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UNIT Poiirr Series Solulimi.s i<l O.F..

1
POWER SERIES SOLUTIONS OF D.E.

• Power Series Method
• Power Series Solution

□ Summary
□ Student Activity
□ Test Yourself

IMSife^l^l*^tEARNING..OBJECTIVES:-.-^
After going through this unit you will learn :

• What is a power series ?
• How to find the power series solution of a differential equation.

• 1.1. POWER SERIES METHOD
This method is very effective for the to linear homogeneous differential equation with variable 

coefficients. This method gives the solution of the differential equations in the form of a power 
series. Therefore, an infinite series of the form

2 ai.ix” =% + rtiA’ + + ... + a„p:" + ...

is called a power scries. This power series is said to be convergent at a point x if

2 aj’'lim
II «i = 0

exists. It is clear that the above series is always convergent at a: = 0. To explain this method clear, 
let us consider a general homogeneous differential equation of second order 

y" + P(.v)y' + e{-v)y = 0.
The solution y of this given differential equation is assumed in the form of a power series as 

above with undetermined coefficient and these coefficients are determined by putting that series 
and the series for the derivatives of y into.the given differential equation.
Ordinary and Singular Points :

Let us consider a general homogeneous linear differential equation of order two :

+ 7’(j)4^ + e(x)3> = 0iL
dx^ dx

y" + P{x)y+Q{x)y = 0.
The main concept about the solution of (1) is that the behaviour of the solutions near a point 

A- = Ao depends on the behaviour of P(.v) and Q{x) near this point aq. If P(x) and Q{x) are analytic 
at this point Aq. then power series method is applicable in some neighbourhood of aq. Then this 
point Aq is called an ordinary point of the differential equation (i). Thus we can say that every 
solution of (I) is analytic at Aq. If Ay is not an ordinary point, then this point aq is called a singular 
point.
Regular Singular Points ;

In the above section, we have seen that if one of the coefficient functions P(x) and Qix) is 
not differentiable at aq then this point is called a singular point. Thus a point .yq of the differential
equation (1) is called regular if the functions (a-Aq) P(.v) and (a - aq)^ Q(x) are analytic at a = .vo.

...(I)or
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If a singular point a-q is located at the origin, then the general form of an analytic functionjat 

= jg = 0 is Z fiOT-r"'-

Special h'uncfum and Mechanics

m = 0
This implies that the origin will definitely be a singular point of (1) of /’(.c) and Q(x) have'at 

least one of the coefficients with negative subscripts non-zero. In this case we assume the solution 
of the differential equation (I) of the form

+ HI
m = 0

where n may be a negative integer or may be a fraction or even an irrational number.

y = ^'' S
m = 0

• 1.2. POWER SERIES SOLUTION
(1) Solution near an ordinary point:
Consider the differential equation

- ^ + Pix)
dx^ dx

Let us take a trial solution of the form

^ + QWy = 0 -..(1)

y= Z C„/' ...(2)
= 0

-1ZnC„ /dx ...(3)
= Zn{«- l)C,y^and

dx^

Also, by letting P{x) and Q{x) are not polynomial in x, we can expand them as

P{x)= Z p„/ and Q{x)= Z -.(4)
;i=0n = [

Now putting all these values in equation (1), we get the required solution. 
(2) Solution near a regular singular point:
Here, we assume a trial series solution of the type 

y=x'^{Co + C^x+C2X- + ...) ...(1)

= x". Z C„x", where all Ci’s constant with Cj ^ 0.
= 0

To find the values of hi and C’s. we proceed as follows :
dy4i in the given differential equation(i) Put the value of and
dx^dx

' ■ (ii) By equating to zero the coefficients of the lowest power of x, get a quadratic equation in 
HI, which is called indicia! equation.

(iii) To find the values of the equations Cj, ...... etc. in terms of Cq, equating to zero the
coefficients of other powers of x.

(iv) The nature of the root can be determine as follows :

(A) If roots of the indicial equation are equal:

Let m = n, be two equal roots. Then putting m -

independent solutions.
(B) If roots of the indicial equation unequal and not difTering by an integer :
If the indicial equation has two unequal roots iii = hij and m; which do not differ by an integer, 

then by putting m = hii and in the series we get two independent solutions.
(C) If the roots of the indicial equation dilTering by an integer an making the coefficients 

of some powers of x in the series for y infinity :

1
wj, in y and in we may get the two
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Pmver .SVnV.v Sohuuntf o/ D.E •Let in = 111, and i/h be two roots of the indicia! equation which differ by an integer and some 
of the cdefficents of powers of /; in the series for y infinity for m = iiii-

Here put C(ni - /hi) for Cq, then we get two independent solutions for m = /ii2- Then proceed
as in case I.

(D) If the roots of the indicial equation dilTering by an integer and making a coefficient 
of the scries fory indeterminate ;

If m = m, and iih (m, > iih) are two roots of the indicial equation which differ by an integer. 
If one of the coefficients of the series for y becomes indeterminate when m =«h, the complete 
solution is given by putting m = hij in y. which have two arbitrary constants.

SOLVED EXAMPLES
Example 1. Sofye.? ^ + xv = 0.

d.v- «'->■ '

Solution. Here, the given equation is
dS’ d\>
dx^ dx

+ xy = 0. -.(1)

Putting y = x"' in the LHS of (i), we get
xm (m -l}x"'-- + no!”-'+ x . xf" =x"‘*'+ mV ’ '.

Clearly, the common difference of the powers is (m + 1) - {in - 1) i.e., 2.

sCox^' + CiXm *2« + 2/- m + 4Let y= Z CrX + Cl X -..(2)+ ...
r=0

is the solution of (1). 
Then, we have

dy n-2r-l= I. Cr {in + 2r) x" 
dx ,=o

d-y "-—= Z Cr {/II 4 2r) (m + 2r-1)m*2f-2

dx" r = 0
Put all these values in (1), we get

j + 2r+ 1fff + 2r - I + 2r- 1 + x" ] = 0Z C, l(;ii + Ir) {in + 2r - 1) x + («i + 2r) x
<■ = 0

+ {m + 2rfx"'*‘̂ '-'+ 2/--I ] = 0.
r = 0

- 1Equating to zero, the coefficient of the lowest power of x i.e., of x"'
Cq'ii" = 0

which is the required indicial equation.
Since Co * 0. therefore m = 0, 0 are two equal roots.
Now equating to zero the coefficient of the general term i.e., ', we get

C^ + (m4-2p + 2)Vp^i=0

_ c 
2

. we have

1
^11* I - -..(3)

{in + 2p + 2) 
Putting p = 0,1, 2, .... in (3). we get

1 I1 C, = (- 1)'C,=- QCo. Ci ={n‘ + 2f {m + 4)- («i + 2f (m + 4f

Cq ... and so bn.1 1C2 = (- 1)'C, = - (/ii + 2)^ (in + 4f(in + 6f(ill 4-6)"

Put all these values in (2), we get
i,2 . X .-(4)

(//j4-2)^ {/n + 2f{i>i+4f

Self-Instructional Material 3



Special Funciiiin and Mechanics Putting m = 0. we get
62 4

X X
...(5)+...

2^4^ 6^2-. 4^

= Co . u (say), which is the first solution of the given equation (1) 

, X'« = 1 - -T +
64

X
when + ... .

2^ ' 2^4^ 2^ 4^ 6^
Since, there are two equal values of m, therefore, second solution can not be obtained from

(4).
. Now, from (4)

m * 3m + 1(ni + 2) X , (m + 4)j:
(/II + if (m + 4)'

di -1= Co nix'" (m + lfdx

w + 2d-y (m + 4) (hi + 3) .T(hi+2) (w+1)m-2 m ,X +Co HI (hi - 1)4:
(hi + if (hi + 4)^(hi + 2)-<ic-

Put above two values in (1), we get
m + 2(hi + 4) (hi + 3) X(hi + 2) (hi + 1)m-2 m ,X +LHS =j:Co hi (hi-1)4:

(hi + if (ill + 4f(lit + 2)'

+ 3(m + l)x^ (III + 4) .v"'
(hi+ 2)' (hi + 2)-(hi+ 4)-

m - I+ Co mx

m + 2 . m + 4
X+ xCo x^---- ^ " + -p 1 • •

(hi + 2)' (hi + 2)' (hi + 4)'
^ 2 niCo HI .V - 1

d- ^ + x y = Co in' .+^ dx^ ' dx

Differentiating both sides, partially, w.r.t. hi, we get

d I d^ d '
-r— X —- + -- + X y = T
dm dx am

^(CoHl'V"-')

X---r + —+ X
dx^ dx

-1 , y-, 2 - 1+ Co HI X= Co. 2m4-'" log X=>
dm

Putting m = 0, we get
d^ d

+ — +X =0""dx- ' dx dm

satisfy the equation (1), therefore it is also a solution of (1).=>
dm

7T » 0
Differentiating (4). partially, w.r.t., m we get

= Coa:'" logx 1--------—x +-------- ^
dm ^ (m + lf (m + 2f(m + 4f

4
X

2^ -2-2
+ Co/" 3 + (111+2)^ (hi + 4)^ (hi + 2)^ (hi + 4)M ^(hi+ 2)

Putting III = 0, we get

fizl 22 4 -2 -2 
2’. 4^ 2^ 4

+ Co ^2 += Co log X 1 ^
X 4

dm 2-. 4- ■
•jj = 0
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2 Power Series Sotuliim.\ of D.E.
= bit log j: + 6 —

2^ 2^ 4
= hv (say)

V = « log JT + ^
2

2i~~^ ^ ‘irbitrary.where

Constant which replaces Cq.
Hence, the required general solution of (1) is given by 

y = au + bv
where a and b are arbitrary constants.

Example 2. Solve the following Legendre's equation 
(1 -x^)y"-2xy'+p(p+ ])>' = 0 ;!

in descending powers of x.
Solution. Here, the given equation can be written as

^^+P(P+1)>' = 0. -..(1)dx^

Putting y = x"‘ in the LHS of (1), we get

- 2x. nu"(l-r) in (m-l)x

(- n? - in + p^ + pyx'” + in (m - 1) x” ”
Clearly, the cornmon difference of the powers is m - {m - 2) i.e., 2. 
Let the solution of (1) in descending powers of x be

ot-2 -I + p(p+l)x'”
or

m - 2 m - 4 m -2ry=Coxr + CiX + C? X + ... = Z CrX ...(2)
r = 0

dy m-2r- I-^ = Z Cr{ni — 2r) x 
dx

4 _: -
=>

-2r-2and Z C, (m - 2r) {;« - 2r- 1) x"
dx- <■ = 0

Put all these values in (1), we get

Z C.[(l-x^)(;K-2r)(m-2r-l)y" -2<--2 m-2r-I- 2x {m - 2r) X
r=0

+ p(p+l}y'’'-' = 0

. Z C, [{-(ni - 2r) (m - 2r-1) - 2 (m - 2r)+p {p + 1)} x” ^=>
r = 0

J-2r-2+ (m - 2r) (in -2r- i) x” ] = 0

Z Cr[{p^-(m —2r)^ + (p-/n + 2r)} x"■;-2r

r = 0
~2r-2+ {m-2r){m-2r-\)xr 

+ (m-2r)(m-2r- ^x"

1 = 0
i-2r -2r-2Z C, [(p - m + 2r) (p +;« - 2r + I) x” ] = 0.

<■ = 0
Equating to zero, the coefficients of the highest power of x i.e., x"", we get the initial equation

as
Co(p-m){p + ni+ 1) =0.

Since Q * 0, therefore, we get

rti=p,-(p+1).,
Now, equating to zero the coefficients of x””^^ we get

Cr(p -.m + 2r) (p + m - 2/-+ 1) + (in -2r + 2) (m -2r+ 1) C, 
(m-2r + 2)(»i-2r+l).

(p-m +2r) (p+,m -2f + 1) ^

= 0-I

Cr ==S r- 1-

Self-lnstructional Material 5



Special Funclioi] imd Mechanics Putting r= 1,2,we get
in (m - 1)

Co,C,=- (p-m + 2){p-m- 1}
(m - 2) (m - 3)

C,C2 = ' (p- m + 4){p + in - 3)
________ HI {in - 1) (m - 2) (in - 3)_________ ^
(p~ III+ 2)(p-in +4) (p + m- 1) (p + in - 3)

............... and so on.
Put all these values in (2), we get

^ my = Co X
______III (in - 1)______
(p-in + 2){p + III - 1)

_________ in (m-l)(in-2) (hi - 3)_________
(p - III + 2) (p - in 4) (p + in ~ l)(p +in- 3)

IIII-2

ni - i

Now, putting iii=p,-(p+ 1) successively, wc get
p(p- 1) p (p- 1) (p-2) (p-3)

2.4.(2p-l)(2/;-3)y=Co 2(2p-l)

= au (say)
which is one solution of the given equation. 
Also,

(p + 1) (p + 2) (p + 1) (p + 2) (p + 3) (p + 4)
2{2p+3) ^ ^ 2.4(2p + 3)(2p 1-5)

-1y = Co X

= bv (say).
Here, the required solution of the given equation is y = au + bv. where <i and b are arbitrary

constants.

• SUMMARY

• Power series ; y = S a^"
m = 0

• STUDENT ACTIVITY
Define ordinary and singular points of D.E.

y" = P(x)y' + Q(.x)y = 0
1.

(P'V dv
■ X —H—^

dx^
-f jty = 0.2. Solve:

6 Self-Instructional Material



Power Series Soliilioiis of I). E.
• TEST YOURSELF

2j-' ^ + Axy = :«•■ + 2a,- + 2 in powers of x.1. Solve
dx

cN dy 
dx^ dx

+ x>> = 0.2. Solve

+ (i+A-) + 2>- = 0.3. Solve X
<ix- dx

Objective evaluations 
Fill in the blanks :

k
The series Z a„, x” is a power series if fc = ..........

m =0
D-E. y" + /’(x) y' + Q{x) y = R is homogeneous of /? =

True or False
D.E. y" + P{x) y‘ + q{x) y = 0 is homogeneous.

is called quasi-power series.

1.

2.

1. (T/F)

W + ftSeries 2 a,„ x'
w = 0

2.
(T/F)

Multiple Choice Questions
1. Ordinary point for D.E. /' -r y = 0 are/is :

(b) set of all rals 
(d) 1

(a) [-1, 1]
{c)0

ANSWERS

1. y = Co[i-|.«:
-

X~ X
2. y = au + bv, where " “ ^ ^

V = « logx-l- —

I 4,1 6 ^
— X +—X +...3 '2 6

-45" - -'^"6^ "63-' ^
4 62

X
I+-2^4“ 2^4^6 

3 4
1_2' 2-\4’''‘''‘'

K=l-2x + Ax•^-A-r•’-^...

2
and

3. >■ = AM -I- bv, where 2 ! 3 !
iI 1 I 3v = bulogx + b 2 2-^

1
X'-H...-y+2+-

iFill in the blanks 
1. /: = ==

True or False
2. R = 0

2. T1. T
Multiple Choice Questions'

l.(b)

□□□

Self-Instructional Material 7



Sijccial Function amt Mechnnics UNIT

2
LEGENDRE’S FUNCTIONS

Legendre’s D.E.
Generating function of Legendre polynomial Pn (x) 
Rodrigue’s Formula 
Laplace Integral For Pn (x)
Orthogonal Properties of Legendre polynomial 
Recurrence Relations 
Christoffel’s Expansion
□ Summary
□ Student Activity
□ Test Yourself

After going through this unit you will learn :
• What is Legendre Differential equation ?
• The power series solution of Legendre D.E. is the legendre polynomials.
• How to generate Legendre polynomial.
• What are their orthogonal properties and recurrence relations ?

• 2.1. LEGENDRE’S D.E.
Consider a lioniogeneous linear differential equation of order two of the form

(I - ^ - 2x ^ + » {« + 1) y = 0
dx^ dx '

where n is a real iiwnher. This differential equation is known as Legendre's differential equation, 
and any solution o/(l) is called a Legendre function.
Solution of Legendre Equation

Dividing (1) by (1-x^), we get 
d'y _ 2x ^ 
dx^ l-x^dx

Now compare this equation with the standard form

..-(1)

1+ /I {n+ 1) - 1^ = 0
1 -X

r/v-^ + P{x)- + Q(x)y = 0 
dx

2x n (n + 1)e(x)=. P{x) = - l-x"’

It is trivially obtained that P{x) and Q{x) are analytic at x = 0, so, for finding the solutions of 
(1) we apply the power series method- Let us assume the solution of (1)

1-/

y= Z a„p!
m = 0

Now differentiating (2) w.r.t. x one time and then two times, we gel,

UA

...(2)

-1 ...(3)
= I

8 Self-Instructional Material



--^= 2 m {m - \) a,ii X
dx m -1

Legendre's Fima tonsm-2and ...(4)

^4: andSubstitute the values ofy from (2), (3) and (4) into equation (1), we get
’ dx dx-

(l- .v') I /n (ni - 1) fl„, a:'" ^ - 2a Z ma„,x"'
m - I

- j + n {n - 1) Z (t„ a'" = 0 
(11 = 0m = 2

Z /II (ill - 1)A™ Z III {//I-ra"'-2 Z i/in,„a"'+/i{« + 1) Z n,„.v"' = 0 
«( = 2

{2.1 ri2 + 3.2 «3A + 4.3 <34.^^+ ... + {/• + 2) (/■+ 1) 2-'^’^ + •••)

- (2.1 + 3.2+ ... + r(r- 1)+ ••• 1 ~2 [a^x + 2<I2A'+ ... + ra^x' + ...]

+/i (« + 1) {rto + a,A+... + a,A'’+...) = 0. ...(5)

If equation (2) is a solution of (1), then equation (5) must be an identity in x. Thus in (5) the 
sum of the coefficients of each power of x must be zero. We therefore obtain

2^2 + " (" + I) do = 0,

6^3 + {-2 + It (« + 1)) fl| = 0,

12n4 + (-2(32 - 4fl2 + u (" +I)<t2}=0 
11 (/I-I) (2/i) !

2(2/1-1) ' 2''(ii !)-
»(/i-l)2/i.(2/1-1).(2/1-2)!

or
m = 2 m = 1 w = 0

or

(2/1 !)

2" (// !)-
. «„ =

2(2/1- 1) .2" ./I ! ,/i (ii- 1) .(/I-2) ! 
/I (11-1)2/1. (2/1-I). (2/1-2)!

2 (2/1 - 1) 2" /I. (/I - 1) ! . n (// - 1). (/I - 2)! 
(2/1 - 2)!

2" (/I-!)!.(/!-2)!

(/I-2) (/I-3)
Similarly, (3„-4 = - an-24 (2/1 - 3)

(/t-2) (/I-3) -(2/1-2)!

4 (2/1-3) ■2'’(/i-l)!(/i-2)!

(/I - 2) (/I - 3). (2/1 - 2) (2/1 - 3) (2/1 - 4) !

4 (2/1 - 3) 2" (« - 1). {/I - 2) ! (/I - 2) (11 - 3). (/i - 4) I 
(2/1-4)!

" 2'', (2) I (// - 2) ! (// - 4) !

Continuing in this way, we get in general.
(-1)” (2/1-2/11)1

2" (//i) I (/I - /ii) I (/I - 2/?i)!

Thus we obtain the first kind of Legendre polynomial of degree u and it is denoted by 
•P„ (a) which is given as

a /I - 2m > 0- 2m ~

N
P„{X)= Z .

w = 0
sn general, we obtain

ir + 2) (r+1)0,.,2+•(-/-(/-- l)-2r + /i (/i+ l))a, = 0 
/- = 2,3,4, ...
(/• + 2) (/•+ 1) <1,4.2 + (/I - /■) (/I +./■+ 1) = 0

(/I -/-)(// + r + 1)
(/- + 2)(i-+l)

This equation (6) is known as recursion formula. Now finding the coefficients successively 
ifor 1=0, 1,2, 3....

^or
Dt

/-={0,I.2,...l ...(C)ar ^<• + 2 -

Self-Instructional Material 9



Special Fiiiit iion and Mechanic.'! /i(n+l) It {n + 1)
ao = - (2)’ ""02 = - 2,1

(n-l)(;i + 2) («-!)(«+ 2)
----- Tl—W'- '''03 =

(»-2) (0 + 3)
04 = -

4.3
(/i-2)(/i + 3) -o(«+l) 

2.14,3
(H-2)n(;i + !){« + 3)

(4) !
(n-3) (0+4)

0305 = -
5,4

(n-3)(/i-l)(o + 2){o+4)
=------------- (Sf!------------

etc.
We observed from above coefficients that all the even numbered coefficients are obtained in 

terms of oq while all odd numbered coefficients are obtained in terms of Oj. Thus we obtain the 
solution as

» (11 + I) 2 I (n - 2) n (k + 1) (/I + 3) 4_
+ (4) !

(11-3) («- l)/i(n + 2) (0+4) 5

3’iW= 1where (2)! -
(0-1) (0 + 2) „3

(3)1
These both series are convergent if | | < 1. Sometimes, we have observed that the parameter 

0 in the Legendre’s differential equation will be nonnegative. Then, from recursion formula (6), we 
obtain

and y^ix) = x- +
(5)!

a, + 2 = 0, when r = n i.e. + t =a„ + i= ... = 0 
Hence we can say that if 11 is even, yifx) becomes a polynomial of degree 0 whereas o is odd- 

y2{x) becomes a polynomial of degreen. Therefore if yi(x) is multiplied by some constant, then this 
polynomial is called Legendre’s polynomial of first kind and ify2(j:) is multiplied by some constant, 
then y2(-'^) 's called Legendre’s polynomial of second kind. Now to obtain first kind of Legendre’s 
polynomial we proceed as follows :

The recursion formula in (6) may be written as 
(r + 2) (r + 1)

(n - r) (n + r + 1)
Also all fl's may express in terms of the coefficient n,, which is the coefficient of the highest

<1;. + 2 for r < n - 2flr =

power of X of the polynomial. This a„ is an arbitral and choose when « = 0 and*
1.3.5,,.(2«-1) 2/1 ! for all «= 1,2, 3 ... . This a„ is chosen in such a way that the

2". (n)-!n !
values of all those polynomial will be 1 when x = 1. Now finding the coefficients as follows :

«(»-!)
2 (2;i - 1)a-i-2 = -

N (- 1)"' {2n -2/11)1
or

m = 0 2" (m) ! (it - III) ! (n - 2iii) ! 
if n is even11/2;

(n - l)/2, if n is odd.where N =

• 2.2. GENERATING FUNCTIONS OF LEGENDRE POLYNOMIAL Pn(x)
I1 generates Legendre polynomml P„(x), is calledThe' functions of the type.

'^l-2xt + P'

generating function. Thus we obtained

10 Self-Instructional Material



Legendiv's I'liiKiiniis1
= 2 PA^)>'‘

Vi-2*f + r " = 0

1
L.H.S. =Proof.

1
(V s = 2xt -r)

Vl - 5
- 1/2 (Expand by binomial theorem)

1.3.5.. .(2h-3)
2.4.6.. ,(2«-2)

, . 1.3 2 1,3.5= 1 + ■r i + ~~ s + _
2 2.4 2,4.6
1 3 - 1/5 +....+

1.3.5... (2«- 1)+
2.4.6...(2/1)

s = 2xt -1~

s'' = {2xi-t^T = f{2x-iT
since

-1 ?•+...].

Similarly,

-""'Ci (2x)"‘^r+ ...-1''-'Co(2x)’'-1-1

Cl (2;c)''’\ + '''V2(2t)'' V...«-2
and

etc.
substitute these value in the above equation, we get

(2x - if + 1.3.51 . 31 f (2x-tf+...1 +|r(2j:-r) +L.H.S. = 2.4.6
1.3.5.. .(2x-5) ,,-2'
2.4.6.. .(2*-4) L

2.4
-3n-2 -1-2n-2 C| {2x)’'Co(2x) i

-1-4.2+ ''"^C2(2r)

-""'C, {2x)"'-i+...

t + ...
1.3.5-..(2n-3) -1-1 ’'"'Co(2x)''
2.4.6...(2/1-2)

1,3.5...(2/1-1)
2.4.6.,,(2/i)

-1"Co (2x)" - "Cl (2x)"r" r + ...

Now collecting the coefficients of t" 
1.3.5 ,,,(2/1 1) A/I 1.3.5...(2/1 3)n-l^ ,-,^.,n-2

2.4.6...(2/;)“- 2.4.6...(2/1-2)
1.3.5.. .(2/i-5)„-
2.4.6.. .(2/1-4)

1 . 3.5... (2//-.3) ,(/l- 1). .-2 n-2 
2.4,6... (2/1-2)' (1)!

^C2(2x)""‘‘- .,

1.3.5...(2/1-1) . 2" x" -
2.4.6...(2/1)

1.3.5...(2/1-5) (n-2) (/i-3) .,,,-4 n-4_
■"2.4,6...(2/1-4)' -• ^(2)!

2/1 (/i-l)1.3.5.,.(2/1-1) 2" y-
2.4.6...2/1 (2/1 - 1) 2

2/1 (2/1-2) (/I-2) (/I-3)
(2/1-1) (2/1-3) (2)1.2'* ' 

n (»- l)(/i-2) (11-3)
2.4 (2/1-1) (2/1-3)

/i(/i-l)1.3.5...(2//-1) x'’-- +x"-
2 (2/1-1)(/i)!

= Pn(x)- 
Hence we obtained

Self-Instructional Material 11



Specitil Funcrion and Mechanics 1 = 2 P„(x)f.

• 2.3. RODRIGUE’S FORMULA
The expression for P„ (x), given by

1 <r■%

Pu ix)•»«
is called Rodrigue’s Formula.

Proof. Since P„ (x) is a Legendre Polynomial whose expression is given as

2r{n)ldx

(- I)" (2n - 2m) ! •^2/n.x"P„W= 2 .-(1)
^ = 0 2''(m)!{«-m)!(/i-2m)!

where [n/2] is an integral value of «/2 not exceed ;i/2, rearrange (1), we get
inn\I (-ir (2n-2m)\ ^

= 0 2" (/«)! (h - m) ! ■ (n-2m)!
n~2m f

Pnix)

ln/2\ (- if N

I
nr=o 2" (m) ! (n - m)! cLf

<r (2n-2m)\
~ (2/7 - 2/77 - r) ! • ^

.2n - 2n - 2m -
dx'

Wl\ cT2 (")!
= 0 ("0 ! (/7 -/7l) ' dx

1
2", (/i)!

Now extending the range of m from 0 to n. To do so no change will occur in the above 
expression, because /7th derivatives of those terms whose degree are less than n will be zero. Thus 
above expression can be written as

. 1 cf "
2''(/i) ! djf m = o ("*) ! (n-m) !

1 d" :
2" (-1) ! dx"

1 (f r

{«)!

(«) !z "c„{x^r'"{-\r ■ ■ "C ='-•m (/ii)! (/7 - m)!m s 0

"Q{x^)"-"C, (xY"' + Cl (x ) + - + X(-1)’'
2" (/i) ! dx"

1 (By Binomial theorem)
2" (/i) ! dx

1
Hence P„ (x) =

2"in) ! dx"

• 2.4. LAPLACE INTEGRAL FOR Pn (x)
(i) Laplace’s First Integral for P„ (x) :

" [x ± Vx--T cos 6]" de1 fPnix) = t
Jl Jo

where n is any positive integer. 
Proof. Since we know that

/•Tt dB n 2, where a > b' I
I,0 a ± cos 0 _ ip.

let us taking n = 1 - tt and b = t '^x^ - 1, then

a--.b^ = i[-txf-l^ix^-i)

12 Self-Instructional Material •



\
= I + i\x- - 2tx - + r = 1 - 2« + rl l^gendre'x Funciiaii'i

Thus (1) becomes
/•n dQ n -..(2)

' •’o (1 -K)±W^^-1 cose '^i-itx+P 

since generating function gives
1 z PAx)!"

Vl - 2x1^ /i*0

.-.(2) becomes
i>;t d6

K 1 PAx)f =
' ° 1 - w ± f 1 cos e^ = 0

ctQ
[l-r[;r + Vx--l cos0)]

{I - f { +Va:^ - 1 cos 9}]-1 dQ
JO

(•n
where s = x + '^x^ - 1 cos 0(1 -fs)"' rfe,

Jo

(1 +f5 + f^5^+ ... +rY +
Jo

Z- i"s”dQ
' 0 n=Q

i>n
s" f" dQZ\ Jon = U

“ 1*71 .-------------
= I r" [j: + Vj2-1 cos0r<f0 

3 Jo

- i»Jt ,-------------

Z f [jr + ^/;c--l cos0rrf0

11 = 0

n E P„Wr'' =
JOn = 0 n = 0

rTl [x±V7-l COS QfdQ71 P„ (X) =
Jo

p.w=i£ [,±^i?- 1 cos 0]" dQ.or
/

(ii)Laplace's Second integral for P„ (x)

1 f"P„(x) = i
y[x ± cos 9]

dQ
n +1

where n is any positive integer. 
Proof. Since we know that

fU dQ 71 , where ...(1),0 fl ± 6 cos 0 .^^2 _ ^2 

Here taking a =A-f- i, and b = t Vx^ - 1, then - b^ = 1 - 2xt +P
.'.(I) becomes

Self-Instructional Material 13



p

Special Fimciidii and Mechanics pn f/0 n (2)
{xi- 1)± Wx-- 1 cos 0 V i - It/ + r

1
since

V l - 2A-/ + rn *0

(2) becomes,
/•n d6

n I f'„(.T)/'' =
[- 1 + / U±V.r-

■ n I-----------
[/U±Vj:--i cosei-ir'<ie

Pi = 0 1 cose)]

JO

{*71
(ts-l) '//e. where ^ = .v ± '^x' - J cos 0

JO

-1l*7t 1 1 de1--
, 0 fs - rs

/*n 11 1 + — + rr^+ ... + 
ts IS-

+ ... dQ
iV. 0 Is

I
—“ +

Jo fs rs

pn 1 + ... dO+ ... +2 2 + 1

pJt “ 1 r/0S
Jo „ r^'s"

pn de1
n I P„Mf"= 2 . +1i" [.r±V/-i COS0) P1 +1pf = 0;i = 0

de1 1zn.or +1r" [x + Vt^-l COS0]Vl -2j:/+7 n + In = 0
pn de11n zor +1 I« = o r" [j: ± Va-- - 1 cos 0] /!+ Ir V 1 1l-2x.- + -^

/-/
r/0 ^7 ^ >.W= ^ 

‘ <1 = 0 /
1or +1

<1 = 0 /" [-t ± V - 1 cos 0]n+ 1

i*It d61 1
Pn (A ) = 271 Zor 11+1 „ = o /"„ = o /" [x ±\x'- I cos 0]»+1

/•Tt denP„(x) =
[.V ± v.t'- I cos 0] 4. I

i*7t de
Pnix) =ZHence

(x ±\x^-l cos 0]Jt Jo n * I

• 2.5. ORTHOGONAL PROPERTIES OF LEGENDRE’S POLYNOMIALS

<•1
(i) ^ P,„ (x) P„ (x) dx = 0, when m * n.

1-1

, when in =n.(«)
J-i
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Legendre's FiinciionsProof, (i) Legendre dilferential equation is

^ + «(«+l)>’ = 0-2.V
dx- dx

+ ;i (/I + 1) > = 0 ..■(1)or dx Idx

since P,„ (a:) and P„ (.v) are the solutions of (1), so, we have

dP„,{x)i + m {m + 1) P„ (x) = 0 ...(2)dx
dPAx)

+ n {n + 1) P„ {x) = 0 ...(3)and
dx dx

Now multiplying (2) by P„ (x) and (3) by P,,, (x) and then subtract, we get

dP„ (x)dP,„ (X)4 Pn, Mdx dx

+ [m {m + 1) - n (n + 1)] (x) P„ (x) = 0 .. .(4)

Integrating (4) w.r.l. x from x = - 1 to x = + 1, we get 
dP„, (x) ri1*1 dP„ (x)4 (!--') P,„ (x) dxP„(x)dx

dx dx.-idx dx

1;i) (hi + /I + 1) J P„ix)P„(x)dx = 0 ...(5)+ (hi
-1

dP„ (x)

41(1-*’)

P„ (x) dxLet /i = dx

<•1 dP,. (X)
P„ (x) dx.and l2 = dx ]J-i dx

(5) becomes
1*1

-.(6)Pm W Pn (X) dx = 0.- /j + (hi - ii) ("‘ + « + 1)
J-1

Now solving /j and I2

dP„ (X)Li P„ (x) dxh = dx

r I dPm (X)dP„ (X) dP„ (x)= P„(x) (1-x)' ^ dx
J-l dx1-1

(By Integration by parts)
r 1 dP„ix) dP,„{x) .(l-x^)= 0-
J- 1

/•I dP„ (x) dP„ (x) 
dx ' dx

(1-x^) dx.h=- J~ I

Taking h,
e'i dPr{x)

dx
P,Ax)dx4 = .-1 dx

r 1 dP,„{x) dP„ix) ,dPnix) (1-x')= P,„(x),(!-x') ^
J- 11- I
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Special Function and Mechanics f I dP.,M dP„ jx) 
' dx

(1-X-)= 0- dxJ- 1 dx

1*1 dP,„ jx) dP„ (x) 
dx ' dx

dx.-
J- i

Thus l\-l2- 0- Now (6) becomes
f I

Pm (x) P„ (X) dx = 00 + 0h-«) (/II + h + 1)
J-1

if HI *n, then

/•I
P„{x)P„{x)dx = (i.

J-1\
el I

Proof, (ii)
J- 1

Since we know that

1
Z P„{x)t"'

Vl -2A7 + r /f = 0

1
= Po (-^) + tPx (.V) + rP: (x)+...F fP„ (X) + ...or

'^l-2xf + r 
Squaring of both sides, we get

1
[Po W + rP, (X) + rP2 (x)+...+ t''P„ (x) + ,,

1 - 2xr + ;-
= [Po + [>P\ W]' + ['‘P’ W]' + • • • + ['"Pn Wl' + .

+ 2 [rPo U) P, (x) + r' Po Pi (x) + ... + r" Pq (x) P„ (x) + ... 

,,, + f'P, (x) P: (x) + r"P, (x) P, (x) + ... + r"" 'P, (x) P„ (x) + ... j

= I tP„ (x)]-+ 2 S r + /J
PmW P„(.*)

fi *0 fit, n = 0
m A n

1 = £ f'''[P„(x)]- + 2 £ r + « Pmix)P„{x)
1 - 2x/ + r- <1 = 0 m. ;j» 0

m u

Integrating both sides w.r.t. x from x = - 1 to 1, we get

f £ /^''[P„ (x)]-riv + 2 
J- I <1 = 0

e Ie 1 dx 4 nr£ P- (-«■) P« W dx.-1 l-2xf + r J~ I «f. <1 = 0
/« # II

e Ie I
= £ r'"

n = 0
[PA-<)fdx +2 £ + nr”' p,<, (.f) Pi, (-f) dx

}-1 J-i«i. « = 0
in /,

e 1
£ r^' [P,(x)]-rfx + 0

J- I<1 = 0

II P„, (x) P,i (x) dx = 0 when in * n
-1

e I e I dx£ r^' 
„ = o

[P„(x)frfx =
. -1 1 - 2xr + rJ- I

-,1
l[log(l-lvr + z\_

I
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Legendre !t Funclions= -i [log il-2i + d- log (I +2/ + /^)]
2t
1

= - —[log(l-0'-log(l + /)']

1-rfl1
log2t 1 +f

11 1 -r 1- log log
11 +r It

1
[log (1+0-log(1-01t

r t t
'234'"

? /
' 2'^3 4^'”

1
t

.1 ^ 2/^ 2t^ + ...

P- P= 2 1+J + J+... =2 2
n = 0 2n+l

/•I i -2-,
„ = o 2«+ I

P’'2 P''
J- 1n = 0

1*1
Hence

J-1

• 2.6. RECURRENCE RELATIONS
(I) (2n + l)xP„ = in + l)P„^i+nP„.i. 
Proof. Since we know that

-1/2(l-2tt + r)-‘^-= 2 Pp„M.
n = 0

Differentiating (1) both sides w.r.t. 't', we get

-^(1-2Ir + (Y^''^(-2JC + 2^)= 2 nr''-V„(.i:)

f,r-fUl-2;rf + fY ^
(1 -2a7 + r)

(^-0(l-2x/ + /^)

...(1)

11 = 1

-12 nPor
« = i

= (I-2.xf + r) 2 ;ir'"'P„(-v)- \/2or
<1=1

(.x-1) 2 r"P„(x) = {l-2xt + r) 2 np-'P„{x) [from (1)]or
n = I;i=0

P„(x)= S nr"-'P„(.v)f IX 2 2or
n - 1>t^0ri * 0

n + I-2x 2 nfP„(x)+ 2 iW Pnix)
n » In B I

X (Po (-0 + fF| (x) + ... + l”P„ (x){tPo (x) + PPi (x) + ... + t"P„., (x) + ...)

= (P| (X) + 2tP2 (x) + ... + (n + 1) P (X) + ...)
- 2x(rPi (x) + 2f^ P2 W + • • • + (x) + .

+ {pp, (X) + 2PP2 (x) +... + {«- 1) t" p„. I (x) + ...)

Taking the coefficient of P both sides, we get
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Siiednl runclicii niul Mediaiiics xP„ (X) - P,,. I (v) = {n + 1) P„ * , (A) - 2,IX P„ (a) + (/, - 1) P„ _, (A) 
(2/i + 1) A P„ (a) = ()I + 1) ^ I (a) + n P„ . I (a)

(2n + l)A/*„ = (H + l)F„^,-l- nPn

or

or -I

dP„
(II) nP„ = xP'„ - P'„ _ „ where P'„ = etc.

dx
Proof. Since we have

]
2 t"PAx).

Vl -2a? +
DilTereniiating (1) both sides w.r.t. 7' and w.r.t. a, respectively, we get

;i = 0

(A-r)(l-2vr + r)-VI 2 tl/'’'’P„(A) -.(2)
>i= I

2,-372 = 2 fp'Ax)t(\-2xt + t-)and
11 = 0

From (2) and (3). we get

t-1(A-r) I f''F'„(A) = i Ell/ P. W
11 = 0 11= 1

11 P'„(A)= Z »fP„(x)or X I, P P'„(x)- Z t"
n = 0

or A (F'o (-1-) + fP'i W + ... + r" P'n M ■*-■■■)- (rP’o M + rP', (a) + ... + r"" , (a) + ...)
= tPt (a) + 2/^ P. (a) + ... + lit" P„ (a) + ... .

/i = 0 ;i= I

Taking the coefficients of P of both sides, we get 
XP'„ (a) -P',,.1 (a) = II P„ (a)

nP„=xP'„-P'„.xor

(111) (2h + 1)P„ = P'„,,-F',._i.
Proof. From recurrence relation (I), we have

(2/i + l)AF„ = (ti + l)P„^,+/iP„

Differentiating this w.r.t. ‘a' of both sides, we get
(2n + 1) P„ + (2/1 + 1) xP'., = («+!) P',^ , + ZIP'.-1.

From recurrence relation II, we have
nP„ = xP'„ - P'„. 
xP'„ = nP„ + P',1

substitute this value of xP'„ into (1), we gel 
(2/1 + 1) P„ + (2/1 + 1) (/iP„ + P'„-1) = (// + 1) P’„ ^ I + nP'„

(/, + 1) (2/1 + 1) P„ = (,i + 1) P-,,, I - (2/1 + 1) P'„ _, + nP'„ 
= (/i + l)P'„,i-(ii+l)P'„

(2/.+ I)P„ = P'„,,-P'„.,.

-1-

I

or -1

-1

or -1

-1

(IV) (H + 1)P„ -aP-,,
Proof. From recurrence relations II and III, we have 

nP„ = xP'„ - P'n 
(2/i+l)P„ = P',„,-P'„

-1

...(2)and -1

substract (1) from (2). we get
(2/1 + 1) P„-/iP„ = P'„+i -xP’n 

(/i+i)P„ = P'„^,-AP'„

(V) (1-a^)P'„ = «(P„_i-aP„).
Proof. From recurrence relations (II) and (IV). we have 

nP„ = xP'n - P',1

or

...(1)-1

(/i+1)P„ = P',„,-aP'„ ...(2)and
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if.'f
Legenil'i’s I'liiicfii'nsPutting (n - 1) in place of n in (2). we get 

nP„.f = P'„ -xP'„
Now multiplying (1) by x and subtract from (3), we get 

nP„ _ 1 - iixP„ = P'„ - X P'n 

n(P„_,-xP„) = (l-jr)

(1-.V-) P',=n (P,_,-^P„)
(VI) (1 -a:^) = {H + I) {xP„ - P„;,).
Proof. From recurrence relations (I) and (V), we have 

(2n + 1) j:P„ = (n + 1) P„ * 1 + «P„
(l-.v') P'„ = n (P„.,-xP„) 

substitute the value of nP„-1 from (1) into (2), we get
(I - X-) = (2n + I) xP„ - (ji + I) P„ +, - /ixP„

= (fl + l)xP„-(/l + I)P,, + i. 

(l-.Y-)P„ = (n + l)(a-P„-P„,,).

...(3)-1

or

or

-1

...(2)and

Beltrami’s Relation :
77ie following relation

(2n + l)(A-'-l)P„ = «(« + l)(P„^,-P„-i) 
is known as Beltrami's Kelation.

Proof. From recurrence relations (V) and (VI), we have 
(1 -.V-) P'„ = n (P„_,-yP„)
(l-A-)P„ = (n+l)(YP„-P„,,)

Eliminating .vP„ from (1) and (2). we get 
(1-Y-)P'„ (1-Y^) P

n + 1
(n + l)(l-A-^)P„ + n(l-Y^) P„_„ 

n(n+l)
(2/1+ 1) (1 -Y-) P„ = n (;i + 1) (P„-| -Pn+ i) 

(2«+l)(.r-l)P„=n (n+l)(P

...(f)

...(2)and

-^P„.i-P 1̂1+ 1n

-Por n + I- I

or

or 1

• 2.7. CHRISTOFFEL’S EXPANSION
The fotloiving series

P„ = (2n-l)P„,i + (2«-5)P„_, + (2fl-9)P„-5+-+/
3Pi , if n is even 
Po , ifn is odd1 =where

is known fJ5 ChristoffeTs Expansion.
Proof. From recurrence relation (Ilf), we have 

{2n+l)P„ = P„+,-P„
P'„*, ={2n+i)P„ + P',.-i 

Now putting (n - 1) in place of n in (1), we get
P'„ = (2n-l)P„^,+P'n.2

Now putting (n - 2), (n - 4), (ii - 6), ... in place of n in (2), we get 
P„-: = (2«-5) P„.3 + P„.4 
P'„-4 = (2n-9)P„_5 + P„_o
P„.6 = (2n-13)P„,7 + P'„-8

-1

...(1)

...(2)

...(3)
-..(4)
-(5)

P: = 3P|+Po. if n is even.
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Spedol Fiinclion niid Meduiiiic.s Adding (2), (3), (4), (5)....... we get
P'„ = (2/1 + (2/1 - 5) P,. 3 + (2/1 - 9) P„ _ 5

+ (2,1-13) P„.t + ... + 3P,+P'o

^(2,i-l)P„ + (2/1 - 5) P„ _ 3 + (2,1 - 9) P„ _ 5 + ... + 3P|-1

If n is odd, then
P'„ = (2n-l)P„ + (2/i-5)P„_3 + (2/,-9) P„.5+...+5P2 + P',-1

= (2,1 - 1) P„ -1 + (2/1 - 5) P„. 3 + (2,1 - 9) P„_s + ... + SP, + Po (••• Po = 1 = P'1) 
Hence, we obtained Christoffel’s Expansion. 1

Christoffel's Summation Formula ; I
The following summation \

Pn^i{x)P„(y)-P„^i{y)P„{x)
Z (2A: + l)Px(:e)P3f{y) = (n + l)

K = 0
is known as Christoffel's summation.

Proof. From Recurrence relation I, we have
{2K + 1) a; P« (x) = (K+1) P^^ , (x) + KP^^, (x) 
{2K^\)yPf,ly) = {K+\)P^,,{y) + KP^.,{y)

{x-y)

-(1)
and ...(2)

Multiplying (1) by P/f^Cv) and (2) by Pk(x) and then subtract, we get
(2/f + I) (a: - y) Ps (a:) P« (y) = (/t + 1) [P^^, , (x) P^ (y) - (x) P^, , (y)]

+ Af[P3,_,(x)P^(y)-P^(A:) P^.,(y)].
Taking summation from K = 0io K = n, we get

(x-y) Z (2/f+l)P^(x)P«(y)
K = 0

= Z (/f+l)(Px+i(x)P^(y)-Px(^)P^.i(y)]
K = 0

+ Z /f[Px-i(x)P;f(y)-P^(x)P^_,(y)]
K = 0

= {[Pi M Po (y) - Po (x) Pi (y)] + 2 [P^ (x) P, (y) - P, (x) P.fy)]
+ 3 [P3 (X) P: (y) - P2 (X) P3 (y)] + ■ ■ - + « [P. (x) P„ -, (y) - P„ -, (x) P„ (y)]

+ (/, + l)[P„,,(x)P„ (y)-P„(x)P i{y)]l
+ [ [/’o (X) P, (y) - Pi (x) Po 0)] + 2 [P, (x) P2 (y) - P2 (x) P, (y)]

n +

+ 3[P2(x)P3 (y)-P3(x) P2(y)] + ... 
+ {» - 1) - 2 (X) P„ -1 (y) - P„ _ I (x) P„ _ 2 (y)]

+ /, [P„-i(x)P„(y)-P„(x) P„.,(y)]}
= (/I + 1) [P„ +1 (x) P„ (y) - P„ (x) Pn+ I (y)) (All the terms cencel except above)
" rP„^iP„(y)-P„(x)P„.|Cv)'Z (2/f+l)P^(x)P^(y) = (,i+l)

(x-y)x=o

SOLVED EXAMPLES
Example 1. Prove that | P„ (x) | < 1, when - I <x< 1, 
Solution. From Laplace first integral for P„ (x). we have

(•It1 [x ± 1 cos ej" de.P„(x) = • ••(i)n JO

Now taking
I [x ± Vx*' - 1 cos 0] I = IX ± I Vi~ - cos G I

= V^^ + (1 -x^)cos^0 = V] -(1 - .r-)sin-0 

1 cos 0 I < 1 except 0 = 0 and 0 = n.x±^
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From (1), we have Legendre's Funcrions

f \x±'fx--\ cosQTdO
n Jo
1

/•Tta coser^e
It Jo

l<Tt 1I 1 . = ~ . 71 = 1< —
7tn JO

)F,W)<1,

Example 2. Show that P„ {-x) = (- I)" P„ (x) and P'„ (-j:) = (- 1) 
Solution, (i) Since we have

n + 1 P'nix).

in/2\ (-ir (2»-2»i)! - 2mPAx) I
m = 0 2" (/«) ! (n - Hj)! (/I - 2m)!

putting - .V in place of x, we get
\n/2] eir (2/1-2711)!PA-x)= I
m = 0 2" (m)! (ii - ni) I (n - 2m) I
In/21 (- 1)" (2/1 - 2m)! n-2/n .A--'”2 (-1)
-n = 0 2" (m) ! (n - m)! (/i - 2m) ! 

('1/2/ (-I)” (2/1-2m)! .x”-^ (•-• (-1)-^'’=!)(-1)'' 2
m = 0 2" (//i)! (ii - m) I (/I - 2m)!

= i-i)'‘PAx}. 

P„{-X) = {- lyPnix).Hence

(it) Toshow P'„(-x} = (-l) 
From above result we have

n •b 1 P'n(x)

Pn{-X)^(- ITPAX)-

Differentiating both sides w.r.t. “x’. we get
p'n i-x) = (- D^P’Ax) 
P'n i-x) = {- i)n+I P'nix)-or

Hence proved the result.
Example 3. Show that P„ (1) = 1 and P„ (- 1) = (- 1)". 
Solution. Since we have

Z P„(x)f = (}-2xr + t^)- 1/2 -d)
n = 0

putting x = 1 of both sides

-12 /’„(l)f'' = (l-2i + fY‘^2 = (i-f)
n = 0

17’o{l) + rP, (l)+...+t"F„ (1)+...] = fl+t + <Y...+t'' 

Taking the coefficient of r" of both sides, we get
Pn{i)=^

or

Hence proved.
Next putting x = - 1 in (1), we get

-1- 1/3S F„(-l)f'' = (i+2f + r^) 
n = 0

[Po(-^) + ^P^ (-l)+,.,+(X(-l) + -.-] = [l-' + '' 
Comparing the coefficient of f of both sides, we get

= (1+0

,., + (-l)Y+,..].or
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SiH-ciiil Fiiiiclioii Giul Medianks /’n (-!) = (“ 1)"-

Hence proved.

Example 4. Pivve that
e 1 2n (II + 1)

dx-=
(2n - 1) (2(1 + 1) (2(1 + 3)J- 1

Solution. From Recurrence relation I, we have
(2« + 1) a: = ((( + 1) P„ + I + (I Z’,, -1.

Putting (« - 1) and (« + 1) in place of n respectively, we get 
(2/1 - l).vP„_i =n P„ + {ii - 1) P„-2 
(2/1 + 3) X P„ + I =(/i + 2) P„ + : + ((i + 1) Pn 

Multiplying (2) and (3), we get

(2« - 1) (2/1 + 3) x-P„^tP„.

.,.(2)
I
;...(3)

I

= (nP„ + {(( - 1) P„_2) ((/I + 2) + (/T + 1) P„)

n + 2 + " (" + t) (Pii)'
+ (n-l)(/. + 2)P„

= ;• (/i + 2)P„P

+ l)P.,^2P.r-2

Now integrating from x = - 1 to a: = 1 w.r.t ‘x’, we get
/• I1* 1

x^P PnPn^ldxP„-i = n (/I+ 2)(2n - 1) (2» + 3) n+ I J- 1J- 1

cl 1* <

[P„fdx + {>i-l)[n + 2} P„ - 2 P„ 4 2 dx+ n (// + 1)
J- 1J- I

cl
+(/,--1) P„-2P„dx

-1

c I
[P„]^ir + 0 + 0 + 0= // (/I + 1)

J- I

2 (By orthogonal properties)= // (d + i) 2/i+ 1
ct 2/t Qi + 1)X^P„*[P„ dx =-1 (2n - 1) (2/I.+ I) (2/( + 3)J- I

cl 2(1 (/!+ 1)
P'„ dx =Example 5. Prove that rl+l (2(( + 1) {2,1 + 3)J-\

Solution. Since we have

(2«+])(r-l}P'„ = /( («+l)(P„4,-P„-,)

Now multiplying by P„ +, and then integrating from x = - 1 to 1, we get

(Beltrami's result)

cl
{x^-l)P„,^P'„dx(2(1 + 1)

J-1

cl c I
[P„,,]-dx~n{n+l] Pn+l Pp-ldx= «(/( + !)

J-1 J- 1

2 (By orthogonal properties)-0= ,i (d+l)
2/1 + 3

cl 2/1 (» + 1)
{x--l)P.,^,P'„dx =(2/1 + I)

(2/1 + 3)

cl 2/1 (n + 1){x^-l)P„^yP'„dx =
(2/1 + I) (2/1 + 3)J- 1
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' Lef-eiulre's Funclioiisf I 2/1Example 6. Show that xP„P„^idx =
4/j" - 1J- i

ft
Solution. From Recurrence relation I, we have 

(2/j + l)j:F„^(/i+l)P„^.i+/i/’n 
Multiplying (1) by P,,-1 and then integrate from .v = - J to I

i-1-

I* Irlel
[P„.>fdxxP„P„_,dx=in+ 1) P„xiPn,|<ir + /i(2/. + 1) J~ 1J- 1. -1

2 (By orthogonal properties)= 0 + /i
2/1- 1

2»
2/1-1

r I 2/1 2/1dx =-^PnPn - I (2;/+ J) (2//- J) V-lJ- I

el Pn (X) Ifdx =Example 7. Show that 2n+ 1Vl-2xi + p-
Solution. Since we have

1 - I PAx)^
Vi ~7xt + r 11 = 0

1 = Po(-'^) + '^l W + •--+?'' + Pn+l (k)+ •••or
Vi-itr + z^

Now multiplying this equation by P„ (x) and then integrating from a: = - ) to 1, we get
ele Iel Pn{x) PAx)PAx)dx^...P(,{x)PAx)dx+tdx~
i- IVi -ivf + r j-1

ele I +1{PAx)fdx + t'' P,i*\{x)P„ (x)dx + ...Ft"
J-l J- 1

e I
[P„{x)]-dx (All integral except one is zero)= /'■

J- I

2
2/1+1

el 2/"Pn(x) dx =
2/1 + 1Vl -2.r/ + r^

• SUMMARY
2, d'^y + /I (/i + 1)>> = 0--2;t• Legendre’s D.E. ;

• Legendre’s Polynomial :

(l-r)
dx^ dx

N y,-2mP„(x)= 1 a„
m sO

-2/;i

(2/.)!
2 (2/1-1)"'’’

C
where »n-2~- 2" (/I !)^

if «is even 
(/I - l)/2, if n is odd.
/i/2.and

1 I PAx)t".Vl^2xt + r „• Generating function :
= 0
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SfKdiil Fmicrion and Medtamcs 1• Rodrigue’s formula : (a) =

• Laplace first integral for P„ (x):
rn\ dx"

e ^1 [a±(Vx^-1)cos or'rfe
Jt Jo

• Laplace second integral for P„ (.t):
1 dB
TtJo l)cos0] n + 1

• Orthogonal properties of P„ (a) ;
0, m * n 

2
2/1 + r

el
Pm W P„ (a) dx = = n-1

Recurrence Relations
(i) (2/i+I)a/’„ = (/i + 1)P„^i+/jP„
(ii) /,P„ = aP'„
(iii) (2n+l)P, = P'„,,-P'„
(iv) (rt+l)P„ = P'„*,-AP'„
(V) (1-a')P'„ = «(P„
(vi)(l-AV'n = (n + l)(AP„-P„*,)

-1

-1

-xP„)-1

• STUDENT ACTIVITY
IJ1. Solve that: Phi (a) Pn (a) dx = 0, m*n

-1

I

2. Prove that: (2/i + 1) xPn = (n + 1) P„ + i + nPn ~ i

• TEST YOURSELF
l-r- L (2/r + l)P„(A)r''.1. Show that

(I -2rr + rY^^

{P'„fdx = n{n^i).

R =0

el
2. Prove that

J- 1

3. Show that 2P2(a) - 3P|(a) P,{a) + i = 0.

24 Self-Instructional Material



Legendre's Functions
+ P'„= 2 (2r-^l)P,ix).4. Prove that P';i + )

r=0
e I 2"^'(00 !)-

x-'P„{x)tlx =5. Prove that (2/1+1)!J- I

6. Prove that
f I 1*1

(i) P„(x) dx = 0. n*0 Po(x)dx = 2.(ii)
J- 1 J- I

7. Find the value of the integrals 

Pioo(-^) dx
r 1 1*1

x^ Pl{x) dx.(i) (ii)J-l J- 1

8. Prove that
1 1-1(ii) P'„(-1) = {~1)''(i) P',.(l) = 'n(n+1) -n(«+l).

ANSWERS

(ii) 41. (i) 0 15

OBJECTIVE EVALUATION
Fill in the blanks :
1. The solution of Legendre’s D.E. is known as ...
2. Pi, (a), the Legendre’s polynomial has a degree
3. |P„(x)|<

if/I is even.
if- 1 <x< 1.

f I
4. Po(x)dx=

J-1

True or False
1. The equation Pn (x) = 0 has its all roots real.
2. P„(1) = 0.

(T/F)

i>l
P„ (x) dx = 0.n* 0.3.

J- 1 (T/F)
Multiple Choice Questions (MCQ’s):
1. P„ (x) is an even function if n equals ; 

(a) -1
2. P\ (x) equals :

(b)0 (c)3 (d)4

(a) Y (b)x (c)l (d)-^
1*1

{P„ (x)]' dx equals ;3.
J-l

1 (c)-^
n + 1

I (b)-(a) 2n + l n

ANSWERS
Fill in the Blanks :

1. Legendre’s Function 2. Even 
True or Fiase;

l.T 2.F 3. T

3. 1 4. 2

MCQ
1. (d) 2. (b) 3. (c)

□□□
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Spcdal Fimciion and Mcchtmkx UNIT

3
BESSEL’S FUNCTIONS

1
Bessel's D.E. and Its solution 
General Solution 
Linear Dependence 
Definition of Jn{x), when n = 0 
Generating function for Jn (x) 
Recurrence Relalions 
Q Summary 
Q Student Activity 
□ Test Yourself

IfiSilSfJiiifBiSiLEARNING'toBiJECTlVESlliWS^^
After going through this unit you will learn :

• What is Bessel's Differential equation ?
• The power series solution of Bessel's D.E. Is the Bessel's function.
• How to generate Bessel’s functions ?
• What are their recurrence solutions ? 

3.1. BESSEL’S FUNCTJON
The lioinogetteotis linear cliffereiilial equation of the form

dx^ dx
is known as Bessel's differential equation, where n is a non-negative real number.

Solution of the Bessel’s Functions :
Change the differential equation (1) into standard form by dividing (1) by

dx" X<lx 2 •

Now compare this differential equation with following equation

...fJ)

...(2)
X

ii + Qix)y^0+ Pix)
dx- dx

2>1 1-^P{x) = ~’ Q{x)^
X X

It is obvious from PW and Q(x) that .v = 0 is a singular point which is located at the origin. 
Therefore we assume the solution of (1) in the form of a power series of the following type

i+ ry= Z a,„x" ‘-(3)(t7o * 0)
MsO

Differentiating (3) w.r.t. a:, we get

dy m + r- 1Z a„,im + r)x 
aX - 0

Again differentiating (4) w.r.t. x, we get
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d\ “
S (hi + r) (/7i +/•-1) A- 

01 = 0

Bessel’s Functifnjn* r-2 ...(5)
dx'

^ cfy^
' dx' dx-

Now substitute the values of from (3), (4) and (5) into (1), we have '

x" S a„, (hi +/■) (hi +/• — 1) a'
/ij = 0

/w+ r-2 m + r - 1+ A S a,„ {m + r)x
«i = 0

+ (a^-h-) I a,„x” + r = 0
nr = 0

m + r J}J + ri a,„ {in + r) {in + r — 1) a 
«; = n

+ E a,„ {in + r) x
m = 0

- 2 
Hl = 0

equation (6) will be an identity if the equation (3) is a solution of (1), then coefficient of each 
terms in (6) will be zero. Thus taking the coefficient ofa^'*’

aor{r- l) + aor-n-ao = 0 
rtj (r+ 1) r + «| (r+ l)-n^ =0.

In general taking the coefficients of a'
a,, (r + r) (a + r- I) + a, (s + r) - + «,_2 = 0

m + r+ 2+ Z fl,„A
m =0

= 0 ...(6)

1

...(7)
-.(8)

+ r

...(9)
5 = 2.3,4....for

From (7), we have

r(r-l) + r-ir = 0 
r^-n^ = 0

r SS « ^

or
or

From (8), we have
[(/•+1) /• + (r+l)-HVi=0

For any value of r = n, - n. we get
«! = 0

From (9), we have
a, [(5 + r) (5 + r - 1) + 5 + r - + a, _ 2 = 0

«<[('S'+f)'-«Va.,-2 = 0 
a, (5 + r - h) (5 + r + n) + aj_2 = 0

or
,,,(10)or

For case if r = n, then (I) becomes
a, (5) (5 + 2h) + a,, _ 2 = 0

I
■4>-2or «.v = - 5 (5 + 2n)

Putting 5 = 2, 3, 4,5,'...
1

2 (2 + 2/i)«2 = -

1
ai =0 {••• a, =0)"3 = - 3 (3 + 2h)

1 1 I
a4 = - 32 = - 4(4 + 2h) 2(2 + 2«)“°4 (4 + 2«)

1= (- 1)^ 2.4 (2 + 2h) (4 + 2h)

etc.
We observed that ai = a, = aj = ... = 0. Since ao is arbitrary. Let us choose
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Special Function and Mechanics * 1-
ao =

2” r(/i +1)
where r(« + J) is a the Gamma function, therefore, we know that r(n + 1) = n r{n) and if n is 
positive integer, r(n +1) = («)!. Thus. ,

1
2 (2 + 2n)02 =-

1 1
2^(I+n)'2'' r(n+l)

1
2"*-r(n + 2)

1 1
2*. (2) ! (1 + n) (2 + n) ' T r(« + 1)

1
n + 4 ,(2)!r(« + 3)

and so on. Now From (3), we have

+ r1
m =0

a(,x' + OiX^*' + 02 + 02:1^

2*r

y =

, At-r ,+ a^x + ...+ r

A+r= Oqx' + a2x‘'" + OiX +...
11 + 2 n + 4

= flo + • - + ...
2''*^r(« + 2) 2''*‘‘(2) !r(« + 3)

—
1 11 *4y- +...

2’'*^2)!r(« + 3)2''*-(l) ! r(/i + 2)2" r(« +1)
+ Zm

(- !)"■ /
+ 2m,n = 0 2'' (m) 'r(/j + HJ+ 1)

This solution is known as Bessel’s function, which is denoted by J,, (x). This function is also
known as Bessel’s function of Hrst kind.

7„(x)= S i-ir-

For case if r = - n, we have

fi ^ 2m (m)! Tfn + in +1)’

-n + 2m(- i^x -(12)J.Ax)= 2 rt *■ 2m (m)! r(- n + m + 1)m = 0 2

• 3.2. GENERAL SOLUTIONS
The solution of the Bessel’s differential equation of the type 

y(x)=Aj„(x) + BJ.n{x)
where A and B are arbitrary constants, is called general solution.

• 3.3. Linear Dependence :
For an integer r=n, the Bessel's Junctions J„ (x) andj.„ (x) are linearly dependent, because

/o;'/i=l,2,...y.„(x) = (-l)"/„(a:)
Proof. Since

.- n + 2m(-ir^ ...(I)J-Ax)= 2 -
m = 0 2

if n is a positive integer, then the gamma functions in the coefficients of first n terms becomes 
infinite and coefficients of (I) becomes zero. Thus the summation will start at m = n and in this 
case r(- n + ni + 1) = (in - «) !.

From (1). we now have.

- n + 2m (in) ] r(- Ii + I«+ 1)’

1
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- n + 2mi-iTx Bessel's Funclion;/.„W= z - w + Z^n„ 2 [in)! (m - n)! 
*lk

m »
« + it ^11

[~ 1)I (•,• m = n + k)+ 2kT
(- i)*y'

k = 0
+ 2*=Mr z

2'’ + ^*(it)!r(H + ^:+l)* = o
y.„W = (- ir/„{x).

• 3.4. DEFINITION OF Jn (x), WHEN n = 0
Putting « = 0 in the Bessel’s differential equation, we get

etc dx
+ j;>’ = 0 . 'f -.(I)

Let us asume the solution

;i + r>= 2 fl,„y («o * 0) -(2)
Hi =0 «r

dy HI + r - I. Z a,^{in + r)y 
m = n

d-y : m* r-2and Z a„ [m + r) [m + r - 1) j:
m = 0

Substitute these values in (1), we get 

X Z a,„ (m + r) (m + r - 1)
HI = 0

+ <•-2 ni + r - I + xZ = 0+ Z a„[m + r)x
m sO ni-0

«»
m+ r- 1 m T/*- I m + r+ Ior Z a„ (ill-I-r) (m + r - 1} X

m=0
+ Z <i,„ («i + /•) X

»i=0
+ Z a„,x

TO = 0
If (2) is the solution of (1), then (3) will be an identity. Thus coefficients of each terms will 

be zero. So that taking the coefficients of x'^~we get

flo r (f - 1) + flo = 0
t7o = 0

= 0 ...(3)

or

r=0 ('.■ rto^O)or

Now taking the coefficient of x', we have 
ai (1 + r) r + C) (I + r) = 0 

a,(i + r)^ = 0

fli = 0 
/»/ + r

or

(-•• r = 0)or

In general, taking the coefficient of x
«H,+ i iin + r+ 1) (m + i-)+a„,^ , (w + r + 1) + «„

(hi + r + 1)-

= 0-I

= 0or -1

or ^m+l ~

For the case r = 0,

‘^Hi + 1 -

Putting III - 1, 2, 3,4,5, ...

fl3 = - T = 0 (■•' fli =0)9

02 = -
2-
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iSpecial Fiiiiciit^n and Me thanks 02 ^ (- l)~no 
4^ 2“. 4^

04 = -

05 = 0 ecc.

Thus we obtained fl| =03 = Oj = ... = 0. Hence,
2 4

X
6

1-p
\

yo(j^) = 1 - -^ +
2t

X
2 + -2^. 4^ 2-. 4^ 6

If Oq = 1. then y = Jq{x).
X*

+...
2^4^ 2^4^6^ 

yo(j:) is also known as Bessel’s function of order zero.

• 3.5. GENERATING FUNCTION FOR Mx)

The funclion of the form
ixfr-il
2 I

e

generates if taking coefficient of r". Thus this function is known as Generating function Jbr 
J„{x).

!1
r .V t —

Proof. Expand e ' I

I Xl X
TA t-----

e'-^ = -e 2't

2
1i .\7

I= 1 +-r
XI

2 ^ (2) ! 2 +... +
(/,) ! I 2

VI+ 2nIH- I
I1 xl XI + ..+

V y
(/r + 2)! 2 r

I

Nir+ I/ \2 -i + l(- \r(x {-1)1 XX
+ '■+... +

(n-tl)! 2t2t (2) r 2t ('<)'■ 2r

N, n + 2
(-1) X + ...
in + 2) 2r

Now collecting the coefficient of r". in above expression obtained after multiplication.
n + 2 / v/1 + 4/ 111 1 X XX +...+

[n + 2) ! ■ (2) ! 2(«+ 1) ! 2{'<)! 2
f

,(i + 2m
1 X

I (-1)'".
(m) ! (/i + /ji) ! ' 2

(-irx"
/n = 0

+ 2jii

1 + 2m2" (in)! r(m + n + 1)nj=0

= y„(x).
>, *

II
I ) 2 rj.ix).€

n=0

If taking the coefficient of f", we get
^tl + 4\/J + 2 n 4 2

(- 1) £ 
(n)! 2

11+ 1 (-1) 1(-1) XX + ...++ (;m-2)! '(2)! 2(n+l)! 2 t

V. y
>
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\/i + 2 n + 4\« Brssel's Fiditlion1 1 1 1A' A A= (- D" + -T
('0 ! ■ 2 (h+ 1) ! 2 (h + 2) ! ■ (2) ! 2

+ 2m(-irx"-(-ir £ + 2mm.02” (ill)! r(/i+/H +1)

= (-1)''4(a) 

= A„(a) y_„(A) = (- iry^CA))c-
Hence we obtained

1 1
T .1 I-----t ^ ! }

/f @

• 3.6. RECURRENCE RELATION FOR Jn (ar)

(1) A Jn' (a) = n J„ (a) - A J„ + 1 (A) 
dJ„{x)

JM =where
dx

Proof. Since we have
x'f + Im

1 A7„(a)= I(-l)'’' -d)(»0 ! r(« + m+ 1) ■ 2= 0

Differentiating (!) w.r.t. x. we get
\n + 2/;i - I

“ (-])”'(»+2m) ^ „ 
= o ("') ! r(i2 + /H+ 1) ■ 2 ■ 2

£ (-!)'"(» +2m) (x
m = o ('«)! r{/i + m+ 1) ■ 2

1 A

V / 
s'! + Im

A/n(A) =or

\n + 2m
" (-l)"" (ii + 2m) (x

m = o ("0 ■ r(/i +m + 1) ' 2
V /

\^j + 2m / \.n + 2/n
= T (-O'"”____ £

,n=o (m)!r(o+m + l)' 2
(-O'" 2m X+ z

m = 0 (m) ! r(/i + m+1) ■ 2\ /

\n - 1 + 2m(- o'" ■ 2 A A= /I (a) + I (m- 0 ! r(n + m+ 0'2 : 2m = 0
- I + 2m

(- O'" A
It J„ (a) + A Z

m*0 (m- 1) ! r(/i + m+ i) ■ 2
/ \»j - I + 2m(- o'" iX= il J„ (a) + a I 

-« = 1
= 0

(m-O!r{« + "'+0' 2 ■ (-0!

^ Nil - 1 + 2tI(-1) A
= II J„ (a) + A Z

(k) !r(yi + 1 +k + 1)' 2k = D
\ J

= «4{A)-Ay„+| (a).

A y., (a) = n j„ (a) - A y,

•r j'n d) = - « Jn (X) + A J„ _ 1 (A).

(A).n + I

(11)
Proof. Since we have

T (- 1) .£
, = 0 (m) ! r(ii + III + 1) ' 2y (x) = ...(0

Differentiating (1) w.r.t. a, we get
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Special Funclion and Mechanics \n + 2/n - 1
“ (-t)” (»-t-2ffO 1_ (x

m = o ('") ! r(H + m+ 1) ■ 2 ■ 2

“ (- ir (n + 2m) fx
„=o (««)! n« +■'«+1) ' 2^
“ (-If (2ii + 2m-n) fx

(m)!r(« + m+I) ' 2

V y
/ \n +

X /„ (x)or

\n + 2/n

f V n + 2^n
(-If= -« s (m)!r(n + wi+l)' 2ffi =0 \ /

/• \« + 2m
; (-If 2(n + /7i) X

« = o ("i)!r(H + m+l)' 2
/ \/i + 2/n - I

+ I
\ /

(- l)'" 2 _
(m)! r(n + /»0 ■ 2 ■ 2

X X
n J„ (x) + Z

<n = 0
-\-HmfxX(-ir- H Jn (X) + X Z„,.0 (»0!r(«-l + «,+ l) ' 2

= -nJ„{x) + xJ„
X f„ (x) = - n J„ (x) + X y„ _ I (x). 

V'Ax)=J„-i{x)-J„,i{x). 
Proof. From recurrence relations I and 11, we have 

x/„(x) = ny„(x)-xy„ + , (x)
X J'„ (x) = - II y„ (x) + X y„ _ I (x)

(x).-I

(HI)

...(1)
-(2)

Adding (1) and (2). we get
2x J'„ (x) = X J„ _, (x) - X y„ +1 (x) 

2J’„ (x) = y„., (x) - ^ 1 (x).
2n J„ (x) =x [/„. 1 (X) + y„ +, (x)]. 

Proof. From recurrence relations I and II, we have 
x/„(x) = /iy„(x)-xy„+i(x) 
xJ'„ {x) = -nJ„{x) +xy„_i (x)

(IV)

...(2)

From (1) and (2), we get
It y„(x)-xy„4, (x) = -iiy„ (x)+xy„_i (x) 

2ii j„ (x) = X [y„. 1 (x) + y„ 41 (x)].

^(x-’’7„(x)] =
or

x-'‘J„yx{x).(V) dx
= ^[x"'’A(x)]Proof. L.H.S.

dx
= x'''J'„{x)-nx " 'y„(x) 

= x'’’

= x'''
= -x-'’y

-1 [x /„ (x) - n J„ (x)} 
[-xJ„^, (x) )-1 (from recurrence relation I)

(x)n + I

= R.H.S. 

■~[x-'J„{x)]=-x-''J (X).n + 1dx
^ix"y„(x)]=x''7„-i(x).

L.H.S. = ^[/‘y„(x)]

= x" (x) + It .v" - ‘ J., (X) = x" - ' [X J'., (X) +11 J„ (X)]

(VI)

Proof.
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Bc.VW/V= y'' ‘ IjcJ„., (-*)] 

=y'y„_, w. =R.H,s,
(X).- tdx

SOLVED EXAMPLES
Example 1. Show that J„ (x) is even and odd function for even n and for odd n respectively. 
Solution. Since we have

/ + 2w
y (-ir £ . 

„, = 0 ("0 !r(HI+/l + 1) ■ 2 ■Jn W = -d)

Putting - X in place of x. we get
•.n + lm

y (- ir
,„ = 0 (”') !r(m + n+1)'j^ 2^

y (- ‘r
„ = o (m) !r(n + w + 1) '

i~ x) =
.,n + 2m

Xn + 2m(- 1) ■ 2

\n + 2/n
X

m = 0 ("0 ' Hn + oi + 1) ' 2
(-ir= {-!)" 2)

(-l)V„(x).

(i) If n is even, then (- 1)" = I
A{-x) = y„(x)
J„ (x) is even.

(ii) If II is odd, then (- i)" = - 1
J„'(-.x) = -J„(x)
J„ (x) is odd.

Example 2. Show that Jq{x) = - Jx(x). 
Solution. From recurrence relation 1, we have 

X Jf(x) = « J„ (x) - X +1 (x)
Putting n = 0, we get

. X ; 0 W = - h d)
/o(x) = -/,(x).

Examples. Prover/iar[7^ + i] = 2 -j\- 
(Vc X\

L.H.S.=^[7^ + 7^,,]

n + 1
7n* 1 •

X

Solution.

...(1)= 2J„/„ + 27„+iJ'„+i 
from recurrence relatibn I, we have

X J „ — n J„ X 7,1 +1

7'„ = ^7„-7„m

From recurrence relation II, we have
X J „ — ~ II Jn ^ fi-

Putting {/I + 1) in place of n. we get
n+ 1

-(2)

1

or -1-

...(3)7' 7n + l +7„+ 1 - X

substitute the values of J'„ and J'„ 11 from (2) and (3) into (1), we get
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Special Fancuiin niul Mechanics n+ 1
L.H.S. =2 7,, + 2 II-t \ JII Ai * in-t- I

X X

O' + i)= 2^7^-27„y,

n + 1

1 + 27,/,, +1-2<!•(- I
-T

= 2 ^4- 7i; = R.H.S.H + IX X

d. [4 + ^^i]=2 -7;-^7^
uJC X X

V

Example 4. Prove +1) = * (•/«“•/«+ i)-

Hence n + I

Solution. L.H.S. = ^(x7„7„,,)

- xj„ 7'„ +1 + x/'n 7„ +1 + 7„ 7„ + 1 ...(1)
From recurrence relations I and II, we have 

xj fj — hJ ” X 7n +1 
xJ’„ = -nJ„ + xJ„

putting {n + 1) in place of n in (3). we get

-{2)
and ...(3)-1

xf (« + l)7„*,+x7„
Substitute the values of x7'„ and x7'„+1 from (2) and (4) into (1). we get

L.H.S. =J„ [- (/I + 1) 7„^, +x7,|j + 7„+1 [/i7„ -xJ„+ |] + 7„7„ 

= — /|7„7„ + |—7„7„+i+x7n + nJn +

= X J„ — X J„+ I

= •*{•/«-4+1)
= R.H.S,

-(4)n+ 1 -

+ I

d (x7„7„+,) = ^(4-4 + i)-Hence
dx

Examples. Prove the followings :

“ Itc
Solution, (i) Since we have

(0 Jl/2(X) = . Sin .X

00 J-l/2{x) = . cos. X.

2 i
X X

Ji, w 1 - .-(1)2 . (2/1+ 2) 2.4 (2n + 2) (2/i + 4) ’ ’ ’ '2''r(n+ 1)

Putting n = 1/2 in (1), we get
1/2 2 4

X X
^"2.3‘^2.4.3.5 ■"

X
J\/2 -

12''^-r 1 + 
2̂

Vf 4 41 X
1- +

2 ' (3)! (5)! •1 14r ^
2 2

51 X+
(3) ! ■ (5) ! •/ \1r T

2

” 71*

3 0^a'' e•.• r - = >in^and sin 9 = 0 (3)!'" (5)! •. sin X
2

34 Self-Instructional Matrial



1 Bexsel's Fiiiiaiiiii(ii) Pulling (1 = - - in (i), we get

. - i/2 4X X
•^-1/2 W - I -

1.2 1.2.3.4 "■
2" 1/2

2 41 - ^(2)! ^(4)! •••
X ,

^lUr T
2

’ m

2 4
1-4-+^

(2)! (4)! ••

AT” lit
, G- 0" cos 0=1- ^------. cos X

(2) ! (4) ! -

7W
J- 1/2 W - - COS X.

•} '•
Example 6. Prove that 
(0 yi/2(4]' + U-i/2{-«:)]- = ^ll-'

Tlx

flV —^ -cosx + stnx . 
’ TLV X

(ii) J- 3/2 W *■

Solution, (i) In'Ex. 6, we proved that

” TCr
J\/2 (x) . sinx

^ 7W
and J-i/2 W - 

Squaring these and add, we get

[Ji/2 ix)f + U-1/2 W]^ =':r (sin^ + cos^ x)

. cos X.
\

JLt

2
■7LC

(ii) Since we know that
2n (x) = x [y„ _ 1 (x) + /„ +, (x)l

2ii
— 4(x)-y„+,(x). .Jr,~i(x)or

Now putting n = - 1/2, we get

2-2

J-2/2 W - J-i/2~‘^\/2(x)
X

-J. (x)-Ji/2 (x). ...(1)- 1/2
X

Putting the values of

' 7U
J\^{X) = . sinx

' TLV

^f2~[l
- V— — cosx + sinx .

’ Tt-X X

and •^-1/2 (x) - . cosx into (1), we get

J- 3/2 (-'l)
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SpccUd Fii'iclion and Mechanics • SUMMARY ft

Bessel’s D.E. ; .{
xT-y" + xy' + {x- -}?") y = 0. 

Bessel’s Function of first kind ; .1
+ hnx"y„w= 2 (-ir-

m = a 2 m ! [('! + »«+ 1)fi + Zwf

2 4 6
X, , ~ , X X

• Jo W = 1 - ^ +

• Generating function for J„ (x) :

r+
2^4^6-2^.4^

t1X

'^= 2 r-'J.W
rt » - »

Recurrence Relations
(i) X f„ {x) = iij„ (x) -xJ„^, (x)
(ii) xJ'„(x) = -iiJ„(x) + xJ„.,(x)
(iii) 2/„{.r)=J„_|(x)-J„,,(x)
(iv) 2ii/„ (x) = X [J„ _ I (x) + J„ +1 (x)]

[x-"J„(x)] = -x-'-J„,,{x)(V)
dr
d U''J„W]=x"J,._,(x).(Vi) dx

i• STUDENT ACTIVITY
N

Prove that: x J'n (x) = n J,, (x) - xJh + i (x).1.

i

■ “ •■if"

2. Prove that:

— (x J,i J,i + i) —X (J« - Jh + i)
dx ■■ ‘“4

j'
. •'1
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We.v.v('/!v ruiic lioii
i . TEST YOURSELF

Prove that 4J"„ (x) =J„.2 (a-) - 2J„ (a) + 4 + 2 (-0-
2 sin nn

1.

Prove that J„ /_ J-n J’n - ~2.
JIA

± Ljl 
dx J„

2 sin itn
hence deduce (hat

3. Prove that

■ 0) J2 = J"c--r<,

4. Prove that

(ii) 7,-/0 = 2/0.
X

\— -smA-cosA 
V 7LC X(0 -/3/2W-

•/ 2>VI 3 ,3-a
(ii) ,^-5/2 (-0- cos A + — sin A2 AA

3-a^ 3
(iii)/5/2 (a) = sin A — cos A2 AA

OBJECTIVE EVALUATION
Fill in the blanks :
1.'' /_„(a) = (-1)"..-.............

■2: /o'(a) = ...................
3. J„ (a) is even function if ;i is
True or False
1. /.„{a)-(-1)''/„m(-v)-
2. ■ |/o(a)|<1. n>L

3-- [J\/2{x)f
X

(T/F)

(T/F)

CT/F)

Multiple Choice Questions (MCQ’s)
(- 1)'‘//i(a) equals :
(a) /n(A)

1.
(c) /„ - 1 (a) (d)/„+i(A)(b)/-„(A) 

2. A[/n-I+//I+1] equals :
(a) 2n Jn - 1 (d)2rt/n+!(c) 2n J„(b) «/„

ANSWERS

Fill in the blanks :
1. J„ M

True or False 
1. F

3. even2.-J, (A)

3.T2. T
MCQ

l.(b) 2. (c)

□□□
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Siieciiil Fiinclion and Mechanics UNIT

4
*AN INTRODUCTION TO PARTIAL 

DIFFERENTIAL EQUATIONS

!:!f
P.D.E.
Order and Degree
Classification of Partial Differentiai equation 
Soiution of P.D.E
Linear partial differential equation of first order 
Derivation of P.D.E. by elimination of arbitary constants. 
Derivation of P.D.E. by elimination of arbitrary functions. 
Soiution of standard forms
□ Summary
□ Student Activity
□ Test Yourself

n

LEARNING OBJECTIVES^?/'.* I

After going through this unit you wiii iearn :
• What is P.D.E. 7
• How to find its order and degree ?
• How to find its solution ?

• 4.1. P.D.E.
Here, we have already discussed the differentiai equations, with number of independent, ♦ 

variables are two or more. In such cases, any dependent variable is likely to be a function of more ' 
than one variable, so that it possesses not ordinary derivatives with respect to a single variable but 
partial derviatives with respect to several variables. The partial differential equation implies 
necessarily the existence of more than one independent variables. We shall usually take c as 
dependent variable and x, y as independent variables and throughout the chapter we shall denote
.. , j . .. dz dz d^z dh ,the partial derivatives ^ ^

Definition. T/ie equation of the type
p

dx' "" dxdy'
V /

is called a partial differential equation.

by p. q, r, s and t respectively.

= 0

• 4.2. ORDER AND DEGREE
Order. The order of the partial differential equation is the order of its highest derivative.
(i) First orderPDE. A first order partial differential equation for a function j =/(x, y) contains

at least one of the partial derivatives ^ but no partial derivative of order higher than one.

For example:
dz , dz rt
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(ii) Second order PDE. A second order partial differentia! equation for i =/[x, y) contains Intmdiiaion u> Partial Diijeranial
a-z a-z a-z . ......................
^ ^ I’m no partial derivatives of order higher

Efliiatit’iis
at least one of the partial derivatives

than two.
For examples :

(i)
ax" ay . dz' 

■ c^=o.(ii) at
REMARK

The second order partial differential equation may also contain first order term like 
' az az .

Degree of PDE :
The degree of partial differential equation is the power of the highest derivative in the equation. 
For Examples :

/ * * v d 2 >

(ivlg.c- a-z
d/dt

3(dz] + 1^ = 0.(V)
ax dx

Equations (i), (ii). (iii) and (iv) are PDEs of degree one, and the equation (v) is a PDE of
degree 3.

• 4.3. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS
(A) Linear and Non-linear Partial Differential Equations :

A partial differential equation is said to be linear if:
(i) It is of the first degree in the dependent variable and its partial derivatives.
(ii) It does not contain the product of dependent variables and either of its partial derivatives, 

and (iii) It does not contain any transcendental function.
For examples:

3x‘ 3y 3z'

dy-
d^ii . d'u r.
7T+ —5-=/(•*. .v)
dx dy-

The above ail equations are linear.

d?

dr

(iv)

Non-Linear PDE :
A partial differential equation, which is not linear is called non-linear equation.
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SpeLiiil FitiKlion ond Mechanics For example :

^t+^=o.(1) dx dt

Quasi'Llnear :
Consider a non-linear equation

. ...(1)/?ir + -I- T^t = Kj
where W[. S|, T\ and Vj are the functions of p and q as well as of x, y and z. Then, we observe 
that, it has a certain format resemblence to a linear equation. Due to this resemblence with linear 
equation, equation (1) is said to be quasi-iihear equation.
(B) Homogeneous and Non>homogeneous Equations :

A linear partial differential equation can be classified as follows :
(i) Homogeneous linear equation
(ii) Non-hom(^eneous linear equation 

(1) Homogeneous linear equation :
If each term of a partial differential equation contains either the dependent variable (or 

unknown function) or one of its partial derivatives, it is said to be homogeneous.
For examples :

(0
d^r dy^ 3z'
3^z 2

(ii) = c
dr

(ii) Non-homogeneous linear equation :
An equation, which is not homogeneous is called non-homogeneous linear equation.
For examples :

dh dh

(ii) Pi

=Jix, y)

T + =0.dx^ dx dy- J
d^u

• 4.4. SOLUTION OF PDE
A solution of PDE in some region R of the space of independent variables is a function all of 

whose partial derivatives appearing in the equation exist in some domain containing R and which 
satisfies the equation everywhere in R. t

• 4.5. LINEAR PARTIAL DIFFERENTIAL EQUATION OF FIRST ORDER
Adifferential equation involving partial derivatives p and q only, no higher derivative is called 

of order 1. If the degree of p and q are unity, then it is called a linear partial differential equation 
of order one.
Some Basic Definitions:

(i) Complete Integral. Let us consider the partial differential equation 
fix, y, z, p.q) = 0

where x. y are independent variable, and z is dependent while

A relation of type F(x, y, z, a,b) = 0 containing as many arbitrary constants as the number of 
independent variables in the above partial differential equation is called complete integral.

(ii) Particular Integral. In the complete integral F{x, y. z. a, b) =0 giving the particular values 
to the constants a and b. we get the particular integral.

(Hi) Singular Integral. The envelope of the surfaces given by the complete integral 
F{x,y.z,a,b) = 0 is called singular integral. Therefore, the singular integral is obtained by 
eliminating a and b from

, then

f
i

dF 1^ = 0.= 0 andF(x,y. z, a, b) = 0,^^ db
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An tnirodiiclion lo Partial Difiercnlial 
Equal'umr

(iv) General Integral. Let« = « (x, y, c) and v = v (x,)”. z) be two functions of x,>’ and z, then 
the solution of the differential equation p? A- qQ = R the types j{tt, v) = 0 is called the genera! 
integral. This also, can be taken as ii =j{v) or v =/(«)-

• 4.6. DERIVATION OF A PARTIAL DIFFERENTIAL EQUATIONS BY THE 
ELIMINATION OF ARBITRARY CONSTANTS

Consider the equation
F(x.y.z.a,b)=0 ■ ...(1)

where, a and b are arbitrary constant. Differentiating (1) partially with respect to x, regarding z 
as a function of two independent variables x and y. we get

^ = 0■ dF dF dF
dz

By the elimination of a and b from (1) and (2), we shall get an equation of the type 
F{x, y, z, p, f/) = 0

which is the required partial differential equation of the first oder.

= 0 and ...(2)dy3x

...(3)

SOLVED EXAMPLES
Example 1. Construct a partial differential equation, by eliminating a. b and c from 

z = fl (xi-y) + b{x-y) + abt + c.
Solution. Here, the given equation is

z = a {x + y) + b (x - y) + abi + c
Now, differentiating (1) partially with respect to x,y and t. we get

...(I)

3z 9zdz -f2)dx
Now, using

{a + b)--(a-b)- = 4ab 

az 01 = 4^
dx h dt

which is the required partial differential equation.

• 4.7. DERIVATION OF A PARTIAL DIFFERENTIAL EQUATION BY THE 
ELIMINATION OF AN ARBITRARY FUNCTION

■ Let u and v be any two functions of x, y, z connected by the relation
...(1)v) = 0

Now, it is to be shown that on the elimination of the arbitrary function <(> from (1), a partial 
differential equation will be formed and moreover, this equation will be linear.

Differentiating (1) partially with respect to x any y. regarding z as independent variables, we
have

du dx dz dx dv dx dz dx

diifdu du'l ^fdv dv'' ...(2)=> dz

^ -1-0
du dy dz ' dy, dv dy dz ' dy 

d^fdu dn"! ^fdv dv^

V y V y
Now, eliminating ^ between (2) and (3) by the method of determinant, we get 

du dv

and

...(3)
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Spednl Fuiwiiim and Mechanic '^3u 3«'’ dv^3v
3z dz

= 0
d» , du 
dy ^ dz

''dv 3v'’
3z

'^du dv du 3v"' 
dy ' dz dz dy ^ dz ' dx dx dz ^ dx' dy dy ' dx 

d (u, v) d (u, v) d (If, v)
d(y,z)^ d{z,x)^ 9(.c,;')

^du 3v du 3v^ du dv 3h di'=>

which is the linear PDE of first order and first degree in p and q which can also be written as
Pp ■^■Qq = R 

d (u, v)d_(Kj_vi 
3 (y, z) ’

d (u. v)where, Q = and R =
3 (z, x) d{x,y)

SOLVED EXAMPLES
Example 1. By means of a partial differential equation, eliminate the arbitrary function from 

the equation
x^-y + z=Ax^ + y' + z\

Solution. Differentiating (1) partially w.r.t. x and y, we get 
(1+p) =/'(x' + y' + z').(2r + 2zp) 
(l+9)=/'(x- + y^ + zV(2y + 2z9)

-d)

...(2)
and ,,,(3)

From (2) and (3), we have
(1+p) _ (I+q)

(2x + Izp) 2y + 2zq 
(1 + p) (y + Z9) = (1 + g) (x + zp) 

(y-z)p + {z-x)q = (x-y).=>
which is the required PDE.

Example 2. Eliminate the arbitrary functions fand gfrom 
y =f{x -at) + s{x + at).

Solution. Here, the given equation is
y=y(x-a/)+g(x+ <!/)• ...(1)

h =/'(x - at) + g'(x + at)

and ^ =/"(x - at) + g''(x + at) 
dx

...(2)

Now 3^ =f'(.x - or), (- fl) + g’ix + at) (a) 

^ =/"(x - at) (- a)‘ + g"(x + at) (a)^=>
dt-

= \f"l.x - at) + g"{x 4- at)] 

■■•6 . 

dr dx-

[using (2)]

=>

which is the required PDE.

• TEST YOURSELF
Form a PDE, by eliminating arbitrary constants for the following equations :

1. c = (x + a){y + d).
2. z = ax + by + ab.
3. z = ax + a'y~ + b.
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4. yj;A: + >- + 2.A:^+>'--z-) = 0.
5. lx + my + nz =jix' + y^ + i^).

An Inimducimn in Partial Differential 
Eqiialiont

ANSWERS

1. 2. z=px + qy + pqz=pq
3. q = 2yp- 
5. (/ + lip) y + z{lq- mp) = (»i + nq) x

4. (y + z)p-~{z + x)q = x-y

• 4.8. SOLUTION OF STANDARD FORMS (NON-LINEAR EQUATIONS)
In Ihis section, we shall deal with some special types of equations which can be solved easily 

by some special methods, other than the general method.
Standard Form (I) :
Equation involving only p and g and no x,y, z '■
The complete integral of equations of the type fip, q) = 0 i.e., in which x, y, z do not occur, is 

Z=ax + by +c 
where a and b are connected by the relation

Aa,b) = 0
Since, we have p = ^-a and q = ^ = b, which on substitution in (2) becomes the given

...(1)

...(2)

dy
equation.

Let us suppose from (2). b = g{a) and replacing c by the general solution is obtained by 
eliminating 'a’ between the following equation

2 = ac + g(a) y'+(J)(a)
Differentiating (3) with respect to a, we get

0 = A: + yg'(a)+<>'(fl)
Now, to find the singular integral, differentiate 

z = at + g{a) y + c

...(3)

...(4)

with respect to a and c, we get
0 = x + y g'{a)
0=1
0 = 1 =* there is no singular solution.

and

Standard Form (II);
Equation involving only p, q and z.
The equations which do not contain x and y i.e., which are of the form 

Az,P-q) = 0
Equation (1). can be solved in the following way :
Write X = x + ay. where a is an arbitrary constant and assume z to be function of (t + ny) 

i.e.. of X alone.

...(1)

i=fVQ=Ax + ay)
dX dz 

dx~ dX' dx~ dX
dz _ dz ^ _ __

dy ~^'dX'

. I

dzand

Now, the equation (1), becomes
p( ^
^ dX' “ dX = 0

which is an ordinary differential equation of the first order and can be integrated. So, the complete 
integral will be known.

If/= 0 is the complete integral involving two constants a and b, then replacing b by g{a). 
the general integral is obtained by eliminating a form

■f--/=0

Self-Instructional Material 43



Specinl Fiiiiclioii nnri Mechmks The singular integral is obtained by eliminating a and b from 

-^ = 0 and 1^-0.
da db

SOLVED EXAMPLES
Example 1. Solve p^ + q^=l.
Solution. The given equation is of the form

fip- (]) = 0
The solution is given by 

where a, and b are related by f[a, b)=0
a^ + b^=l

z = ax + by + c

• =>
Hence, the complete integral is

z = ax + V(1 - fl^) y + c
For the general integral write c = (!>(«) 
Then it is obtained by eliminating a from

z = ax + V(iTr7) y + (j)(fl)
=y + (!)'(a).and 0 = x +

V(l-a2)

Example 2. Solve + y^q^ = z^-
Solution. Here, the given equation can be written as

. X dz ■ IZ ^ 
z ' By -•-(1)= 1+

z ' dx

— dz = dZ i.e., z = e^Putting z
i.

11■-dx = dX i.e., x = e^
X

1 dy = dY i.e., y = e^and
y

in (1), we get
-2 4-TBY

BZ = 1ax
which is of the type fip, q) = 0.

Therefore, the complete integral is given by 
Z = aX + iF+c 1

where a and b are related by = 1
a = V{l-fl2)
z = aX + V(i -fl2)

log z = a log X + ■'/(] - a') log y + C|
=>

To find the general solution put n = cos 9
log z = cos 6 log x + sin 0 log y + log c 

_.cos9 ..siiiGz = cx ■ y
Now, we eliminate 9 from

2 = ^(0)/"®/"®

0 = g' (0) ® y"" ® + 5 (9) ® y*'"" (- sin 9) log, x
+ g(0)x'“V""cos0log'y

and
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^ •

which is the required general solution.
To find singular integral, we eliminate 0 and c, from

- c sin e ® log, + c cos 0 . y

An Inimducliim to Poniat Diffenoilial 
Equations

»in 0
■>

sin 0 log, > = 0
d0

siiiOand = 09c
j = 0 is the singular integral of the given equation.

Example 3. Find the complete integral of - 21z- 
Solution. Here. the given equation is 

p^ + q^ == 27c

=>

which is in the standard form
j{p. <7. c) = 0

IPut X = x A ay 
Z =f[)0 ~f{x + ay) 

dz ^ dz 
^~dx" dX 

_ ^ _ dz 
dy ^dX

=>

=>

and

9zdzWe may take in place of ^ because z is a function of .r only. 
(t\ OX

Hence, the given equation reduces to 

dz
= 21 zdX

, 1/3= 3z

3,1/3 2 -1/3
■3"

On integrating, we get
. z^^ (1 + fl^) '''^ = 2X + c = 2 (X + 6)

(1 + a'’) z^ = 8 (x + ay + b)^ 
which is the complete integral of the given equation.

To find the singular integral, differentiating (1) partially with respect to a and b, we get 
3aV = 24y (x + ay + b)^

0 = 24 (.V + ay + b)^

By eliminating a, b from (1); (2) and (3), we get 
z = 0

which is the required singular solution.

dz = 2dX=> (1+aO

...(1)=>
ft

-..(2)
...(3)and

• TEST YOURSELF

1. Solve q = 3p^.
2. Solve + ^" = ;tpq.
3. Solve ■^+■^=1.
4. Find the complete integral of p' = zq.
5. Solvepz = (l+q‘).
6. Solve 9 (p^z + q') = 4.

ANSWERS

ax + n± V(n~ - 4)
z = ax + 3a'y + c. 2.1. . ay + cz = 2
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Special Fuiiclion and Mechanics
3. 2 = aA: + (1 - Vir)'_y + c
5. + [z - 4a) - 4a^ log (z + V(z=-4a^)}] = 4^ + day + 2c
6. {z + a^)^ = {x + ay + bf 

Standard Form ill:
Equation of the form/i{x,p) =f2(y,q).
If the given equation is of the type fi[x,p) = f^iy^q) 

then, first write
Now. solving (2) for q and p. we get

4. z =

-d)
/id- P) =/(V- q} = Ci. ...(2)

3zand 52{y,c,}.

dz = pdx + qdyNow
= gi(A:,e|)z/A: + g2(>’. c{)dy

which gives

z = J gi d. Cl) dx + g2 0, c,) <0- + Z»

The general solution may be obtained from this complete integral also, there is no singular
solution-
standard From IV :

Equation of the form z=px + qy+ f{p, q).
The equation
which is analogous to Clairaut’s form, has for its complete integral. 

Z = ax + by +f{a, b)

z=px + qyFfip, q)

-(2)
3z dzFor x—=p = a and rr- = q = b dx dy

In order to obtain the general solution, put b = g(a)
Therefore,
Differentiating (3) with respect to a, we get

Q = x + yg'{a)+f’(a)
Now. eliminate a from (3) and (4) and get the required general solution.
To obtain the singular solution, differentiating (2) with respect to a and b, which gives

0 = .x: +

z = ar + yg(rt)+/|fl.g(fl)} .,.(3)

...(4)

M. ...(5)3n
M.

and eliminate a and b between the equations (2). (5) and (6).

...(6)
i

SOLVED EXAMPLES
1 2/)' + (7 + y.Example 1. Solve 

Solution. Here, the given equation can be written as
2

p -x=y-q ■
Let us write

2 2
p -x = y- Cj =a

p = y{x + a) and q = 'J(y-a).
Now, putting the values of p and q in

dz = pdx + qdy
dz = Vd + a) dx + i{y - a) dy.we get

On integrating, we have

z = I d + + f d “ “) .V2
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Example 2. Solve z' (p' + q') = ^' + y^. 
Solution. Here, the given equation is

Z^(p^ + q^} = x- + y-.

An Iniroduclioii la Partial Diflerenlial 
Equatiims

Replacejrfz = dZ
2

7=^-
Therefore, the given equation becomes

=>

F^ + Q^=x^ + /. where P = ^ and (3 = ^^
dx dy

f^-x^^y--Q\
F^-x^^y^-Q^-^a ______ ^

/’ = V(n + x^) and Q^'^iy^-a).

=>
Let us write

Now, putting the values of P and Q in
dZ = Pdx + Qdy

= '^{a + x^) dx + dy.
On integrating, we have

Z = I V(a + ^2) +1 log {.r + V(a +x^)] + ^^--a)

{y + - a) 1 +b

z^ = x^{a + x-) +n log {x + ^ia+^r}]

■ +y ^Cy'“ log {y + v(j;^ - a)}
=>

+ c.
Example 3. Solve z = px i-gy + c'^il + + q~).
Solution. Here, the given equation is of the standard form IV. Therefore, the complete solution

IS

ax + by+ c '^{1 +a^ + b^)
To find the singular solution, differentiating (1) partially with respect to a and b, we have

...{1)z =

ac -x0 = X + ...(2)=> a =
V(1 +a^ + b^)

he yand 0 = y + ^ b = - -.(3)
V(1 +a^ + b^)

x^^/=i^±P4
l+a^ + b^

V-/-/)
which gives

(c^-^-y^)=>
l+a^ + b^

2
C(l+a^ + b^) = ...(4)/ 2 2 2, (C -j: -y ).

Now using (2), (3) and (4), (1) becomes
2 2 2

-X y c
I =

V-.r-y') Ac^-x^-y-) ^(c^-x^-y^)

{c--x--y-) = V^- A

A-- + y2 + z^ = c^
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Special Function and Mechanics • SUMMARY
f(p. e) = 0Standard form I:

Its solution is 
Standard form II 
To solve such D.E., put 
Standard form III :

z = ax + by + c, na,b)=0.
f{z,p, q) = Q

X = x + ay. 
/i(-*.p) q)

To solve such D.E., we put c, =/, (.v, p) = fs (y, q) 
Standard form IV :
Its solution is

Z=px + qy+fip,q). 
z = ax + by+f(a, b).

• STUDENT ACTIVITY
Eliminate/and g from y=f(x-at)-Fg{x + ai)1.

Solve + 2^ = 272.

• TEST YOURSELF
Solve the following equations :

1. 4p +4(1 -2x. 
pq = xy.

5. z{p^-q^) = (x-y). ^ ^
6. Find the complete integral of z = px + qy + p~ + q".

8. z = px + qy-p^q.

2. pe = qe^.
4. py = 2yx + log q.3.

Z = px + qy-lp-3q. 
Z = px + qy + pq.

7.
9.

ANSWERS

z = ^ (a + It)’’ + a^y + b 

(a-x^ + y- + lab)

2. 2 = ae^ + ae + b1.

1 I4. 2 = -(ax^ + a^x + e'- -Fa .b)

6. z = ax + by\-(r + b'
8. 2 = fu + by - a'b

3. ^ 2a
= (x + a)-’''' + Cv + a)^^- + c5.

7. z = ax + by -2a -3b 
Z = ax + by + ab9.
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OBJECTIVE EVALUATION An Inirodnaioii to Panin! Diflt'ieiniiil 
Ef/aalioiis

Fill in the Blanks ;
1. The complete integral of the equation of the type f(p,q) = 0 is 'z = ax + by + c. where a and

b are connected by the relation........
2. The equations/i(j,y, z,r/) = 0 and/2(A:. y, z,/7. 9) = 0 are said to be compatible if (f[,f2) =
3. The equation of the type /i(jt. p) = fi{y. q) does not have any
True or False :

solution.

Write T for true and F for false :
1. A partial differential equation does not contain any partial derivative.
2., The second order partial differential equation may also contain first order terms.
Multiple Choice Questions (MCQ’s):
Choose the most appropriate one :
1. The equation of the envelope of the surfaces represented by the complete integral of the given 

PDE is called :
(a) Paiticular integral 
(c) General solution

(T/F)
iVF)

(b) Singular integral 
(d) None of these. 

The complete integral oi z = pxA- qy + p -v q‘' ’i& •.
(a) z = ax + by 
(c) z = n.v + by + a^ + b^
The complete integral of p = /''is ;
(a) fl =
(c) z = e.a

(d) None of these.

(b) b = e^
(d) c = at + y log fl + c.

ANSWERS
Fill in the Blanks :

1. = 0 
True or False :

1. F
Multiple Choice Questions :

1. (b)

2.0 3. singular.

2.T

2. (c) 3. (d)

□□□
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Special Function and Mechanics UNIT

5
SOME METHODS FOR THE SOLUTION OF 

PARTIAL DIFFERENTIAL EQUATION

I
• Lagrange's Linear differential equation
• Geomefric interpretation of Lagrange’s differential equation
• Charpit's Method 

a Summary
Q Student Activity 
Q Test Yourself

; LEARNING.OBJECTiyES
After going through this unit you will learn :

• What is the Lagrange’s D.E. ?
• ' How to find its solution ?
• What is the Charpit’s method ?
• How to find the solution P.D.E. by using Charpit’s method.

• 5.1. LAGRANGE'S LINEAR DIFFERENTIAL EQUATION

The partial differential equation of the type Pp + Qq = R, where P, Q, R are the functions of
x,y and zandp = -^ , q = ^ . Then this partial differential of order one is called Lagrange’s Linear 

ox dy
Differential Equation.

Lagrange's Auxiliary Equations:
Let u and v be two functions of j:, y, z which are related by the relation 

A‘uy) = o
Differentiating (1) partially w.r.t. x and y, we get 

du dx^*dz dx

...(1)

dz ^
9v 3a: 3z 3^V
df 3v 3v ^
3v 3a: 3z ^

\ ' J
df fdu dll Sz'l ^
3« 3y ^ 3z ' 3y 3v 3y 3z ' 3y

\
df 3t' ^ 3''
3v dy dz

+

df ( du dit
it Yx^Tz’^ ^ = 0 ...(2)or

and

3/ ( dll du 

^.nd^

-.(3).q =0or

from (2) and (3), we get 

dv dv '
Tx^Tz'^

Eliminating ^ 3w

3//3(( ...(4)From (2). 3//3v du du
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I

3v dv 

V,

Sime Melhod\ for the SdIiiuoii of Ponial 
Dilfereniial Equationsdf/du From (3), ...(5)df/dv *(•du du

From (4) and (5), we get 
fdit dll Vav dv 
dx'^dz^ dv'^dz^

Solving this equation, we get 
du av av

a^ du 5v dv **
a>' ^ as ^ 3a- az ^

av du du dv''__________ ____ __________
ay az ay az ^ aA as dx ' dz ^ aA' ay ay' aA

^ j \ j y )

Pp + Qq=R
^ ^ ^ ^ _ a {ii, v) 
ay' az ay' az a (>■, z) ’ 
^ a« ^ av a (u, v) 
aA ■ az dA ■ az" a {z. a)

...(6)or

where P = (Jacobian of u and v w.r.t. y and z)

e=
3i< av 3(1 av a («, v)

i\ —and aA ay dy aA a (a, y)
Thus/(H, v) = 0 is the general integral of the differential equation Pp + Qq = R. Now we shall 

determine the values of u and v. For this, let u = a and v = £> be two equations, where a and b are 
arbitrary constants. That is

n{A, y. z) = n and v(A,y, z) = £>
This implies

du = 0 and dv = 0
aw dll dudu - r— dx + T— dy + rr- dz 
dA dy dz

But

av av avand dv =-XT dx +dy + dz 
dA dy dz

Thus, we obtained
a« an an

dx + dv + -5“ dz = 0 
dz

?^dz = 0

...(7)
dA
a.' av

and dA + dy + -(8)dA 3y dz
Solving, (7) and (8) by cross multiplication method for dx, dy and dz, we get

dx (N dz
du ^ ^ ^ ^ ^ ^ du dv du dv
dy dz dy dz dz dx dA dz dx ‘ dy dy ' dA

dx dzor a (n, v) a (n, v) a (», v)
a (y, z) a (z, a) a (a, y)

dA dy dz
P~ Q~ R -(9)or

Thus equations (9) are known as Lagrange’s auxiliary equations or Lagrange’s.subsidiary
- -equations.

• 5.2. GEOMETRICAL INTERPRETATION OF LAGRANGE’S LINEAR 
DIFFERENTIAL EQUATION

Lagrange’s Linear differential equation is 
Pp + Qq = R

— , (j = ^ and P. Q, R are the functions of a, y and z- 

Equation (1) can be written as

•••(1)
azwhere p
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Spcvinl Function and Mechanics Pp + Q(l-R = 0 . 
Pp+Qq + R(- 1) = 0 i'..(2)or

Lagrange's auxiliary equations are
dx ■ dy ' dz
P~ q ~.r'

These equations represent a family of curves and P, Q. R are the direction ratio of the tangent 
drawn at any point on the curves.

Sinceyiw, v) = 0 represents a surface through these curves, where n = a (constant) and v = b 
(constant) are the two particular integrals of the equation (3) and are the functions of -v. y and c.

Further since, we know that the direction cosines of the normal to the surface f(x, y, z) = 0 at 
any point on it are proportional to

,...(3)
t

dx' dy' dz

Divide by , we get 
dz

df/dx df/dy 
df/dz ' df/dz '

.:.(4): 1

df/dydz df/dx dz . then (4) becomesand^ = ^ = -

-p\-q: \
P'.q.- I

Thus equation (2) represents that the normal at any point on the surface is perpendicular to 
the tangent to the curve obtained by equation (3) through which this surface passes. Hence we can 
say that the equations (1) and (3) give the same ^uivalent surfaces.

Sincep = ^ df/dz df/dz

or

SOLVED EXAMPLES
Example 1. Solve the differential equation yzp + zxq = xy.
Solution. Compare the'given partial differential equation with

Pp + Qq = R
p = yz,Q = z,x and R = xy

Then the subsidiary equations are
dx dy dz 
P~ Q~ R 
dx dy dz 
yz zx xy

Taking the first two members of (1), we get 
dx dy 
yz zx 

xdx - ydy = 0.

We get

...(1)or

or
Integrating, we get

Now taking second and third members of (i), we get 
^_dz 
zx xy 

ydy - zdz = 0.

...(2)

or
Integrating, we get

y- -z' = c-2
Thus the general solution is

f(x^ - - z') = 0-
Examplc 2. Solve the partial differential equation pz- qz = z" + (x 4 y)^.
Solution. Compare the given partial differential equation with the standard partial differential

...(3)

equation
52 Self-Instructional Material



Somf Methods fur the Solution of Poniol 
Differential Equaiionf

Pp + Qq = R
■ We getP = z,Q = -z, and R = ^ + + yf

The subsidiary equations are given by 
dx. dy dz 
P~ Q~ R 
dx _ dy _
z -z ? + (-r + y)^

Taking first and second ratio of (1), we get 
dx _ ^ 
z -z 
dx = - dy 

dx + dy = 0 
x + y = ci

Now taking first and third ratio of (1), we get

dz
...(1)

«

(on integrating)

dx dz
: 2- + {j: + y)-

zdzdx =or
z' + {A: + y)^

zdzdx = (•,• j: + y»ci)or
Z^ + C|

On integrating, we get
2X = log (2^ + C|) + log Cl 

= C2 (z- + c])

= C2 [z' + (.x + y)']

or

C2 = x^ + y^ + z^ + 2xy
Thus the general integral is given by

/ -T + y. = 0.
x^ +y' + z^ + Zxy 

Example 3. Solve xzp-^yzq=xy.
Solution. Compare this differential equation with Lagrange’s linear differential equation 

Pp + Qq~ R-

\ ,

We get
P = xz.Q = yz,R~xy.

Then, the Lagrange’s subsidiary equations are .
• dx dy dz 
p"^ o’" R 

dx_^_dz 
xz yz xy 

Taking first and second ratio of (1). we get

xz yz 
dx_^

-..(1)

yX

X y
On integrating, we get

log j: - logy = log Ci

1
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S/x’cial Function and Mechanics Xor

Now taking second and third ratio of (1), we get

>’2

=>
2 X

xdy = zclz 

cxydy = idz
On integrating, we get

Cl y' - ^ = Cl
/ N
X

■ - 2" = C2■or

xy-z^ = Cl-or
Thus the general integral is

2/1 - . xy~z = 0.

Example 4. Find the general solution of the following differential equation 
(mz - ny) p + {nx- k) q = ly- tnx.

Solution. Compare the given differential equation with Lagrange’s differential equation 
Pp + Qq = R, we get

P = /H2 - ny, Q = nx- tz, R = ly- nix. 
Then Lagrange’s auxiliary equations are

^_d^_dz 
P~ Q~ R

dx dz
...(1)HI2 -xy nx- Iz ly- nix 

Taking the multipliers x, y, z. then (1) becomes
dx yiy dz xdx + ydy + zdz

mz -xy nx- Iz ' ly-nix 
xdx + ydy + zdz = 0.

0

Integrating, we get
X^+y^ + Z^ = Ci.

Again taking the multipliers I, m, n, then (1) becomes
dz A__ tdx + iidy + ndz

mz -ny nx- Iz ly - mx 
Idx + mdy ndz - 0.

0

Integrating, we get
lx + my + nz- Ci- 

Thus the general solution is
+ y' + 2^. lx + my + nz) - 0,

• TEST YOURSELF
Find the general integrals of the linear partial dilTcrential equations :» \

■t-yy- 2 . z-x- p+ -----
yz zx/ V

^p + zxq = i-.
X

p^q = l.

1. q = xy
2

2.

3. t'
:l
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Some Meihmli fcr the Sohiiioii of P/inUil 
Differeiiikil Erjualions

and dq = 0
qrb (constant). 

Substituting these values of p and q into (1), we get
z~ ax + by + ■¥ b^.

This is required complete integral.
Example 2. Find the complete integral oflzx - px' - 2qxy +pq = 0.
Solution. Assume fs 2zx - px^ - 2qxy +pq = Q.
Now finding partial derivatives of/ with respect to x, y, z. p and q respectively.

...(1)

f^ = 2z-2px-2qy,

Then the Charpit’s auxiliary equation are .
dq

dx dy____________ ____ _

3p 3^ dp dq dx ^ dz Sy ^ 32

dz dp dq

dx d\ dz_______________________dp _ ^
X' -q ~P px^-pq + 2xyq -pq 2: - 2qy 0 

From (2).

...(2)

dq~0.
Integrating, ^ = o (constant).
Putting the value of <7 = n into (1). we get 

2z.v - px^ - 2axy +pa = 0
2x(z-aY)or P- x^ -a

Now substituting these values of p and q into di = pdx + qdy, we get
2x(z- ay)dz - dx + ady

X- - a
2xiz~ ay) ^dz-ady=or 2X -a

dz - ady 2x dxor
z-ay -a

Integrating, we get
log (2 - fly) = log (jt^ - fl) + log b 

z-ay = b{:^-a)
fly + b (jr^ - fl).

This is the required complete integral.
Example 3. Solve P={z + qy'^'
Solution. Assuming /h (2 + qyf - p = 0
Now finding the partial derivatives of/w.rit. .t.y. z,p and q

. or
or 2 =

...(1)

a..— 3j, = 2‘7(^+9y).f = 2(2 + ^y). 

' Then the Charpit's'auxiliary equations are 
dx dy ' dz

-1. 2y (r + ^y).dp dq

dp dq

3p dq dp ^ dq dx ^ 32 3y ^ 32
dx ch dz 4b. dq ...(2)-2y(2+^y) p-2qy{z + qy) 2p{z^yq) 4(7(2 + cy) 

Taking second and fourth ratio of (2), we get
1

4l dp
- 2y (2 + qy) 2p (2 + y^)
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Special Function anil Mechanics ^ + ^ = 0. 
p y

Integrating, we get
log p + log > = log a or py-a

aor
.

Substitute the value ofp into (1), we get

{z^qy) = V?or

zor ‘i = ~V2 y>
Now substituting the values of p and q into

dz = pdx + qdy
, a , f s'! , 

dz = ~dx+ -- dy

s.

- dy-zdyydz = adx +or

Sjfsyydz + zdy = adx +or

d (yz) = adx +or

. Integrating, we get
yz = ax + 2 "iciy + b. 

This is the required complete integral.

• SUMMARY
Pp + Qq = R- 
^_dz. dz 
P~ R

• Lagrange’s D.E.

• Lagrange’s A.E.

dqdz dpdx dy
• Charpitz’s A.E.

^ dp ^ dq dx ^ dz dy ^ dz
_K

dp dq

• STUDENT ACTIVITY
Solve p^-¥q^ = x + y.1.

2. Solve yzp-¥zxq = xy.

\
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Some Melliofh for the Solulioii of Paniat 
Differeniial fitjuaiiom• TEST YOURSELF-2

Using Charpit’s nietliod, find the complete integral of the following diflerential equation :
1. (j}' + ef) y = qz- 2. px^ - Aq^x^ + 6x^z -2 = 0. 3. = q.
4. 2{pq+py +qx)+x'+ = 0. 5. 2z + p^ + 2y^ + qy = 0.
6. p--y^q+x-=y\ 7. z=pq-

ANSWERS

•> 2 3 ^/x'2. z = - j fl e + ^ + -:^-\-iay + b)€3/.r’(ac + b)' + a\' = az^

(.x + b)^
(a-y-)

1.

.2_3.

2z = ax - x^ + ay-y' + -(x-y) V2 (.v-.v/+ a^ +

z = ^ Va^ - .1^ + ^ sin

log [{'<12 (x - y) + yl {x-yf -^a^] + b

- - — -y + b. a y

4.
2V2

2
i_-i>M(-':-a)^ + >' + 2z} =i7. 

2'lz -''fa .x + -^y + b.

5, 6.

1.

OBJECTIVE EVALUATION
Fill In the Blanks ;
1. The Lagrange's method can be used to solve ..
2. The general method to solve PDE is known as
3. The complete integral oi px + qy = pq\%.........

True or False :
Write T for the true and F for false :
1. The complete mehod of 4z = pq is n: = (x + a>> + bf.
2. The complete integral of z p<7 = p + ^ is z^ = 2 (a + I) (x + y/a) + b.

order PDE. 
..... method.

(T/F)
(T/P)

Multiple Choice Questions (MCQ’s) •.
Choose the most appropriate one :
1. The complete integral ofX/?. g) = 0 is ;

(a) z = axAb ib)z = ax + by + c (c) z = ax+f{a) .y + b (d) None of these.
2. . The complete integral of r =p^ is ;

(a) 2'fz= VoT + b 1(b) 2 VF = 'lax +

1(c) z = 'f^ + y

The complete integral of ^ = 3^^ is : 
(a) z = ax + b 
(c) z = ax + y^ + b

(d) 2'fz-'f^ + y + b.

(b) z = ox + y 
(d) None of these.

ANSWERS
Fin In the Blanks ;

1. first 2. Charpit’s 3. az-

True or False :
1. T 2. T.

Multiple Choice Questions:
1. (0 2. (d)

^(y + axf + b

3. (c)

□□□
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Special Function and Mechanics UNIT

6
THE LAPLACE TRANSFORM

-STRUCTURE
Definitions
Linearity property
Existence of Lapiace transform
Lapiace transforms of some eiementary functions
Some important theorems
Lapiace transforms of derivatives
□ Summary
□ Student Activity
□ Test Yourseif 

LEARNING OBJECTIVES
After going through this unit you wiii ieam :

• What is Lapiace transforms ?
• How to find Lapiace transform of given functions using Lapiace transforms ?

• 6.1. DEFINITIONS
. Deflnition 1. An integral of the form

1* oc

k(p, t) Fit) di
, — OC

is defined as the integral transform of F{t), provided it is convergent. 
Differential Equations 
It is denoted by f(p) or T {F(f)).

•»ec

f{p)^T{F{l)]= kip,t)F{l)dl.

Definition 2. If F(f) be a function of t defined for all values of r, then Laplace transform 
of F{t), denoted by L {F(/)} or f(p) is defined by

I ce

L{F(t)]=fip)= ^ e-^F(t)dt 
JO

...(1)

Definitions. A function/(j) is said to be exponential order a as .r-♦ o® if lim = a

finite quantity.
i.e., for a given positive integer ri if a real number M such that 

! I <M. 
which can be written as fi,x) = 0 (e'^),

Definition 4. A function^x) is called sectionally continuous (piecewise continuous) over the 
closed interval X[iix<X2\f the closed interval can be divided into a finite number of subintervals 
a<x<,b such that

(i) f{x) is continuous in the closed interval [a, b]
(ii) lim f[x) and lim /(a:) both exist.

. j:-*"

j:-*n + 0
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The Laplace TransformDefinition 5. A function, which is sectionally (or piecewise) continuous over every finite 
interval in the range t > 0 and =» of exponential order as f is called a function of class A.

• 6.2. LINEARITY PROPERTY
Theorem. The Laplace transformaiion is a linear transformation

L I n,F,(0 + F2(t) )=a,L[Fm+a2L [F^it)}. '
Proof. We know that

L(y(r)}=Jo

Therefore,
»de

e^' [a,m + a2h{t)]dtL{a,m + a2fm = Jo

-6:.os »OS

\ 0 Jo

= a,L{/.(r)l+n2Z.{7(/)},

• 6.3. EXISTENCE OF LAPLACE TRANSFORM
Theorem. If F(i) is a function which is piecewise coniinitous on every finite interval in the 

range r > 0 and satisfies

\F(t)\<Me“
for all l>0 and for some constant a and M. then the Laplace transform of F{t) exists for all 
p>a.

Proof. We know that

i* ^
e'"' F{t) dtL{Fit}} =

Jo

»«0

= J^ Fit}e~'^dt + F{t) e'^Ut -d)
J'o

t'o
F{t)e dt exists since F{t) is sectionally continuous on every finite interval

• 0
Now

0 < / < fo
>co fk ee

F(t)e''”dt < \F«)e-'’'\dtand
J‘o J'o

*09

e'^'Mb'" dL (•,• \F(t)\<Me^')<
J'o

e^''-‘’FMdl
J'o

= M
-{p-a)

^0

p-a/
e'^'f[t)dt < ^ ifp>n.

p-aJ'o
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Specint Fiinctinn and Mechanics

Now can be made small as we please by taking to sufficiently large. Hence, fromp-a
(1), we conclude that L(/(r)) exists for all p>a.

• 6.4. LAPLACE TRANSFORMS OF SOME ELEMENTRY FUNCTIONS
(i), F(/) = l.

Solution. We have L{F(r)) = f e~^f[t)dt
Jo

Fit) = 1,

•^•(1)

' Here
Therefore, from (1)

-piee'”'. ldt= -m] =
Jo p i.
i

— • p > 0
P

1Hence Mi} =
p

(ii> F{t) = t\

e’’^' F{t) dtSolution. We have L(F(r)l =
Jo

m 9C

f-'" t" dt =L\n = Jo Jo

I* ^r{« + i) e"" u dii = T(n + \)n+ 1 JoP
In : ’ p > 0n + 1

P
II !L{n =Hence H + 1

P
(iii) F(l) = t.

e .tdtSolution. We have tlr)
Jo

»cc
]1--te-^‘ e-'^'di+ -

P P Joh

1
= —. p>0.

P
i

(iv) F(t) = e“‘.

L{e'’') = e'"' e'”dtSolution. We have
Jo

A OO

e-<f-'’^'dt.
Jo

Ifp < n, integral diverges. For p>a, the integral converges. Hence, for p>a.

L (e'"} = e
Jo
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The Laplace Transform
1= 0 +

p-a p-aJo

1
■ p> a.

p-a
(v) F{f} = sinat

e~^‘ sin atdtSolution. L {sin at]
Jo

e (-p sin at-a cos at)
p^ + a^ Jo

a
p>a“> ? * p' ^ a

L (sinarl = ^ ^ - 
p^ + a^

Hence

(vi) F{t) = cos at. 
Solution. We know that

(fl cos bx + b sin bx)e'“ cos bx dx

Therefore, we have

Z.{cosnr}= e"'’'cosafar
JO

e (-p cos at + a sin at)
2 , 2 a + p

0

p '< p>0.2 , 2 ’ p +fl
(vii)F{t} = sinho/. 
Solution. Consider

at - ai
€ “

L {sinh flf) = Z,------- ^

1 1
^ Lid"]Lie-'"]

1 _1
2 p-a 2 p+a

1 1

a
2 2p -a

aHence L {sinh at] 2 2p -a
(viii) F{r} = cosh at. 
Solution. Consider

Z.{coshfirl=Z. .

1
= ^L\e‘"]+^L[e-"']

1 1 , 1 1 
2 p-a. 2 p+a

P I IV—;• P>\a\ 
p--a-

• p> a and p> - a
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Special Fiiiwiirm and Mechanics
t{coshaf)=

p -a
Table of Laplace Transforms of Special Functions

Hence,

Fit)
I11. 1 -• p>0

P

2. n !I", n e Z-^ • p>0+1P"

3, r", n > - I • p > 0+1p“
14. ' p > dp-n

sin dr5. rt p > 0
p2 + d2

6. P>0
p- + n-

COS (7f

sinh nr7.

cosh dt8. P>|n|
p2

SOLVED EXAMPLES
g

Example 1. Find the Laplace transform of ihefimction F{r} =- 

Solution. We have
a

e"'- I
LlF(r)}=L — 1 1= L -e

a a

11

\( 1 ^
a

a pa p-a

1
p(p-d)

Example 2. Find L{(r'+1)^}.

Solution. L{i^+l)-}=L{t^ + 2t^+l)

= L{/l+2Z.{r^) + L(l)

21 1 24 + 4pVp‘^

P
Example 3. Find L (F(r)) where Fit) = (sin t - cos t)^. 
Solution. Consider

L ((sin/-cos tf) =L {sin'r + cos^/ -2 sinrcos/} 
= L (1 - sin 2f}
= L| 1} - L {sin 2t] ■

(By linearty property)

4 ! . p > 0.
P

1 ^7’ P>0
P p- + 2-

i_p^-2p + 4 
~ p(p' + 4) 

Example 4. Fhid L [6 sinlt - 5 coslr).

• p>0.
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rhc Laplace TraasfuraiSolution. L (6 sin 2r -5 cos 2f) = 6 L {sin 2i] - 5L {cos 2fl

~ ~ ^ ' 2 ^ -i2 ' P ^ ^
p- + 2' / + 2^

_ 12-5p 
p^ + 4

Examples. Find L {2e^'- e~^'].

Solution. L {2e^' - = 2L [e^'] - L {e"

= 2.—-r-------r- p>3andp>-3
•p - 3 ^ + 3

= ^..>131.'

• , 0<r< 1
, f>l.

= 6,

•d

• p > 0-

Example6. Find L{F{t)]. ifF{t}= ^

L{F(f)}= f‘’'F(i)dt 
• Jo

Solution.

r 1
e-''‘.e'dt + e-”' .Odt

Jo Jl

r I

Jo

I

p-1 4)
I p^l.

(P-1)

• TEST YOURSELF 1
Find the Laplace transform of the following functions :

1. sin r cos f.
2. 4 cos' r.
3. sin" al.
4. 3 cosh 5? - 4 sinh 5/.
5. 2t* - 2? •+ 4e" - 2 sin 5/ + 3 cos 2r.
6. e-2t -3/— e

e"'-l
7.

a
sin f , 0 < f < Ji 
0 , t > 71-8. F(/) =

ANSWERS

2. 4(pS8)
p (p^+ 16)

- 72 12 4

2a1 3.1. ’ p > 0 • ’ p > 0
p^ + 4 
3p-20

p (p" + 4<j^)
10 ip.5. ^ ' p>04. . p>5 + +

P--25 p^ p* P + 3 p- + 25 p^ + 4
e~*'"+l 
p-+l

1
6. • p>-2

P(p-^')
8.

p" + 5p + 6

• 6.5. SOME IMPORTANT THEOREMS
Theorem 1. (First translation or shifting theorem). If f{p) is the Laplace transform of 

F{t). then jip - a) is the Laplace transforms of e"‘ F{t). i.e..
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SfifticJ Fundion nnd Mechnnics // L |F(r)) =fj}). when p>a,

Lie"' F(i)}=f(p-a), p>a + a.
Proof. We have, by definition of Laplace transform

e'"' Fit) cit.LiF(t)]=fij>)^
JO

L{e"'F{t)] = . e"' Fit) dtTherefore,
Jo

i* ^
.Fit) di

Jo

e Fit) dt. where u=p~a>0
Jo

(By definition)=fiu)
=Jip-a).

Theorem 2. (Second translation or Heaviside’s shifting theorem)
F(r - a) , t> a 

0 . t <a.L {F(r)) =J{p) and Git) =If
L{Git)]=e-'"^m
L{Fit)]^m

Then
Proof. Let

F(/ - a) , if f > fl 
0 , if / < aG(r) =and

f e''‘'Git)dt
Jo

L{C{0IThen

a >co

= e~‘’'G{f)dt + e"'" G(r) dt
JO

m eo

e~^' .Odi + e~'’' Fir-a) dJ
Jo Ja

e'"' Fit-a) dt.= 0 +
Ja

Let r - a = H, therefore dt = du. 
If t = a. then 
If f = CO, then

11 = t - a. = a - a = 0.
II = oo — a = °°

»cc

Fiu)duL{Git)] =Hence. Jo

e"'"' F(«) duJo

Theorem 3. (Change of scale property).
IfL |F(0I =m llln L {F(«0l 

Proof. By definition
1 V, /

I
aoo

e''" Fiat) dtL (F{«/)1 =
Jo
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The iMpktce Translonii»00 j

F(h)^ (where at = u)
Jo

/ •
1 r“ e-"'"'’F(u) du
a Jo

> c«1 where 5=^
a Jo a

=>=M^ ■
V /

SOLVED EXAMPLES
- I-rt/

Example 1. Find L 

Solution. We have
(n-1)! ■

-1f 1 in - 1) ! 1
{n - 1) ! ' p'L (/.-I)! P"

Therefore, using first shifting theorem, we have
1t"- 1=f{p + a)

(«-!)!

Example 2. Find L[e'cos'r}. 
Solution. We have

(p + af

L (cos^ f) = L. ^ (1 + cos 2r) • = i {L (1) + L (cos 2r)}

1 1 P- +
2 F + 2'

P~ + 2 =J{p) (say).
pip'+ 4)

Using first shifting theorem, we have
- 2f + 3ip-if + 2L{e' cos-l]=f{p-'l} =

(F-1){(f-1)- + 41 (f-1)(p--2f + 3)
Example 3. Find L{e ' (3 sinlt - 5 cosh2t)). 
Solution. We have

5p2
Z- {3 sin 2f - 5 cosh 2r] '= 3 . —5----7—-> ^ i = fip) (say).

F^ + 2- F' - 2
Using first shifting theorerni we have

Z, (e“' (3 sin 2r- 5 cosh 2l)} = fip+\)
5(p+l) 

ip+lf + i' (p + lf-4

F' + 2f + 4 F^ + 2f ' 3

6

6
: ■

Example 4. Find L {F(t)), where
■2n2

, l>t--ncos 3
F(0 = 2ji0 i < —3
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Special Function and Mechanic'! Solution. LetG(?) = cos/
2n 2k

G ,-~ . t> —
3Then F(0 = 2n

0 , t<
3

L {G{t)} = L (cos /} = =j{p) (say) •
P + 1

Using second shifting theorem, we have

r ”

We have

'■ 2!l''

L{F{t)]=e ■fip)

■p'+l

TEST YOURSELF 2 L

L{e^' cos 5r)- 
L {(?”' sin^ r|.
/.(e'sin'r).
L{e~*‘ cosh 2i}.
L {e~^' {3 cos 6r - 5 sin 60}.

1. Find
2. Find
3. Find
4. Find
5. Find
6. Find

ANSWERS

26 p-32.
(j>+\)(p- + 2p + 5) 

p + 4p + 40

1.
- 6p + 34

p + 4
■ p^ + 8p+ 12

24.
(p-l)(p^-2p+,5)

• 6.6. LAPLACE TRANSFORMS OF DERIVATIVES
Theorem 1. Let F(l) be continuous for all t>0 and be of exponential order as t and if 

F'(t) is of class A, the Laplace transforms of derivatives F '(0 exists when p> a and
L{F'(t)\=pL{Fir)]-F{0).

Proof. By definition, we have

I Z.{F'(/))= e''"F'{t)dt
JO

r'"F(r) +p e^‘F{t)dt [On integrating by parts]
-n JO

••• lini e’'’'F(/) = 0^F(O)+pF{F(0l

= pZ.|F(0l-F(0).
REMARK

► Proceeding same as above, we get
L{F"{01=pF(F'(/))-F'(0)

= p[p/.{F(0|-F(0)]-F'(0) 
= p'i.{F(r)|-pF(0)-F'(0) 
= p'y(p)-pF(0)-F'(0).

Theorem 2. If F(t). F' (r),... F' * (t) are continuous for t>0 and be of exponential order 
as t^c^ and ifF' (r) is of class A and if L !F(0l = f{p). then

F(0) - p" ■ ^ F' (0)... pF" ■ (0) - F""(0)L{F(t)]=p"m-y -1
!
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H-l r/ie Lapiace Tramform
=p'jip) - S - 1 - ' Z^''’ (0).

r = 0
Proof. Using above theorem, we have

L{F"(t)]=pH{Fit)]-pF(0)-F'{Q)
Similarly, we can find

L{F"\t)]=pL[F"{t)]-F\0)
= p\p\{ F{t) 1 - p F{Q) - F^(0)] - F"(0} 
= p^L I Fit) 1 - p- F(0) - p F'{0) - F''(0).

...(1)

.--(2)and

Proceeding, similarly, we get
-1 F(0)-p""^F'(0)-...-F"''(0)L\F"{t)]=p''L{F(t)\-p’'

n - I

^p^LiFit)] - X r'-'no).
r = 0

Theorem 3. If Fit) is a function of class A and if L {F(f)} = J[p), then 
L{t.Fit)] = -f'ip).

Proof. We know that

f{p) = L{Fit)]= e-'^'Fit) dt 
JO

J r®®

I 00 ^

= „ £{e-^'Fit)]dt 
Jo op

e’"' Fit) dtTherefore

(By Leibnitz rule of differentiation under

the sign of integral)
» oc

re’"' Fit)dtss —
Jo

ft

e-‘^‘{tFit)]dt
Jo

= -L{rF(r)} 
l{’Fit)}=-rip).

Theorem 4. If Fit) is a function of class A and if L {F(/)} =f[p).

Then L {r" F(f)} = (-1)
dp

Proof. We shall prove this theorem by the Principle of Mathematical induction. 
Step 1. Using previous theorem, we have

T-mIL{tF(0} = (-l) dp
^ Theorem is true for /i = 1.
Step 11. Assume that the theorem is true for a particular value of « say k. Then, we have 

£.[r‘F(f)l={-l)‘-^

dp

mdp'

^ Jo
Step 111. Differentiating both sides w.r.t. p, we have
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SjX'dni Fiinciion and Mechanics i* 1I A eea
dp Jo ^

Applying, Leibnitz’s rule for differentiation under the sign of integration, we have

k-nd

'’^t‘‘F(t)dt = {-!)'’- mk* Idp

k+ \»ee

F{i)dr = (- 1)
Jo dp^*'

»ee

e''"{/*'F{r)}df = {-i)k+ I m=> k* IdpJo

L{/-"'F(r)}={-i)t + i m -=i
dp^*'

^ Theorem is true for )i =/:+1 ,
Hence by the principle of mathematical induction, it is true for every positive integral value

of n.
Theorem 5. (Laplace Transforms of Integrals). //F{r) is piecewise coiiiiniioits and satisfies 

|F(r)|<Me''', VrSO
for some constant a and M, then

ft iL- F(x)dx^-L[F{.t)] 
Jo P

Proof. Let F{t) be piecewise continuous such that 
|F(r)|£Me‘’' ...(1)

for some constants a and M.
If (1) holds for some negative value of a, then it is also holds for positive value of n. Therefore, 

suppose that a is positive.
Ft

Git) = Fix) dx.
JoLet

Integral of an integrable function is continuous)Then C(f) is continuous
FtFt

] G(r) I < J J F(:r) I tir < r/.rNow,

M, |C(r)|£^(e'’'-l). fl>0

Further G'(r) = F(0. except for points at which F(f) is discontinuous. Therefore, G'(/) is 
piecewise continuous on each finite interval,

L{G'(r)}=pL(G(0}-G(0)

(••• G(0) = 0]= pL{Git)] 
L[Cit)]=^L{G'it)]

L =^L(F(0}.

Theorem 6. (Division by 0- If L {F(r)) =fip), then

L 7/^(0Uf Ax}dx
t Ip

=>

Ft

1provided lim ■ - Fit) exists. 
/-fO f
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The Laphice lr<m\fiirm1
Proof. Let C(/) = jf(f) i.e., F(r) = fG(r) 

L{F{t)]=L{tG{t)]=-j^L{G{t))Therefore,

dp
On integrating both sides with respect to p from p to e®, we get

- L{G{i)] Ap)i^p
. 3 Jp

I 00

- lim L(G(f)}+L{G(f)} = Mdp
Jp

j«eo fl oe

f(p)dp, by using lim L{G(r))=lim e"^'G(/)<f/ = 0
p-**»*0

0 + L{G(01=.
Jp

H
fl 60

Z..1 Ax) dx.^Fit) =t Jp=>

SOLVED EXAMPLES
Exomple 1. Find L [teas at). 
Solution. We know that

L {cos at] =-T^

L Ircosn/} ss--^L (cosaf) =--^
dp'p- + a^

p>0.
p^ + a‘

Therefore.
dp

22p -a

Example 2. Find L{t^sinat\. 
Solution. We know that

L {sinor) = • i
p^ + a^

A- A^L [i^ sin £jr) = (“ 1)^ —r L (sin «/} = —; aTherefore, dp^ dp^ +

2a (3p^ -d - 2ap _ 
~dp (p^ + a^f^~ 

- l/4p

• p>0.
(p^ + a^y

ViTExample 3. Given L [sin VT} = show that372 ®2p

=VFi^ p
VT. cos >

vr e"

Fit) = sin VT. 

F'(/) = cos

Solution. Let >/r and F(0) = 0.Then, we have
I'JT

Put all these values in
Z.|F'(/)}=pZ.{F(/)}-F(0)

we get

2vr
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^-iMp *.*-*•,

3/22p

Vf?1 e~2 ,P\ /

^ p
cos '/r ,e-'rHence L

Example 4. 5/iow that L ■ 

cos at

1 sin at= tan ' - and hence find L . Does the Laplace
tP

transform of exists ?
t

Solution. Let F(t) = sin r
m. sin tThen • lim = lim

f-*0
= 1.

t tl~*Q

We know that
1L {sin /} = =fip) (say)

p'+l
Then, we have

I ee I e«sin t dx r. -A“- tanL J{x)dx =
■ P + 1t Jhjp

n -1--tan p1
0* cot" ' * tan-I

P\ /
sin nf sm asNow, L = aL

t at

1 'I V L\f{at)}=h{^ 
a a

\“

I -1= a . — tan
p/aa

-I a= tan
P\ /

Also, since L (cos at} = —= fp) (say) 
p + a“

t oo

cos flf X
= n ~2—sdx x^ + a-

= i log + n^)

Then L
t

2

= •* lim log(j:' + fl^)-^log(p^ + fl^)
i X-*- ^

which does not exists, since lim log +o^) is infinite.

cos atTherefore, L does not exist.
t
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• SUMMARY
• Laplace Transform of F (i)

fk ce

L(F(f)}= e~'“F{t)dt Jo

P P
1

. p^ap-a

L {sinn?) =-;---- ;
p- + a

, p>0. L {costi/} =-~P—- 
p^ + a^

p*±a, L {coshar} =-7^—r, p*±a 
p--a

, p>a

L {sinh at] = ■y" —■, 
p--a-

If iLiFW}=/(p).then
L{/'F(r)}=/(p-n). p>a, 

F{r-'a),' t>a 
0. . thenL(C(f)} = e-'’V(F).It'L{F(r)l=/(p)and G(0 =

If L IF(/)} =/(p). then L {F («t)l = ^

■ L|F'(f)}=pi.|F(f)l-F(0). .■
L {F" (f)} = p^L [F[t))-pF(0) - r (0).

t<a

If L {F (f)) =/.(/’). then Z. {r''F(0} =(- -—ifip)).
dp

If |F(0| S /2 0 and F(f) is piecewise continuous, then

1L F{t)dt =JL{F{0}.
0

»ae1• IfL{F(0)=/(F).thenZ, -F{0 = f{x)dx.
t ’’P

■>

• STUDENT ACTIVITY
Find L{e^cos^?}.1.

Find L [i^ sin at].

*/
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Special Fundin'! and Mechanics • TEST YOURSELF-3
2aShow that L {-<j sin a/} =-

Evaluate 
(a) L{rcosh3f}

Show that: i,(r^cosaf} =

1.

2.
(b) L{/sinhaf}. 

2p(p^-3a^)
1 p > 0.3, (p^ + aV

n !Show that Lit" 6"] =4. • p >fl.n * I(p-a)
8+12p-2p-

{p^ + 4)- 
(a+ 1) p^ + (a- 1) or

Show that L (r (3 sin 2f - 2 cos 2/)} =5.

Show that L {sinat+ f coscw} =6. (P^ + ar?

ANSWERS

P^9
(p'-9?

Tap(b)2. (a) (P^ - aY T

OBJECTIVE EVALUATIONS l

Fill In the blanks ;
1. L{e'“] =...........
2. L (sin =.....
3. L (f cos «/} = ..-
True or False

* 1 / N1. If L{F (01 =/(0, then L {F{ai)} = -/( ^ .

2. If L {F (0) =/(p). then L {e'”F(t)] =/(p + n).
3. L{F{t)]=pL{Fit)}-F(0).
Multiple Cholcs Questions (MCQ's);
1. L (I) equals:

(T/F)
(T/F)
(T/F)

1 11 1 (d)(b)^. (a) - 
P

2. L{t"} equals;

(a)l

(c) p- 1 p+ 1P

(b)4
P

1 1(d)^(c)^
PP

ANSWERS

Fill In the Blanks :
2 21 3.4 -aa2.1, (pUflVp-a

True or False: *
3. Ti. T 2. F

Multiple Choice Questions :
2. (b).1. (a)

□□□
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The Inverae Laplace TransformUN I T

7
THE INVERSE LAPLACE TRANSFORM

Inverse Laplace transform
Some Inverse Laplace transforms
Important properties of Inverse Laplace transfcrms
Inverse Laplace transforms of derivatives
Division by p
Multiplication by p
Inverse Laplace transform of Integrals 
Convolution
□ Summary
□ Student Activity
□ Test Yourself

i!^»ll^MPit^LEARNING;OBJECTIVES,:^r:.
After going through this unit you will learn :

• What is Inverse Laplace transform ?
• How to find the Inverse Laplace transform of given .functions
• What Is convolution ?
• How to find the inverse Laplace using convolution.

• 7.1. INVERSE LAPLACE TRANSFORM
If the Laplace transform of a function is f[p) i.e., if L (F(f)} 
Then F(f) is known as inverse Laplace transform offip). 
Symbolically. f(r) = r‘ [/(p)).
Where L~ is called the inverse Laplace transformation operator./ \
For example. If L {e" ^*

I1 -1• Then we can write L ssgp^l p + 2
Null Function ;

A function A^(r) of r such that

N(t) r/r = 0, V / > 0 is called Null function.
Jo

Uniqueness of Inverse Laplace Transforms : Learch Theorem t
Since, we know that the Laplace transform of a null function N(t) is zero. Also, it is clearly 

that if Z, (F(f)l =J[p). then also
L{F(i) + Nm=m

It follows that we can have two different functions with same Laplace transfrom.
If we allow null functions, we see that the inverse Laplace transform is not unique. It is unique, 

however if we disallow null functions.
Lcarch's theorem. If we restrict ourselves to functions F(r) which are sectionally continuous 

in every finite interval 0 £ f £ A'and ofexponential order for r > A^. then the inverse Laplace transform

L" ' [f{p)] =F(r). is unique.i.e.
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SpecinI Fiinclion anti Mechiuiic-'i • 7.2. SOME INVERSE LAPLACE TRANSFORMS

L-^\f(p)]‘F{t)

1, 11
p

2, 1 ■ r

P^-

3. 1 l"/(n !)•n = 0.1,2....+ IP"

4. 1 ftii

p-a

sin a!5. 1
a

6, cos nrR
p^ + n^ >

sinh ni7,
n

COShnf8. P
p^-a^

• 7.3. IMPORTANT PROPERTIES OF INVERSE LAPLACE TRANSFORM
(i) Linearty property. If C\ and Ci are any constants while f(p) and fi{p) are the Laplace 

transform Fi{t) and Fiit) respectively, then
L" ‘ (C| flip) + C2f2(p)} = Cl r' l/i(/;)} + C2 ' lAip) 1.

Proof. We have
L (C, Fi(/) + Ci Fiit)) = C^L {Fi(0t + C2 Z. (FzW)

= Ci/](p) + C2/2(f’)
=> Z.-’ {C,/,(p) + C2/2(p)l = C,F,(/) + C2F2(f)

= CiL-' (/,(p)} + C2L-' [fiip)]

(ii) First translation or shifting theorem.
IfL-' (f{p)\ = Fit) then

L-' \j\p-a)]^e'"F{l) = e'‘'L-' |y(p)}.
' fProof. We have

r»eo k
= e-'”F{t)dt

I 00

F{i)di=>

I
[e'''F{t)}dtS

Jo
= i.{<?'''FW}.

L-‘ tAp-‘2)} = e'’'F(0 = /'r‘ tAp)}.Hence,
(iii) Second translation or shifting theorem.
Iff ‘ Wp)) = F(f) then r* /(P)} = GW ^^ere

F{i-a) t>a 
0 . f < «.. G{t) =
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The Inverse L/ipIneC TransformProof. We know that

I* ^
e'"' Fit) dt.m= Jo

Fit) dre'”‘J[p) =Therefore.
Jo

Fix ~ a) cU putting t + a-=x=^dt = dx
Ja

f>a ft 60

e->’'.Qdx^ e Fix -a)dx
Jo Ja

pa i* ^
e''".0rfr + e'^' Fit-a) dt

Jo Ja

ft Cr>

Git)di = L[Git)]
Jo

1Fit - a) . t> a 
0 , t <a.where • G(r) =

{e'‘'’J[p)] = Git).
(iv) Change of scale property.

. / ^
IfL-' Uip)]=Fit). then L"' {fiap))=-F - . 

Proof. We know that

shows

a a
\ J

ft oo

jip)= f^'Fifydt
Jo

e''^' Fit) dtf{^p)-= Jo

1Putting = A- => ifr = — f£r, we get

/ \
e~^^F - dx1 r“

O Jo a

tg-p'F ~ d! (By the property of definite integral)
a Jo a

1 t= -L F -
a aV J

=x
a a

\ J

L'' W«P)}=-/-' - •Hence, a a

SOLVED EXAMPLES
Example 1. Find the inverse Laplace transforms of the following functions 

2p+ 1 3p-8
(It)U)

4p- + 25P(/A+1)
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Special Fiiiiciirm and Mechanics Solution, (i) We have
2p+ 1 P + (p+ i)r' -1= £.

P(P+1) P(P+1)

1 i-1 -1+ L )p+l P
-I= e + 1.

(ii) Here, we have
3p-8 1p -1r' -2L

2 fS'"
P + ^

V + 25 4 2x 5 
■ p + 22

V /
5 ^3 Ts = — cos

2 .
-2. Tsin2 ^ 2^' 54

4 . fS 'l = - cos X f - T sin - r .
^53
2 5 24

3p-2 7-1Example 2. Find L 5/2 3p+-2P
Solution. Here, we have 

3p-2 1 -II-' 17 1-1 -1L-‘ -2L= 3Z. 3/2 5/2 P + (2/3)5/2 33p + 2 PPP I

3/21/2I -2^"^773 5^
^7r X

2

8 -/T?
3^ V Tt

_2e-2r/3

1 1
~ COJ ~
p p

-1 = 1 -Example 3. Show that L + ... .2(2!)- (4;)- (6!) 

(l/p)- , (1/p)" (\/pfI ‘ /-cos- ~L 
P P

1-1L-' 1 -Solution. + .+ -16 !2 ’ 4 !P

1 11 1 1 11 -1L-' L-‘-1 L + ...= L 75P^ 6 !. 2 ! 4 !P P P

= 1-
(2!)' (4!)- (6!)'

1-1Example 4. EvaliiateL
(p + 2)(p-l)V ■

JJ -I-1Solution. L = L
(p + 2){p-l)- (p-l+3)(p-lf

_1__ \J
p + 3

: I 1 fl I I 1 P'
■p- 3 9^ 9 p + 3

(Dividing 1 by 3 +p till p" is a common factor
in the remainder)

I= e'L-

-1= e‘L
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1111 1 1 The liivene Lapinte Transjonn- 1= e'L 3 ■ p- 9 ' p ^ 9 ‘ (p + 3)

1 1 1 
9’^9^

^[(3r-l)e' + c-^].

-3//

1- 1Example 5. Evaluate L 

Solution. Consider
(p+l)(p-2) •

I 1 -L- 1 _L-
3 ■p+ 1 3 ' P~2^ ‘ (p+l)(p-2)[ ^-1

P + 5-1Example 6. Evaluate L
(p + 2) (p- + 4)

Solution. We have
r-l P + ^ ^1

,l(p + 2)(p' + 4)J
3p- 14~
p^ + 4

1 3-1
8 p + 2

1 1 1P-1 -1 -1= ^ 3L -3L + 14Z,
- + 48 P + 2 p^ + 4[P

■ 1 (3e"‘^ - 3 cos 2?+ 7 sin 2/).
8

• TEST YOURSELF

1. Find the inverse Laplace transform of the following functions ;

-7
1(b) p^ + 4

1
(d).

6p 3 2p-5P(e) (f)p- + 2 p^-16 P-^
2. Find the inverse Laplace transform of the following functions ;

1 p + b 3p + 7(a) (b)p^-6p+10 {p + p^-2p-3 
^-2p + 31 P (f)-^(d) (e) --------5

(p+1)

ANSWERS

(P-1)^(P + 1)(p + n)"

1 I1- (a) - (b)-sin2t (c) 4c^' (d)

(c) cos / + 6 cosh 4r + 3e^'

2. (a) c’'sinr (b)e~^'cosa/

(d) c-^'

• VS7
•| sinh 3r(f) 2 cosh 3r 

(c) 4e^'

(e) c-'(4/

-1- e
-1f 1 33 /■’)/24+ t’ € Z (0 e +-<3n-l)!

• 7.4. INVERSE LAPLACE TRANSFORMS OF DERIVATIVES

Theorem. //Z.’’ W)] = Rt). then C' t/"'(p)l =(- 1)" • r". F(0. 
Proof. Since, we know that
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Special Function anti A^ec/ianicx

Therefore.
r''F{f)=L-‘{(-l)"/''’(p)]

L- ' l/”’ (p)) = (- i)" r" F(f)Hence,

• 7.5. DIVISION BY p
f

fi
Theorem. IfL ' [jip)} = F(f). then L ' = F(«)

P JO

Proof. Since we know that
f

F(w) du
P 0

L-' # = F(m)
P Jo

• 7.6. MULTIPLICATION BY POWERS OF p
Theorem. // r' Wp)) = F(r) and F(0) = 0. then L ' {p/(p)) = F '(0- 
Proof. We know that

L(F'(0)=piL{F(r)l-F(0) 
= pL'[F(r)]

= Pfip) 
L-'\pm) = F\t)-

/"(0) = 0J

tHence,

• 7.7. INVERSE LAPLACE TRANSFORMS OF INTEGRALS
Theorem. IfL ' l/(p)} =F(f), then

fk «e mz.-'
fjp

Proof. We know that

1L yF(f)
Jp

mprovided lim 
/-»0

exists.
t

M 00 OilL-' f[x)dxHence,
Jp

SOLVED EXAMPLES
p-1Example 1. Find L (p' + flV'

Solufidn. We have
\ d ( 1
2 4*

/-> __e__
, 2 , 2>2 I(P +fl )

- 1= L

d I-1
dp p^ + a^2
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The Inverse Lni)liice Transfonii1 1 I- I= -|?(-l)Z. = — sm cii.2 , 2 p ->r a 2a

J-1Example 2. Evaluate L 

Solution. Let us suppose

los 1 2
P

1
f{p) = log 1 - —

P

= log ^ = -2 log/2 + log Ip^- 1)

=>

^''(/'(/>)l=-2(l-cosh 0
-'L-^ \j{p)]

/
LT' log ,1

= -2(1-cosh 0 

= - (1 - cosh O'1
iP

Example 3. Evaluate
, , 0 ' log 1 + — •-1(0 L

P
11-1 -log 1 +— •(ii) L I" P

y(f) = log 1 + -3 = - logSolution, (i) Let
/,-+!P

= -2 logp + log (p'+ 1).

r(p)=--^ , ,
p 1

i.'' {/'(p)} = '2 + 2 cost

Therefore,

-tL ‘ {y(p)} = -2 (1 -cos 0 
2(J - cos 0

=s

L-'l 1log 1+ —Hence.
tP

1 2 (1 - cos f)-1 log 1 + —(ii) Since L
tP

1 11 -1 Ap) = F(x) dxTherefore, L -log 1+^ 
P p

= L
P Jo

2
- (1 - cosx) dx.

JO X

• TEST YOURSELF-2

1. Evaluiile the following inverse Laplace transforms : ■ \
1E.-1 -1p-1 (b) L (c)Z.(a) L ip- - 10)^, 2 2-,: (p -a)

2
P+1 P-1-1 (e) L(d) /.

(p- + 4)-{p^+2p + 2)-

2. Show that .
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Special Function amt Mechanics
I- I -/(a) L = V-r.--e

P'(P+1)

y + cos t- 1
1-1(b) L

(P'+ 1)

P+1 1-1<c) L log
p+l t

ANSWERS

(b) j sinh 4r (c) ~ e“

(e) ^ (sin 2f + 2? cos It).

I I!• (a) —sinh or2a
r(d) -e sinr

• 7.8. CONVOLUTION t
♦

If L ’ \f{p)] = F{t) and L ‘ [g(p)) = G{t). where Ff) and G{t) are two functions of class A.
Then

fi

\J(P) -gip)) = f^in) G(t-u)du = F^ G JO

we call F* G the convolution or falling of F and G-

e'
Proof. Let F(x)G{t-x)dx = Hit.)

JO

too

L{H(t)]= ^ e~^'H(t)dtThen. i.

r'
e-”' F(x)G(t-x)dx dl

JO Jo

ftft CO

e F(x) G(t - x) dx dt(
Jo Jo

XThe integration being first with respect to x and
then t. P

The integration (1) is within the region lying 
below the line OP whose equation is -r = ? and above OT, 
t being taken along OT and x along OX, with 0 is the 
origin the axes being perpendicular to each other. If the 
order of integration is changed, the strip will be taken 
parallel to OT. so that the limits of / are from .r to 
and of ,v from 0 to ««.

Therefore,

• > X
f

> ► ,
TI

e'"' F{x)G(t-x)dr .L{Hit)] =
JO

dx
Jx

e ‘'^'~ '^G{t-x)dt.e'"’ F(x)dx
Jo 1 X

Putting / - .c = 9 => dt = dQ
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. ihAcThe Inverse. Liii>lnie Trimsform
m

e~’’^G{Q)dQ dxL{H{t)]= ^ c-"‘F(a-) 
J 0 Jo

i*O0

f^^F{x)g{p)dx
Jo

^f(p) gip)
r t

F(x)G{i-x)dx =Ap)gip)L
Jo

/* t
F{x) G(r -x)dx = L ' {f{p) g{p) ]

Jo

= F*G.
Properties of Convolution :

(1) F * C is commutative i.e., F * G = G * F
(2) F * G is associative
(3) F * G is distributive over addition.

SOLVED EXAMPLES
1-1Example 1. Using coinolution theorem, evaluate L

Solution. We have
(p- l)(p + 2)j ■

^ ’ F+l = e'=F,(r)(say)

1 ■-' = F2(r) (say).-1Land p + 2| "

Using convolution theorem, we have

|p-l p + 2 f^\{x)F2{t~x)dx= F:»F3 =
Jo

r i 1 / f -2/xdx =/e-^^'-'^dx -2l= e
JoJo

1-IExample 2. Using convolution theorem, evaluate L
(p^44)(p + 2)/

Solution. We know that
11 = -.sin2r = F|(r) (say)LT /

p- + 4

-'' = F:(/) (say).-1Lalso. p + 2f
Then by convolution theorem, we have

/* ^1- 1 F,(0 * F^it) = F,(.y) Fzit - x) dxL
(p- + 4)(p + 2)

f ’ 1 2«-.0 .dx— sin 2a' . e
. 0 2

1 ■' + sin 2f - cos 2;].
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Spedal Fwictum and Mechanics
• SUMMARY

Inverse Laplace Transform : If'L [Fit)} =f{p), then Z,”' {fij})] =F(t).
Shifting theorem : If L'‘ {/(p)} = F(r), then LT' {f{p-a)\ =e‘“L~' {/(p)] -e" F{t). 
Second shifting thorcm : If L"‘ \J{p)] =F{t), then L”' {c'"^/{/;)) =G{t),

F{t-a) r>a 
l<a

Change of scale : If L” ’ {/(;>)) = F (t), then L~' [f{ap)] - - F

where G (f) =
0,

f t 'i
a a

d'Inverse Laplace of Derivative : If L~' {f(p)] = F (t). then L

Division hyp : If Z,” * (/(p)| = F(f), then L~' j

Multiplication by p : If Z.” ‘ {/(p)} = F (/), then L~' (p/(p)) = /•’' (0- 

Inverse Laplace of integrals : If L~ ' {/(p)} = F(r), then L

-1 -ifip)) =(-ir/"F(o.
dp

F (ii) dll.
Jo

F(r)-1 fix) dx
ILJp

Convolution theorem : If Z ' (/'(p) 1 = F (t) and Z" ' {^ (p) | = G (r). then

{f(p)g(p)] = F (it) G (/ - u) dll = F « G.
Jo

• STUDENT ACTIVITY

1. If Z ' if(p) ] - F (l). then show that Z ' {/(np)}
a

1 ^- i2. Evaluate Z log I 2
P '
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The Inverse Laplace Transform
• TEST YOURSELF-^
1. ■ Use convolution theorem, show that

1-I(a) L (p+l)(p-2)
1-1 P(b) L = — f sin at

2a

1-1- I(c) L = 77 (1 “ f sin 2r- cos 2t) 
162p(p2 + 4)

OBJECTIVE EVALUATION
Fill In the blanks
1. Ifr‘{/(p)}=f (O.thenL"'l/(p-a)) =

12. r 2P
a3. /-■'

2 2 ~p +a-
True or False

I-I (111. L = e (T/F)p+a
Hi'' {f(p)) = F{t). then T' (/(«;’)}2. (T/F)

3. r' 4 3 ! (T/F)P 2
Multiple Cholc Questions (MCQ’s): 
1. L-' equal to ;

-a
1 .1 (d) - sin at(b) sin at (c) - cos at(a) cos at aa

For/>fl. if L"' {f(p)] = F{t), then L ' {c^'^fip)} equals to ;

(cl)F(ar)
2.

(c)-Ff-'
a a

t ^
(b)F(f-fl)(a)F -

ANSWERS

Fill In the blanks 
l.e"'F(0 

True or False ;
l.F 2, T 3.T

3. sin at2. t

Multiple Choice Questions :
2. (b).1(a)

□□□
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SiH’ddI f unclioi) <m<l Mechmua UNIT

8
APPLICATION OF LAPLACE TRANFORMS 

TO SOLUTIONS OF DIFFERENTIAL 

EQUATIONS
y;MlkPi

• Solution of Ordinaty Differential Equations with constant coefficients
□ Test Yourself

• Solution of Partial Differential Equation using Laplace Transform
□ Summary
□ Student Activity
□ Test Yourself

?CEARNiNG|QB;jECli^^^l^^ig^»'i
After going through this unit you will learn :

• How to find the solution of Ordinary Differential Equation and Partial Differential 
Equation using Laplace transform

i

• 8.1. SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS WITH 
CONSTANT coefficients

Consider a linear differential equation with constant coefficients

f + ... +A„
-1cT+ A + A„y = Fil) ...(1)1 drdt"-

where t is the independent variable and F(r) is a function of /. 
y(0) = C„/(0) = C2......y

dr”

n~ \Let (0) = C„-,
be the given initial or boundary conditions where C|, Cj. are constants. Now, taking

the Laplace transform of both sides of (1) and using the.conditions given by (2). we get an algebraic 
equation from which y(p) =L [y (r)} is determined. The required solution is then obtained by finding 
the inverse Laplace transform of y(p).

...(2)

SOLVED EXAMPLES

Example 1. Solve —f + y = 0 under the condition that y = 1 
dt‘

Solution. Here, the given equation is

+ y = 0.

= 0 when t = 0.’ dr

...(1)dr
Taking the Laplace transform of both sides of the given differential equation, we gel 

L{y") + Hy) = 0
p'L(y)-py(0)-/(0) + L{y}=0 
{p^+l)Hy)-p.1-0 = 0

Liy) =

=>

(using the given conditions)

Therefore,
£-1y = L = cos t.

p^+\
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Application of Laplace Transforms to 
Solutions of Differential Equations ^Example 2. Solve (D' + 1) >' = 6 cos 2i ify = 3, Dy = 1 when t = 0.

Solution. The given equation can be written as 
y" + y = 6 cos 2r.

Taking the Laplace transform of both the sides of the given differential equation, we get 
L(y") + ^(y) = 6Llcos(2f))

p'L(yl.- py (0) - / (0) + L {y} = 6
p +2

V

{p-+l)L{y]-3p-l=-^ 
p + A

« '
(Using the given conditions)

3p I 6p
L{y}- pVl p'+l (p^+l)(p^ + 4)

2p [(p^ + 4)-(p^+ 1)1
(p^+1) (p^ + 4)

3p 1+
P^+1p^+l

1 1I+ 2p
p'+I p'+I p^-t-J p^ + 4

i 12.+
p^+1 ' p^+l p^ + 4 

y = 5L 1 PP -1~ 1 -1Therefore. -2L+ L p'+lp'+l p' + 4

y = 5 cos r + sin / - 2 cos 2f. 

Example 3. Solve {D^ + 9) y = cos 2/ i/y (0) = 1. y ^ = - 1,

Solution. The given equation can be written as
y" + 9y = cos 2t.

Taking the Laplace transform of both the sides of (1), we get 
L{y"}+9L(y}=L{cos 2f}

..-(1)

=P^L{y}-py{0)-y (0) + 9L
p + 4

{p^ + 9)L{y}-p-C = ’ where C = / (0)
p +4

- 2+C ^
p^ + 9. (p^ + 9)(p^ + 4)

P
L{y}

C p pp
"pS9 pH 9 5 (pH 4) 5 (pH 9)

Therefore.
1 E___i1

5 |pH9P -1 -I-I + a . : +'7 LH9 5 p2 + 4y*L pH 9

= cos 3f + j C sin 3t + j cos 2f - j cos 3r

A 1 1
= ^ COS 3/ + T C sin 3/ +'^ cos 2t

3 ^ 3
/ s

Now. since y ^ ~ “ 1’ therefore, from (I), we have 

37t ,1 _ . w.j-^-y+jCn- , 5

[P

1 1

...(2)

\ /
, 4- 1 = r cos

3n 1+ -r cos n .

12On solving, we get =

Put this value in (2), we get
4 4 1y = - cos 3r + j sin 3f + j cos 2t.
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. Slwciiil I'liiK lmit and Mechanics
• TEST YOURSELF-1 ^

1. Solve ^ if >' = 2 when f= 0.

Show that the general solution of the equation = 0 is
>■ = Cl cos ifef + Cj sin itr.

Solve y" (f) + >” (0 = ^ if (0) = 11 y (n) = 0.
Solve {D^ - 1) y = cosh m if y = Dy = 0, when I = 0.
Solve (D^ + nt^) x = a cos nr, t>0 where x, Dx equal to Xq and .t|, when r = 0, ;i ^ in.

2.

3.
4.

»5.

ANSWERS

4. y = -T^—(cosh/If-cosh0
II - 1

1. y = e'+ I

.V| a
x = Xn cos lilt + — sin fwf + —;--- r (cos m - cos mi)

m «r — n"

3. y = ft cos / + f

5.

• 8.2. SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
The Laplace transforms is also useful in solving various partial differential equtions subject 

to the given boundary conditions.
Laplace Transfornts of Some Partial Derivatives

3^ ~pyix,p)-y{x,Q)(1) L

= p‘^y{x.p}~py{x. 0)-y,{x. 0)(2) L

h\-ii(3) L dx dx

d^y _ y
where - (bar) denote the Laplace transform of that function.(4) L

dr dx-

SOLVED EXAMPLES
Example 1. Solve 3^ = 2 ^

Solution. Taking the Laplace transforms of both the sides of the given equation, we get

=2/,fcl

r • where y (0, r) = 0 = y (5. 0 and v (.v. 0) = lO sin Atw, 
dx

dt dx^

py-yix, 0) = 2=>
dx^

d~y p- - 5 sin 4;u. ...(])=s

The general solution of (1) is given by 

y»=Ci 5 sin 47Lr
-(47t)^-p/2

10y = C, + . sin 4t«. -.(2)32ji^+P
Given that

y(0.f)»0 = y(5,/).
Therefore,

y(0,p),= 0.y(5,p)*0.
Put these values in (1). we get

0 = C|+C2 ...(3)
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SoliniiiiiK of Diffemiiiiil Equaiions0 =

siJpT)

and . sin 20n
32n^+p

- i/fip/Z)= C|e
Solve (3) and (4), we get 

Cl = 0 = C,.
Therefore, from (1). we have

+ Cj <? + 0, ...(4)

10
sin 4;Lr>■ = 32n^ + p

10-1y = L. . sin 47U-=>
3271' + p

- m'l~ lOe . sin 47Lt.

di ~ dx-'

Solution. Taking the Laplace transforms of both the sides of the givers equation, we get

Example 2. Find the solution of x>0,r>0, where y{Q,t)= \ ,y {x, 0) = 0.

L ^ = Ldr dx^

p y p)-y [x, 0)=>
ax-

il -py = 0. ...(1)=>
dx-

■ The general solution of (I) is given by
yaCi e'^A-C. e"^.

By y {x. t) must be bounded as ar —»oo,
Therefore, y{x,p) = L[y (jr. t)} must also be bounded as j: -> ««=

Cl =0 

y = C2 f 
y{0,r) = l.

if 'Jp>0. -(2)
But
Therefore,

Lly(0,0}=C{i}

y(o./j) = ^- 

^ p

y=[;
y = L

...(3)

From (2) and (3), we get

1-1 serf'liu 2vr._pe

• SUMMARY

Consider

tfl ^ + by = Fit) 

y{0) = ci, y'(0) = C2

...(1)+ ad?
with

Taking Laplace transform on both sides of (1) and using (2). we get an algebraic equation, 
from which y O’) = i. {y (f)) is determined. The required solution of (1) is obtained by taking 
inverse Laplace ofy O’)'

".(2)
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^ + ^1 = 0 with V (0) = 1, v' (0) = 0.1. Solve
dr

i/

it1. Solve ^ + v = 1 with V (0) = 2. at

• TEST YOURSELF
^ = 2 ^ + V, y (^. 0) = 6<?” which is bounded for > 0. / > 0. 

at1. Solve 3.x
(h]_ , 3y , 3'v, (n 

Solve -^r = 3 —^ where y — 
dr Sx- 2
3y 3~y
dt ~ dx^ '■

= 0 and y (x. 0) = 30 cos 5.t.>r =0,2. 3xi, Jx = 0

y{x, 0) = 3 sinZnx.y (0.0 = 0®y (L 0- 0<x< 1. f >0. 

|j = 20-y(O,O = O,.v(5./)=O.
3. Solve

Solve4.
y (x. 0) = 10 sin ^nx - 5 sin 6Tit.

OBJECTIVE EVALUATIONS
Fill fn the blanks ;

The general solution of ^ + ifc^y = 0 is...........
dt

L{y' W) =...........
True or False
1. Z.(y"(i)l=/>'£(y(0}-;’y(0)-y'(0)

^ + y=l withy(0)»2is e' + l.

Multiple Choice Questions (MCQ’s)
Solution of y" (f) + y (f) = f with y (n) = 0. y' {0) = 1 is: 
(a) 71 sin f + 1

1.
2.

(T/F)

2. Solution of (T/F)

1.
(d)7icosf-t(b) n cos f + f (c) 7t sin f + /

ANSWERS

2. y = 30e"''^'cos5x 
- 72jtV

1. y(x. r) = 6e
- 32n^}~47! / . sin 67tr+ 10 . e . sin 47U-. sin 27U: 4. y (x, r) = - 5e3. y (x. t) = 3c

Fill In the blanks
1. y = fl cos fef + h sin kt

True or False
2.pL(y(/)}-y(0)

1. T 2. T
Multiple Choice Questions {MCQ’s)

1. (b) □□□
k
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h'lin es in Threi; Diiiicn.'ion.iUNIT

9
FORCES IN THREE DIMENSIONS

Equilibrium of forces in three dimensions
Reduction ot system of forces to a single force and a couple
Wrench
Poinsot’s Central Axis 
Wrench and Screw 
Invariants
Condition for a system of forces to be a single resultant force
Equation of Central Axis
Procedure for finding X. Y, Z and L. M, N
□ Summary
□ Student Activity 
Q Test Yourself

After going through this unit you will (earn ;
e How to find the resultant of a system of forces acting on a particle
• What are the necessary and sufficient conditions of a rigid body to be in equilibrium
• What is polnsot's central axis and how to find its equation and the surface on which 

it lies.

• 9.1. EQUILIBRIUM OF FORCES IN THREE DIMENSIONS
1. To find the resulfnnt of any given rysiem of forces acting at a particle.

Let F|. F2......F„ be the given system of forces acting at a particle which is at 0. Let us
choose three mutually perpendicular lines OX. OY and OZ through 0 as the axes of a co-ordinate 
system.

—»

The resultant of the forMS Fi,F2......F„ is obtained by the repeated application of the
parallelogram law of forces. If R be the resultant of these forces, then we have

F = Fi -1-F2+ ... +F„.
—> AAA

Let X. Y. Z be the components of R along OX, OY and OZ respectively and let /, j and k be 
the unit vectors along OX, OY and OZ respectively, then

^ AAA
R^Xt + Yj + Zk

...(1)

...(2)
X AX = t.F = /.(^ + ^+,..+F„)

= i.Fl + i.F^ + ... + L'F,^ 

y=;.F=J.(F,+F,4.,..+F„) 

=j . Fi+J . Ft 4*... +y . F„
A A

Z = k.R = k.(F^+F2 + ...F„)

A —> A —4

and

A ^

and

Self-Instructional Material-91



A —»
==k .F^+k.Fz-^

Thus the resolved part of the resultant R along any axis is equal to the sum of resolved parts

A —♦ A —>Special Fiinclion and Mechania

-* ->
o/F|, Fi...... F„ along that axis :

If R be the magnitude of the resultant R. then

R^ = R.R
AA A A A

= (X/+ Ky + Z/t) .(Xf+ ry + Z/k) 
= X-+Y^ + Z^

/? = Vx^ + y- + z^.
Now dividing of both sides of (2) by R. we get

'' ft TxV ry'l * rz"! *
R~ ~R ft ft ^

-» X Y 7r
This is the unit vector along which the resultant ft is acting. Hence • 7; are the directionH H K

cosines of the line of action of the resultant ft-
2. The necessary and su^icient conditions of the particle under the action of a system of forces 

to be in equilibrium are that the algebraic sums of the resultant parts of the forces along any three 
mutually perpendicular directions vanish separately.

Proof. Let ft be the resultant of the system of forces acting on a particle at 0 and X, K, Z be' 
the algebraic sums of resolved parts of the forces along OX, OY and OZ axes respectively. Then

_l A A A
R~Xi + YJ + Zk

Conditions are necessary. Suppose the particle at O is in equilibrium, then the resultant ft 
must be zero.

-.{J)

^ ^
R=0, O being the zero vector

A A A —>
Xi + Yj + Zk = 0=>

x = o. y=o, z=o.
Thus in a position of equilibrium of particle, the algebraic sums X. Y and Z along OX. OY and 

OZ respectively vanish separately.
Conditions are sufficient. Suppose the sums of the resolved parts of the forces X. Y and Z 

along OX, OY and OZ respectively vanish separately. Then
X = , yaO.Z = 0.

=>

—> AAA
R = Xi+Yj + Zk

AAA
= Oi + OJ + Ok

fusing (1)]

-i

-»
Thus the resultant ft of all forces acting on a particle is zero. Hence the particle is in

equilibrium.

• 9.2. REDUCTION OF A SYSTEM OF FORCES ACTING ON A RIGID 
BODY TO A SINGLE FORCES AND A COUPLE

(i) When some forces act at different points on a rigid 
body, this system, offoiccs reduces to a single foice and a couple 
whose axis passes through a point at which the single force acts.

P,Let F\,F2......Fn be the forces acting at the points q

P\.Pi......P„ on a rigid body respectively. Let O be any
arbitrary point treating as the origin of vectors and
^'^....^be the position vectors of Ihe points 

fti. ft;...... P„ with respect to the point 0 (Base point). Fig.l
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Let us consider a force F; acting at the point Pi with OP, = /•;. Now apply two forces Fj and - F

at 0 parallel to the forces F, and at P, in the opposite direction as shown in the adjoining fig.
On applying two and equal opposite forces at the same point, they will neutralise each other 

therefore there will be no extra effect on the body.
—) ^

Thus the force F; at Pj is equivalent to the single force F, at F; and two forces. i and - F; at
0. Since the forces F,- at F, and - Fy at O will form a couple of moment r, x F,.

/

The force F,- ac^mg at the point /^of a rigid body is therefore equivalent to a single force
Fj at O and a couple G; of moment r, x F,.

Similarly all the forces F\.Fi, ....F„ acting at the points F|.F2,-..,F„ respectively are 

equivalent to the forces F|. Fi...., F„ at O and the couples Gi, ......C,, of moments
/-| X F|, r, X F2.......r„ X Fn-

—>
If Fis the resultant of Fj. F^......F,, the n corvcurrent forces at O and G the moment of resultant—>

of C|, Cl,..., G„. then we have

R= F) + F2+ ... + F„ = ^ F, 

G = C| + C2 + ... + G„

...{1)
I

and

-4.
= ;|XF|+r2xF2 + ...+/„xF„

1}

= S "x? .-.(2)r
/= 1

Hence the system of forces acting at the given points of a rigid body can be reduced to a
single force R acting at O and a couple of moment C, whose axis can be made to pass through the 
point O. since the couple is a free vector. The point O is also known as the base point.
Remark

> If L,M.Nhs the components of G about OX. OY and OZ respectively, then
A A A A

G = Li + Mj + Nk

The unit vector along G is

r-^

\G\
\G\ = Vl^+^- + /V= = C (say) 

jX L'- M N ^
^ = g‘-^g^^g'

since

L M NHence. — • — ’ — are the direction cosines of the axis of the couple C. G G O

It has been observed from equation (1) that the single force Fdoes not depend on thepoisition 
of base point 0. but from equation (2) it is obvious that the couple G depends on the points of base 
point.

We shall now discuss about the change in G w'hen the position of the base point is changed, 
(ii) To find the change in couple when the base point is chonged.

Let 0 be the base point and suppose a system of forces F,, F?- • • •, F„ acting at different points
of a rigid body is reduced to a single force R and a couple G with reference to the base point 0. 
then we have
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R= S 

1 = 1

0=^ 7:^tand ...(2)
1 = 1

\vhere_^^ is the position vector of a point P, at which a . 
force Pf is acting.

Let us suppose that the base point O changes to 

another base point O' such that 00' = ^

Let the position vector t)ic point P, with respect 
to the base point O'- Then

F:I

P 1

rfI

0*o
-4 7^0'P^ = s,.

Now in AOO'Pi, wc have Fig. 2

00' + O'P, = OPi (By the property of addition of vectors)

c + 5, = /'i

s, = n - c. ...(3)
-4—) —♦ ' - , I

Suppose a system of forces P,. F2, F„ acting different points of a rigid body is reduced to 
—4 —» -■

a single force R' and a couple G' with reference to the base point O .
Then we have

-4-4
p- = F,+P, + ... + P,

—> —♦= S
i = I

"

i= I

= X (r^xP.-exF,)
i= I

= X
I

" -4Z ^XP,

/)
...(4}

and
1 = 1

[using (3)1

i= I/= I
n

-4z ('.' e is a constant vector)- c X
i=; 1=1

—>
G' = G-cxR 
—4 —>
P' = P andC' = G-cxP.

Hence we get a conclusion that when the base point changes, the single force R remains the

same but the couple G change to G' which is governed by the equation (5).
(ill) Conditions of equiiibrium of a rigid body.
Theorem. The )tccessary aad sufficient conditions of a rigid body to be in eiitiilibriiim under 

the action of a system of forces acting at different points on it are that the sums of the resolved purrs 
of the forces along any three mutually perpendiular axes and the sums of the moments of the forces 
about these axes must vanish separately.

-4-4 -.(5)
-4 -4 -4-4

Thus
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—> ^
Proof. Suppose a rigid body is acted upon by a system offerees F|, F2. at the points 

P\. P2. ■■■• P„ respectively.
Let ^ the position vectors of the points Pj, Pi

Fimi'S ill Three Dimeiuiaiu

P„ with reference to the base 

point 0. Then the system of forces reduces to a single force R and a couple G given by the equations:
n

«= s Fi ...(1)
;= 1

n-4
and ...(2)

;= 1
A A

Now consider three mutually perpendicular axes OX, OY and OZ through 0 and let i,j and
k be the unit vectors along the axes OX. OY and OZ respectively.

Let z,) be the co-ordinates of a point P,- on a rigid body with reference to the axes 
OX, OY and OZ and let X^, T, and Zj be the components of a force P,- acting at P; along OX, OY and 
OZ respectively.

Since r, is the position vector of P, so that

A

A A A

ri = Xii + yij-i-iik

A AA

and
Then from (1), we have

n
—> — AAA
P = X (X>i+Yj + Z,k). 

. /=:
A A A

Also fi = X( + y;+Zi:.
n nn

x= S K= S y, z- 2 z,- ...(3)
1 = 1 > = 1 1 = 1

Here X. Y and Z are the sums of the components of the given forces along the axes OX, OY 
and OZ respectively.

Now equation (2) becomes;
n

—> __ AAA AAA
G = X [(•*■'' + yij + ^. ^) X (^< '■ + FiJ + ^)3

i = I
n

= X \{y,A-Z,yi)U{z,X,-x^Z,)j + {x^Y,-y,X;)k].
1 = 1

If L. M and N be the components of G along OX, OY and OZ respectively, then
AA A

G = Li + Mj + Nk.
n

L'iyM'j + Nk= ^ [(y,Z, A '.A A

Zi Yi) i + {ziXi~ X, Z,-) j + {Xi L; - Vi X,) k]I

H

z.= X (yiZi-z^Y,)

...(4)
I

n

and
1=1

Equation (4) gives the sums of the components of couple about OX, OY and OZ respectively.
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S/^edal Fiiiiciion and Mechank.s Conditions are Necessary ;
Suppose the rigid body is in equilibrium, therefore, there is no movement in the body Le.. 

there is neither the motion of translation nor the motion of rotation.
—> ^ >
R = 0,G = 0.
—>AAA —>A AA
R = Xi+Yj + Zk and G = Li + Mj + Nk

R = 'o x'i+Yj + Zk = ^={0.0,Q)
X = 0. y=o,2=o

This implies,

Since

G = 0 ^ Li+MJ + Nk = O = {0.0.0) 
L = O.M = 0,N = 0.

A A

and

tThus from (3) and (4), we get
Xx, = o,X>', = o.Xz, = o 

S 0',- Z, - Zi Xi) = 0, X izi Z, - Jr; Z,.} = 0 

X(.r,y,-y,.X,) = 0.
Hence if a rigid is in equilibrium under the action of a system of forces, the sums of the 

components of all forces and couple vanish separately.
Condition are Sufficient:

Suppose the sums of components of the forces along the axes OX. OY and OZ vanish and 
sums of the moments of the forces about OX, OY and OZ vanish. Therefore,

X = 0, y’ = 0. Z = 0 i
L = 0, Af = 0,/V = 0
^ AAA —>

R—Xi'^Yj^Z>k“0
A —^

G = Li + Mj + Nk = 0.

t

and \
and

and

A A

and

Thus R = 0 and G = 0. Hence the rigid body is in equilibrium.

• 9.3. WRENCH 1
Definition. When a rigid body is acted upon by a system of forces at different points on the 

body, then this system can be reduced to a single force R acting at an arbitrary point 0 and ci couple 
G whose axis passes through 0. In case, when the line of action R is same to the axis of the couple 
G. then R together with G form a wrench and common line of action of the single force R and the 

axis of C is said to be the axis of the wrench.

—>

^ >
If R be the magnitude of R. then R is called the intensity of the wrench. Also if C = pR. then 

p is called the pitch of the wrench.
Remark

—> —>
If R and G are parallel, then R and G form a wrench.

-4>

Theorem. To show that any system of forces acting on a rigid body can be reduced to a 
single force together with a couple whose axis is along the direction of the force.

Proof. It has already been proved that any system of forces acting on a rigid body can be

reduced to a single force R and a couple G whose axis passes through 0 (base point) at which R 
acts. —>

Suppose a single force R acts at O and along a line OA and a couple of moment G about a 
line OB. Let ZA08 = 9.

Draw a line OC perpendicular to OA in the plane OAB and draw OD perpdendicular to the
I

plane AOC.
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Force.'i in Three Diini’nxiiiiifThe couple of moment G (magnitude of G) acting 
about OB is equivalent to a couple of moment G cos 9 about 
OA and a couple G sin 0 about OC as shown in fig. 4.

Since the line OC is perpendicular to the plane 
AOD. Therefore the couple G sin 0 acts in the plane AOD 
and it can therefore be replaced by two equal unlike parallel 
forces in the plane AOD.

Let us choose one of these force at O in the opposite 
direction to OA, therefore the other force must be equal to 
R acting at some point O' in OD along a line O'A' (say) 
which is parallel to OA such that

R.OO'=Gs\nQ 
G sin 0

A

R
4

0 *c

Fie. 3

A
G cos 0

00' = R
Since the two equal forces of magnitude R are 

acting at 0 in the opposite direction, so they neutralise 
each other. Thus we obtain a force R at O' acting along 
O'A'and a couple of moment C cos 0 about a line parallel 
to AO. Let us take a line O'A' parallel to OA as shown 
in fig. 5.

R.
G sin 0

Fig. 4

Geos 0A'

R..

O
C

▼i?
O'

D

Fig. 5
Also, the axis of a couple can be transfered to 

any parallel axis, therefore we take the axis of . 
G cos 0 as O'A' as shown in fig. 6.

Hence a system of force acting on a rigid body 
can be reduced to a single force R and a couple of 
moment G cos 0 such that line of action of R and the 
axis of C cos 0 are the same. This same line is called 
Foinsol's central axi.'!.

A

A'

Gcose

R ' ■

O
• 9.4. POINSOT’S CENTRAL AXIS c

1. Definition. A system of forces acting at 
different points of a rigid body can be reduced to a 
single force of magnitude R acting along a line and a 
single couple of moment G cos 0 about the same line.
This same line is called Poinsot’s central axis.

2. Properties of central axis.
(i) Central axis for a system of forces acting on a rigid body is unique.
Proof. Lei, if possible for a given system of forces, there are two central axes. Let O'A' and 

C>"A" be two central axes for a given system of forces, and p be the distance O'O".
Therefore, the given system of forces is equivalent to a single force along O'A' and a couple 

about a, line O'A' and also is equivalent to a force along 0"A" and a couple about 0"A". But the

O'

Fig. 6
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Special Function aiiif Meciumics single force will be same in magnitude and direction, because the single force does not depend on 
the base point. Thus the line O'A' is parallel to 0''A". Hence the wrench {R, G) about O'A' is the 
same as the wrench {R. G') about a parallel line 0''A".

Since p is the distance between O'A' and 0"A", so that the single force R along 0"A" is 
equivalent to R along O'A' and a couple of moment R. p about an axis perpendicular to O'A'. Hence 
the wrench (R, G') is equivalent to R along O'A', a couple G' about O'A' and a couple R . p about 
an axis perpendicular to O'A'.

This implies that the system (/?, G') is not same to the system (/?. G). Which contradicts the 
hypothesis- Hence the two central axes O'A' and 0''A" must be same. Consequently central axis is 
unique. i

(ii) The moment of the resultant couple about the central axis is less than the moiiiciit of the 
resultant couple corresponding to any point which is not on the cenral axis.

Proof. Since the single force R is same for any base point O while the single couple G is not
the same.

If 0 be any origin (not on the central axis) and G be the couple for O, and if its axis makes 
an angle 0 with the single force R. then the couple for the central axis will G cos 9.

Since cos 0 < 1, therefore C cos 0 < G.
Hence the couple G cos 0 about the central axis is less that the couple G corresponding to 

any point O (not on the central axis).

• 9.5. WRENCH AND SCREW
(1) Wrench. A system of forces acting at different points on a rigid body can be reduced to 

a single force R acting at an arbitrary point O and a single couple G about an axis passing through 
0. If the axis of G makes an angle 0 with the line of action of R. then G cos 0 is the magnitude of 
moment of couple about the central axis. If R is the single force and K = G cos 0be the single couple 
whose axis coincides with the direction of R, then R and K together constitute a wrench of the 
system offoives.

The magnitude of single force R is called the intensity of the wrench and the ratio — ’ is called

the pitch of the wrench- If p be the pitch, then K = R .p. There are following cases depending on
P (pitch).

(1) If = 0, then the wrench (/?, ^0 reduces to a single force R.
(ii) If p = oo (infinity), then the wrench (R. K) reduces to a couple K only.
(2) Screw. The straight line along which the single force acts when considered together with 

the pitch is called a Screw. Therefore a Screw is a definite straight line associated with a definite 
pitch.

• 9.6. INVARIANTS
(i)Whatever origin or base point and axes are chosen, the quantities 

X^+f + Z- and LX + MY+NZ
are invariable for any given system offerees acting on a rigid body 
where X = J^X,Y='^Y,Z='^Z,

L = '^(y^Z,-z^y,)

Proof. Let O be the origin and OX, OY and OZ are three mutually perpendicular axes, then
A A

^ system of forces acting on a body can be reduced to a single force R and a couple G. If i.j and 
k be the unit vectors along the axes OX, OY and OZ respectively, then

and etc.

R = Xi-¥Yj + Zk

G = Li + Mi-\-Nk.
Now if we consider other origin O' and O'X', O'Y and O'T! as mutually perpendicular axes,

—^ AAA

then a system of forces reduces to a single force R' and a single couple G'. If /, be the unit 
vectors along O'X', O'Y an(^'Z respectively, then

R'^X'r+Yj' + Z'k'

and
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-» AAA
= L' i + M'j + N'.k'. Forces in Three Dimensionsand G'

We now actually prove that
x- + i^ + ^ = x’^ + y'^ + Z^

LX + MY + NZ = L’r + M'Z + N'Z.
Since single force R and R' does not depend on the position of base point, so that

and

R = R'

________________________
Vx-+}^+2^ = + r^+T-

+z"^.
^

On the other hand, the couple G depends on the position of base point. If 00' = c (a constant 
vector), then

G' = G -cxR

G' .R' = (G-cxR) .R'=>

~(G- cxR). R 

= G.R-(cxR).R

(-.• R' = R)

—¥
= C./?-0 (■.' Scalar triple product is always zero if 

two vectors are same)
—^ —)
G'.R’^G.R

L'X' + M'Y + N'Z^LX + MY+MZ
(ii) Pitch and intensity of wrench using invariants.
Suppose a system of forces acting on a rigid body reduces to a single force R = (X, Y, 2) and 

a couple G = (L, M, H).

If this system reduces to a wrench {R', G'), then we have

/? = /?'
—»
G'^pR'.

The magnitude of R' = R is the intensity of wrench, so that the intensity of wrench

and

= l«'l
-¥

= [/?!
= ^X^ + i^ + f- R (say) -d)

G'^pR'Also,

G’.R' = pR'.R'=»
-i- (••• G'.R’^-G.'r)-i ->

G.R=pR.R

G.R = pR^ 

LX + My+NZ = pR'
LX + MY + NZ _LX + MY+NZ 

R^ X^ + )^ + 2^
Equation (1) gives the intensity of wrench and equation (2) gives the pitch of wrench.

...(2)P-
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LX-^MY + NZ> If K be the couple of wrench, then K = pR = R

• 9.7. CONDITION FOR A SYSTEM OF FORCES TO BE A SINGLE 
RESULTANT FORCE

Theorem. The necessary and sufficient conditions for a system offorces to reduce to a 
resultant force are

LX + MY + NZ = Q and x'^+f + Z'^O
—»
R = (X. Y. Z) and G = (L M. M]

Proof. Suppose a system of forces acting at different points on the rigid body reduces to ; 
single force R (X, Y, Z) and a couple G = (L. M, N). The force R acts at O and the axis of G passe 
through O.
Condition is Necessary ;

Let O' be other base point, and the system {R, G) reduces to (/?', G'). then 

R' = R

where

-> —>

G' = G - cxR, where 00 = c.and
If (/?', G') reduces to a single force at O', then we must have

R' *0 and G' = 0
P

R^O and G' .R' = 0
-» ->
/fjiO and G-/? = 0

G.R = 0
LX + MY+NZ=0.

Condition are Sufficient:
Let us suppose that

=>

LX + ML + A'Z=0.
—> —¥

Now take a point O' on the central axis and suppose the system reduces to {/?', G') at O'
—>

which forms a wrench, therefore G' is parallel to R'. 
But LX + MY + NZ=Q

G.R = 0
—^ ^

('.■ G . R is invariant-
—> ->
G'.R' = 0

Since G' is parallel to R'; then G’. R' = 0 will be possible if C = O, because R*0. Hence th 
system reduces to only R" at O' which is a single resultant force.

. ->

• 9.8. EQUATION OF CENTRAL AXIS
To find the equations of the central axis of the any given system of forces acting at differen- 

points on a rigid body.
Central axis. A straight line which is the locus of the points referred to which as base point 

the system offoices reduces to a wrench, is called the central axis of the system of forces acting oi 
a rigid body.

Let 0 be the origin (base point) and GX. OY and OZ be three rectangular axes. Under thi. 
co-ordinate system, suppose a system of forces acting on a rigid body reduces to a single forct

R = (X, Y, Z) acting at 0 and a couple G = (L, M, M) about an axis passing through O.
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Let P (a, p. y) be any point on the central axis and r be its position vector with respect to Forces in Three Dmienswiis
0, then

A A A
r = a i + P; + Y0P =

^
Since P is on the central axis, so that the given system reduces to a wrench (R', G') at P, then

we have
R' = R ...(I)

G=G-rxRand ,„(2)
But {R', G') is a wrench, so that

G' =p R', p being the pitch of wrench

G-rxR=pR' =pR

=> {Li + Mj + Nk)-{o.'iF^j + '{k)x{x'i+Yj^Zk)^p{x'iFYj + Zk)

=> {U + Mj + Nk)-l‘{^Z-'iY) + 'i{y>(-<^ + H<^Y-^X)\=px'i+pY'i+pZk 

=» L- ^Z + yZ = pX, M -yX+oZ = pY. N-aY+^X r: pZ
L - PZ + yK Af - Y,y + olZ A'-aK+pX

[using (1) and (2)1

=> = P-X Y Z
Thus the locus of (a, P; Y) is

L-yZ + zY M-zX + xZ N-xY+yX K
...(4)X • Y Z

This is the required equation of the central axis.
Here the degree of x,y and i are all one, so that this line represents three planes whose 

ntersection is the above line- Hence the intersection of any two of these planes gives the equation 
)f the central axis.-

9.9. PROCEDURE FOR FINDING X, Y, Z; L, M, N

Suppose a system of forces of magnitudes Fj, F2......F„ acting at different points of a rigid
tody. Let 0 be a base point and OX, OY and OZ be three mutually perpendicular axes.

Suppose F, is acting at a point (A:i,yi, Z|) along a line
Z~ZiX- Xx y-yi

i «iHIlI

where (|, /ii], »i[ are the direction cosines of a line. Then the components of Fj along OX, OY and 
3Z can be determine as follows ;

Xx = Fi/|, Yx = F|»i|, Zi = Fiitx-
Similarly, for other forces we can find Xi, Y2, Z2 etc. Therefore, we find ;

and Z=£z,.
Also, we can find L, M and N as follows;
First we write the co-ordinates of points at which the forces are acting in the first row and 

Ihen write the components of forces in the second row as shown below ;

Z2: ... etc.
J. J.

(i) ^1 AT:

Z2;... etc.X, Ti Z.: X:
Here we calculate L as follows :

i = CVi Zj - ZiTi) -I- -ziYi)+ ...

1^2

J.i
(ii) Z2'. etc.y\ ^2 >>2

X| Yx Z|;
Here we calculate M as follows ;

^2 Z2:... etc.>’2
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Special Fimciion and Mechanicn M = (Z|Xi -X[Z]) + (Z2^2 “-*2^)
I i

(iii) Z2\... etc.Xy\ Ju
><

X, Y, Z,;
Here we calculate N as follows:
^Y = (xJi-yiX0^(X2Y2-y2X2) + ... .

Zj;... etc.

Remark
► If /ii are not the direction cosines, then first make them direction cosines as 

follows :

h in,

V/,^ + ni,' + n|^ V/|^+mi^ + /ii^ V/j^ + m7+«7

SOLVED EXAMPLES
Example 1. Three forces, each equal to P, act on a rigid body; one at point (a, 0,0) parallel 

to OY, the second at the point (0, b, 0) parallel to OZ and the third at the point (0,0, c) parallel to 
OX axis, the axes being rectangular, find the resultant wrench in magnitude and position.

Solution. First force P is acting at (a, 0,0) along a line paralle to OY axis, so that the direction 
cosines of the line are 0, 1,0.

Then
Second force P is acting at (0, b, 0) along a line parallel to OZ axis w/tose d.c.'s are 0,0, i

X,=O.P = 0, y'i = l .F,.Z, = 0.F = 0.

so that
X2==O.P = 0, Y2 = 0.P = 0,Z2=I.P = P.

And the third force P is acting at (0,0, c) along a line parallel to OX axis whose d.c.’s are 1.
0. 0, so that

Xi = l.P = P, y2 = 0.P = 0,Z2^0.P = 0. 
X = Xx+X2 + Xi = 0 + 0 + P = P 
Y=Y, + Y2+Yi=^P + 0 + 0 = P 
Z = Z| + Zj + Z3 = 0 + P + 0 — F.

Now we shall calculate L,M,N as follows ;
Points at which the forces :
Components of forces:

and

0, b, 0;
0. 0. P;

f- = S(yiZ.'ZiFi) = (0-0) + (/,P-0) + {0-0)

O, 0, c are acting
P, 0, 0

a. 0, 0; 
0, P, 0;

= bP
^ = 2 - .x,Z,) = (0 - 0) + (0 - 0) + (cP - 0)

N='Z ~y\X,) = (aP-O) + (0 - 0) + (0 - 0)

= aP.
If R be the force and K the couple of wrench, then

p = Vx^ + tVz^ =Vp^ + p- + p^ =VJ.P 
.. LX + MY + NZ 

R
bP.P + cP.P + aP.P

V3'.P
= -^(a + b + c).

and

and

Now the equation of central axis is
L-yZ+zY M-zX + xZ N-xY+yX 

X " Y Z ^
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bP -yP + zP _ cP-zP+ xP aP -xP+ yP Forces in Three Dimensions
= PP P P

b-y+z=c-z+x=a-x+y=p.
ISince

'Ji p
1= j (a + i + c).

b-y + z = c-z + x = a-x + y = j{a + b + c)

c + la + 'ibn + 2i + 3c i + 2c + 3flx + 3------= = z + 33
Thus the central axis is a straight line passing through the point 

a + 2b + 3c + 2c + 3a c + 2a + 3Z>
3 3 3

and inclined at equal angles to the co-ordinate axes.
Example 2. A force P acts along the axis ofx and another force nP along a generator of the 

cylinder x^ + y^ = a^. Show that the central axis lies on the cylinder 
(«x - z)^ + (1 + nf y' = n a'.

Solution. Since the force P is acting along the x-axis 
whose equation is

4_2 z

■ ^_y__x 
\~0~Q

Thus P acting at (0,0. 0) along a line whose dx.’s are
nP. .

1.0,0.
“N PThe axis of the cylinder + y^ = a^\s the axis of z, so 

that the generator of this cylinder is parallel to z-axis. Let ,
(a cos 0, a sin 6,0) be any point on the cylinder. Thus the 
force nP is acting at the point (a cos 0, a sin 0,0) along a line ^ 
whose d.c.’s are 0,0,1.

*-X.e
(a cos 6, a sin 6)

Fig. 7
The components of P along OX, OV and OZ axes are

respectively
X,=P.i=P,y,=p.o = 0. Z,=P.0 = 0.

The components of nP along OX, OY and OZ axes are respectively 
X2==nP.Q = Q,Y2 = nP .0 = 0,Zo=nP .1= nP.

Therefore, we get
1X = X^+X2 = P + 0 = P 

K = Ki -H Tj = 0 0 = 0
Z = Zi+Z2 = 0 + nP = nP.

Now we calculate L, M, N as follows ; 
Points of application 
Components of forces 
Thus,

0 0 0; 
POO;

a cos 0 a sin 0 0
0 0 nP

L-(ytZi -Z|P|) + Cvz^: - Z2P2) 
= (0 - 0) -H (fl/iP sin 0-0)
= anP sin 0

• Af = (Z|Xi -XjZi) + (Z2^2 “.*2^ 
= (0 - 0) + (0 - anP cos 0)
= - anP cos 0

jV=(x,T,-y,Xi) + (x2l',-y2X2} 
= (0-0)-I-(0-0)

and

= 0.
The equation of the central axis is
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Special Fiinciiim and Mechanics L-yZ-i-zY _ M~zX + xZ _ N-xY+yX
Y ZX

aiiPsinO-ynP - anP cos Q - zP+xnP 0-0 +yf*
0 nPP

g/iPsin 6 - nyP _ ^
P n

n {an sin 0 -
an^ sin 0 = > (1 +1?)

y(i+^r)sin0 = 2an
and - anP cos 0 - zP + xnP = 0

an cos 0 = {xn - z) 
xn — z .

cos 0 = ...(2)an
Squaring (1) and (2) and adding, we get

)-*(l + n-) {xn-zfsin^ 0 + cos^ 0 = +4 2 2 2a na n
y-{I + n^} + {xn - z)'

1 = 4_2It a
{l+n^f + it’{xn-z)- = n a-. 

This is the required surface.

4.2
K

I• SUMMARY
• The resultant of forces Fi, , F„ acting on a rigid body is given by

+ F,.
1=1

• If the forces P^t p2’.......■ ^ acting at points wih position vectors
•body, then the resultant moment ^about ^{origin) is given by

, /^on a rigid
T

r\
G = Z P,.

• If ^and ^are parallel, then ^and ^form a Wrench.
* Equation of cenral axis is

L-yZ + zT M-zX + xZ N-xY+yX k
R 'X Y Z

• STUDENT ACTIVITY
1. The necessary and sufficient conditions of the particle under the action of a system of forces 

to be in equilibrium are that the algebraic sums of the resultant parts of the forces along any 
three mutually perpendicular directions vanish separately.

t

)
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Fowes Ut Three Diiiiensioif^-2. A force P acts along the axis of .v and another force iiP along a generator of the cylinder 

.V" + y = a . Show that the central axis lies on the cylinder

(nx - + (1+ = n V.

* TEST YOURSELF
1. Equal forces.act .along two perpendicular diagonals of opposite faces of a cube of side n. Show 

that they are equivalent to a single force R acting along a line through the centre of the cube.

and a couple ^ aR with the same line for axis.

2. Forces P, Q. R act along three non-intersecting edges of a cube. Find the central axis.
3. Equal forces act along the axes and along the straight line

x-a y-P _ z-Y
I in n

find the equations of the centra! axis of the system.
4. Two forces P and Q act along the straight lines whose equations are y = x tan a, z = c and 

y = - X tan a, z = - c respectively. Show that their central axis lies on the straight line

P-Q j z. -r—^ tan a and - =
P + Q

For all values of P and Q. prove that this line is a generator of the surface 
(x’ y^) z sin 2a = 2cxy.

F^-Q^
y = x

P^- 2PQ cos 2a -h

ANSWERS

1. With respect to three coterminous edges as co-ordinate axes, the central axis is 
iQ -\R- aQ xR-zP - oR _ yP -xQ-aP

RQp
. z(l -i-/>i)-y (1 +/i) + (8k -ym) _x(l +/i) -z(l +l) + (yl-an)

■■ ■' (l+y«)
y(l+n-x(H-m) + (cun-3/)

(1 + 0

(l+'O

□□□
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Special Fiiiwiitm and Mechanics UNIT

STABLE AND UNSTABLE EQUILIBRIUM

• Definitions
• Nature of Equilibrium Using Z'test
• Nature of Equilibrium of a body when resting on a fixed rough surface

□ Summary
□ Student Activity 
Q Test Yourself

OBJECTIVES^Y^^"^;
After going through this unit you will learn :

• What are different types of equilibrium ?
e How to find the condition that the given body is either in stable or unstable equilibrium.

• 10.1. DEFINITIONS
We thus now define all of three types of equilibriums ;
(i) Stable equilibrium. A body is said to be in stable equilibrium, if it is slightly displaced 

from its position of equilibrium, the forces acting on the body tend to move it back to its original 
position.

(ii) Unstable equilibrium. A body is said to be in unstable equilibrium, if it is slightly 
displaced from its original position, the forces acting on the body tend to move it still away from 
its position of equilibrium.

(Hi) Neutrai equilibrium. A body is said to be in a neutral equilibrium, if it is displaced 
from its position of equilibrium, the forces acting on it are in equilibrium in any new position of 
the body.

• 10.2. NATURE OF EQUILIBRIUM USING z-TEST
Suppose a body or a system of bodies are in equilibrium under the influences of their weights 

only and supported by reactions with smooth fixed surfaces which do not present in the equation 
of virtual work.

If W). wi,... be the weights of the different bodies and Z),Z2, ■■■ the heights of their centre of 
gravity above some fixed plane, then the equation of virutal work is 

- »V| 5Z| - W2 5z2 = 0 •..(1)
If W be the total weight of the system and z be the height of its centre of gravity, then the 

equation (1) becomes :
- lV5z = 0 

6z = 0
‘*56 = 0

4 = 0.

=>

de

dQ
Hence the necessary condition of a body to either be in stable or unstable equilibrium is that

dz
dQ

On solving ^ supposed to get 0 = a, p etc. which give the position of equilibruim.
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Nature of equilibrium at 6 = a :

Case I. Suppose

Stable and Unstable Equilibrium

d-z is positive at 6 = a, then z is minimum at 0 = a, therefore, the height of

the centre of gravity is minimum, so that for a small displacement, the height of the centre of gravity 
is incraesed and then on being set free the body will tend to come back to its original position of 
equilibrium. Hence in this case the body is in stable equilibrium.

Case 11. Suppose

dB^

dh—, is negative at 0 = a, then z is maximum, therefore, the centre of gravity 
<f0"

of the body will be lowered, during a small displacement and on being set free, the force of gravity 
will tend to keep the body away from its position of equilibrium.

Hence the body in this case is in unstable equilibrium.
Consequently, lf^ = 0 gives the position of equilibrium, then the body will be stable or

unstable atQ = a according as z is minimum or maximum at 6 = a.
Remark

If z be the depth' of the centre of gravity of the combined body, then the body will be 
in unstable equilibrium if z is minimum and the body will be in stable equilibrium if
z is maximum.

>

• 10.3. NATURE OF EQUILIBRIUM OF A BODY WHEN RESTING ON A 
FIXED ROUGH SURFACE

Theorem. A body rests in equilibrium upon another, fixed body, the positions of the two 
bodies in contact have radii of curvatures Pi and pj respectively, and the straight line joining their 
centres of gravity being vertical: if the first body being slightly displaced whose centre of gravity 
is at a height It above the point of contact, then the equilibrium is stable or unstable according as

j> or + (without proof).

Remarks :
> If both the body are spheres, then we will take pi and P2 as their radii.

If the lower body is a fixed plane, then we shall take pj =

If the surface of contact of upper body is a plane, then we shall take pi = <».

If the lower body at the point of contact is concave instead of convex, then P2 is to be 
taken negative.

>
>
>

SOLVED EXAMPLES
Example 1. .4 body consisting of a cone and a hemisphere on the same base rests on a lotigh 

horizontal table, the hemisphere being in contact with the table; show that the greatest height of 
the cone so that the equilibrium may be stable, is times the radius of the hemisphere.

Solution. Let G be the centre of gravity of the combined 
bodies and G| be the C.G. of the cone and G2 the C.G. of
hemisphere.

Let AB be the common base of hemisphere and the cone 
and COV the common axis which will be vertical in a position of 
equilibrium and C the point of contact of the hemisphere to the 
horizontal plane.

Let H be the height OV of the cone and r the radius OA (or 
OC) of the hemisphere. Then

OG|=j, 0G2 = ^''

Also h be the height of C.G. of combined body consisting 
of cone and a hemisphere above the point of contact C. Then

8 C
Fig. 6
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Wi + Wj '

M'l = weight of the cone

= -j nr^Hw. w being the weight per unit volume 

Wj = weight of hemisphere

= I nr^w

;ri=OG, = r + ^

Here

and

//>
and

4

^2 = CG:.|r-

1 r H\ 2- nr-Hw • r + — + r nr' w ■ 3 4 3

I

[5 ^.3
8

li =
nr^Hw + j nr^w

5 2
^ '■ + T +7'- 4 4

{H + 2r)
Pi = radius of curvature of the upper body at C which is hemisphereNow

= r
and p2 = radius of curvature of the lower body at C which is a horizontal plane

= oo

/. The equilibrium is stable if
1 1 1 
l> Pi P2

i>~
lt<r

=>

=>
u(
H r.- 5 2

=» ■ <r
(H + 2r)

f+ |^<r(H + 2,)
Hr+'-^-^-\p'<Hr+2r^

4 4

//' <
H<<2r.

Hr +=>

Hence in the position of stable equilibrium the greatest height of the cone is VJ times the 
radius of hemisphere.

Example 2. A hemisphere rests in equilibrium on a sphere of equal radius; s/iow that the 
equilibrium is unstable when the curved, and stable when the flat surface of the hemisphere rets on 
sphere.

Solution, (i) Let us consider the case when the curved surface rests on the sphere.
Let O and G ' be the centres of sphere and hemisphere of same radius r (say) and C be the 

point of contact.
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Stable and Unstable Er/iiilibriiwiSince the C.G. of the sphere lies on the centre, so that C.G. of the lower body (sphere) is at 
■ 0 and let G be the C.G. of upper body.

In the position of equilibrium OCO' must be vertical.
Now p, = the radius of curvature at C of the upper body

= /•
and p2 = the radius of curvature at C of lower body

= r

J- ++
Pi P2 '■ r

Also h = CG

Obviously,

Hence, in this case the equilibrium is unstable.
(ii) Now consider the case when the hemisphere rests on the / 

sphere with flat surface in contact. /
In this case the centre O' of the hemisphere is the contact point .

to the sphere. Therefore,
Pi = the radius of curvature at O' of the upper body 

which is hemisphere whose flat part is in contact.
O= OO

and p2 = the radius of curvature at O' of the lower body 
which is a sphere

= r
± + ± = 1 1 = 1 
Pi P: ” r~ r

h = 0'G = ^r

Fig. 8

Also

1 8
h 3
1 1 1Obviously. _> — ^—,
h p,

Hence in this case the equilibrium is stable.
Example 3. A uniform cubical box of edge a is placed on the lop of a fixed sphere, the centre 

of the face of the cube being in contact with the highest point of the sphere. What is the least radius 
of the sphere for which the equilibrium will be stable ?

Solution. Let O be the centre of the sphere over which a cubical box of edge a is placed. Let 
C be the point of contact and G be the centre of gravity of the cubical box 
and /• be the radius of the sphere.

Pi

/

h = CG = ~-

Now. p| = the radius of curvature at C of the upper body

Therefore, fC

al2
— CC

p2 = the radius of curvature of the lower bodyand
= r
11111+Pi P2 « r /•

/i = CG = |. 

Therefore, for stable equilibrium, we have

Since
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Pi P2

\1 1
a/2^ r

a
r>—-

2

Hence, for the stable equilibrium, the least radius of the sphere must be

Example 4. A uniform beam of length 2a rests with its ends on two smooth planes which 
intersect in a horizontal line. If the inclination of the planes to the horizontal are a and P with 
CL > p, show that the inclination 0 of the beam with the horizontal in one of the equilibrium position 
is given by

I
tan 6 = 2 P “

and show that the beam is unstable in this position.
Solution. Let O be the intersection 

point of two inclined planes in the horizontal 
line and let AB be a uniform beam of length 
2a rests on two inclined plane with A on one 
and B on other plane as shown in fig. 14,

Suppose the beam AB makes an angle 
0 with horizontal- 

We have

Ba(J
a

A P
ZAOC = ^, ZBOD = a.

Let G be the centre of gravity of the 
beam AB which is its middle point and let z 
be the height of G above the fixed horizontal 
plane COD.

P a
C M O D

Fig. 14

1Z = GM = -{AC + BD)

= ^ {AO sin P + OS sin a). -d)
Now in AAOB, we have

AB AO BO (By sine rule)
sin (Tt - (a + P)) sin(a-P) sin(p + 0)

I
2a AO BO

sin{a + P) sin(a-0) sin (3 + 0) 
2a sin (a - p)

sin (a+ 3)
Putting the values of AO and SO in (1), we get

2a sin (a - 6)
^ 2 sin(a + P)

2a sin (3 + 6)'/10 = .SO = sin (a + P)

2a sin (p + 0) . 
sin (a+ 3)

sin 3 + sin ct

1
[sin (a - 0) sin 3 + sin (P + 0) sin a].^ sin(a + P)

Thus z is a function of 0.
dz a

[- cos (a - 0) sin p + cos (p + 0) sin a] -.(2)dQ sin (a + 3)

dh a
[- sin (a - 0) sin 3 - sin (p + 9) sin a].and ...(3)sin (a+ 3) 

For the equilibrium position, we have
dz

- cos (a - 0) sin P + cos (3 + 0) sin a = 0
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cos (a - 0) sin P = cos (P + 9) sin a
(cos a cos 0 + sin a sin 0) sin P = (cos p cos 0 - sin P sin 9) sin 9. 

Dividing by sin a sin p sin 0,
cot a cot 0 + 1 = cot P col 9 - 1 

cot a + tan 9 = cot P - tan 0 
2 tan 9 = cot P - cot a

tan 9 = j (cot P - cot a).

Stable and Umrable Equilibrium
=>

...(4)=>

Equation (3) becomes :
(P'z a

[- sin a sin P cos 9 + cos a sin P sin Qsin(a + p)

-sin a sin P cos 0 - sin a cos p sin 0] 

[- 2 cot 0 + cot 0 - cot P]
a sin a sin P sin 0

sin (a + P)
- 2a sin a sin p sin 0 1

- (cot p - cot a) + cot asin (a+ P)

- 2a sin a sin P sin 9
[tan 9 +cot 0] [using (4)]sin (a + P)

d-z - 2a sin a sin P cos 0 [1 +lan^9].sin (a + P)
Since 9, a, p are all acute angles and a + P < ti, so that

d-zj<0.
de

z is maximum when 9 is governed by the relation 
tan 0 = ^ (cot p - cot a)

Hence the beam is unstable if
1
- (cot p-cot a).tan 0 =

• SUMMARY
• Nature of Equlibrium using z-test

(i) If z is the height of the centre of gravity of the combined body, then the body will be in 

stable or unstable equilibrium if z is minimum or maximum at 0 = a, where ' dz = 0.rf0 je = a
(ii) If 2 is he depth of the centre of gravity of the combined body, then the body will be in stable

for unstable equilibrium if z is maximum or minimum at 0 = a, where — ,
V /

= 0.

• If h be the height of C.G. of upper body (to be displaced) from the point of contant, and p, and
P2 be the radii of curvatures of above and lower bodies respectively, then body will be in stable
or unstable equilibrum according as

1 1 1> — + —
It Pi P2

or 1<-L
It Pi P2

1+
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Speciiit Fiii)ciii)ii and Mechanics • STUDENT ACTIVITY
1. A uniform cubical box of edge a is placed on the top of a fixed sphce. the centre of face o 

the cube being in contact with the highest point of the sphere. What is the ieast radius of the 
sphere for which the equilibrium will be stable ? ;

2. A uniform beam of length 2a rest with its ends on two smooth planes which intersect in a- 
horizontal line. If the inclination of the planes to the horizontal are a and 3 with a > 3, show 
that the inclination 0 of the beam with the horizontal in one of the equilibrium position is 
given by

Itan 9 = - (col 3 - cot a)

and show that the beam is unstable in this position.

I

• TEST YOURSELF
1. A solid sphere rest inside a fixed rough hemispherical bowl of twice its rdius. show that however 

large a weight is attached to the highest point of the sphere, the equilibrium is stable.
A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its
length re.sting on a smooth peg. Find the position of equilibrium and show that it is in unstable 
equilibrium.

2.

ANSWERS
xl/31-I2. 9 = sin , 2(f = length of rod. b = distance of peg from vertical wall.

□□□
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Kiiieinalic.\ in Two DirH’iisionsUNIT

KINEMATICS IN TWO DIMENSIONS

Motion in a Straight Line
Motion in a plane
Angular Velocity and Acceleration
Rate of change ot a unit vector
Relation between linear and angular velocities
Radial and transverse velocities
Radial and transverse accelerations
Tangential and Normal Velocities
Tangential and Normal accelerations
□ Summary
□ Student Activity
□ Test Yourself

After going through this unit you will learn :
• What is the motion of a particle in a straight line and in a plane ?

• 11.1. MOTION IN A STRAIGHT LINE : VELOCITY AND ACCELERATION
1. Velocity. Let a particle move along a straight line and the positions of the particle are 

determined from a fixed point on the line. Let this point be 0 and at any instant ‘t\ the particle is 
at a point P. whose distance from O is x, i.e., OP = x.

8<

0 p Q
Fig. 1

Now at subsequent interval of time 5r, the particle reaches to a point Q. whose distance from 
O is X- + 5x. i.e., OQ = x + 5x. Therefore, PQ = 6x. Thus PQ/bt = Sx/Sr is known as the average 
velocity of the particle during the time interval 8t. As 5r becomes smaller and smaller so that 
becomes smaller and smaller, the point Q-^P. then dx/5t gives the rate of displacement of the 
particle, and thus 5x/8/ gives the velocity v of the particle in the limit when 5r 0. That is.

8r " rfrV = lim 
5(-^o

2. Acceleration. It is defined as the rate of change of the velocity.
Let V be the velocity of a moving particle at any time t and v + 8v be its velocity at time 

t + 5r, then 5v is the change in velocity in the interval 5r. Thus the acceleration of the particle is 
given by

5v __ dv 
Sr dt

a = lim 
8(->0

dxSince, v =
dt

a =
dr
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SiH'cinl I'linclU'n and Mechanics Remarks
>

Velocity is a vector quantity, whose magnitude gives the speed. 
Acceleration is also a vector quantity.
Negative acceleration is known as Retardation.

►
>

• 11.2. MOTION IN A PLANE : VELOCITY AND ACCELERATION
1. Velocity. When a particle moves in a 

plane, it traces a curve. Let 0 be the fixed point 
and OX, OY be the two fixed lines which are 
perpendicular and let A be another fixed point 
on the curve and P be the position of the particle 
at any time t on the curve. Let AP = s.

Let (2 be the position of the particle on 
the curve at the time r + 5r. Therefore, during 
5/, the displacement of the particle is the chord 
PQ, which is shown below :

Hence the velocity of the particle at the 
time t is given by

Q

5y

Rbx

O ».V

Fig. 2

chord PQV = lim 
5/-»0 5/

y
chord PQ Arc PQ 
Arc PQ 5f 

chord PQ ds

= lim 
5/-*0 I

(•.• ArcPQ = Si)= lim
0 5s 5f

As 6f —» 0 so that 5s 0, then we have
chord PQ 5s

, ■ lim -
&-.0

V = lim
5t-*0

chord PQds lim= 1^ = 15^dl S(-»0

ds ■ 
~ dt~^'

Remark
> As Q^P, then the chord PQ becomes the tangent at P and hence the direction of 

. the velocity at P is along the tangent at P to the curve.

Components of the Velocity :
Let the co-ordinates of the points P and Q be respectively (x, y) and {x + 5x, y + Sy). Thus the 

component of the displacement PQ are respectively PR = 5x parallel to OX and QR = 5y parallel to
OY.

The component of the velocity parallel to OX is given by
PRv^= lim „ 

5/-»o or

5i di
= lim 

5f-*0
=

and the component of the velocity parallel to OY is,

QRv. = lim
^ 8,^0 5'

5y__^ 
5t dl

= lim 
5f^0

= >'
If V be the magnitude of the velocity moving in a plane, then

114 Self-Instructional Material



If V be the angle which gives the direction of motion, makes with x-axis i.e., OX, then

X ax/at dx
2. Acceleration. The rate of change of velocity is the acceleration.
Let a be the acceleration of a moving particle in a plane, then we have

Kineimiics in Two Dimensions

or

dv
^ = 7,

A{ (k"
dt di

ds
■' ^ dt

d!^'

• 11.3. ANGULAR VELOCITY AND ACCELERATION
1. Angular velocity. The rate of change of angular 

displacement is known as angular velocity.
A particle is moving in a plane. Taking a fixed line OX 

as initial line with 0 as pole. Let P and Q be the positions of a 
moving particle at any time t and t + 6t respectively as shown 
in fig. 3.

■>x
And corresponding to P and Q, the angles Z.POX = 0 and_

ZQOX = 0 + 56 respectively. Therefore, the angular 
displacement of a moving panicle during the interval 5r is 80 and thus the average angular velocity

Ftg,.t

50of P about O is -r—
5f

As 5r —»0. Q —» P, then the angular velocity of the point P about 0 is 

5f dt
lim

5f-*0

= 0.

Since 0 has direction as well as magnitude so that it is a vector quantity, which is perpendicular
to the plane OPQ and the magnitude of this angular velocity vector is represented by (i). That is,

dQ co = —■ 
dt

2. Angular acceleration. The rate of change of angular velocity is known as angular 
acceleration.

Therefore, the angular acceleration is given by
d^Q

dt dt dt^

= 0.

• 11.4. RATE OF CHANGE OF A UNIT VECTOR
^ ^et a and b be two unit vectors lying in a plane, and let ‘ 
i andi be the unit vectors along X and Y axis respectively.

Let us suppose vector a makes an angle 0 with the positive 
X-axis and the unit vector b is taken to be perpendicular to the y ■ 
unit vector a. as shown in fig. 4.

In the fig. 4. Let OP = a, such that OP = I and
0x:pox=q. A M

.•.In AOPM. we have i
OM = OP cos 0 = cos 0 Fig. 4
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Special Funcliim and Mechanics and MP = OP sin 0 = sin 9
A A

OM = (cos 0) i and MP = (sin 0) j

a = OM + MPThen
A A

a = (cos 0) i + (sin 0) j.

Thus the unit vector a is obtained a function of 0, where 0 is a function of r. 
Similarly, the unit vector b is given by

..(1)
1

f nVb = cos 0+2 ‘
« It

r + sin 0 + 2 ;

A A

b = -smQ i + cos 0 j 
Differentiating (1) w.r.t. ‘t\ we get

or

A A

dl dt
dida '' '' r/0(- sin 0 i + cos 0 j) —

dt
da dQ- [using (2)]

Remark
>• The unit vector b is perpendicular to a in the direction of 0 increasing.

• 11.5. RELATION BETWEEN LINEAR AND ANGULAR VELOCITIES
Let V be the linear velocity vector of a moving particle at any point P which is along the 

tangent at P. Let OX and OL be the co-ordinate axes. |
Also e, and ee be the unit vectors along the radius vector and perpendicular to the radius vector 

as shown in fig. 5.

Y

O

der dQ- 
dt dl

r
...(1)

r = OP er = r Cr (■-- .OP = r)Since
cTrNow .
dt

dCr dr- 
dt

dQ-

dQ-
'' = ~rer + r-Te()

^7t^'
dr^ [using (1)]

dr-
...(2)

dt dt
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Kineniaik.i in Two Dime/rwin.\Let <|) be the angle between v and e, and the components of v along e, and eg be ve 
respectively. Thus (2) becomes

V = V, e, + V0 eg
Vg = V .eg

fde)-' _e,+ r— eg .egdr- [using (2)]I
dt dt

dQ ['.■ e,. 60 = 0 and eg.eg = 1]
dt

dQ Vfl Ve 
dt~ r ~ OP

If CO is the angular velocity of a moving particle at P about 0 and ZPOX = 0, then

(V OF=r)or

deco = — dt
fe

“ OP \

component of velocity v at P perpendicular to OP05  --------c--------------------------- ------------- c—c---------------------------or OP

Angle between v and eg is 90* - $]V . 60 = V cos (90° - (J>) 
V0 = V sin (I)

Also
or

COr CO = V sin 0 i'e = “or r

V sin d co =-----^or
r

(•-• p = rsm^)or

where p is length of the perpendicular drawn from 0 to the tangent at P.
Remarks

> If the particles P and Q are both in motion, then the angular velocity of Q relative to 
P is given by

the resolved part of the velocity Q relative to P ± to PQ
PQ

• 11.6. RADIAL AND TRANSVERSE VELOCITIES
To find the components of the velocity in radial and Transverse direction.
Let a particle be moving in a plane and at any instant the particle be at P with velocity v along 

the tangent to the curve at P, as shown below :

Xo
Fig. 6

Let 6^ and 69 be the unit vectors along the radius vector r and perpendicular to the radius 
vector respectively,

(-,• OP=?andOP = /-)r = r6.
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Special Function and Mechanics df I
Now '' dt

= 4('’«r)
dt

dSrdr-= ~ e, + r
dt dt

dt dt •
dr - 

= ^er + r--e(,dQ-
^6dt dt

dr
Radial component of the velocity at R = “r

dt
de

and Transverse component of the velocity at P = r — 

Hence
dr

Radial velocity = ~
dt

de
and lYansverse velocity = r —

dt

Since these two velocities are perpendicular to each other, therefore, the resultant velocity of 
the particle at P is given by,

v = V' dr'\ ( de
' dt ■+

dt
Remarks

dr>
Radial velocity = — will be positive in the direction of r increasing.

dt
de>

Transverse velocity - '''■H postiive in the direction of 0 increasing.
i

• 11.7. RADIAL AND TRANSVERSE ACCELERATION
To find the components of the acceleration along and perpendicular to the radius vector. 
Let n be the acceleration vector of the moving particle at P, where the velocity vector be v.

Then
dv

^ dt

d (dr - 
-dt

dQ-^

d~r - ^
^ dt dt ^ dt

f de^deg 
eg+ r'' dt dt dt

dt dt dt dt ^ dt'
cFr-^ 
d?

\ /de de-
--rer^0+ '■“Tdt dt I.

/V
de, de- . deg de-

e,.
dt dt

ir_
dt^ " dt

^drde (fe -
€,+ 2 — — + r 

dt dt
eg

dt^

r/eV -d\ '\±( 2^y
r dt dr€,+/. a = dt- ' dt eg.

J ^

Thus a is obtained as the linear combination of unit vectors e, and cg. Therefore, 
Radial acceleration - 'd-'e,
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Kinematics in Tw/f Oimen.sions

^ dtR.A. =or

Transverse acceleration = n • ceand

^ ^ r dt ^ dlor

Since Radial Acceleration (R. A.) and Transverse Acceleration (T. A.) are perpendicular to 
each other, then the resultant acceleration of the particle at P is given by

a = 'V(R.A.)^ + (T.A,)-

1 d+or '' dt r dt dtdr
Remarks

> R. A. will be taken'positive in the direction of r increasing. 
T. A. will be taken positive in the direction of 6 increasing.►

SOLVED EXAMPLES
Example 1. A particle describes a parabola with uniform speed, show that its angular velocity 

about the focus S, at any point P, varies inversely as (SP)^^.
Solution. The equation of a parabola with S as pole is

p^ = ar ...(1)
Since v = constant = c (say)

Angular velocity = ^

c V = c and p^ = ar)
2r

c ^/^
i/2r
c

~ (SP)^''^

Hence, the angular velocity varies inversely (SP)^'^^.
Example 2. If the radial and transverse velocities of a particle are always proportional to 

each other, show that the path is an equiangular spiral.
Solution. Here, radial velocity a transverse velocity

(•.- SP = r)

dr dQ~ = kri.e.. dt dt
where k is some constant

dr— = kde.or r
Integrating, we get

log r = i© + c
where c is a constant of integration

(let c = log A)log r = A:© + log A 
r = Ae‘-\

or

or
This is an equiangular spiral.
Example 3. The velocities of a particle along and perpendicular to the radius vector are 

Xr and p0; find the path and show that the accelerations along and perpendicular to the radius 
vector are

X-r- and |i9(X + n/r).
r

Self-Instructional Material 119



Sl/cvinl Fii'icrioii and Mtchonics Solution. Since the radial and transverse velocities are given as Arand n0. then
dr
~ = Xr -d)dl
f/0and ...(2)

Dividing (1) and (2), we get
dr Xr 

rdQ (j0 
|i dr dQ
X eor

Integrating, we get

Ji = log 0 +4
Xr

where -4 is a constant of integration and also taken to be log c
XL = log 0 + log c
Xr

A = log (Gc)or Xr
or

0 = ae^^', where a and b are constant.or
This is the required equation of a path.

-2 ■
dQNow. radial acceleration - dt^ '

V /

d ( dr^ if dd'\
r ' dt

K d \
dc dt

r

dt r

= X (Xr) ~
r

= X^r-
r

1 d(
^ dland transverse accelerati = -

r dt
1 d dQ

V r- = ^t0

1 „ dr dQ
= - H0 — + jir —'

dt dtr

1
= -[p9Xr+^.iJ0] 

= H0 (X + ja/r).

• TEST YOURSELF
1. Prove that the angular velocity of a projectile about the focus of its path varies inversely as 

its distance from the focus.
2. A rod moves with its ends on rectangular axes OX, OY. If (x.y) be a point P on the rod and 

if the angular velocity to of the rod is constant, show that components of acceleration of P 
along the axes are - xco* and - yco and the resultant acceleration is OP. towards 0.

120 Self-Instructional Material.



Kiliemnrics in Two DimensionsIf a point moves along a circle with constant speed, prove that its angular velocity about any 
point on the circle is half of that about the centre.
A straight line of constant length moves with its ends on two fixed rectangular axes OX, OY 
and P is the foot of the perpendicular from 0 on the straight line. Show that the velocity of

P perpendicular to OP is OP

the line and 0 is the angle COX.
The line joining two points A. B is of constant length a and the velocities of A, B are in the 
directions which make angles a and 3 respectively with AB. Prove that the angular velocity 

It sin (g - 3)
a cos 3

A wheel rolls along a straight road with constant speed v. Show that the actual velocity of P 
i.s V . (AP/CP), where A is the point of contact of the wheel with the road and C is the centre 
of the wheel. Also find its direction. Find also the angular velocity of P relative to A.
A point P is moving along a fixed straight line AS with uniform velocity v. Show that its 
angular velocity about a point O is inversely proportional to OP^.
Two points are moving with uniform velocities «, v in perpendicular lines OX and OY. the 
motions being towards O. If initially, their distances from the origin are a and b respectively, 
calculate the angular velocity of the line joining them at the end of t seconds, and show that 
it is greatest when

3.

4.

d0 r/eand along OP is 2CP where C is the middle point of
■ dr ■ dr'

5.

ofABis , where u is the velocity of A.

6.

7.

8.

au + hv
I =

• 11.8. TANGENTIAL AND NORMAL VELOCITIES
A particle is moving in a plane curve and at any time r pA 

the particle is at a point P on the curve, whose position vector 
is r with respect to some fixed point O. Let A be a fixed point 
oh the curve such that AP = s.

r

Let T be the unit tangent vector along the tangent at P to 
the path and 71 be the unit normal vector in the direction of tj; 
increasing- Then we have O >A'

dt d\\i - 
dt ~ dt

Fig. 9...(1)

But we know that
d7

...(2)ds '■

Let V be the velocity of the moving particle at P, whose position vector is 7. Then.

--dL -dL dl
dt ds dr 

- ds-
tV =

dt
ds-

V = —!+0-J7. -..(3)or
dt

Thus V is a linear combination of the unit vectors 7 and 7?. Therefore, the tangential component 
of the velocity is ^ in the direction of s increasing and the normal component of the velocity is 

zero. Hence, we obtain

dsTangential velocity = —
dt

and Normal velocity = 0
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Special Functiaii ami Mechanics Remarks
ds> Tangential velocity taken to positive in the direction of s increasing-

^ (IsThe resultant velocity of a particle is always along the tangent to ts path i.e., v = ~>
dr

• 11.9. TANGENTIAL AND NORMAL ACCELERATIONS
Let a be the acceleration of the particle at any point P, whose position vector is r and the 

velocity vector is v. Then
dv

“ dt
d ds — 
dt dt ‘

- ds- w = —f
dt

j

^7^ ^ ^ 
di dt

d^s ~ dsdvi- 
—r / + — -f- M
dr dt dt
d^s- (ds^dvj- 

— .n

di dw i
T= I " dt dt [

t +
dt^ dt ds

_ d-s. v^. 
a = —rr H— n 

dP- P

Thus a is obtained as the linear combination of the unit vectors TandTi. Therefore the 
coefficients of? and Ti give the tangential and Normal accelerations respectively. I

ds ds— = V and p =
di d\\i

rfsTangential acceleration =Hence,

2p
Normal acceleration = -and P

If a is the resultant acceleration, then I
a = '^(Tangential acceleration)^ + (Normal acceleration)^

.4 +I.e.. dP p
Remarks

cPs , is taken (o be positive in the direction of j increasing.Tangential acceleration => dP
2

Normal acceleration = is taken to be positive in the direction of inwards drawn 

normal.

■ ►

Adv d f ds 
dt dt dt

T andOther expressions of the tangential acceleration are

dP dt ds dt ds
2y

In normal acceleration —, p is a radius of curvature.

Idt
I

>•
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Kinematics in Twi DimensionsSOLVED EXAMPLES
Example 1. A point describes a cycloid 5 = 4a sin V with uniform speed v. Find Us 

acceleration at any point.
Solution. The intrinsic equation of a cycloid fs

s = 4a sin ...(1)
ds = 4a cos V-

Since particle moves on the cycloid with unifrom speed v, then
d^s dv

Tangential acceleration =

2 2
Normal acceleration = — Vand

p 4a cos V

v{li
dl^

-.2 2 V
VThe resultant acceleration^ +
P

V ,22V
0 + 4fl cos i|r

2
V

4a cos V/
2

V

4a Vl -sin^\|/
2

V
[using (1)1

V .2
4a

16a^
2

V

Example 2. Prove that the acceleration of a point moving in a curve with uniform speed is
/ , \2

\ /'
Solution. Since the particle is moving with unfirom speed, so that the tangential acceleration 

is ?-ero. Now the normal acceleration is

P dt p\ /
f J J, I_ iL ^ _L
d\4 ' dt ' pV )

/ j \2 / j n2
ds atg I

N.A.= —

dtdv P

/ \2Aif. .1
^ dt p

K /
/ , \2 

=Pi^ ■

ds
dv ^

di

Hence the resultant acceleration = ‘'/(T.A.)^'+ (N.A.)"

dt ^ dt \-
/ V /

0+ p
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Special Function and Mechanicx Example 3. A panicle is describing a plane curve. Ifthe tangential and normal acceleration 
are each constant throughout the motion, prove that the angle ij). through which the direction of 
motion turns in time t is given by ,

\|/ =/l log (1 + Bt).
Solution. Here, it is given that

A = constant = X (say) ..-(1)
dt^

2
^ = constant = \i (say). ...(2)and

From (1), we get on integrating,
ds .— = Xr + a, ...(3)
dt

where 'a’ is a constant of integration. 
From (2), we get

v\(ds/dtf_ 
p {ds/(hv) 

ds d\\l

(X/ + n) ^ = (i.

or

[using (3)]or dt

ji^dt. 
Xf+ adv/ =or

Integrating, we get

\|r = ^ [log (Xr + a) - log a] 

(Xr + a)= ^log
X a

\|f =>l log (I + Bt),or

where
X a

Example 4. A point moves in a plane curve so that its tangential acceleration is constant 
and the magnitudes of the tangential velocity and normal acceleration are in a consatnt ratio; find 
the intrinsic equation of the curve.

Solution. Here, it is given that
dv -..(1)— = X (constant)
dt

—^ = p (constant) 
v'/p

and

From (2), we get

ds/d\V _ 
ds/dt ^or

dt
■ ...(3)

Multiplying (1) and (3), we get

or

dv = Xp
dVf
dv = Xp dvf.or

Integrating, we get
...(4)V = Xpv + a
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Kinematics in Two Dimensionswhere a is a constant. 
Since p = Hv

p = p (Xpti/ + a) 

+ a\i..

[using (4)]

or
d\V

Integrating, we get

= 2

s = A\if^ + fitj/ + C
A = ^ B = up, C are constant.

Hence the intrinsic equation of the path is 
j = + fiilf + C.

or

where

• SUMMARY
• Velocity and acceleration in a plane ;

Velocity ^

• Angular velocity and anguiar acceleration ;

Angular velocity =

• Radial and Transverse velocities :

Radial velocity

• Radial and Transverse acceleration

dP-
• Tangential and Normal velocities : 

Tangential velocity =

• Tangential and Normal accelerations :

Tangential acceleration =

d^s _ ^ 
dP ~ dt

Acceleration a =

de
Angular acceleration =dt ' dP i

dr ddTransverse velocity ' dtdt '

d^r 1 tdB
r' di

Radial acceleration = Transverse acceleration = — '' dt

Normal velocity = 0dt '

d's 2
Normal acceleration = —

dr' P

• STUDENT ACTIVITY
1. It the radial and transverse velocities of a particle are always proporhonal to each other, show 

that the paths is an equiangular spiral.
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Specio! Funviion and Mechanics
2. A partial is describing a plane curve. If the tangential and normal accelerations are each constant 

throughout the motion, prove that the angle V, through which the direction of motion turns in 
time / is given by

V =A log (1 + fir)

t• STUDENT ACTIVITY
1. A particle describes a curve (for which s and \|/ vanish simultaneously) with uniform speed 

V. If the acceleration at any point s be v^c/(s^ + c^), find the intrinsic equation of the curve.
2. A particle moves in a plane in such a manner that its tangential and normal accelerations are

always equal and its velocity varies as exp. [tan * (5/c)], s being the length of the arc of the 
curve measured from a fixed point on the curve. Find the path. "

3. If the tangential and normal accelerations of a particle describing a plane curve be constant
throughout, prove that the radius of curvature at any point i is given by p = (at + b)^. \

ANSWERS *

2. j = c tan ijf1. j = ctantjf

OBJECTIVE EVALUATION
Fill In the Blanks :
1. The rate of change of displacement is called

2. If V = then the acceleration is...............
dt

3. The magnitude of the velocity vector is...............
4. Negative of an acceleration is called...............
5. The rate of change of velocity is called...............
True or False :
Write T for true and F for false statements :
1. Velocity is a vector quantity.
2. The magnitude of the velocity vector is called speed.

3. . If the acceleration n of a particle in a line is

(T/F)
(T/F)

dh dxthen its velocity is x —• 
dp- dt (T/F)

d9If (1) is the angular velocity of a particle, then 

d'x

4. (T/F)
d\

= retardation.5. If acceleration = then -
dP (T/F)dr

Multiple Choice Questions (MCQ's):
Choose the most appropriate one :
The magnitude of a velocity vector is :
(a) speed
If (1) be a angular velocity of a particle, then its value is:

(c) dt/dQ

I

1.
(c) acceleration (d) none of these.(b) velocity

2.
(d) d'^Q/dP.(b) dB/di(a) 0

A

If a ij, then a . %\s ■. 
dt

(b) ab

3.
(d) OD.(c) 0(a) I
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Radial acceleration of a particle is :

de^'
4. KmeimUc\ in Two Dinien\ion\

d'r /" <f0 . d^r T ^9 1
7, ^ ■

d-r d\
(a) (b) (c)'' dtdr dr dP-

..t

ANSWERS

Fill in the Blanks :
21. Velocity 3. speed 4. Retardation 5. Acceleration

dP
True or False:

1. T 2. T 3. F 4. T 5. T
Multiple Choice Questions ;

1. (a) 2. (b) 3. (c) 4. (d)

□□□
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Si>ecial Funciion and Mechanics UNIT

RECTILINEAR MOTION 

(Variable Acceleration)

Rectilinear Motion
Velocity and acceleration in a straight line 
Motion under inverse square la\w 
Motion due to the attraction of the Earth 
Siple Harmonic Motion 
Some important definitions 
Geometrical representation of S.H.M.
□ Summary
Q Student Activity
□ Test Yourself

■!i

gpjgggiiaiiiigfiliEARNlNGaBJECTivESigiisaigiW^
After going through this unit you will learn :

• What is rectilinear motion of a particle ?
• How to move a particle under inverse square law ?
• What is S.H.M. ?

• 12.1. RECTILINEAR MOTION
DeHnition. When a particle moves in a straight line, its motion is known as Rectilinear 

motion. Whether the straight line is horizontal or vertical.

• 12.2. VELOCITY AND ACCELERATION IN A STRAIGHT LINE
Velocity. Let OX be a straight line, where O is a fixed point on the line. Let us suppose a 

particle is moving along this line and at any instant t it is at a point P distant x from 0.
P

U
\■»<■

Fig.l

Let? be the position vector P and the unit vector along OX. Then

r = x iA (•.• OP = x)

cFr
The velocity at P. '' dt

dx A(.
dt

Thus the direction of the velocity vector v is always along the line, in which the particle is 
moving- If v is the magnitude of the velocity v. then '

V = 1 V I

dx A dx
i

dt dt
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dxAlso, if the particle is moving in the direction of x'increasing, then

otherwise negative if moving in the direction of x decreasing.
Acceleration.i5^Ware.<^^/iangc of velocity is known as acceleration. Let d be the acceleration 

of the panicle at P, tteh

will be positive.dt

dv •
" dr

d f dx A 
dt dt '

,2d X rs
(■

dp-
Thus a is collinear with X therefore, the acceleration is also always along the line itself and 

the magnitude of the acceleration d is given by
d\

a\ = a =
dP

It is positive in the direction of x increasing and negative in the direction of x decreasing.
Other Forms of the Acceleration :

If a particle is moving in a straight line and it is at a distance x from some fixed point O on 
the line at time t. Then the velocity and acceleration at this point P are

dx
" dt

d\
and a =

dt^
d f dx a = — —r dt dt

■ dt dx dt

dv

and

dv
dx

d^x ^ 
dt^' dt

in the direction of j: increasing.

dvHence and V — three expressions of the acceleration and all will have positive sign

• 12.3. MOTION UNDER INVERSE SQUARE LAW
To discuss the motion of a particle when it moves in a straight line under an attraction towards 

a fixed point, which is inversely proportional to the square of the distance measured from the fixed 
point. .r

Let a panicle be moving along a straight line OX, where O is a fixed point on the line and 
let the particle start from rest from a point A such that OA=a towards the point O.

A' «• >
.

O P A
Fig. 2

Let P be the position of the particle at any time r whose distance from fixed point O is .v
*. s ^

i.e.. OP = X. and v be the velocity at P. Then the acceleration at P is equal to jX'/x' towards O, where 
H is a constant.

.-. The equation of motion of the particle at P is
A

-.(1)2dr X

\
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[Here, negative sign is taken, because - is positive in the direction of x increasing, while

dt
— is towards 0, in the direction of x decreasing so,that is negative.]

fX
dxMultiplying (1) by 2 — and then integrating, we get

(dxf .21L ...{2;+ cdt X

where C is a constant of integration.
Initially, when x = a,^ - 0 

dt
0 = ^ I+ c

a

C = -or a
Putting the value of C in (2). we get

2n _ 2}i
dt X a X a

Equation (3) gives the velocity at P. 
From (3), we get

dx
dt

[Here negative sign is taken, because particle is moving in the direction of j: decreasing]

dt=-

Integrating, we get

dx + D,t = -

where D is a constant of integration.
Putting x = a cos^ 0. so that dx --2a sin 0 cos 0 rf9, then we get

a cos*^ 6\ la sin 0 cos 9 d0 + Df =
- a cos^ 0

2 cos^ 0 rf0 + D

{1 + cos 20) dQ + D
■ A

\
sin 290 + + D

2

[9 + sin 9 cos 0) + D

“ [9+“seVi-cos^e] + zj,

and 0 = cosSince x = a cos^ 0 i.e., cos 0 = -1

“ViL Vf X-1 1 -- + D.t = +cos a

Initially, when r = 0. x = a. then, we get
J
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(Variable Acceleraiicn)[cos ‘ 1 + 0] + D0 = a

0 = a [0 + 0] + D

D = 0.or

‘■Vf.L X-1 1 -- -(4)t = cos a J

This equation (4) gives the time at the point Pat a distance j: from O (i.e., the centre of force). 
If we put .t = 0 in (3), we get the infinite velocity at O and, therefore the particle moves to the left 
of O with the acceleration always directed towards 0 and thus the velocity is continuously 
decreasing. The particle will come to instantaneous rest at A' such that OA’= OA=a and then the 
particle retraces its path. Hence the particle will oscillate about O between A and A'.

Let t\ be the time taken by the particle to reach from the point A to 0 (the centre of the froce). 
Then put j: = 0 in (4), we get

[cos’ ■ 0 + 0]t

fa f n
V2^ 2

’lJZ 
2 >2)1

Now, the time of one complete oscillation = 4 x tj

2 > 2)x

V?>2)t= 2n

• 12.4. MOTION DUE TO THE ATTRACTION OF THE EARTH
1. Earth attracts every body outside its surface with a force {gravitational force), which is

■, where the distance is measured from the centre of earth. Thus1always proportional to
(distance)^

the attraction of the earth follows the inverse square law.
2. On the other hand, when a body moves inside the earth, it is experienced a force, which is 

always directly proportional to the distance, towards the centre where the distance is measured.
3. Ar the surface of the earth, the acceleration of a body is taken to be g {acceleration due to

gravity).-

SOLVED EXAMPLES
Example 1. If h be the height due to the velocity v at the earth's surface, supposing its 

attraction constant and H the corresponding height when the variation of gravity is taken into 
account, prove that

1-1 i
h H r

where r is the earth's radius.
. Solution. Since a particle attains a height/j outside the earth due to the velocity v at the earth’s 

surface under constant attraction. Then we have
• v^ = 2gh ...(1)

v- = u--2gh)
Now when the particle moves under the variation of gravity. Let P be the position of the 

particle at any time t at a distance x measured from the centre of the earth in the vertically upwards
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Special Funclion and Mechanics motion and v be the velocity with which the particle projected- Then the acceleration of the particle 
at P is which is directed towards the centre of the earth.

The equation of motion is

^_}L. -..(2)2
X

d-xSince, we have g at the surface.
dr

When x = r (radius of the earth).
cf'x

= ~g.d^
Then from (2), we get

I

iL = i2
I

H = r^8-

Now (2) becomes.
cfx

..J(3)
2

X

dxMultiplying (3) by 2 — and then integrating, we get

(dx-^ 2r^8
+ A. where <4 is a constant.dt X

dxInitially, at the earth surface, x = r and ^ then

r
A = v^- 2rg

dx'^ Ir^g

+ A

or

+ - 2rg. ..-(4)dt x

In this motion, suppose the particle reaches at the maximum height H. That is, at the height 
^ = 0 and x = r + H, then from (4), we getH above the earth
dt

0 = ^ 
r + H + - 2rg

2r^g
(••• v- = 2i-/0

, .0 = 2i^g + 2gh {r + H)~ 2?g - IrgH 
f., Q = h{r + H)- rH

.1 = ^ + l^ 'fi H r ■ ^
Example 2. A particle is projected vertically upwards from the surface earth with a velocity 

just sufficient to carry it to the infinity. Prove that the time it takes to reach 
a height h is . • . . .

or

or
or

5 Hence proved.or

P TA I-iV •/
3w-

1 +- - 1
8 a

LV
where a is the radius of the earth.

Solution. Let v be the velocity of a particle with which it is projected 
vertically upwards from the earth's surface and it is just sufficient to carry 
the particle to the infinity. Let P be the position of the particle at any time

''O

Fig. 3
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during the upwards molion, whose distance from the centre of the earth is x. Then the acceleration 

of the particle at is directed towards 0.

The equation of the motion of the particle is
A i* ...(1)
di^ x^

(Here negative sign is taken, because ^ is measured in the direction of x decreasing).

Since the acceleration at the surface of the earth is g so that, when x = a (radius of the earth) 

= -g, then from (1), we get
d^x
dP-

iL_
i = -8a
H = a^g.=>

Thus the equation (1) becomes
A 2

= -S-S.
x^ ■

-..(2)
dP

dxMultiplying (2) by 2 — and then integrating, we get 

dx 2a-g + A. where /t is a constant.dt x

dxInitially, when jt ^ »o, — = 0. we have 
dt

0 = 0 + ,4 
A=0or

dt X ■I'V3
1

...(3)or 8dt

dx(Here,— is taken to be positive, because the particle is moving in the direction of x increasing). 

Separating the variables in (3), we get
1 Px dx.dt =

Integrating from a: = a to ar = /i.+ a, we get
/•/i + a

I P^dxt =

‘l +1
3

■jKh + ap^-a^'"^]

Jn

1

\3/2
-1 . Hence proved.a8
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1. Discuss the motion of a particle under inverse square law.
2. If the earth’s attraction vary inversely as the square of the distance from its centre and g be

I
its magnitude at the earth’s surface, the time of falling from a height h above the surface to 
the surface is

Va +
(a + h) sin *

a

where a is the radius of the earth.

• 12.5. SIMPLE HARMONIC MOTION
Definition : A particle moves in a straight line in such a way that its acceleration is always 

directed towards a fixed point on the line, which is directly proportional to the distance measured 
from the fixed point, then the motion of the particle is called Simple Harmonic Motion.

To investigate the Simple Harmonic Motion ;
Let O be the fixed point on a straight line A'OA. which is taken as the centre of the force. 

Suppose a particle starts its motion'from rest from a point <4 on the line towards 0.
■ Let P be the position of the particle at any time t such that OP = x. Then the acceleration of 

the particle at is p.)c towards 0.
•»«■ a-

<-x—> velo. =0
A' AO P

Fig. 4
The equation of motion of the particle at P is

dh ...(1)= -\ix.
dt^

(Here negative sign is taken because the acceleration is measured in the direction of x
decreasing).

dxMultiplying (1) by 2 and then integrating, we get

' dx =-lxx^ + C. where C is a constant.
di

dxInitially, 3XA,x^a and= 0- Iben

0 = - + C i
or

...(2)
dt

This equation (2) gives the velocity at any time t. Let v be the velocity at the point P, then

...(3)
Now from (2). we get

^=-virV(7^. -.(4)
dt .r

(Here negative sign is taken because particle is moving in the direction of x decreasing). 
Separating the variable in (4), we get

1 dx
dt = -

'^dtB~ "
<77?

or
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/ S
-1 •*= cos - +D, where D is a constant.

a
V /

Initially at A, j: = a and r = 0. then
0 = cos'' {1) + D. 
D = 0

aThus, cos

(FV) -(5)x = a cos
when the particle reaches at O i.e., x = 0, then the equation (4) gives the velocity -nV^T. The 
particle thus passes through 0 and goes to the left of 0, where acceleration changes to retardation 
and therefore the velocity of the particle continuously decreases. Ultimately the particle comes to 
rest instantaneously at A' such that OA = OA'. It then retraces its path and passes through O, and 
again is instantaneously at rest at A. Hence the particle oscillates about O between -4 and A'.

or

Let fi be the time taken by the particle to cover the distance from AXoO i.e., .t = 0, then from
(5). we get

1 cos * 0.

n
fi = 2Vir

Now the time of a complete oscillation = 4/,
271

This time of a complete oscillation is called the periodic time.

• 12.6. SOME IMPORTANT DEFINITIONS

Definition (Periodic time) : During a simple harmonic motion of a particle, the time taken 
by the particle to make a complete oscillation, is called Periodic time. IfT Is the time period of 

then
2n

Definition (Amplitude): The maximum displacement of a particle during a Simple Harmonic 
Motion on either side of the centre of force is called an amplitude.

Definition (Frequency) : The number of complete oscillations in one second is called the 
frequency of Simple Harmonic Motion.

Since T is the time period for one complete oscillations, therefore the number of complete 

oscillations in one second is . Further since,

2n

1 1Frequency = —

Definition (Phase and Epoch): The equation of motion of a particle in S.H.M. is
dh
dt^

d\
y + |ir = 0.

dt
The solution of this differential equation is

.r = tj cos (VjT t + ^).
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Special Funclion and Mechanics The constant ((> is called the starting phase or the epoch of the motion and the angle 
+ (!>) is called the argument of the motion, whilst the phase of the motion at any time t is the 

time that has elapsed since the particle passed through its maximum distance in the positive direction. 
Suppose X is maximum at the time fo, then

V^r/o + if = 0-
Hence the phase at time

i= /+

VITf + tti
ViT

Remarks
>■

Maximum velocity of the panicle in a S.H.M. is where a is the amplitude. 
Maximum acceleration at the extreme points is pa.>

• 12.7. GEOMETRICAL REPRESENTATION OF S.H.M.
Suppose a particle moves round the circumference of a circle with 

uniform angular velocity o>.
Let AOA' be the fixed diameter of the circle and let P be the position 

of the particle at any time t such that angular displacement of P from ^ 
A is 0, then

0
0) = -'

t

Draw a perpendicular from P to AOA\ whose foot is Q. Let 
OQ=x, then

a: = fl cos 0 
A: = ncos tur.

[•.' OF = a (radius)]
...(1)or

Differentiate (1) w.r.t. 7’, we get
dx ...(2)= - sin cor.
dt

Again differentiating, we have

= - flco^ cos cor
dt^

= - is^x.

Thus the equation (3) represents that the acceleration of the point Q is directly proportional 
to the displacement from O and directed towards 0. Therefore we get a conclusion that as the 
particle moves round the circumference of a circle, the foot Q oscillates on AA' about 0 and the 
equation (2) represents the velocity of Q at any time. From (1) we see that the amplitude of this 
S.H.M. is a, because the maximum value of x is obtained as a.

The time period of 2 = The time taken by F to turn through an angle
2ji

271 with uniform angular velocity, = —•

Hence, we can say that if a particle describes a circle with uniform velocity, then the foot of 
the perpendicular from its any position on any diameter executes Simple Harmonic Motion.

-..(3)di^

SOLVED EXAMPLES
Example 1. A particle is moving with S.H.M. and while making an excursion from one 

position of rest to the other, its distances from the middle point of its path at three consecutive 
seconds are observed to be xj, Prove that the time of a complete revolution is

+X3-127t/coj
^2

Solution. Since we have
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•..(1) •
Now xi.x2.x-i are the displacement from the middle point of the path in three consecutive 

seconds, then

x = a cos

xi = fl^os VjT t
X2-a cos ViTfr + 1)
ATj = ti cos VjT (r + 2) 

x^+Xi = a [cos VtT / +COS VtT (f + 2)]
=2a COS vjr (/ +1), cos vjr 
= 2x2 ■ cos VjT

2X2

and [using (I)]

V^r=cos
-\

271The periodic time T =

/ \
^1 +-^3- I= 2n/cos

2X2

Example 2. In a S.H.M. of amplitude a and period T prove that;
rT 27t'fl2

T

Solution. Since in a we have
X = a cos VjT t

dx -aVJTsinVfr fdt
2nand r=

rT fT
Jq v^<fr = n‘^tjp %in^'f\itdtNow,

fT
. 2 27« dtsin

T
fin

5 •% T'= «i^Jo i^'Tily-^dy put> = —

271 J 

a^uT I

fin
0 sin^y dy

flit
' (l-cos2y)dy2 JO2n

■ ^ -l2«Sin 2yflV 1 '
271 ' 2 ^ 2 Jo

_flVr _! 
2n

aW
f [271]

2
271^0^ 471^n =T f'
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Specinl Funciion and Mechanics \• SUMMARY

* Motion in a straight line :
Velocity = ^

(

dt
d\Acceleration =
d!^

• Motion under inverse square law 

Acceleration = - —2
X

S.H.M.
Acceleration = ~^ix

t• STUDENT ACTIVITY
1. If h be the height due to the velocity v at the earth’s surface supposing its atttraction constant 

and fi the corresponding height when the variation of gravity is taken into account, prove that

/i ff r

where r is the earth's radius.

2. In a S.H.M. of amplitude a and period T prove that

v^dt = ^^
rT

JQ

• TEST YOURSELF
1. A horizontal shelf is moved up and down with S.H.M. of period 1/2 sec. What is the amplitude

admissible in order that a weight placed on the shelf may not be jerked off ? J
2. A particle starts from rest under an acceleration l^x directed towards a fixed point after time 

r another particle starts from the same position undei the same acceleration. Show that the

particles will collide at time 7 + t after the start of the first particle provided t <

3. Define a S.H.M. show that S.H.M. is periodic and its period is independent of the amplitude.

4. Show that if the displacement of a particle in a straight line is expressed by the equation 
X = fl cos nl +'f> sin nt, it describes a S.H.M. whose amplitude is V(fl^ + and period is —

n
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5. A point moving in a straight line with S.H.M. has velocities vi and vi when its distances from 
the centre of force are xj and xi- Show that the period of motion is

Reclilinear Motion 
(Variable Acceleration)

l''

2n
•'2 -"i

ANSWERS

I. g/16n^.

OBJECTIVE EVALUATION
Fill In the Blanks :

efx dv 
dt^' dt

dv1. The expressions

Earth attracts every body outside its surface with an acceleration which follows the law

“T and V ~ are ofdx
2.

of
Inside the earth's surface, the acceleration is proportional to 

4. In S.H-M. the acceleration is always towards
True or False :
Write T for true and F for false statements :

Outside the eanh’s surface, the particle follows inverse square law.
In S.H.M. the acceleration of the particle is always towards the centre of motion.

3. If n is the intensity of a force under which a particle is executing S.H.M., then its time

3.
and proportional to

1. (T/F)
't2. (T/F)

271period is —.

In S.H.M.. the maximum velocity is obtained at the centre of motion.
(T/F)

4. (T/F)
Multiple Choice Quesitons (MCQ’s);

Choose the most appropriate one :
Inside the earth’s surface, the acceleration of the particle is proportional to ; 
(a) (distance)

1.
(b) [/(distance) (c) (distance)^ (d) none of these.

Outside the earth's surface, the acceleration of the particle is proportional to : ' 
(a) distance

2.
(b) I/distance (c) [/(distance)^ (d) (distance)^. 

Maximum velocity of the particle in S:H.M. is :
(a)

3.
(b) 'Jua (c) pa

Maximum value of acceleration in S.H.M. is :
. (d) p/a. 

(d) p^u.
4.

(b) VJTa (c) pn^(a) pa

ANSWERS
Fill In the Blanks ; 

1. Acceleration
True or False:

2. Inverse square 3. Distance 4. Centre of motion, distance

l.T 2.T 3. F 4. T
Multiple Choice Questions :

1. (a) 2. (c) 3. (b) 4. (a)

□□□
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Special Function and Mechanic'! UNIT

MOMENTS OF INERTIA
STRUCTURE./ V

• Some simple cases of Moment of Inertia
• Parallel and Perpendicular axes Theorems

□ Summary
u Student Activity
□ Test Yourself

1
After going through this unit you will learn :

• What is moment of inertia ?
• How to find the moment of inertia of the given body about the given line or axes.

• 13.1. SOME SIMPLE CASES OF MOMENT OF INERTIA
(1) Moment of Inertia of Uniform Rod of Length 2a:

(a) To find the moment of inertia of uniform rod of length 2a and mass M about a line thivugh 
one end perpendicular to the rod.

Let M be the mass of a uniform rod AB of length 2a, then the mass per unit of length of the
I

Wrod is —2a'
N

> &«•
BmkA

P Q

■IFig.l
Let us consider an element PQ of legnth 5jr distant x apart from an end A. Let A/A be a line 

through A and perpendicular to AS.
MMass of an element PQ = — Sa:.2a

The moment of inertia of this element about the line A^A is
M s 2 
rc-QX .X .
2a

Thus the moment of inertia of the whole rod about A/A is
)‘x = 2al‘x = 2a

Ml. M X dx = T- x^dx
2a 2aJa=0

r if" M /
2<i[3 

= \Ma^.

(b) To find the moment of inertia of a uniform rod of length 2a about a line thivugh the middle 
point and perpendicular to it.

Let M be the mass of the rod AB of length 2a and OL the line through the middle point 0 
(say) of the rod.

Ja

140 Self-Instructional Material



Moments of InertiaL

VA B ..■>9.

B Q

Fig. 2
Let us consider an element PQ of width dx at a distance .t from the line OL Then the mass

of this element is ^ 6x.
■2a

The moment of inertia of this element PQ about OL

Af 5- 2= — ox . X ,
2a

Thus the moment of inertia of the rod about OL is

Jx = -a 2a
M 2. "i—x ax X takes the values from - OA to OB)

M x^dx
2.0 i-a

3M X

la 3
t- a

M a^ a^
. "la T''’T

(2) Moment of Inertia of a Rectangular Lamina :
(a) To find the moment of inertia of a rectangular 

lamina about a line through the centre and parallel to a D 
side.

P Q
is
iS

Let ABCD be a rectan^alar lamina of side AB = 2a 
and AD = 2b and let M be the mass of this lamina. Then N

OM iSthe mass per unit of area is

Let OL be a line through 0 and parallel to AB about ^ 
which the moment of inertia is to be required.

Let us consider an elementary stripof breadth 5x and 
of length 26 at the distance x from 0 and parallel to AD.

MThe mass of this elementary strip =

4a6

B

Fig. 3

(&r. 26)
4ab
M= —5x.
2a

M ^ (b-^
T • 2a 3

The moment of inertia of this strip about LN =

Thus the moment of inertia of the rectangular lamina about LN

M b- — — dx Jx=-a 2a\ 3

i‘X = a

- aMb- f
dx

6a
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Special Function and Mechnnic\ Mb^
[a + a]6n

^Mb^.

Hence the moment of inertia of the rectangular lamina about a line through the centre and 

parallel to the side 2a is Mb^. Similarly the moment of inertia of the rectangular lamina about a

line through the centre and parallel to the side 2b is j Ma'.

(b) To find the moment of inertia of a rectangular lamina about a line through the centre and 
perpendicular to the plane of lamina.

Let OL be the line through the centre O of the lamina 
ABCD and perpendicular to the lamina.

Let us consider an element PQRS of area St 8>' at a D 
distance from 0.

L

R
Q

M 5t5y.The mass of this element PQRS - 

The moment of inertia of this element about

Thus the moment of inertia of the lamina about OL

•>A’4ab O

OL = BA4ab
Fig. 4

>y = b
^ (x^+y^ydxdy

-a iy==-bJjr =

i*£2 t»h

= ^,4 
4ab

+ >-“) dx dy

i-i'i>a
M 0 + ^ dx
ab •'0

JO

fO / 2\

M dx
ab

' T■ + — XM , X
Tb JO

3_ M a'b ab 
ab 3 3

= ^Mia^ + b\

(3) Moment of Inertia of a Rectangular Paralleloplped :
To find the moment of inertia of a rectangular paralleloplped.
Let 2a, 2b, 2c be the lengths of the sides 

of a rectangular parallelopiped. Take the centre 
of the paralleloplped as origin 0 and OX, OTand 
OZ parallel to the sides as mutually 
perpendicular axes.

Conceive the rectangular parallelopiped as 
made up of a very large number of thin parallel 
rectangular lamina (slices) all perpendicular to 
OX and consider one of such elementary slice 
PQRS of width 8x at the distance x from O. Let 
p be the mass per unit volume of the 
parallelopiped.

The mass of the element PQRS = 2b .2c . Sxp

4 k Q
1

O < >A'
R

7

5

Fig. 5
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Mtimentx of InertiaThe moment of inertia of this element about OX 
(2b . 2c ■ Sxp)

3 +

Thus the moment of inertia of the rectangular parallelopiped about OX

[see § 4.2 (2) (b)]

^x = a
2b ■ 2c -p2 (b^ + c^)dxJxs-a

(•a
4*('P,,2^ 2-. ,3 (* +c)J_^ dx

4fccp 2, r i"= —5-^ (b -VC ) [x]
J ~(J

= ^(b’ + c-)la + a]

Hence the moment of inertia of the rectangular parallelopiped about a line through the centre 

and parallel to the side 2a is y (b^ + c^).

Similarly M.I. of the parallelopiped about the lines through the centre and parallel to the side 

2b and 2c are respectively, y (0^ + f^) and y (a^ + b%

(4) Moment of Inertia of a Circular Ring ;
• (a) To find the moment of inertia of a circular 

ring about its diameter.
Let AB be the diameter of a circular ring of 

radius a with centre 0 as origin and OX as x-axis.
Let us consider an elementary arc PQ = a 59. ^ 

then the mass of this element is p a69.
The perpendicular distance, of this element 

from OX = PN = a sin 0.

{•.• M = 8abc p)

Q
P

18.
Be

The moment of inertia of this element about 
0^ = p rt69 (a sin G)^.

Thus the moment of inertia of the circular ring about OX 
,.2n

Fig. 6

pa (a sin 9)^ dQJ0 = O

.271

- sin^Gife
•^U

/.Jt/2

3= pfl

sin^ 0 dQ

1 JI4 pfl-’
2 ■ 2

= npa^
M ^

••• P = 2Tla

(b) To find the moment of inertia of the ciretdar ring about a line through the centre and 
perpendicular to the plane of the ritig. ■ .

Let OL be a line through the centre 0 of a circular ring and perpendicular to the plane of the
ring.
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Special Function and Mechanics Consider an elementary arc PQ = abQ. Then the mass of this element is pfl50 and the 
perpendicular distance of this element from the line OL is a.

The moment of inertia of this element about OL 
= p n59 . (af.

Thus the moment of inertia of the circular ring about OL 
• 2n

= ,o

L
Q

p
I

e »A'o

I-2k

= pa^Jo ^0
Fig. 7

= pn^ 9
A) .

= 2Tt pn^

= Ma^
M

■: p =
2rt<j

(5) Moment of Inertia of a Circular Disc :
(a) To find the moment of inertia of circular disc about the diameter. 
Let AB be the diameter of a circular disc of 

radius a with the centre 0 as origin and OX as x-axis.
Let p be the mass per unit area of the disc. Then

^2' Let us consider two circles of radius

r and r + 5r with centre O and form a circular ring.
The area of this circular ring is 2Ttr5r and thus its 
mass is 2nr5rp. Suppose the disc is made up of a 
very large number of such circular rings.

.-. The moment of this circular ring about

a
'r+5rwe have p = A BIKJ 0

Fig. 8

(2Ttr pSr) ^OX = 2
= 71 pr'’5r

Thus the moment of the circular disc about OX
fa

371 pr drJr = 0

f»r^a
r^ dr= 7ip Jr = 0

r ‘'T

7tp A Ma^
~ A ^ ~ A

Mp =

L •'YHence the moment of inertia of the circular disc of

radius a about its diameter is 7 A/a^.
4

(b) To find the moment of inertia of a circular disc 
about the line through the centre and perpendicular to the 
plane of the disc.

Let OL be a line through the centre 0 of the circular 
disc and perpendicular to its plane.

Let us consider an element PQRS of area r5r50 at 
the distance r from the line OL. Then the mass of this element 
is p cSrSG.

■^AU

Fig. 9

144 Self-Instructional Material



Mimc'ius of liieriiaThe moment of inertia of this element about OL - pr 5r 66 {rf- 
Thus the moment of inertia of circular disc about OL 

• In j.a
■Je=oJr=o I

■ 47’
- ri0

p ? dr dQ

pin

‘^Je=o 4
Jo

j*2ji

-£JLrJo ^

- ) ^
e

4

p
2

Ma^ m\
■: p =

na'2

Hence ilie moment of inertia of a circular disc of radius a about the line through the centre 

and perpendicular to its plane is ^ .

(6) Moment of Inertia of an Elliptic Disc :
(a) To find the moment of inertia of an elliptic 

disc of axes 2a. and 2b about its major axis.
Let OX and OV be the major and minor axes of 

an elliptic disc, where 0 is the centre of it. Let p be 
the mass per ■unit area of the disc.

Suppose the elliptic disc is made up of a very 
large number of slices all perpendicular to OX and 
consider an elementary such slice PQ of width Sx 
parallel to OY with the co-ordinates of f as 
{a cos 0, b sin 9).

= 8 (n cos 9) = - fl sin 0 dQ 
and length of the slice PQ = 2b sin 0.

The mass of this elementary slice PQ = p (2b sin 0) 5x
= p (2& sin 0) (- a sin 0 50)
= - 2ab p sin^ 0 86

Af

PQ

I
o

Fig. 10

The moment of inertia of this element about OX is, 
_ (- 2ab p sin^ 0 50) 2

y3

y ab p sin" 6 (b sin 6)^ 86 

|flb^psin‘‘0 89

Thus the moment of inertia of the elliptic disc about OX 
pB = n

|ab^psin"0d0 (ignore the negative sign)J9 = 0 3

l•7t
^ab^p gSin^OdO

|ab'p£ :sin'' 6 dQ
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I ,3
= pit

= 7 ab^n 
4

= ~Mb^.4
Hence the moment of inertia of an elliptic disc about the major axis is ^ Mb^.

Siinilarly the moment of inertia of the elliptic disc about minor axis 2b is

(b) To find the moment of inertia of an 
elliptic disc about the line through the centre and 
perpendicular to its plane.

Lei OL be a line through ihe centre and 
perpendicular to the plane of an elliptic disc.

Let us consider an element PQRS of area
&t 8>' at the distance '^x^ + y' from the line OL.

The mass of this element PQRS = p &t 5)>.
Therefore, the moment of inertia of this element 
about OL is,

(4-l)(4-3) 7t
4,2 2

M M
P =nab nab

t * y
L\

>
O

Fig. 11sp6x5>’(j:^+/)
Thus the moment of inertia of whole elliptic disc about OL

fbpa
p (x^ + y^) dx dy• x = -a Jy^-b r

,3?pa
dx= P

l-b
pa

= 2p̂ J- rt dx

= 2p[f +
3 <-n

a^b + b^a= 4p 3

= y p («^ + b^)

M
••• P = nab

Hence the moment of inertia of an elliptic disc about the line through the centre and 
4 2 2

perpendicular to its plane is — M (a + b ).

(7) Moment of Inertia of a Hollow Sphere :
Hollow Sphere. When a semi-circular arc is revolved about 

its bounding diameter, the surface thus generated is called hollow 
sphere.

I\
,0

B
To find the moment of inertia of a hollow sphere about its

diameter.
Let AOB be the diameter of a hollow sphere of radius 

a and p be the mass per unit surface area of the sphere.
FtB.12
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Consider an elementary arc a 50, which when revolved about the diameter AS, a circular ring 
of radius a sin 9 is generated. Therefore, the mass of this elementary ring = p (2tw sin 0). (n 50). 

The moment of inertia of this elementary ring about AB 
= p (27tfl sin 0) (a50). (a sin 0)^

Thus the moment of inertia of hollow sphere about AOB

Mtiineiir.t r>f Inerrin

(see § 4.2 (4) (b))

i*JC

p (27M sin 9) (fl <f9). {a sin 6)'J0 = O

fTl
2na*p ^ sin^ 0 r/G

= 4raVJo

= 4^1^

8 4= -;trrp

Hence the moment of inenia of a hollow sphere about its diameter is ^ Ma^.

fin/2
sin^ 0 40

(3-1) . I3 ■!

!

Mp =

(8) Moment of Inertia of a Solid Sphere :
Solid sphere. When a semi-circular area is revolved about its diameter, the solid thus 

generated is called solid sphere.
To find the moment of inertia of a solid sphere about its

diameter.
Let AOB be the diameter of a solid sphere of radius a and 

p be the mass per unit volume of the solid sphere.
Let us consider an elementary area PQRS = r50 Sr at the 

distance r from the centre O. When this elementary area is 
revolved about the diameter AOB, a ring of cross-section r595r 
and radiu.s rsin 0 thus generated.

The mass of this elementary ring
= p (2nr sin 6). /•50 Sr

The moment of inertia of this elementary ring about AOB 
= p (Inr sin 9) (/59 5/-). (r sin 9)^

Thus the moment of inertia of whole solid sphere about AOB
i* r = a

Fig. 13

i*7l

p (2nr sin 0) (r^ sin^ 6) rdrdd
. 9 = 0 Jr = 0

27rp Q Q sin^ 9 dr 49

■''pT
•0 5

27tpfl^ • 3 n jn 
—5— „ sm 0 49 

5 •'v

- 2 5_ -Ttpn Jo

4 5r2'jTtpu -

32np sin ’ 9 49
Jo

fin

fin/2
3= 2 .: sin' 0 40
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Spedai'Fiinciion and Mechanics 8 5
= T5.p«

M

■ . 3f 
V I

Hence ilie moinenr of inertia of a solid sphere of radius a and mass M about its diameter is
jMa\
0

• 13.2. THE THEOREMS OF PARALLEL AND PERPENDICULAR AXES
(1) Theorem of Parallel axis. If the moments and products of inertia about any line or lines 

through the centre of gravity of a body, are given, to find the moments and products of inertia about 
parallel line or lines.

Let G(x,y,z) be the centre of gravity of a rigid body and let GX'. GV. GZ be axes taken 
through G parallel to OX, OY and OZ through 0. Let {x, y'. z) be the new co-ordinates of P with 
respect to the axes GX'. GY and GZ while the co-ordinates of P with respect to OX, Okand OZ is 
(x, y, z), so that

x = x + y,y = y + y,z = ZTz'.
.'. The moment of inertia of the body about OX 

A = I/;i Cv‘ + :')
= Zm{(y+yf + (z + z'f}

= Zm [y'+ z‘+y''+ z'^+ 2yy+ 2zz')

= Zm (y^ + z") + Zm (y'" + z'^} + 2y liny' -I- 21 Zmz 
= Zm (y^ -I- z^) + Zm (y'^ + z'^)

Zmy' = 0 = Zmz', from the centroid property)
A = M(y^ + z^)+A'

whereVif = Zm. the total mass of the body; A' = Zm (y'^ + z'^), the moment of inertia about the 
parallel X'-axis through C.

A=A' + Mh^

where h = the distance of the centre of gravity from X-axis through 0. Thus equation
(1) is the parallel axes theorem for moment of inertia.

(2) Theorem of Perpendicular Axis for a Lamina distribution. If the moments and products 
of inertia of a plane lamina about two 
perpendicular axes in the plane of lamina 
are given: to find the moments and 
products of incrtial-about any other axis 
through the intersection of two 
perpendicular axes.

Let A and B be the moments of 
inertia and F be the product of inertia about 
the axes OXandOL in the plane. Let us 
consider an elementary mass m of a rigid 
body at Pix.y) with respect to axes 
OX and OY, then we have

A = Zmy', B = Zitix^ and F=Zmxy.
If {x’.y') be the co-ordinates of a

point P with respect to new system of co-ordinate axes OX' and OY such that ZXOX' = 0.
Then we have.

or

P
X'

N
e ->-V

X!

y
Fi!!- IS

x = x' cos 0 - y' sin 0 
y = x' sin 0 + y' cos 0. 

-v' = X cos G -1- y sin 0 
y' = -x sin.0 -t y cos 0

and

and
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Moments ol InertiaThus the moment of inertia of the rigid body about OX’ is 

h' =
= 1,111 (- AT sin 0 + y cos 0)^

= Im {x' sin^ 0 + cos^ 0 - Zxy sin 0 cos 0)

= sin^ 0 Imx' + cos' 0 - 2 sin 9 cos 9 hiixy

= B sin^ 9 + 4 cos^ 0 - f sin 29.

4' = <4 cos* 0 + B sin* 9 - F sin 29.

Remarks
► If 4 and B be the moments of inertia about any two perpendicular lines in a plane, then 

the moment of inertia about a line through the point of intersection of the perpendicular 
lines and perpendicular to the plane is

Im (a;* + y*) = Imr* + I»iy*
=a+b:

SOLVED EXAMPLES i.
Example 1. Find the moment of inertia of a hollow sphere about a diameter, its external and 

internal radii being b and a.
Solution. Let us consider a spherical shell of radius x such that a < x < Let 5x be the width 

of this shell and p be the mass per unit volume of the hollow sphere.
Mass of this spherical shell

= 4npx^. 6x.
The moment of inertia of this shell about the diameter

V M.I. = |Ma*I (4np.r*. 8x) X*

Thus the moment of inertia of the given hollow sphere about a diameter
2
4 4np x^ dx

pb

Jx = a 3

pb
8 x^dx

8 X
= 3’^P[T

8 (b^ - a^) Fig. 17

^n{b^- tj*) pIm ••• M =

• SUMMARY
* Moment of inertia of a rod of length 2a and mass M

(i) About a line perpendicular to the rod through its centre = j Ma^

4 2
(ii) About a line perpendicular to the rod through its one end -~Ma.

• M.I. of a rectangular lamina of sides 2a, 2b and mass M
(i) M.I. about a line through its centre and parallel to side 2fl = Mfc*.

1 2
(ii) M.I. about a line through its centre and parallel to side 2b^-Ma .
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Special Fiiiiciioil mid Mechanics 1(iii) M.I. about a line through its centre and perpendicular to its plane =-^M (a~ + Ir).

• M.I. of rectangulr parallelopiped of sides 2a, 2i,2c and mass Af

(i) M;I. of about a line through its centre and parallel to edge 2a = y M (/)' + c^)

(ii) M.I. of about a line through its centre and parallel to edge 2i? = j A/ (a' + c’)

(iil) M.I. of about a line through its centre and parallel to edge 2c = j (Af (a" + b~\

• M.I. of circular ring of radius a, 2b, 2c and mass M 

(1) M.I. about a diameter =

(ii) M.I. about a line through its centre and perpendicular to its plane = Ma^
• M.I. of circular disc of radius a and mass M

(i) M.I. about a diameter = ^ Ma^

(ii) M.I. about a line through its centre and perpendicular to its plane = ^ Ma'.

• M.I. of elliptic disc of axes 2a, 2b and mass M 
(i) M.I. about the major axis 2a = ^ Mb^

(ii) M.I. about the minor axis 2b = ^ Ma^

4 2 ?(iii) M.I. about a line through its centre and perpendicular to its plane = — M{a +b).

• M.I. of a hollow sphere of radius a and mass M
2

(i) M.I. about the diameter = - Mc^.

(ii) M.I. about its tangent = j McP'.

f

• . M.I. of a solid sphere of radius a and mass M
|Afa^

7 2(ii) M.I. about its tangent -a-Ma

(i) M.I. about the diameter =

• STUDENT ACTIVITY
1. Find M.I. of a uniform rod of length 2fl and mass M about a line through its one end and 

perpendicular to the rod.

2. Find M.I. of a solid sphere of radius a and mass M about its diameter.
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Momenta iif Inenin
• TEST YOURSELF
1. Find the moment of inenia of a circular area about a line in its own plane whose perpendicular 

distance from its centre is c.
2. Find the moment of inertia of an isosceles triangle about a perpendicular from the vertex upon 

the opposite side.
3. Find the moment of inertia of the arc of circle about

(i) the diameter bisecting the arc
(ii) an axis through the centre, perpendicular to its plane
(iii) an axis through its middle point perpendicular to its plane.

OBJECTIVE EVALUATION
Fill in the Blanks :
1. The moment of inertia of a uniform rod of length 2a about a line through its middle point and

perpendicular to it is.............
2. M.l. of a circular ring of radius a and mass M about its diameter is.............
3. M.l. of a circular disc of radius a and mass M about a line through its centre and perpendicular

to its plane is.............
True or False :
1. The moment of inertia of uniform rod of length 2a and mass M about a line through one end 

isxA/a^.
3 (T/F)

2. If M be the mass of the rigid body and / its moment of inertia about an axis, then its radius of 
gyration about its axis is given by \f/M.

3. M.l. of a circular ring of radius a and mass M about a line through its centre and perpendicular 
to its plane is Afn^.

4. M.l. of a circular disc of radius a and mass M about its diameter is t Ma^.
4

(T/F)

(T/F)

a/F)
Multiple Choice Questions (MCQ’s);
Choose the most appropriate one :

M.l. of a thin uniform rod of length 2o and mass M about an axis through one end and 
perpendicular to it is :

1.

2. M.l. of a rectangular plate of sides 2a and 2b and mass A/about a line through its centre parallel 
to the side 2a is :

(b) - Ma^ 
4

(a) (d) Ma^.

(d) |Ma^. 

~Ma^.

(b) j

3. M.l. of a circular ring of radius a and mass M about its diameter is: 
(a) Ma^

(a) (c)~Mb^

(c)|Ma^(b)-A/a^
4 (d) 3

ANSWERS

2. — M(?, a is length of opposite side

3. (i) (a - sin a cos a) as M = 2aap(ii) A/a^

Fill in the Blanks ;
l.iAfa^ -2

True or False;
l.T 2.T 3.T. 4. T

Multiple Choice Questions:
• 1. (a) 2. (c) 3. (d)

I A/(a'+ 2c') 
Afa'

1.

2A/a' ,(in) ^ ' (a - sin a)

2. - A/a' 3. -Ma^
2

□□□
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Special Function and Mechanics UNIT

D’ALEMBERT’S PREVCIPLE
:STRUCTURE|g^»iiPili|»|»

• Impressed and Effective Forces
• D'Alembert's Principle
• General equations of a motion of a rigid body
• Centroid of a rigid body and Its linear momentum 

a Summary
□ Student Activity 
a Test Yourself

After going through this unit you will learn :
• What Is D’Alembert’s principle .?
• How to apply D'Alembert's principle to solve the given questions ?

• 14.1. IMPRESSED AND EFFECTIVE FORCES
Impressed forces. The external forces acting on a rigid body are called impressed forces. 

For examples, Gravitational force and Magnetic force, and weight of the body etc.
Effective forces. When a rigid body is in motion then the effective force on the body is defined 

as the product of its mass and its acceleration.
If m denotes the mass of a moving particle and y, z) be the co-ordinates of the panicle at

d'x d'v—r • m —and 
dt^ dr

any time r, then the components of the effective force on the particle are m

d\
parallel \a x,y and c-axes respectively.m—T 

dt^
Remark

dh Am—r
>

• and - m are the components of reversed effective force.- HI —r • dt d^ d^

• 14.2. D’ALEMBERT’S PRINCIPLE
Statement. The reversed effective forces acting on each particle of the moving rigid body 

and the impressed forces on body are in equilibrium. '

Proof. Let a rigid body be in motion and ? be the position vector of a particle of mass in at

any time /, then is the acceleration of the particle. Suppose F and R be the external and internal 
dt

forces acting on it, then the equation of motion of the paricle is
/7.- 

m ---r: .
d?

= F + R ...(ly
t

[By Newton’s second law of motion]

+ F^R = 0.or

— —This equation shows that the three forces - m • F and R are in equilibrium. 

Now applying the same hypothesis to each particle of the rigid body, the forces
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1 _> D'Alemben's Principle(1- r
Z -/II . ZF and ZF

d,^

are in equilibrium, where Z runs over each particle of the rigid body. ' W

But the internal forces acting on the rigid body form pairs of equal and opposite forces,
therefore,

ZF = 0.
d^THence the forces Z - m and ZFare in equilibrium.
dt^

d-T^
ZF + Z -m = 0.

dt^

Hence the reversed effective forces acting on each particle of the rigid body and the impressed 
(External) forces on the body are in equilibrium.
Remark

> D’Alembert's principle reduces the dynamic problem to the static problem.

• 14.3. GENERAL EQUATIONS OF A MOTION OF A RIGID BODY
To deduce the general equations of motion of a rigid body by D'Alembert's principle.

I^t a rigid body be in motion andrbe the position vector of a particle of mass m at any time 
, t and F be the external force acting on it. then by D'Alembert’s principle, we have

Z - III + Zf = 0
dr

= ZF.Ziii -..(1)or
di^

Taking vector product with r of both sides of (I), we get 

Zrxiii d^-r
= Z?yF. ...(2)dr

Hence the equaions (1) and (2) give Che general equations of motion of a rigid body. 
Cartesian Form of General Equations ;

_AAA — AAA

Let r = xi+yj + zk and F = Xi+Yj + Zk, so that
d^ 7 d^x d~y'^ ^z';
dt^ dt^ dt^ dP'

— — AAA AAA

ry.F = (xi + yj + zk)x{Xi+Yj + Zk)and
A A

= (yZ-zr)i + {zX-xZ)j + (xY-yX)k
A A

Then from (1) and (2), we get after equating the coefficients of i,j and k,
A .

d^x
Ziii = zx

dt^
Im ^ = ZK ...(3)

dhZ/i) = zz
dp'

drz d^y 
dP dP\

' d^x cFz' 
. — -x—r
dr dP

and Zm y Z(yZ-zK)

Z/ii z = l(.zX-xZ) ...(4)

y fLin X—^ = lixY-yX)-ydP dP
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These equations (3) and (4) give the general equations of motion of a rigid body in cartesianSpecial Fundion and Mechanics
form.

• 14.4. CENTROID OF A RIGID BODY AND ITS LINEAR MOMENTUM
Centroid of a rigid body. Let 7 be the position vector of any particle of mass in of a rigid 

body at any instant with respect to a fixed point O, then the centroid of a body is defined as the 
position vector

' ■ Sm '

If Em = M. then
Imr

'■'=17
and if fi (7,y,z) and r is {x,y, z), then we have

- Imx - Emy - Emz 
M ^ M M

Thus (x. y, z) gives the co-ordinates of the centroid of a rigid body.
Linear momentum of a rigid body. If v be the velocity of a particle of mass m at the point

(a’, y. z) and Ybe the velocity vector of the centroid of the body whose position vector is7i.
Smr

'■' ' Af ' ,

Differentiating this vector equation w.r.t. 7’. we get
- ri 1 if

X =
I

Now we have.

d r1= —£M dt
d~rI

V = ^.
dt

...(2)

dt dt dt\ /

dx I dx) dy 1 dy'\ dz 1 r-f dz''
— = — £ m — , . = — £ in,, — = tt 2, tn —dt M dt dt M dt dt M

dx dy dz 
dt dt dtand v =Since

then (2) becomes

dy

Thus the equation (2) gives the velocity of the centroid of a rigid body.
Remark i

> 1V = — £mv shows that the linear momentum of a rigid body in a given direction is 
M

equal to the product of whole mass of the body and the velocity of its centroid.* k

SOLVED EXAMPLES
Example 1. A rough uniform board, of mass in and length 2a. rests on a smooth horizontal 

plane and a man of mass M walks on it from one end to the other. Find the distance through which 
the board moves in this time. [ •

Solution. When a man moves from one end to the other end on a rough uniform board, the 
only external forces are

(i) weight of the board mg acting vertically downwards,
(ii) the weight of the man Mg also acting vertically

GAit a ta
• C Bdownwards. f C'»Thus there is no external force along A': 

horizontal plane, then by D’Alembert's principle, we
:3'

Fig. 2
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have that during complete motion C.G. of the board will remain at rest.
Let A6 be the position of a rough uniform board of mass ni and length la rests on a smooth 

horizontal plane, when the man of mass M is at <4.
Then the distance of the centre of gravity G from A is 

A/ X 0 + fl X m

DAlemberr’s Principle

amAC =
M + m M + m

Now, when the man reaches at the other end of the board, the position of the board becomes 
A'S'; suppose the board slips through a distance AA' = a: backwards during the motion of man from 
A to B. !

Then in this position the distance of C.G. of the system from A is 
M (la - at) + m (a - x)AG = M +
2aM + am -x(M + m)

M + m
But in both cases AG must be same, then we have 

2aM + ma -x(M + m)
M + III

Ilia = 2aM + ma-x(M + m)
2aM

^ m + M'

This gives the required distance that moved by the board.
Example 2. A rod of length 2a, is suspended by a string of length I, attached to one end; if 

the string and rod revolve about the vertical with uniform angular velocity, and their inclinations 
to the vertical be G and (]> respectively, show that 

31 _ (4 raw 6 - 3 tan j>) sin 
(tan (Jt - tan 0) sin 9

Solution. Let a rod AS of length 2a be suspended by a string OA of length I and the whole 
system revolves about the vertical line with uniform angular velocity to (say). The string and the 
rod make the angles 0 and $ with the vertical respectively.

ma V,

M + m
or

or

a

O

C

hx.tiP-PRR

S\
\r

«' BMg
Z

Fig. 3
Let us consider an element PQ of width 5a: at a distance x from A, then the mass ot this element y

PQ is
^M
~ bx.2a

Now, this element PQ describes a circle of radius PR in the horizontal plane, when the rod 
revolves about the vertical line OZ with angular velocity (O, then the reversed effective force on the 
element PQ is

^ M^hx .PRw^ along RP2a
\ / ' \

= ^hx , (i sin 9+ a: sin (&) CO^
t

('.• /*!? = /sin 9+AC sin <t>)2a

Self-Instructional Material 156



Special Fiiiwllnn and Medtanicx The external forces acting on the rod are
(i) Tension Tat A alongand
(ii) The weight Mg of the rod acting at C.G. of the rod vertically downwards. 
Then, resolving the forces along horizontal and vertical, we get

M 7rsin 6 = Z — (I sind+x sin <5) -(i)2a
I

...(2)Tcos 0 = Mgand
From (1), we have

M 2rsin9 = —CO . (/sin 9 + X sin 6)
2a •'v

('.• The rod is distributed uniformly intoja 
large number of elements like PQ)

,2<i2
= ^ co^ /.r sin 0 + ^ sin 0 

2a |_ 2

= — ci}^ [2n/ sin 0 + 2fl^ sin 0]
2n

= (/ sin 0 + a sin 0)
Now taking the moments of the forces at A. we get 

M 1I — 5jrt0^ {/ sin 0 + a: sin 0). AN - Mg . SC = 0 
2a

MfS)'
2a *b

JO

•..(3)

dla

(I sin 0 + a: sin 0) x cos 0 dx - Mga sin © = 0or

(•,• A/V = a: cos 0. SC = a sin 0)
<ki

.. . . M(Xi^ ^
Mga sin 0 = cos 0

M<0^

Ix^ . a^AT^ . .
— Sin 9 + y sm 0

, cos 0 2a^/sin 0+ sin 0 
2a i

or
JO

4fl'
= Mco^cos0 ai sin 0 + -^ sin 0 

g sin 0 = j ci)^ cos 0 (3/ sin 9 + 4a sin ©) 

g tan 0 = co^ {3i sin 9 + 4a sin 0).

— (/sin 0 + a sin 0).s
Eliminating OJ^ and g between (4) and (5), we get

I tan 9 (3/ sin 9 + 4a sin 0)
^ 3 {/ sin 0 + a sin 0)

3 tan 0 (/ sin 0 + a sin 0) = tan 6 (3/ sin 6 + 4a sin 0) 
or 3/ (tan 0 sin 0 - tan 0 sin 9) = a (tan 0 sin 0 - 3 tan 0 sin 0)

3/ _ (tan 0 - 3 tan 0) sin 0 
a (tan 0 - tan 0) sin 0

Example 3. A rod of length 2a. revolves with uniform angular velocity CO about a vertical 
axis through a smooth joint at one extremity of the rod so that it describes a cone of semi-vertictd 
angle Ct, show that

or

...(4)or

Dividing (3) by (2), we get

...(5)tan 9 =

f

or

Hence proved.or

*
3 g(0^ =
4 a cos a
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Also prove that the direction of reaction at the hinge makes with vertical an angle D’Alanben'x Principle
'3-1tan - ran a .
4

Solution. Let a rod AB of length 2a and mass M (say) revolves with uniform angular velocity 
CO about a vertical axis through <4-

Let us consider an element PQ of width dr at a distance a- from A. Then the mass of this
f m']element PQ is “ 5a.
2a

A!'

A
AX-

aX-v,
N

K

As the rod AB revolves about the vertical axis, then this element PQ describes a circle in a 
horizontal plane of radius PN = a sin a. Then the reversed effective force on this element is 

M
5a W . PN along NP

2a

= — OA CO (a Sin a) along NP.

The external forces acting on the rod are the weight Mg of the rod vertically downwards and 
the reaction at /4.

Taking the moments of force about .4, we have
M '] t

6a . co'a sin a .Mg . GK = I.
2a

p2a
M -< .
— u)'Sin a cos a „ 2a vU x~ cLxMg . a sin a {'.■ GK = a sin a. AN = a cos a)or

M ■, .
CO" sin ct cos a A

2a LH
Ml-= —CO sin a cos a —- 
2a 3
4

= — Ma'tsi' sin a cos a

4 2- T oco cos a^ = 3 

co^ = ^ gor
4 a cos a

This proved the first result.
Further, let X and Y be the components of the reaction at 4, then we have 

A = 1 —5a CO A sin a
2a
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♦

Special Fitnclion niid Mechanics {■2a
M2. ,CO ;c sm a dxJo 2a

f 2a
M co^ sin a .

• U X dx
2a

r
M 2 ■ X = T—CO sma —2a 2 Jo

M2.= — a) Sin a —t"2a I 2
= MatiT sin a

Y = Mg.
If 0 be the angle that the direction of reaction makes with the vertical, then 

tan 9 = —

and
1

A y

MaCO^ sin a
Ms

A'<-a 2 ■= - (0 sin a
8
3= -tana 4 a cos a4

-ifS0 = tan - tan ct .4
Hence proved the second result.

• SUMMARY

drEffective force : E.F. = mass x acceleration = m dp-
(tr• Reversed effective force : R.E.F. = - in

• D’Alembert's Principle : The reversed effective forces acting on each particle of the moving 
rigid body and impressed forces on the body are in equilibrium.

iA 
dP ,

dP

EF + 2 - m = 0i.e.,

• STUDENT ACTIVITY
State and prove D’Alembert’s Principle.1.

I
I
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2. Arough uniform board, of mass «i and length 2a, rests on a smooth horizontal plane nd man 
of mass M walks on it from one end to the other. Find the distance through which the board 
moves in this time.

D'Alembert's Principle

• TEST YOURSELF
1. A rod revolving on a smooth horizontal plane about one end, which is fixed, breaks into two 

pans; what is the subsequent motion of the two parts ?
Find the motion of the rod OPQ, with two masses M and M' attached to it at F and Q 
respectively, when it moves round the vertical as a conical piendulum with uniform angular 
velocity, then angle 0 which the rod makes with the vertical being constant.
A uniform rod OA, of length 2a, free to turn about its end 0, revolves with uniform angular 
velocity to about the vertical OZ through 0. and is inclined at a constant angle a to OZ, show

' 3« ^
4f3CO^

\ y
A plank of mass M is initially at rest along a line of greatest slope of a smooth plane inclined 
at an angle a to the horizon and a man of mass M', starting from the upper end, walks down 
the plank so that it does not move; show that he gets to the other end in time

2.

3.

Ithat the value of ct is eiher zero or cos

4.

V 2M'a
+ Sin a 

where a is the length of the plank.

ANSWERS

Rod OA revolving about fixed point 0, the part AB with its C.G. C will fly off in a tangent 
line at C to the circle with 0 as centre and OC as radius and will also continue to rotate about 
C and the part OB will continue to rotate about 0 with the same angular velocity.

1.

OBJECTIVE EVALUATION
Fill in the Blanks :
1. D'Alembert's principle reduces the dynamical problem into

j2 .2ay d z m —r • m —r
dP- dP

Jd\ on the particle of mat any timer parallel^2. m —-
dP

to the co-ordinate axes.
3. Z {~mf) is called................
True or False;
Write T for true and F for false statements :
■1. D’Alembert’s principle says that the reversed effective forces on the body is in equilibrium

(T/F)
• .r*

are the components of

I

with the impressed forces acting on the body.

d- r
2. is the expression of effective force.

The Impulse of the force is the time integral of the force.

X -in
dr (T/Fi

1. CT/F)
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Spec uil Fiincrian and Mechanicfi Multiple Choice Questions :
Choose the most appropriate one :

1. According to the D'Alembert's principie, S -in = 1
dt^

(d) none of these. (

2. If R be the internal force acting between two panicles of a rigid body, then X R— ?
(d) none of these. '

3. If r be the position_ vector of a particle at P wth respect to the its centre of gravity and M be 
its mass, then ZM r is :
(a) 0

(b) 1(-F) (c) 0(a). ZF

(c) 0(b) -1(a) 1

(d) none of these.(c) -1(b) 1

ANSWERS
Fill in the Blanks ;

Statics problem 2. effective force 3. reversed effective force1.
True or False ; 

1. T 2.F 3. T.
Multiple Choice Questions ;

1. (b) 2. (c) 3. (a).

□□□I
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