Alog (1 + Bf).

Solution, Here, it is given that

d’s _
—, =constant = A (say) (D
dt
2
and B = constant = . (say). . (2)
.From (1), we get on integrating, I
o _ At+a, ' .{3)

where ‘a’ is a constant of integration.

: ?
' i
From (2), we get i i

vE_ (ds/dt)’ _
b~ ds/dy) "
o ds dy _

r : dt a M .
or e+ =y [using (3))
or dy=3/

Integrating, we get
y :«;*: [log (A + @) - log a]
By Qeta)
-4 ;
or y=Alog(l+Bf),

where Azﬂ B*%-

_ Example 4. A point moves in a plane curve so that its tangential acceleration is constant
and the magnitudes of the tangential velocity and normal acceleration are in a consant ratio; find
the intrinsic equation of the curve.

Solution. Here, it is given that

% = A (constant) A1)
and -,,L = W (constant)
v/p !
From (2), we get
Bep
or ds/dy _
ds/dt
6 = 3
Multiplying (1) and (3), we get
LIRS
dy
or dv=Apdy.
Integrating, we get :
v=ANY +a ‘ ...(f)



where g is a constant.

Since P = v
y P =W (AUY +a)

ds 2
0 === Ay +ap.
T dy HAy +ap

Integrating, we get
§= E‘;—k wz +apwy + C
or s§= Awl +By+C
where = % uh, B = ap, C are constant.

Hence the intrinsic equation of the path is
s=Ay + By +C.

SUMMARY

«  Velocity and acceleration in a plane :

Velacity v= % ,  Accelerationa= 55;% = %

*  Angular velocity and angular acceleration :
2

d
Angular velocity = ?? \ Angular acceleration = %
'

» Radial and Transverse velocities :

) d6
Transverse velocity = r—

Radial velocity = dr i

Z L]
« Radial and Transverse acceleration

& (doY
Radial acceleration = — ~r ( — } , Transverse acceleration

dr dr
*  Tangential and Normal velocities :

Tangential velocity = % . Normal velocity = 0

«  Tangential and Normal accelerations :

(&)

. . d’s . v
Tangential acceleration = —;,  Normal acceleration = —

dar P

» STUDENT ACTIVITY

1. If the radial and transverse velocities of a particle are always proportional to each other, show

that the paths is an equiangular spiral.

Kinematics in Two Dimensions

Self-Instructional Material 125



Special Function and Mechanics L - § .
2.  Apartial is describing a plane curve. If the tangential and normal accelerations are each constant

throughout the motion, prove that the angle y, through which the direction of motion turns in
time ¢ is given by
w=Alog (| + By)

STUDENT ACTIVITY t

1. A particle describes a curve (for which s and y vanish simultaneously) with uniform speed

v. If the acceleration at any point 5 be v c/(s +c ) find the intrinsic equation of the curve.
2. A particle moves in a plane in such a manner that its tangential and normal accelerations arc

atways equal and its velocity varies as exp. [tan” (s/c)] s being the length of the arc of the
curve measured from a fixed point on the curve. Find the path.
3. If the tangential and normal accelerations of a particle describing a plane curve be constant

throughout, prove that the radius of curvature at any point ¢ is given by p = (at + b)z. i

ANSWERS :
1. s=ctany 2.s=ctany
OBJECTIVE EVALUATION b

Fill in the Blanks :

The rate of change of displacement is cal]ed .............. .

Ifv= %}- then the acceleration is .......c..... .

The magnitude of the velocity vector is ... \
Negative of an acceleration is called .............. . !
The rate of change of velocity is Lallcd
True or False :

Write T for true and F for false statements :
1.  Velocity is a vector quantity. (T/F)
2.  The magnitude of the velocity vector is called speed. ‘ (T/F)

e

2
3. . If the acceleration a of a particle in a line is — dx , then its velocity is xﬁ- "
dr’ dt (T/F}

4. If w is the angular velocity of a particle, then w = ~-

dt (T/F)
2 2
5.  If acceieration = d—f, then — d—’: = r¢tardation,
dar dt (T/F)
Multiple Choice Questions (MCQ’s) : . |
Choose the most appropriate one @ ' L
1.  The magnitude of a velocity vector is : .
(a) speed (b) velocity {c) acceleration (d) none of these.
2. If w be a angular velocity of a particle, then its value is :
(@ 0O (b) d0/dt - {c) dt/dd (d) d*0/dr.
A
A A
3. lf%‘im b, then @ . bis:
(a) 1 (b) ab () 0 (d} o.
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4.  Radial acceleration of a particle is :

. 2 i o]
T dr &r oY dr (doY d*r dg Y
(a) — b - r— — | = ——r| =
) a7 ® drt (r ‘*J (C) at | @ dr? r( dt J
ANSWERS
Fill in the Blanks :
1. Velocity 2. % 3. speed 4. Retardation 5. Acceleration
t

True or False :

1. T 2T 3.F 4. T 5T
Multiple Choice Questions :

L. (@ 2.(0) 3. 4.4

N B
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UNIT _ i

12

RECTILINEAR MOTION
(Variable Acceleration)

STRUCTURE

Rectilinear Motion !
Velocity and acceleration in a straight line i
Motion under inverse square law F
Motion due to the attraction of the Earth

Siple Harmonic Motion

Some important definitions

Geometrical representation of S.H.M.

o Summary y
a Student Activity

|5

0 Test Yourself

l-q‘u
Tt u." |

B

U EARNING OBJECTIVES Msdiiieidn

After going through this unit you will learn :
e What is rectilinear motion of a particle ?
e How to move a particle under inverse sguare law ?

e Whatis SHM. ?

 12.1. RECTILINEAR MOTION

Definition. When a particle moves in a siraight line, its motion is known as Rectilinear
motion. Whether the straight line is horizontal or vertical.

¢ 12.2. VELOCITY AND ACCELERATION IN A STRAIGHT LINE

Velocity. Let OX be a straight line, where O is a fixed point on the line. Let us suppose a
particle is moving along this line and at any instant ¢ it is at a point P distant x from O.

P i

Oe °
. Te— }
Fig. 1
_ Let ¥ be the position vector P and } the unit vector along OX. Then -
r=x1 (. OP=x)
— dr
. Th °1 t P, D
e velocity a Ve
_dxa '
dt

Thus the direction of the velocity vector v is always along the line, in which the particle is
moving. If v is the magnitude of the velocity v, then ) !




Also, if the particle is moving in the direction of x increasing, then % will be positive,

otherwise negative if moving in the direction of x decreasing. s> .
Acceleratmn.&‘wate.c@hange af velocity is known as acce!emuon Leta be the acceleration
of the particle at P, then

__dv
dr
=L’(£&f})
de| dt
_dxa
_a{rZf

Thus a is collinear with '}, therefore, the acceleration is also always along the line itself and
the magnitude of the acceleration a is given by
d’

It is positive in the direction of x increasing and negative in the direction of x decreasing.
Other Forms of the Acceleration :

If a particle is moving in a straight line and it is at a distance x from some fixed point O on
the line at time ¢ Then the velocity and acceleration at this point P are

dx

v=—

dt

: 2
and a= —‘—i-;
dt

|a|=a=

and as—==" "

d’x dv dv
Hencedz.d an dv(f.x

in the direction of x incréasing.

* 12.3. MOTION UNDER INVERSE SQUARE LAW

Ta discuss the motion of a particle when it moves in a straight line under an attraction towards
a fixed point, which is inversely proportional 10 the square of the distance measured from the fi xed
point. & :
" Let a particle be moving along a straight line OX, where O is a fixed point on the line and
let the particle start from rest from a point:A such that QA = a towards the point O.

three expressions of the acceleration and all will have positive sign

Fig. 2
Let P be the position of the particle at any time ¢ whose distance from fixed point O is x
i.e., OP = x, and v be the velocity at P. Then the acceleration at P is equal to uYx* towards O, where
 is a constant.
. The equation of motion of the particle at P is

2
dx__ K (D)

2

dr x°

Rectilinear Motion
{Variable Aceeleration)
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. L d*x . e . R
{Here, negative sign is taken, because — Is positive in the direction of x increasing, while

dt
] is towards O, in the direction of x decreasing so that % is negative.] . [
X . co :
Multiplying (1} by 2 % and then integrating, we get
2 .
g — 2& : (}\
- (dr] T ox +C A2
where C is a constant of integration. '[
Initially, when x = q, r;x 0 { .
|
0= 2 +C
a
or C=- %.
a

Putting the value of C in (2). we get

_2u_2p 1
[dt) x a Zu(x a}' ' (3)-

Equation (3) gives the \.'elocity at P.
From (3}, we get )

ax [ fa=x

dt a x

[Here negative sign'is taken, because particle is moving in the direction of x decreasing}

[ a x
di=- 2u Va-x dx
\lzp-l.

Putting x = @ cos” 8, so that dx = - 2a sin 0 cos © d8, then we get

:—\j I\/ ““’59 = 2asin0¢0s 0.4+ D
2p

G—GCOS

=a'\/1_[2coszede+o '
2u b
‘ I 24
- —a'\fzp {1l +cos20)d0+ D
=qa 9+Sm26]+D
\‘ ‘ 2
‘\f [9+sm8c038]+D

=a'\’% [8+cos® V1 —00529] +D.

Sincex=ac0528 i.e..cosﬂ=’\fi and 0 = cos™ ! ‘\f%,then
za\|=> ‘-::os"‘\/i N ‘\fl—i]u)
21 a « a

Initially, when ¢ = 0. x = a, then, we get

Integrating, we get

dx+D

where D is a constant of integration.




- q}i -1
O0=a o [cos "1+0]+D
0=a\|Z [0+0]+D
=4 N T
or . D=0. :
— 1fi —qui 1{11/ _x :
t=a oM cos a+ " 1 a]' w(4)

This equation (4) gives the time at the point P at a distance x from O (i.e., the centre of force).
If we put x =0 in (3), we get the infinite velocity at O and, therefore the particle moves to the left
of O with the acceleration always directed towards O and thus the velocity is continuously
decreasing. The pasticle will come to instantaneous rest at A” such that OA” = OA =« and then the
particle retraces its path. Hence the particle will oscillate about O between A and A”.

Let 7, be the time taken by the particle to reach from the point A to O (the centre of the froce).

Then put x =0 in (4), we get

a -
t=a \HE [cos I0+0]
=a'\,£' T
2u 12

i) (13

= 5 E .
Now, the time of one complete oscillation =4 X1,

=4.

A

* 12.4. MOTION DUE TO THE ATTRACTION OF THE EARTH

t. Earth attracts every body outside its surface with a force (gravitational force), which is

, 1 . ,
always proportional to '(-a-——-—-—)—z-, where the distance is measured from the centre of earth. Thus
istance

the attraction of the earth follows the inverse square law. .
2. On the other hand, when a body moves inside the earth, it is experienced a force, which is
always directly proportional to the distance, towards the centre where the distance is measured.
3. At the surface of the earth, the acceleration of a body is taken to be g (acceleration due to
gravity).”

SOLVED EXAMPLES

Example 1. If h be the height due to the velocity v at the earth’s surface, supposing its
attraction constant and H the corresponding height when the variation of gravity is taken into
account, prove that :

+

S b
~ =

1

h
where r is the earth’s radius.

. Solution. Since a particle attains a height # outside the earth due to the velocity v at the earth’s

surface under constant attraction. Then we have :

v =2gh A1)

(. vV =ut~2gh)

Now when the particle moves under the variation of gravity. Let P be the position of the

particle at any time 7 at a distance x measured from the centre of the earth in the vertically upwards

Rectifinear Motion
{Variable Aceeleration)
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motion and v be the velocity with which the particle projected. Then the acceleration of the pasticle
at P is i/x%, which is directed towards the centre of the earth.
. The equation of motion is
p:
e b . - {2)
df X .
2
Since, we have % = — g at the surface.
2

<. When x = r (radius of the earth).

dx__,
dr ' l
Then from (2), we get i
b
B
2 ¢
= u= r?'g.
Now (2) becomes,
dz_;c - ﬁéi : (3
at X
Multiplying (3) by 2 % and then integrating, we get

2
(%} = %& + A, where A is a constant.

Initially, at the earth surface, x = r and E = v, then

2
v2=2—r£+A '
r 1
or A=v1--2rg

2 2
{%:—] o 28 42 o, ()

In this motion, suppose the particle reaches at the maximum height H. That is, at the height

H above the earth % =0 and x=r + H, then from (4), we get
| 2."’28 2 N
0 T H +v rg
or 0= 2% +2g¢h~2rg ¢ vi=2gh)
, , r+H ' .
or . 0= 2ng +2eh(r+H) - 2r2g —2rgH
or : i‘;.'Ozh(r+H)—rH
or ‘f i_L + l H ved
T RTEY ence proved,

‘ by |
Example 2. A particle is prtéjected vertically upwards from the surface earth with a velocity

Just sufficient to carry it to the infinity. Prove that the time it takes to reach
a height h is

]

where a is the radius of the earth.’

Solution. Let v be the velocity of a particle with which it is projected
vertically upwards from the earth’s surface and it is just sufficient to carry
the particle to the infinity. Let P be.the position of the particle at any time

Fig. 3



during the upwards motion, whose distance from the centre of the earth is x. Then the acceleration

of the particle at P is = 1.3 dlrected towards O.
X

.. The equation of the motion of the particle is

d*x »
==-L (D)
dr X

(Here negative sign is taken, because -;— is measured in the direction of x decreasing).

Since the acceleration at the surface of the earth is g so that, when x = g (radius of the earth)

> = — & then from (1), we get

- 2=_g

= U= azg.

Thus the equation (1) becomes
dx__d%
df* x*

o f2)

Multiplying {2) by 2 % and then integrating, we get

2
[de —2——-3- + A, where A is a constant.
dt X

Initially, when x — oo, % =0, we have

O"0+A
or
2

d x e
J
dx
dt

V 2a2g

or

1
. «(3)
=
(Here, 7S taken to be positive, because the particle is moving in the direction of x increasing).

Separating the variables in (3), we gct

\f?

[ntegrating from x =a to x = 1 + a, we get
h+a

r=la\f;dx

Vx dx.

. 3/2 I
r=% 2a [[1 +ﬂ - 1}. Hence proved.

Reciitinear Motion
{Variable Acceleration)

Self-Instructional Material 138

™~



Special Function and Mechanics

134 Self-Instructional Material

» TEST YOURSELF

1. Discuss the motion of a particle under inverse square law.
2. If the earth’s attraction vary inversely as the square of the distance from its centre and ¢ be

]
its magnitude at the earth’s surface, the time of falling from « height 4 above the surface to

(a+h) 1’ §a+h) 1{
23 a+h

where a is the radius of the earth.

e 12.5. SIMPLE HARMONIC MOTION

Definition : A particle moves in a straight line in such a way that its acceleration is ahvays
directed towards a fixed point on the line, which is directly proportional to the distance measured
from the fixed point, then the motion of the particle is called Simple Harmonic Motion.

To investigate the Simple Harmonic Motion :

Let O be the fixed point on a straight line A’OA, which is taken as the centre of the force.
Suppose a particle starts its motion from rest from a point A on the line towards O.

Let P be the position of the particle at any time # such that OP = x. Then the acceleration of
the particle at P is ux towards 0.

the surface is

ba—n—m—q

e velo. ﬂ
A4’ 1) P A4
Fig. 4 3
- The equation of motion of the particle at P is
d*x -
ax__ux . . (1)
PR

(Here negative sign is taken because the acceleration is measured in the direction of x
decreasing). :

Multiplying (1) by 2 %x_ and then integrating, we get

P .
[?;] =—wx* + C. where C is a constant.

Imual]y. atA, x = aand"d'l 0, then

dt
0=- M +C L
or ~ C= pal .
. 5 :
dx :
[dt] = (@’ - 5% {2}
This equation (2) gives the velocity at any time 1. Let v be the velocity at the point P, then
=@ - x% | . -(3)
Now from (2}, we pet . ,
d't )
oV -h. A#)

. Rd
(Here negative sign is taken because particle is moving in the direction of x decreasing).
Separating the variable in (4), we get

or Y dt=- d



Integrating, we have

) -1fx s
r\fffz cos™ ! {;] + D, where D is & constant.

Initially at A, x=a and =0, then
0=cos™ {(L+D.

" Thus, cos™ ! (EJ =
or |x=a cos (ﬁu) I ..(5)

when the particle reaches at O ie., x=0, then the equation (4) gives the velocity ——a'\fﬁ. The
particle thus passes through O and goes to the left of O, where acceleration changes to retardation
and therefore the velocity of the particle continuously decreases. Ultimately the particle comes to
rest instantaneously at A’ such that OA = OA’. It then retraces its path and passes through O, and
again is instantaneously at rest at A. Hence the particle oscillates about O between 4 and A”.

Let ¢, be the time taken by the particie to cover the distance from A to O i.e., x = 0, then from
(5), we get

v, _ 1
f \E cos. 0
t = ]
2w
Now the time of a complete oscillation = 44,
= 2%,
N

This time of a compfete oscillation is called the periodic time,

e 12.6. SOME IMPORTANT DEFINITIONS

Definition (Periodic time) : During a simple harmonic motion of a particle, the time taken
by the particle to make a complete oscitlation, is called Periodic time. If T is the time period of
S.HM., then

_2n
m
Definition (Amplitude) : The maximun displacement of a particle during a Simple Harmonic
Motion on either side of the centre of force is called an amplitude.
Definition (Frequency) : The number of complete oscillations in one second is called the
frequency of Simple Harmonic Motion.

Since T is the time period for one complete oscillations, therefore the number of complete

s . .1 .
oscillations in one second is T Further since,

-2
\

Frequency = ~11; = % V.

Definition (Phase and Epoch) : The equation of motion of a particle in S.HM. is

The solution ¢of this differential equation is

X =4 cos (J]It+¢).

Recrilinear Motion
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The constant ¢ is called the starting phase or the epoch of the motion and the angle
(Nt + ) is called the argument of the motion, whilst the phase of the motion at any time ¢ is the
time that has elapsed since the pasticle passed through its maximum distance in the positive directidn.
Suppose x is maximum at the time £y, then

Maximum velocity of the particle in a S.H.M. is Vg, where a is the amplitude,
> Maximum acceleration at the extreme points is pa.

. Vi 1o+ 0=0.
Hence the phase at time t=t-{

o0
=+ \m_ :
_Murto I

W

Remarks |
. |
1

* 12.7. GEOMETRICAL REPRESENTATION OF S.H.M. l
Suppose a particle moves round the c1rcumferencc of a circle with I

uniform angular velocity . P
Let AOA’ be the fixed diameter of the circle and let P be the position 4‘

of the particle at any time ¢ such that angular displacement of P from 4 A 4

A is 8, then

g
. = "; - '
Draw a perpendicular from P to AQA’, whose foot is (. Let Fig. 5 L
OQ =x, then
x=acosf [ OP =a (radius)]
or X =4acos WL, (1)
Differentiate (1) w.r.t. ‘', we get
£=—am sin wt. (2)
dt '

Again differentiating, we have b

i
% =— aw’ cos Wt
y
& .
Lo i 3

Thus the equation (3) represents that the acceleration of the point Q is directly proportional
to the displacement from O and directed towards Q. Therefore we get a conclusion that as the
particle moves round the circumference of a circle, the foot ¢ oscillates on AA” about O and the
equation (2) represents the velocity of Q-at any time. From (1) we see that the amplitude of this
S.H.M. is q, because the maximum value of x is obtained as a.

The time period of O = The time taken by P to turn through an angle

21 with uniform angular velocity, = =—

Hence, we can say that if a particle describes a circle with uniform velocity, then the foot of
the perpendicular from its any position on any diameter executes Simple Harmonic Motion.

SOLVED EXAMPLES

Example 1. A particle is moving with S.H.M. and while making an excursion from one
position of rest to the othey, its distances from the middle point of its path at three consecutive
seconds are observed to be x, Xy, X3. Prove that the time of a complete revolution is

“1f XX
2r/cos [ 7% ]

Solution. Since we have




X =acos (\[Et)‘

seconds, then
x, = acos Vit
x;:*aéfis \/ﬁ‘(r+ 1}
and x3=acosﬂ(r+2)
X +x3=a[cos V1 +cos VU @ +2)]
=2acosVp (¢ + 1) . cos V.

=2x,.cos Vi
+
The periodic time _in
'n

Example 2. In a SHM. of amplitude a and period T prove that :

T 2 2
f vEdr=g.n_“,

0 T
Solution. Since in a S.H.M,, we have
x=acosVu
dx .
v=—=-gVusinVur
dt
21
and T=—
ry
T T
Now, .[0 vzdr=a2u_[0 sin’ V1 dt
T 2
=a2}.l_“0 sinz‘—Tnldr
2n T
— ¢ indy o 4 -
=a’ih ), (sm)ymdy puty=
27 n
- auT 2
=n Jo Sin ydy
2 n
_2wT lj. _
== |24 (1 —cos 2y) dy
_auT 1 sin2yT
T 37T T,
2
_aur 1
o 2 2™
_ant
T2
_2112.{12
oT

L)

Now xi, x3, x3 are the displacement from the middle point of the path in three consecutive

+ [using (1)]

T

Rectitinear Motinn
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* SUMMARY i i
*  Motion in a straight line : : t
Velocity = —
elocity i
2 :
Acceleration = 2'_% '
di
*  Motion under inverse sguare law
Acceleration = — %
X
« SHM. ,
Acceleration = — ux
¢ STUDENT ACTIVITY -
1. If h be the height due to the velocity v at the earth’s surface supposing its atttraction conswn$
and H the corresponding height when the variation of gravity is taken into account, prove that
11,1 |
h H r
where r is the earth’s radius.
t
b
2. InaSHM. of amplitude a and period T prove that
2 2
J[ -
r
+ TEST YOURSELF
1. A horizontal shelf is moved up and down with S.H.M. of period 1/2 sec. What is the amplitude
admissible in order that a weight placed on the shelf may not be jerked off ? k
2. A particle starts from rest under an acceleration #x directed towards a fixed point after time
t another particle starts from the same position under the same acceleration, Show that the
particles will collide at ume PR L after the start of the first particle provided ¢ < 27
3. Define a $.H.M. show that S.HM. is periodic and its period is independent of the amplitude.
4, Show that if the disi:lacemcnt of a particle in a straight line is expressed by the equation

X = a cos nt + b sin nt, it describes a $.H.M. whose amplitude is (g + b?) and period is 2}—?-‘
!

Mo



5 A poinf moving in a straight line with S.H.M. has velocities vi and v2 when its distances from Rectilinear Motion v
the centre of force are xj and x2. Show that the period of motion is (Variable Acceleration)

e
2n {'2 szJ-
vy =W

ANSWERS

1. g/lén”

OBJECTIVE EVALUATION

Fill in the Blanks :
2

1.  The expressions %{- dv and v i3 are of ... .
: -dt

dt dx .
2. Earth attracts every body outside its surface with an acceleration which foltows the law
of ... . '
3. Inside the earth’s surface, the acceleration is proportional to ........... .
4.  In SH.M. the acceleration is always towards ........... and proportional to ........... .

True or False :
Write T for true and F for false statements :
1. Outside the earth’s surface, the particle follows inverse square law. (T/F)
2. In S.HM. the acceleration of the particle is always towards the centre of motion. (T/F)
3. If uis the intensity of a force under which a particle is executing S.H.M., then its time

period is —23.

H (T/F)

4.  In S.H.M.. the maximum velocity is obtained at the centre of motion. (T/F)
Multiple Choice Quesitons (MCQ's) : :

Choose the most appropriate one : )
1. " Inside the earth’s surface, the acceleration of the particle is proportional to :

{a) (distance) (b) l/(distance) (c) (clislam::e:)2 (d} none of these.
2. Qutside the earth’s surface, the acceleration of the particle is proportional to :
(a) distance (b) l/distance (c) 1/(distancc}2 (d) (distance)z.
3.  Maximum velocity of the particle in STHM. is : .
(@) pa® () Vua © pa (d) p/a.
4,  Maximum value of acceleration in S.H.M. is :
(a) pa ®) Via ) ua* @ Wa.
ANSWERS

Fllil In the Blanks : ,
1.  Acceleration 2. Inverse square 3. Distance 4, Centre of motion, distance

'_I'rue or False :
1.T 2.T 3F 4. T

Multiple Choice Questions :
1. (3 2.(¢) 3. 4.

QA
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UNIT

13

MOMENTS OF INERTIA
STRUCTURE

Some simple cases of Moment of nertia
® Parallel and Perpendicular axes Theorems

a Summary

a Student Activity

Q Test Yourself " l

LEARNING ,OBJECTIVES"

Aftar going through this unit you will learn :
o What is moment of inertia ?

® How to find the moment of inertia of the given body about the given line or axes.

+ 13.1. SOME SIMPLE CASES OF MOMENT OF INERTIA

(1) Moment of Inertla of Uniform Rod of Length 2a:

(a) To find the moment of inertia of uniform rod of length 2a and mass M abom aline through
one end perpendicular to the rod.

Let M be the mass of a uniform rod AB of length 24, then the mass per unit of length of the

M
rod is 2
N
% —» O
4 A 18
P 0
_ E
Fig. 1 t

Let us consider an element PQ of legnth §x distant x apart from an end A. Let NA be a line
through A and perpendicular to AB.

Mass of an element PQ = EM; Sx.

The moment of inertia of this element about the line NA is
M 2
7 8rx . x°
Thus the moment of inertia of the whole rod about NA is
x=2a x=2a
[ gt

M 2
=0 2axdx—2 =0 x“dx

x3
2a
-sMa s

(b) To find the moment of inertia of a uniform rod of length 2a about a line through the middle
point and perpendicular to it.

Let M be the mass of the rod AB of length 2a and OL the line through the middle point O
(say) of the rod.
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Fig.2
Let us consider an element PQ of width &x at a distance x from the line OL. Then the mass

of this element is M dx.
2a

The moment of inertia of this element PQ about OL

= M 8x . ¥
2a
Thus the moment of inertia of the rod about OL is
X=a M .
I _ =X dx (" x takes the values from — QA to OB)
xX=-a 2a
_M 2
“2as, x°dx

(2) Moment of Inertia of a Rectangular Lamina :
(a) To find the moment of inertia of a rectangular

lamina about a line through the centre and parallel toa D

side. )
Let ABCD be a rectongalar lamina of side AB=2a

and AD =2b and let M be the mass of this lamina. Then _&

o
e
o

o
x4
(AMAVVARAN

the mass per unit of area is ——
P dab

Let OL be a tine through O and parallel to AB about 4 B
which the moment of inertia is to be required,

Let us consider an elementary strip of breadth 8x and
of length 24 at the distance x from O and parallel to AD.

Fig. 3
. . M
The mass of this elementary strip = 2ab (6x . 2b)

M
=—dx.
2a X

2 3

Thus the moment of inertia of the rectangular lamina about LN

r-:a m (B
=Jea_s z—a(?}ﬁ

—-da

The moment of inertia of this strip about LN = M dx {EJ .

Moments of Inertia
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=~—[a+ad]
6a

_1 o
=3 Mp.

Hence the moment of inertia of the rectangular lamina about a line through the centre and

1 - o .
Esz' Similarly the moment of inertia of the rectangular famina ElbOli.lt a

line through the centre and paralle] to the side 2b is % Ma.

parallel to the side 2a is

(b) o find the moment of inertia of a rectangular lamina about a line through the centre and
perpendicular to the plane of lamina.

Let OL be the line through the centre O of the lamina
ABCD and perpendicular 1o the lamina. ' L

[,

Let us consider an element PQRS of area 8x §y ata D 5, ¢
distance Vx* +y* from O. P a2

- The mass of this element PORS = It-% dx 8y.

v

The moment of inertia of this element about
Osz%ﬁx.Sy(\}xzi-yz)z. 4 g

Thus the moment of inertia of the lamina about OL Fig. 4

x=a y=b M
=f a b g O )dxdy

apb
M II 2
=w o o (P +y)dxdy

(3) Moment of Inertia of a Rectangular Parallelopiped :
1o find the moment of inertia of a rectangular paratlelopiped.
Let 2a, 2b, 2¢ be the lengths of the sides
of a rectangular parallelopiped. Take the centre Z
of the parallelopiped as origin O and 0X, OY and T ¢
OZ parallel to the sides as mutually [
perpendicular axes. 1
Conceive the rectangular parallelopiped as o) e—x > -
made up of a very large number of thin parallel y ' R
rectangular famina (slices) all perpendicular to
OX and consider one of such elementary slice .
PORS of width 8x at the distance x from J. Let s
p be the mass per unit volume of the '
parallelopiped.
. The mass of the element PORS =2b . 2¢ . 8xp

Fig. 5
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The moment of inertia of this element about OX

- 125_.22_@91 0%+ 4 [see § 4.2 (2) (b)]
. Thus the moment of inertia of the rectangular parailelopiped about OX

xX=a
:j L e

a
=M(bz+c2)f_a dx

=20 e

= —"’359 & +cD [a+a]
:-8—"!’769 B+ h

=%(b’+c’) (" M = 8abc p)

Hence the moment of inertia of the rectangular parallelopiped about a line through the centre
znd parallel to the side 2a is % b+ cz}.

Similarly M.I. of the parallelopiped about the lines through the centre and parallel to the side
2b and 2c are respectively, % (@ + g:z) and % (@ + bz).
(4) Moment of Inertia of a Circular Ring :

(a) 7o find the moment of inertia of a circular
ring about its diameter.

Let AB be the diameter-of a circular ring of
radius a with centre O as origin and OX as x-axis.

Let us consider an elementary arc PQ =a 88, 4 —>X
then the mass of this element is p 286,
The perpendicular distance. of this element
from OX=PN=asin0.
. The moment of inertia of this element about Fio. 6
10
OX = p 280 (a sin 6)°. :
Thus the moment of inertia of the circular ring about OX
2n
=IO:0 pa (a sin 8)20'9
2n
=pa’ -'.0 sin® B d8
n/2
=4 pa’ _[0 sin® © d
a0l B
=4 pa {2 . Zjl
=npa’
M M
T2 ' P %

(b) To find the moment of inertia of the circular ring about a line tfirough the centre and
perpendicular to the plane of the ring.

Let OL be a line through the centre O of a circular ring and perpendlcular to the plane of the
ring.

Moments of Inertia
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Consider an elementary arc PQ =a 88. Then the mass of this element is p @80 and the
perpendxcular distance of this etement from the line OL is a.
*. The moment of inertia of this element about OL

=padd . (a)>. _
Thus the moment of inertia of the circular ring about OL
2n

=], pa’dd

2R

=pad , @@ f

il

=27 p(13

|
- Ml : R/ &
=Ma [ 9*2@)

(5) Moment of Inertia of a Circular Disc :
(a) To find the moment of inertia of circular disc about the diameter.
Let AB be the diameter of a circular disc of
radius a with the centre O as origin and OX as x-axis.
Let p be the mass per unit area of the disc. Then

Fig. 7

M ) . .
we have p = —. Let us consider two circles of radius
na

r and r+ 8r with centre O and form a circular ring.
The area of this circular ring is 27tr 8r and thus its
mass is 2% rdr p. Suppose the disc is made up of a
very large number of such circular rings.

-. The moment of this circular ring about

OX = (275!‘ pﬁr) }‘2
2
=mprdr
Thus the moment of the circular disc about OX

a
_ 3
-_I-r=0 npr dr

Fig. 8

_mp o Md M

. . L, NY

Hence the moment of inertia of the circular disc of ‘
g .1

radius a about its diameter is 2 Ma?.

(b) To find the moment of inertia of a circular disc
about the line through the centre and perpendicular to the
plane of the disc.

Let OL be a line through the centre O of the circular
disc and perpendicular to its plane.

Let us consider an element PORS of area r 6r 86 at
the distance r from the line OL. Then the mass of this element

is p ror 86.

Fig. 9



. . . Ma
and perpendicular to its plane is —/—.

- The moment of inertia of this element about OL = pr 8r 66 (1%

Thus the moment of inertia of circular dis¢c about OL

a a
=IB=0jr=0 prdrdd

2n 4
A
=p Q:O{E:[de
4 f2n

- S
4

]

_patrgt _pd
=4 [BI =5, @m

_pa'n

=53 |

_Md . ooy M

_ [ o=
Hence the moment of inertia of a circular disc of radius a about the line through the centre

2.
2

{6) Moment of Inertia of an Elliptic Disc :

(a) 7o find the moment of inertia of an elliptic

disc of axes 2a, and 2b about its major axis. t7

Let X and QY be the major and minor axes of Py
an elliptic disc, where O is the centre of it. Let p be
the mass per unit area of the disc.

Suppose the elliptic disc is made up of a very 0 lex Ox
large number of slices all perpendicular to OX and >X
consider an elementary such slice PQ of width 8x
parallel to QY with the c¢o-ordinates of P as
(@t cos 0, b sin 8). . >

dx=3(acos B)=-a'sin0do Fig. 10

and length of the slice PQ = 2b sin 6.

The mass of this elementary slice PQ = p (2 sin 8) dx .
=p (26 sin 8) (— a sin 6 30)
== 2ab p sin® 0 80
The moment of inertia of this element about OX is,
_{~2abpsin®0588) >
_ 2 . 2 2
—«—Eabp sin” 8 (b sin 6)* 30
=~ 2 6% o sin®
—-3ab p sin” 0 88
Thus the moment of inertia of the elliptic disc about OX
6=mn .
=I 2 ab® p sin® 0 40 (ignore the negative sign)

=0 3

2 -‘.I'E
_ 2 43 .4
—3ab p_l.osm 0 do

4 ?I/Z'
_4 .3 - 4
—3ab pj.o sin” 6 49

Maoments of Inertia
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' unfecpien o i.
= % ab{pn i
= i ab’n [ﬁz] [ p= _E%J
= i Mb*

Hence the moment of inertia of an elliptic disc about the major axis is 2 Mb™

Similarly the moment of inertia of the elliptic disc about minor axis 2b is %Maz.
(b) To find the moment of inertia of an
elliptic disc abour the line through the centre and LY
perpendicular to its plane. i
Let OL be a line through the centre and
perpendicular to the plane of an elliptic disc.
Let us consider an element PORS of area

8x 8y at the distance Yx*+y* from the line OL.
The mass of this element PQRS = p 8x §y.

Therefore, the moment of inertia of this element

about OL is,

N Fig. 11
=p 88y (¢ +59) ®
Thus the moment of inertia of whole elliptic disc about OL

a b
=v|.x=-a.|.:-b p(xz"'yz)dxa'y ‘ | [.
ar 3 .
:D_ll_a{xzy+23*I dx
b
) ), b
=2p —a Xb-!'? dx
3 3
xb bx
) 33 b
29[3 + 3]7 |

4 __— M
=—M(a+b Vop=To
3n (a ) [ ]
Hence the moment of inertia of an elliptic disc abour the line through the centre and

% M (a®+ b,
(7) Moment of Inertia of a Hollow Sphere :

Hollow Sphere. When a semi-circular arc is revolved about
its bounding diameter, the surface thus generated is called hollow
sphere.

To find the moment of inertia of a hollow sphere about its
diameter. .

Let AOB be the diameter of a hollow sphere of radius
a and p be the mass per unit surface area of the sphere.

perpendicular to its plane is

Fig.12
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Consider an elementary arc a 86, which when revolved about the diameter AB, a circular ring
of radius « sin 8 is generated. Therefore, the mass of this elementary ring = p (274 sin 8) . (a 30).

. The moment of inertia of this elementary ring abour AB
=p (27a sin 6) (¢50) . (a sin 6)?
Thus the moment of inertia of hollow sphere about AOB

i
= J-G —o P (2ma sin ©) (a d8) . {a sin 9)2

TC
=2na*p L sin’ 8 d9

n/2
= dna’p IO sin’ 6 d0

= 4m4p [-(3—?11 . []

na’o

W Wwoo

Ma*

Hence the monient of inertia of a hollow sphere about its diameter is

(8) Moment of Inertia of a Solid Sphere :

(see § 42 (4) (b))

2. 2
SMa.

Solid sphere. When a semi-circular area is revolved about its diameter, the solid thus

generated is called solid sphere.

To find the moment of inertia of a solid sphere abour its

diameter.

Let AOQB be the diameter of a solid sphere of radius a and

p be the mass per unit volume of the solid sphere.

Let us consider an elementary area PQRS = rd0 &r at the
distance r from the centre (. When this elementary area is
revolved about the diameter AOB, a ring of cross-section r§98r

and radius » sin @ thus generated.
-, The mass of this elementary ring

=p (2nrsin6) . 60 Or

'The moment of inertia of this elementary ring about AQB
=p (2nr sin 8) (458 87 . (r sin 8)°
Thus the moment of inertia of whole solid sphere about AOB

J"B D.I. =0 p (21 sin 8) (/ sin” ©) r dr d©

nac
=2mp _[0 L Fsin’ 0 drdd

—an_[ [ :[sm 8 do

5 PR
- @;&J.O sin® 0.d9

n/2
=2..—npa5_[ sin 0 46

Fig. 13

Moments of Inertia

Seif-Instructional Material 147



Special Function and Mechanics

148 Self-Instructional Material

=8 o
5™
2.,2 ’ M
=M v op=
s ‘ 1 PEa
T Ta
3
\ I
Hence the moment of inertia of a solid sphere of radius a and mass M about its diameter is
2 M, : '
5 - |

¢ 13.2. THE THEOREMS OF PARALLEL AND PERPENDICULAR AXES E

(1) Theorem of Paratllel axis. If the moments and preducts of inertia about any line or lines
through the centre of gravity of a body, are given, to find the moments and products of inertia about
parallel line or lines.

Let G (¥, y, z) be the centre of gravity of a rigid body and let GX', GY'. GZ’ be axes taken
through G parallel to OX, OY and OZ through O. Let {x', 3, ) be the new co-ordinates of P with
respect to the axes GX’. GY’ and GZ’ while the co-ordinates of P with respect to OX, OY and OZ is
(x, y, 2), so that

x=x+X,y=y+y,z=2+7.
The moment of inertia of the body about OX
A=Zm (}'2 +29
=Im{F+y)+ @+ ~’J2}
=Zm {}3+€2+y +272 4 5y + 27}
=Im P+ +Em O+ + 25 Iy’ + 2T Eme
=ImF+Dy+Em O+ D [
(. Zmy =0=Zmz, from the centroid propcrlty)
A=MG +) + A
where~M = Z, the total mass of the body; A" =Zm (y’2 + z’z), the moment of inertia about the
parallel X -axis through G.

or A=A +MH (D),

where h = Vy? + 72, the distance of the centre of gravity from X-axis through O. Thus equation
(1) is the paralle! axes theorem for moment of inertia.

(2) Theorem of Perpendicular Axis for a Lamina distribution. If the moments andpmduc'rs
of inertia of a plane lamina about two AY
perpendicular axes in the plane of lamina 7
are given; to find the moments and
products of inertial-abour any other axis
through  the intersection of two p Y
perpendicular axes.

Let Aand B be the moments of
inertia aund F be the product of inertia about
the axes OX and OY in the plane. Let us
consider an elementary mass m of a rigid
body at P (x,y) with respect to axes
OX and OY, then we have )

A= Zmy ,B=%my’ and F= Zanxy. Fig. 15

If (x".y) be the co-ordinates of a
point P with respect to new system of co-ordinate axes OX’ and OY” such that ZX0X’ = 9.

Then we have, '

x=x"cosB-ysind

v

and y=x"sin8+y cos 8.
X'=xcos0+ysinB I
and Yy =—xsin®+ycos O



Thus the moment of inertia of the rigid body about OX" is
A =Zmy?
=Y¥m (- xsin 6+ y cos 8)°
= Xm (x° sin® 0 + ¥ cos® 8 — 2xy sin 6 cos 6)
=sin® 0 Zmx® + cos” O Tmy” ~ 2 sin 8 cos H Ty
= Bsin® 6 + A cos”  — F sin 26.
- A’=A cos’ 8 + B sin® 0 - F sin 26.
Remarks
» If A and B be the moments of inertia about any two perpendicular lines in a plane, then
the moment of inertia about a line through the point of intersection of the perpendicular
lines and perpendicular to the plane is
T (3 + y%) = Zma? + Tmy?
=A+B.,

SOLVED EXAMPLES i

Example 1. Find the moment of inertia of a hollow sphere about a diameter, its external and
internal radii being b and a.
Solution. Let us consider a spherical shell of radius x such that @ < x < b. Let dx be the width’
of this shell and p be the mass per unit volume of the holiow sphere.
Mass of this spherica! shell
= 4mpx® . 8x.
The moment of inertia of this shell about the diameter

- % (dmp? . 8x) 52

]
w |ca
a
S
0 it
-
e
'S

I

th

it Wi wlo
S
Kol

R

(bS 3

|
1~y
~—r

¢ SUMMARY

+  Moment of inertia of a rod of length 22 and mass M

(i) About a line perpendicular to the rod through its centre = % Ma*

(ii) About a line perpendicular to the rod through its one end = ‘:‘Mﬁz.
«  M.L of a rectangular lamina of sides 2a, 2b and mass M

(i) M.L about a line through its centre and parallel to side 2a =%Mb2.

(i} MLL. about a line through its centre and paralle} to side 2b =%Ma2,

Moments of Inertia
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(iii) ML about a line through its centre and perpendicular to its plane = 3 M (a” + b7).

»  M.L of rectangulr parallelopiped of sides 2a, 2b, 2¢ and mass M
(i) M:I. of about a line through its centre and parallel to edge 2a = % M (bz + Cz)

(if) M. of about a line through its centre and parallel to edge 24 = % M@+ )

(iii) M.L. of about a line through its centre and parallel to edge 2¢ = % (M (a* + b7
*  M.L of circular ring of radius a, 2b, 2¢ and mass M

(i) M.1. about a diameter = %Maz

(ii) M.L. about a {ine through its centre and perpendicular to its plane = Md?
¢ M.L of circular disc of radius g and mass M

(i) MLL about a diameter = %Maz

(ii) M.1. about a line through its centre and perpendicular to its plane = % M.
*  M.L of eiliptic disc of axes 2a, 2b and mass M '

{i) M.I. about the majof axis 2a = % Mb*

(ii) M.1. about the minor axis 2b = % Md? . ,

(iii) MLL about a line through its centre and perpendicular to its plane = % M(a* +bD).

*  M.L of a hollow sphere of radius a and mass M

(i) M.L about the diameter = % Mad*.

* (if) M.I about its tangént = %Maz.
* . '"M.IL of a solid sphere of radius @ and mass M@

(1) M.1. about the diameter = %Maz

(ii) M.1. about its tangent = %i‘.ﬁ"a2

STUDENT ACTIVITY

1. Find M.L of a uniform rod of length 2a and mass M about a line through its one end and

perpendicular to the rod.

2. Find M.I of a solid sphere of radius @ and mass M about its diameter.
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TEST YOURSELF

1. Find the moment of inertia of a circular area about a line in its own plane whose perpendicutar
distance from its centre is ¢.

2, Find the moment of inertia of an isosceles triangle about a perpendicular from the vertex upon
the opposite side.

3. Find the moment of inertia of the arc of circle about
(i) the diameter bisecting the arc
(ii) an axis through the centre, perpendicular to its plane
(iii) an axis through its middie point perpendicular to its plane.

OBJECTIVE EVALUATION

Fill in the Blanks :

1. The moment of inertia of a uniform rod of length 2a about a line through its middle point and
perpendicular to it is ........... .

2. M.L of a circular ring of radius a and mass M about its diameter is ............ .

3. M. of acircular disc of radius « and mass M about a line through its centre and perpendicular
to its plane is ...«

True or False :

1. The moment of inertia of uniform rod of length 22 and mass M about a line through one end

.4 .2

is 3Ma . ) (TF)
2. If M be the mass of the rigid body and I its moment of inertia about an axis, then its radius of

gyration about its axis is given by VI/M. (T/F)
3. M.Lof acircular ring of radius & and mass M about a line through its centre and perpendicular

to its plane is Md®. (T/F)

4, M.L of a circular disc of radius a and mass M about its diameter is 1 Maz.

4 (1/F)
Multiple Cholce Questions (MCQ’s) :
Choose the most appropriate one :
1. M. of a thin uniform rod of length 2a and mass M about an axis through one end and
perpendicular to it is :
@ %Maz () %Maz (c) 5 Ma? @) Md®.
2. M. of arectangular plate of sides 2a and 2b and mass M about a line through its centre parallel
" 10 the side 2a is :

@) -i— Mt (b % Md? ©) % M d % M2,
3.  M.L of a circular ring of radius a and mass M about its diameter is :

(@) Ma’ (b) 3 Ma? (©) > Ma? ) + Ma>

2 3 2
ANSWERS
1 -é-M (@+289 2 ﬁ Md®, a is length of opposite side
2 2
3. () “;—z (0. - sin o cos @) as M = 20ap(ii) Ma® (i) 2"’;“ (0 - sin )

Fill in the Blanks :
1,,2 1., 2 1., 2
1. 5 Ma 2. 5 Ma \ 2
True or False : :
1.T 2.T 3. T 4. T
Multiple Cholce Questions :
1. (@ 2.0 3.

QQQ

Moments of Inertia
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UNIT

14

D’ALEMBERT’S PRINCIPLE

tmpressed and Effective Forces

D’Alembert’s Principle _
General equations of a motion of a rigid body
Centroid of a rigid body and its linear momentum
a Summary

a Student Activity

a Test Yourself

“LEARNING OBJECTIVES

After going through this unit you will leam :
e Whatis D'Alembert’s principle ? L
e How to apply D'Afembert's principle to solve the given questions ?

* 14.1. IMPRESSED AND EFFECTIVE FORCES

Impressed forces. The external forces acting on a rigid body are called impressed forces.
For examples, Gravitational force and Magnetic force, and weight of the body etc.

Effective forces. When a rigid body is in motion then the effective force on the body is deﬁncd
as the product of its mass and its acceleration.

If m denotes the mass of a moving particle and (x, y, z) be the co-ordinates of the particle at

3
x dy
any time ¢, then the components of the effective. force on the particle are m %2 " -—'—d‘ and
. 1 1~

2 .
m i—f parallcl to x, y and z-axes respectively.
t . .

Remark

> 2
—mﬁ-—mgzl

dt df*
*. 14.2. D’ALEMBERT'S PRINCIPLE

Statement, The reversed effective forces acting on each particle of the moving rigid boa’y
and the impressed forces on body are in equilibrium.

' dz - :
cand - m _rz are the components of reversed effective force.
" d

Proof. Leta r1g1d body be in motion and 7 be the position vector of a particle of mass m at

any time ¢, then —- e  is the acceleration of the particle, Suppose F and R be the external and internal

forces acting on it, then the equation of motion of the paricle is

&r. - = ;
m-—==F+R 1Y
art : : :
. [By Newton’s second law of mation]
or LI+ F 4R =0,
df’
This equation shows that the three forces — m iz-—{ +F and R are in equilibrium.

dt
Now applying the same hypothesis to each particle of the rigid body, the forces

t



E[—md J SF and 3R
dr

are in equilibrium, where Z runs over each particle of the rigid body.

But the internal forces acting on the rigid body form pairs of equal and opposite forces,
therefore,

" Hence the forces Z( m —] and $F are in equilibrium,

Pz ]o
dt

Hence the reversed effective forces acting on each particle of the rigid body and the impressed
(External) forces on the body are in equilibrium.
Remark

>

D’ Alembert’s principle reduces the dynamic problem to the static problen-i.

* 14.3. GENERAL EQUATIONS OF A MOTION OF A RIGID BODY

To deduce the general equations of motion of a rigid body by D'Alembert’s principle.

Let a rigid body be in motion and ¥ be the position vector of a particle of mass s at any time
. tand F be the external force acting on it, then by D’ Alembert’s principle, we have

d

RO

or ‘ Zm :r—EF.
dt
Taking vector product with ¥ of both sides of (1), we get
2_
=3IFxF. ' A2)
dr

Hence the eguaions (1) and (2) give the general equauons of motion of a rigid bady.
Cartesian Form of General F.quations .
A
Letr=xi+yj+zkandF=Xi+ }’j+2k SO that
&FF dxn dy A dzz

+
#at T et
and rxF= (.x¢+y_;+zk)X(X1+YJ+Zk)

=(yZ~ zY):+(zX IZ)]-!-(JCY yX)k
Then from (1) and (2), we get after equating the coefficients of :’,j and k,
A X
Zm d—': =XX
o
s osyl . (3)
d{z ' .
Zm E_f_f =3z
dt
- fa_ by |
and Im|ly— =~z =X (yZ-z
(y df dar o L
2 9 X ' '
Im zg—f—xﬂ =2 (X —-xZ) } . ()
dr” da , . ]
&y dx
Im|x—5-y 5 |[=ZQaY-yX)
at” dt

D 'Alembert's Principle

(1)
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F

|

These equations (3) and (4) give the general equations of motion of a rigid body in cartesian
form. i

» 14.4. CENTROID OF A RIGID BODY AND ITS LINEAR MOMENTUM |

Centroid of a rigid body. Let 7 be the position vector of any particle of mass m of a rigid

body at any instant with respect to a fixed point O, then the centroid of a bedy is defined as the
position vector
7 = %’iﬁ i
If Zm = M. then
- _Zni

T M
-and if ¥ (%, ¥, z) and ¥ is (x, y, 2), then we have

E=me’§=2my'E=Zmz_ :

M M M i

Thus (x, v, 7) gives the co-ordinates of the centroid of a rigid body.
Linear momentum of a rigid body. If v be the velocity of a particle of mass m at the point

(x, y, 2) and V be the velocity vector of the centroid of the body whose position vector is 7y.

Now we have, nES

V=a T & :
| «dT '
M % dt H
1y T
= MZm [ R dr]
= Imv
V= 7l 2
- y_(d% 43 d7), o (dx dv dz
Since V—[Ir & t]and v_(dt it dt)’
then (2) becomes
dx_ 1 dx) dy_ 1 dyldz_1 . dz
dt_Mz(m dt}’ d:“ME[”’ dr]’ dt_Mz(mdy)' [,
Thus the equation (2) gives the velocity of the centroid of a rigid body. ' l
Remark I

;’=% Tmv shows that the linear momentum of a rigid body in a given direction is

equai to the product of whole mass of the body and the velocity of its centroid,

SOLVED EXAMPLES

Example 1. A rough uniform board, of mass m and length 2a, rests on a smooth horizontal

plane and a man of mass M walks on it from one end to the other. Find the distance through which

the board moves in this time. f-
Solution. When a man moves from one end to the other end on a rough uniform board, the

only external forces are

(1) weight of the board mg acting vertically downwards, G

(ii) the weight of the man Mg also acting vertically L 8 —e—2—>
downwards. <Xl o |8

Thus there is no external force along 4% .. .«........ Cled.... B
horizontal plane, then by D’Alembert's principle, we ' ' E



have that during complete motion C.G. of the board will remain at rest.
Let AB be the position of a rough uniform board of mass m and length 2a rests on a smooth
horizontal plane, when the man of mass M is at A.
Then the distance of the centre of gravity G from A is
Mxo+axm __am
M+ m “M+m
Now, when the man reaches at the other end of the board, the position of the board becomes
A’B’; suppose the board slips through a distance AA” = x backwards during the motion of man from
AtoB .
Then in this position the distance of C.G. of the system from A is
AG = MQ2a-x)+ma—x)
M+nt
_2aM+am —x (M +m)
- M+m |
But in both cases AG must be same, then we have
ma___ 2aM + ma —x (M +m)

AG =

M+m M+m
or ma=2aM+ma - x (M+m)
of =-2aM
m+M

This gives the required distance that moved by the board.

Example 2. A rod of length 2a, is suspended by a string of length I, attached to one end; if
the string and rod revolve about the vertical with uniform angular velocity, and their inclinations
to the vertical be © and ¢ respectively, show that

3 (dranbB~3tand)sing
a (and—tan®)sin®
Solution. Let a rod AB of length 2a be suspended by a string OA of length { and the whole

system revolves about the vertical line with uniform angular velocity © (say). The string and the |-

rod make the angles 8 and ¢ with the vertical respectively.
0

Fig. 3
Let us consider an element £Q of width dx at a distance x from A, then the mass ot this element

PQis

o

Now, this element PQ describes a circle of radius PR in the horizontal plane, when the rod
revolves about the vertical line OZ with angular velocity , then the reversed effective force on the
element PQ is ’

[% Sx] . PRo? along RP

=[%5x).(fsin8+xsin¢)w2 (' PR=1sin8+xsin¢)

D 'Alembert’s Principle
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and

or

or

ar

or

or
or

ar

The external forces acting on the rod are ' . ‘
(i) Tension T at A along AQ, and '

(i) The weight Mg of the rod acting at C.G. of the rod vertically downwards.

Then, resolving the forces along horizontal and vertical, we get

Tsin8=2§'-i—r§4m2(t sin 8 + x sin ¢} (1)
!
Tcos©=Mg : w(2)

From (1), we have

2a
Tsin@:ﬂmzj‘ (I'sin 8 + x sin ) dx
2a @ '

(" The rod is distributed uniformly intc a

. large number of elements like PQ)
2 24 !
:-Z-AZ—mZI:Lx sin © +XE sin qu

=M 0% (20l sin 8 + 24% sin 0]
2a
= Mo?® (! sin © + a sin ¢) )
Now taking the moments of the forces at A, we get .,
Zﬁﬁxmz(!sine +xsin¢) AN-Mg.SG=0

Mw®
2a

2a
I (IsinB +xsin @) xcos § dx — Mgasind =0
AN =xcos 0, SG=asin§))

(v
24
2
Mga sin o =—— M cos¢|:§ sin 9+—~sm ¢l

2a
_L
" 2a

0s O (:292! sin @ + §__ sin ¢i[

2
= Mw? cos 6 [ai sin@+ 4% sin ¢}

' gsin¢=-31—m3cos¢(3rsfne+4a sin ¢)

gtan¢=%m2 (31 sin 8 + 4a sin 0). (4)
Dividing (3) by (2), we get
2

tan9=w?(lsin8+asin o). : (5

Eliminating @? and g between (4) and (5) we get
tan & = 1 tan 8 (3! sin © + 4a sin ¢)
3 {I sin B + a sin &)
- 3tan ¢ (/sin @ +a sin 9) = tan 6 (3/sin & + 4a sin ¢) -
3! (tan 6 sin B ~ tan 6 sin ) = g (tan B sin ¢ — 3 tan ¢ sin ¢)
3 _ (tanB -3 tan d) sin ¢
a (tan¢—tan®)sinb
Example 3. A rod of length 2a, revolves with uniform angular velocity © about a vertical

Hence proved.

axis through a smooth joint at one extremity of the rod so that it describes a cone of semi- vemcaf
angle o, show that

2

el L

3
4 acost



Also prove that the divection of reaction ar the hinge makes with vertical an angle

tan™" 2 tan o
4 .

Solution. Let a rod AB of length 2¢ and mass M (say) revolves with uniform angular velocity
@ about a vertical axis through A.
Let us consider an element PQ of width 8x at a distance x from A. Then the mass of this

element PQ is (ﬂ] Sx.

2a
Al
4
Koo D\
AN
N\ ,
] S P > (-’-‘.‘l &) 2py
! 2a
K ------------------

Mg

Fig. 4

As the rod AB revolves about the vertical axis, then this element PQ describes a circle in a
horizontal plane of radius PN = x sin @. Then the reversed effective force on this element is

[ﬂ 5x] w*. PN along NP
2a

= % 8x | 0* (x sin &)

The external forces acting on the rod are the weight Mg of the rod vertically downwards and
the reaction at A.
Taking the moments of force about A, we have

along NP.

Mg.GK= z[ &1 o’y sin ot . AN

/

2a
. M . .
or ltf!g.asu'lotz—ﬂ:n2 mnacosaj x” dx (¢ GK=asino, AN=xcos 0t)

2a 0

2a 3

b‘—i°

M P
= sinocosa| —

-M @ sin ot cos o 8—a3
2a 3
4 2
gMaUJ $in oL Cos ¢
4 >

g-;am cos &
3

or {nz:———‘g‘-—f

4 gcos o

This proved the first result.
Further. let X and Y be the components of the reaction at A, then we have

X= lzﬁﬁxm X sin o
(!

D’Alembert’s Principle
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= Y |

I 2a
M 2.
_200] SmOtJ.O xdx

1
-ﬁmzsinu o i
T 2a 2 -

—ﬁu}zsino: 4_ai
" 2a 2

= Maw” sin o
and Y=Mg.
If 6 be the angle that the direction of reaction makes with the vertical, then ;

tanﬂ-—%

_ Mao’sin o

Hence proved the second result.

SUMMARY

2—>

«  Effective force : E.F. = mass X acceleration = m d—:
. t
&r
»  Reversed effective force : REF.=—m 7
: s
s  D’Alembert’s Principle : The reversed effective forces acting on each particle of the moving
rigid body and impressed forces on the body are in equilibrium.

re., E?-i-z(-—m% =6_)
e

STUDENT ACTIVITY f

1. State and prove D’ Alembert’s Principle.
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2. Arough uniform board, of mass m and length 24, rests on a smooth horizontal plane nd man
of mass M walks on it from one end to the other. Find the distance through which the board

maves in this time.

TEST YOURSELF

1.  Arod revolving on a smooth horizontal plane about one end, which is fixed, breaks into two
parts; what is the subsequent motion of the two parts ?

2, Find the motion of the rod OPQ, with two masses M and M’ attached to it at P and @
respectively, when it moves rouad the vertical as a conical pendulum with aniform angular
velocity, then angle 8 which the rod makes with the vertical being constant.

3. A uniform rod QA4, of length 2aq, free to turn about its end O, revolves with uniform angular
velocity @ about the vertical OZ through O, and is inclined at a constant angle o, to OZ, show

L - 3
that the value of ©. is eiher zero or cos™ ' —3—2- .
4amw

4. Aplank of mass M is initially at rest along a line of greatest slope of a smooth plane inclined
at an angle o to the horizon and a man of mass M’, starting from the upper end, walks down
the ptank so that it does not move; show that he gets to the other end in time

\[ 2M'a
M+M)gsina

where a is the length of the plank.

ANSWERS

1. Rod OA revolving about fixed point O, the part A8 with its C.G. C will fly off in a tangent
line at C to the circle with O as centre and OC as radius and will also continue to rotate about
C and the part OB will continue to rotate 2bout O with the same angular velocity.

OBJECTIVE EVALUATION

Fill in the Blanks :
1. D’Alembert’s principle reduces the dynamical problem into .......co.u.. .
2 2 2
d d

X d . . X
2. m —5m £2 mEE arethe components of ............... on the particle of s at any time # parallel

a4l df
1o the co-ordinate axes.
3. Z(-mfyiscalled ............ .
True or False: ’
Write T for true and F for false statements @’ )
1. D’Alembert’s principle says that the reversed effective forces on the body is in equilibrium

with the impressed forces acting on the bedy. . (T/F)

2 i S

.. Zl-m d q'r is the expression of effective force. N
: (T/F)
I, The impulse of the force is the time integrat of the force. (T/F)

D'Alembert’s Principle
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Multiple Cholce Questions :
Choose the most appropriate one :

=
1. According to the D’ Alembert’s principie, £ [— m %—2[] =7
. : ' r

(a). F &) E-F (0 0 (d) none of thése. ,

2. If R be the internal force acting between two particles of a rigid body, then ZR=?
(a) 1 ® -1 {c) 0 (d) none of these. r

3. If r be the position vecior of a particle at P wth respect to the its centre of gravity and M b
its mass, then ZM ris : . |

(a) 0 (b 1 © -1 © (d) none of these.
t
ANSWERS
Fill in the Blanks : _ . :
- 1. Stalics problem 2. effective force ' 3. reversed effective force
True or False : '
1. T 2.F 3. T

‘Multipte Choice Questions :

1. (b} 2.(© 3. (a).

QU



