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LA LEARNING OBJECTIVE
After going through this unit you will learn :
e What are continuity, discontinuity and uniform continuity ?

e How to check whether a function is continuous or not.

* 1.1. CONTINUITY

A continuous process is one that goes on smoothly without any sudden change. Continuity |
of a function can also be interpreted in ¥4 Yy o
a similar way. For better understanding,
consider the following figures.

The graph of the function in fig.

N
~
1(a) has sudden cut at the point x =4 ,—j _
4

—> X

—

O
4

1(b) proceeds smoothly. We say that the O
function of fig. 1(b) is continuous, . (a) S (b)
while function of fig. (a) is not Fig. 1
continuous. _
Also, while defining lim flx), the function f may or may not be defined at x = a. Even if f

X=n
is defined at x=a, lim f{x) may or may not be equal to the value of the function at x = a. If
X=n
lim Ax)=fla), then we say that fis continuous at x = a.

XY—a B
/Systematic study of the continuous nature of various phenomena began at the close of: the
17" century. The french mathematician G. W. Leibnitz (17" cent.) was a pioneer who first specified
the two concepts underlying various physical phenomena of the universe. The first of these is
calculus, which is the natural language of the continuity. and the second is combintional analysis
which deals with the discrete or the discontinuous. The study of continuity of functions is the most
important aspects of analysis and is based on the notion of limit.

Continuous Functions.
Continuity at a point. A function f. defined on some nbd of a point a, is said to be continuous
at a if and only if any one of the following condition is saitsfied
@ fim fx)=fa)
ir—=a .
(i) fla-0)=fla+0)=Ra)

(iii) Cauchy Definition of continuity for € >0, 3, 8 > 0 such that

~ Continuity
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| fix) ~ fla) | < &, whenever 0 < |x~a|< 8.
The above all conditions are equivalent to each other, and being, siinple, are of common use.

REMARKS

»

Checking the continuity of a function from the smoothness of its graph is not a complete
method. Consider the graph of the function fx) = x sin l, then we observe that it has no
x

breaks in the nbd of x=0. But this function is not continuous. Observe that the graph
oscillate widly near zero.

Some More Definitions of Continuity.

is continuous to the right of @ (or right continuous

at a).

fis continuous to the left of a (or left continuous

at a).

an open interval ]a, b[ if it is continuous at every
point of a, b[. ’

WX hm Ax)=fa), then we say that f

Xx—=a+0

(i) If  lim . fix) =fa), then we say that ¢ €

t—oa-0

(iii) A function f is said to be continuous in.

(iv) A function fis said to be continuous in a

closed interval [a, ] if it is

(1) right continous at a

(2) continuous at every point of Ja, b{

(3) left continuous at b.

(v) A funcntion fis said to be continuous in a semi-closed interval [a, b[ if it is
(1) right continuous at a )

(2) continuous at every point of Ja, 5[

(vi) A function fis continuous in a semi-closed interval ]a, 5] if it is

(1) continuous at every point of Ja, b]

(2) left continuous at b.

(vii) A function fis said to be continuous at a € I, iff lim fx) exists, is finite and is equal to
r—a

fla), otherwise the function is said to discontinuous at x =a. .

(viii) Heine’s definition of continuity : The necessary and sufficient condition for a function

f defined on an interval / C R to be continuous at a point of interval I is that for each sequence
<a,> in I converges to a, the sequence < fla,) > converges to fa).

a function. Continuity of a function f at a f(a)

point

break in the graph of the curve y = Ax) at

XxX=a

£>0,
y =fx) from x =a - 8 to a + 8 lies between
the lines y = fla) — € and y = fla) + ¢.

Here, we have that fis said to be continuous iff

lim flay) = fla). N

n— o
Graphical meaning of continuity of /{@)"€l—cceeeaoo e ,I
' £
|

a graphically means that there is no  f(a)< T ............. Locmeood

and given however small
3,8>0 such that the graph of

Examples on Continuous Function. <« 25>

(i) Every constant function Fig. 3

f: R — Cis contingous on R.

Fore>0,ae R,jx-a|<e=|C-C|=0<¢

(i) The identity function f: x = x € R is continuous on R.
Fore>0,8=¢and |x—a|<e=|x-a|<eVae R

(iii) The function f: x — x", n € N is continuous on R



Foranyae R, lim f(x)=d" = fa).

X—=ra

(iv) The polynomial function f(x) = ay + @jx + ... + ¢,x" is continuous on R.
Y : ‘

Foranya€ R, lim Ax)=fla). -

i—=a

-t

* 1.2, DISCONTINUITY

(1) A function f which is not continuous at a.point a is said to be discontinuous at the point
‘a’, where ‘«’ is called the point of discontinuity of for fis said to have a discontinuity at a.

(2) A function which is discontinuous even at a single point of an interval, is said to.be
discontinuous in that interval.
(3) A function f can be discontinuous at @ point x = a, because of any one of the following
yeasons - :

(1} flx) is not defined at x = a.

(it} lim fx) does not exists.

r—=a

(iii) lim Ax) and fla) both exist but are not equal.

R i

Types of Discontinuity.

(i) Removable discontinuity. A function f is said to have a removable discontinuity at a point
a iflim flx) exists but is not equal to the function value at a i.e.,

‘ fla-0)=fla +0) % fla).
REMARK

> In the above case, a function fcan be made continuous by assigning some suitable value

to a, such that

lim Ax)=fa).

X—u
For example. Suppose f'is a function defined on ]0, 1{ as follows :

2, 0<x<«l, x# L

N 2
=1 -
1, =5

. . o |
Then, it is clear that fis continuous 1n 10. 1{ except at the point x = 3 At the point x = 5 we

have )
fo-o)oieo)

1) :
but fa_l ‘

- 1
=fhasa removable discontinuity at X=75

: 1
L may be removed by choosing f (5): 2.

. gt v
The discontinuity & 7 N |

; f first kind. A fimction f is said to have a discontinuity-of ﬁrsr.kmd ata
of firs . but are not equal. The point a is said to be a

jmil +0) exist
7 ] fe limits fla —0) and fla ( .
oo l_f/)()fll{:;({(?), grom e (eft or fron! right according as

T a - 0) % fla) = fla + 0)
or fia—0)=fla)# fla+0).

For example. Consider a function f defined on 10, L[ as follows
172, O0<x<1/2

_1
fy=4 0 x=3
—1/2, 1/2<x<]

(ii) Discontinuity

Obviously, f is continuous over the open interval 10, 172 and 11/2, 1{

At the point x = —1—

Continuiry
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f( —0]: limof(-%—h]r;l)-:&O:f(l/Z)
h— bt

1 . 1
f[§+0]= ’llino f[§+h)=—
1 ]
= f(i—O)if(E-%O)

= f has a discontinuity of the first kind at x = -'2-

(iii) Discontinuity of second kind. A function f is said to have a discontinuity of second kind
at a point a if none of the limit fla — 0} and fla + 0) exist at a. The point a is said to be a point of
discontinuity of second kind from the left or from the right according as fla - 0) or fla +0) does
not exisis.

For example. 'Consider the function fx)=cos [%] defined an ]- o, oo]. The graph of the

N | —

[SAE

#

o

1}

~
—
N |—
—

function as given below :

. . s . (n .
Obviously. at the point x =0, both the limits  lim  cos [-r_) and lim cos [T) do not cxist.

x— 0~ “x = O+

Hence, x = 0 is a point of discontinuity of the second kind.
(iv) Mixed discontinuity. A function fis said 1o have a mixed discontinuity at a point a if
f has a discontinuity of second kind on one side of a and on the other side a discontinuity of first

kind or may be continuous.

- . o)
For cxampie. For the function fix) = e sin <

_fim flx)=0. lim f(x) does not exists and the function is not defined at x =0. Therefore, :‘

x=0- x—-0+
the functi!on has a discontinuity of first kind ya
from the left and a discontinuity of the
second kind from the right at x = 0. Thus: the
function has a mixcd discontinuity at x= 0,

(v) Infinite discontinuity. A function
fis said to have an infinite discontinuity at
x=aiffla+0)orfla-0)is+ o or ~oo, [f
[ has a discontinuity at @ and is unbounded
in every nbd of a. then f is said to have an
infinite discontinuity at a.

For Example. Suppose f{x) =-1l; in |- oo, oof.

It is clear that f is continuous on }- oo, oq except at
x=0. Atx=0. te limits do not exist but tends to infinity. So,
x=0is a point of infinite discontinuity. Hence, a rectangular
hyperbola is a curve with one point of infinite discontinuity.
Jump of a Function at a Point.

If Ra + 0) and fa — 0) both exist, but not equal, then the

Jump in the function at x = a is defined as the non-negative
difference fla + 0) ~ fa - 0).

REMARK

> . . . o . . . .
A function having a finite ndmber of jumps in a given interval is called piece
continuous or sectionally continuous.

* 1.3. FOUR FUNCTIONAL LIMITS




Let the upper and lower bounds of the function f{x) in the right hand nbd [xy, xy + 1] of x;
denoted by M and m respectively where M = M(l) and m = m(h). Let the sequence of diminishing
values /iy, /1o, ... be assigned to /i, which converges to zero, then M(/), M(hy), M(J3) ... is a
decreasing sequence and so it possesses a lower limit.

Similarly. the sequence m(f1y}, m(ha), m(/3) ... is an increasing sequence and have an upper
limit. These lower and upper limits are respectively known as the upper and lower limits of the

function f{x) at x = xy on the right and are denoted by fxg + 0) and fixy + 0) respectively.

Sixo+0)= lim M(h) and f(xo+0) = lim mh).
h—0 —_ h-0
If the right hand upper limits flxo+0) is equal to the right hand lower limit
flxy +0), then their common value is known as the right hand limit of the function f{x) at x = x; and

is denoted by flxg + 0)

ie., Sxo+0) = flxa+0) = flxq + 0)-

Similarly, if we consider the left hand nbd [xg — h, X}, then the upper limit of m(#h) and the
lower limit of M(h) are respectively known as the lower and upper limits of the function f{x) at

x =xo on the left and are denoted by f(xg — G) and fixy -+ 0) respectively.

If the left hand upper limit f{xy — 0) is equal to the left-hand lower limit f{x, — 0), then their

common value is known as the left hand limit of the function f{x) at x=xj and is denoted by
flxg—0)
Le., Sxo = 0) =f(x0 - 0) = f{xy - 0)-

REMARK
> The four numbers Sixg +0), fAxg+0), fxg—0) and f(xO—O) are known as four
functional limit of the function Ax) at x=xp,

»  The four functional limits of the function f{x) at x = x, are independent of the value

of the function

» At x=0, the functional limits are denoted by

A+ 0), f(+0), A= 0) and f{(~0).

SOLVED EXAMPLES

v —1

Example 1. Show thar f(x) =-

1 is continuous for all values of x except x = 1.
X —

Solution, If x # 1, then f{x) = (x + 1) is a polynomial.
=f{x} is continuous for all values of x # 1.

(. Every polynomial function is continuous)

If x =1, Ax) is of the form g, which is not defined and so the function f{x) is discontinuous

0
atx=1. .
Example 2. Show that the function f{x) is defined by
2
Nl xS, x#El
f) 2, x=1

is discontinuous at x = 1.

Continuity
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* Solwtion. Here the value of fixyatx=11is2

= A =2
Now, RHL =f{1 +0)= lim A1 +/)= lim (1+/h)?=1
) =0 h—0
Also LHL=f1-0)= lim fl~M)=lim (1-h)?=1
! h—->0 h—=0

Therefore, we have

AL+0)=R1-0) £R1)

= Jf(x) is not continuous at x = 1.

Example 3. Examine whether or not the function
sin 2x
fo=¢ x 7

2 , when x=0

when x#0

is continuous at x = 0.
Solution. Gjven that fx) =1, when x =0
= [O)=2

Now, RHL:f(O—{—f)): lim AO+/)= lim sin 2!0+h!
h—0 h—0 © +/l)
=2
‘ = = [ ; sin 2(0- £
and LHL=f0-0)= lim f0-#)= lim |S220=/)
h—0 h—0 O-m
=2.

Therefore, we have
fO0+0)=A0-0)=A0)=2.
Hence, f{x) is continuous at x=0.
Example 4. A function fix) is defined as follows
(*/a) —a, when, x<a
fix)= 0 , when x=a
a~-(d*/x), when x>a

Prove that the function f(x) is continuous at x = a.
Sodution. Here, we have

h>0 (a+h)

: 2
RHL = fla + 0) = lim fla+4)= lim [a— £ }
. h—0

2
=[a—“—}:(a—a)=u

a

: , .
and  LHL =fla-0)= lim fla=/)= lim [(a : —a}
A0 h—4Q a

2

2

By using fix) =a - a?' for x > aJ

[By using f{x) =.% —afor x <al

—a

a IQ“

=0.
Also fix)=0forx=a
= Ra)=0.

Now, from (1), (2) and (3), we have
Aa+0)=fla-0)=fa)=0

= f{(x) is continuous at x = a.

(2

Ve



Example 5. A function flx) is defined as follows
_Jl+x ifx<2
ﬂx)_{S—x if x22
check the continuity of fix) at x =2.
Solution. Here, we have
f2)y=1+2 or 5-2=3.

Now, RHL=f2 + 0) = lim A2 +h)
h—0
= lim [5-2+h)]= lim [3-/]=3
/ h—0 h—>0
and LHL=A2-0)= lim fi2—-#)=lim [1+(2-/)]=3.
h—>0 h—>0

Now, from (1), (2) and (3), we have
L2+0)=R2)=f2-0)=3.

Hence, the function f{x) is continuous at x = 2.

Example 6. Test the following function for continuity at x =0

() f(x)=xsin%' x20,ix)=0at x=0.

(ii)ﬂx)=“l‘“-l_T~ x#20,fix)=0atx=0.
—-e

Solution. (i) Here, we have
LHL=f0-0)= lim A0-h)}= lim f—h)
h—0

h—0

. !
= &;ITO (= h) sin (—_h]

= lim h sinl
h—s0 h

=0 x a finite quantity lying between 1 and — 1

=0
and RHL=A0+0)=-1lim AO0+h)= lim fHh)
h—0 h—0
= lim #Asin 1
h—0 h
=0.
Also, given that f0) =0
=> L0+ 0)=A0-0)=£0).

Hence, the function f{x) is continuous at x = 0.

(ii) Here we have
LHL =f{0-0) = lim f{0-h)
h—0

= lim f-h)= lim ——=0

h—0 hso l—e
and RHL =f0+0)= lim RO +/)
h—0
= lim )= lim ——=1
h—>0 hs0 1—e
Also, A0)=0
= RO +0)=A0-0)=H0)

Hence, f(x) is discontinuous at x = 0 and this discontinuity is of first kind.

Example 7. Discuss the continuity of the function fx) defined by

e}

-(2)
..(3)

Conunuity
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A for x<-=2
fx)=49 4 for —2<x<2
X for x>2.
Solution. Here, we shall check the contipuity of f{x) at x=~2 an,_d 2.
Atx=-2.
Here, we have —2)=4
LHL =f-2-0) = lim fi-2-#h)= lim (-2-h)*=4

. h—>0 h—0
and .~ RHL=f-2+0)= lim fi-2+h)= lim 4=4
’ h—0 h=0

= A=2-0)=A-2)=f-2+0)=4.
Hence, f{x) is continuous at x==2.

Atx =2

Here, we have 2) =4

RHL=A2+0)= lim f2+h)= lim (2+h)’*=4
’ h—0

h—0

LHL=A2-0)= lim fi2-h)=1lim 4=4
- h—0

h—0
= f2-0)=A2)=2+0)=4.
Hence, f{x) is continuous at x = 2.
REMARK

> At x=0, neither function value nor limit exist. Therefore, the function flx) has
discontinuity of second kind. -

Example 8. Show that the function fix) defined on R by
Ax) = "1, whenx is rational -
-1, when xis irrational

is discontinuous at every point of R.
Solution. Let us first suppose, x be rational. Then fx) = . For each positive integer n, let

N 1
x, be an irrational number such that |x, — x| <—. Then the sequence < x,> converges to x. Now.
n

by definition f{x,}) =1V n
= lm flx,)=-1#fx).
n—yeo

Hence, fis discontinuous at cach rational point.
Now suppose x is an irrational number. Thén flx) = |. For each positive integer n, let x, be

. ) 1 .
the rational number such that |x,—x|<—. Then, the sequence <.x,> converges to x. Now
. n . -

fx)=1¥nso that -
lim fx,)=12Ax).

H—)co
Theretore, f is discontinuous at each irrational point.

Hence, fis discontinuous at every point of R.

« TEST YOURSELF-1

1. Discuss the continuity of the following functions

(i) fix)y=cos (1} when x#0, {0)=0

X

(i) ﬂx)=Si':x,x¢0,f(0)=1 '

i) 0 = L when x#0, and 10) =0,
- c) - .




I~

L x#0.0)=1
) fin) = _ﬂ('—’ﬁ x#0 and f{0) =0

I/x

1/x _

(vi) flx) = <557
[sd

1.#0.](0):0

Examine the following function for continuity at x=0and x= 1

2 if x50
f)y={ 1 if O<xs1
1/x if x>
A function f defined on [0, 1] is given by

. _ |~ if x is rational
fw)= { —x. if xis irational.
Show that f takes cvery values between0 and 1, but it is continuous only at the point x = %
Examine the continuity of the function
- L if. x<0
L_ | Sx—-4 ,if O0<x<i
SO =N =35 i 1<x<2
3x+4 L if x22
atx=0.1and 2.
xel/.\'
Show that the function f defincd by fix) = ]/x.x:eO.ﬂO) =1 is not continuous at x=0
l+e
and also show how the discontinuity can be removed.
ANSWERS
1. (i) Discontinuous atx=0 (ii) Continuous atx =0

(iii) Discontinuous at x =0 with ordmary discontinuity
(iv) Continuous at x =0
(v} Discontinuity of the second kind at x =0

5. Continuous at x = 1. 2, discontinuous at x =0.

SOME IMPORTANT THEOREMS

Theorem 1. If fand g be two continuous funciions at a point a € 1 then the function
(B f+g (i) ¢f
(iii) fg (iv) f/¢ 18 (@) # 0] are also continuous.
Proof. Since fand g are continuous at a. we have

lim fix)=fa) and lim g{x) = g(a).

xr=a a0

-

(i) By definition, we have
(f+8) () =Ax) + g(x) Vel
lim {f+g)(x)= lim [Ax)+gx)l= lim fx)+ lim g(x)

= A= a r—a x=a
= fla) + g(a) -
={f+2) (@ -
= (f + g) is continuous.
(ii) By definition, we have
(N )=cf(x) Vxe i
Therefore  lim (¢f) (x) = lim ¢fix) =clim f{x)

‘ - o0 o
=(cf) (a).

Hence, ¢f is continuous at x = a.

Continuiry

Self-Instructional Material 9
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(ifi) By definition, we have
fo)(x)=Ax).glx) Vxe I
Therefore, lim (fg) (x) = lim [Ax). g(x)]

=[lim f(x)il[lim g(—x)]

=fla) - g(a)
=(fe) (@)

Hence, fg is continuous at x = a.

(iv) We have A
(‘5)(@:‘&?— V xel glx)=0.

o (£ oz tim &) R (1
Therefor, Xh_r)na (g]() lim )~ 2@ (gJ(a).

Hence, p is continuous.

Theorem 2. Iff is continuous at a € I, then | f] is also continuous ar a.
Proof. Since fis continuous at x = a
= lim fx)=fa).
xX—=a
We know that
Ifl®)=|fx) ), xe 1
= lim [fl(x}= lim |fx)|=

r—=a r—=a

lim fix) | =|fla) | ={f](a).

x—a

Hence, | f| is continuous.

Theorem 3. (Boundedness theorem). If a function f is continuous in a closed interval
[a, b], then it is bounded in [a, b).

Proof. Let, if possible f be unbounded on /. Then for each ne N, 3 x, € I such that
| ix,) | > 1. The bounded sequence < x, > in / has a subsequence <Xy, > such that it converges to a

point xg € / (. every subsequence of a convergent sequence is convergent)
= <xp, > xp and [flx,) |>m Ve N '
= <flx,) > can not converge to f{xo)
= 7 -fis not continuous at x,.

which is a contradiction.
This contradiction leads to the result that fis bounded on 1.
Theorem 4. f a function f is continuous on a closed and bounded interval [a, b] ‘then, it

attains its bounds on [a, b].
Proof. Since, the function fis continuous on the closed and bounded interval [a, b1, therefore,

it is bounded

=supremum M and infimum m of fexist in [a, b]. -
To show, there exist two point x;, x; € [a, b] such that
Sx) =m, fix)) =M.

Then, by definition of supremum

A<M VYVxe [a, bl
Let, if possible fix) # M for any x € {a, b], then fxy<M ¥ xe {a b] Therefore,

M-Rfx)>0, Yx€ [a, b].
Since, f{x) is continuous on {a, b] and M is constant, therefore M — fx) is continuous on
[a. b].

Also M - fix) 20 for any x € [a. b]

= is continuous on [a, b}

1
M~ fix)



1 ) . Continuity
= is bounded on [a, ] '

M- fx)
= 3 a number K > 0 such that
1
<
M—f(x)—K’ YV x € [a, b]
= M—f(x)z%, v xe [ b]
= f(x)SM—% Y x€ [a.b]

= M -}l? is an upper bound if f on [a, b] such that

M—-’-l<-<M=supf(x)

which is « contradiction

= 3 a point x, € [a, b] such that
M = f(x,).

Similarly, we can show that if m = inf f{x) 3 a point x; such that
m = flx)).

Theorem 5. If a function f is continuous in {a, b] and fla), {b) have opposite signs, then
there is at least one value of x for which fx) vanishes.
Proof. Since, the function fix) have opposite signs for a and 6
ie., fla)<0and fb) > 0.
Let us define
S=[x:x€ [a,b],f(x)<0].
Now, since fla) <0, therefore a € §= §# ¢.
Let u=supS.
Now. to show a <u < b and fu) =0.
First, we shall show that « # a. Since fla) <0 and f is continuous at a,
= 3 a number &1, such that fx) <0 Vx€ la, a+d1[.
= [a.a+81}CS§
= sup § must be greater than.or equal to a + &
Therefore, uza+dy=u+a.
Now, to show u #b
Since, b} >0 => 3 82 such that fix) >0 Vxe [b- 082, b]

= 1b-82,b[CS
= u=supS<hb-82<b
= u#b.

Now, we shall show that fu) $ 0. Since a < u < b. Therefore, if flu) > 0. Then we can find a
number 83 > 0, such that

Ax)>0foru—83<x<u+b;.
Also, u = sup S. Therefore, 3x1€ S:u—-83<xSu

= fx)>0.

Also x € §=fx)<0
which is a contradiction

= Ruy$ 0.

Now, we shall show that f{u) & 0. If f{ir) < 0, then we can find a positive number 8, such that
u+08,<band fx) <0foru—-8;<x<u+d,

If x; is any other point such that u < x; < & + 84. Then f{x;) < 0. But this is a contradiction to

the fact that u is the supremum of S consequently f{u) £ 0
Hence, f{u) =0.

Self-Instructional Material 11
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_the number & is independent of the point «, then the function

Theorem 6. (Intermediate value theorem). Let f be a function continuous on the closed
and bounded interval {a, b). If K be any real number between fa) and f(b), then there exists a real
number ¢ between a and b (a < ¢ < b) such that '

fle)=K.
Proof. Let us suppose
' Ra)<K<fb). e
Define a fucation g such that
() =fx) - K ; x°€ [a, b]. (2
Now, since f is continuous on f[a, ] and. K is constant, g is cohtinuous on (a, b]. E)

From (1), we have that X lies between fla) and f(b). Therefore, either
fla)y < K <fib) or f{b) < K < fla).
From (2) o
g(a)=fa)~K <0
g(by=ftb) =K >0

= _ gla) . g(h) <O0.

Now, from (3) and (4) there exists a point ¢ € Ja. b[ such that
 8@)=0

= floo-K=0

= fley=K.

Hence, there exists a point ¢ such that « <c¢ < b and f{c) =K.,

* 1.5. UNIFORM CONTINUITY ;

i

Since, we know that if a function f{x) is continuous in the closed interval /. then for a given
positive number €, 3 a positive number & > 0 such that .
[fi)-fa)|<efor|x—af<d.ae L
Here, we observe that the number 8 depends besides
€, on the point a as it is a function of a. In general, § is ya i
different at different points in /. . . '
For this, let us consider the figure9, where PQ, divided 0 |
into equal parts, each of length €. , -
The corresponding subdivision of / = [¢, b] issuchthat | &__________
d is not the same for all points x in [@¢,6]. (&
Therefore, if we can find a positive number 3, such £
that for a chosen €, | fix) —fla) | <€ for | x —af< 8 where

b e - ————

> X '

Il
Q-

fx) is said to-be uniformly continuous on [a, b]. O x=u x=
Defintion. A function fix) defined on an interval I is

said to be uniformly continuous in 1 if to each €>03 a

positive number 8> 0, (depending upon €) but independent Fig. 9

of x € I such that ) ' |

_ [ f(xy) = fix)) | <&, whenever | x,— x| <8 ¥
where xy, X3 € L . . [+ 1
+ 1.6. SOME IMPORTANT THEOREMS ' _ b

Theorem 1. [f a function f is uniformly continuous on an interval I, then it is continuous on 5L

Proof. et us suppose that f is uniformly continuous on /
= given € > 0,3 § > 0 such that ’ Y ‘|

| flxs) — fx)) | < € whenever [ x;— x| <8, Vx,xpel : " |‘
Let x, € I and x, € x, then we have o Lp

| fix) = fix)) | < €, whenver O <|x —x; | <8




= f{x) is continuous at x; € /.

Since. x, is arbitrary, consequently f{x) is continuous on /.

Theorem 2. [fa funiction fx) is continuous on an closed and bounded interval I = [a, ), then
it is uniformly continuwous on a, b).

Proof. Since fis given to be continuous in the interval {a, b].

Let € >0 be given => [a, b] can be divided into a finite number of subintervals such that

€ . . .
J R —Ax) | < 3 where x;, x, are any two points of the same subinterval.

Let us divide the whole interval [a, b] into n sub-intervals, say
[xg=a, x;). Ixp, x2), [ x3), oo I, x, = 6]

27 E . -~
=|A)-fAx ") < > where x’, x “ belongs to the same subinterval...(1)

Let 8=min {8,.8, ... 8,. ... 8,} where 8, denotes the length of the r™ subinterval i.e.,

8= 1%~ 1|

| —[— I

a=xy X3 R¥) A3 Nt X Xrel Xp-1 Xnsh

Let x and ¢ be any two points of [a, b] such that

|x—c|<38.
Since 8 > 0. less than the length of each subinterval. Therefore, following two cases may arise:
Case (i) When x and ¢ belongs to same interval :

- ]ﬂx)~f(c)|<%, when |x—c|<$8

where x, ¢ € [a, b]

= function fis-uniformly continuous in [a, D).

Case (ii) When x and ¢ belongs to the two consecutive sub-intervals say
XYoo <A<, <C<Xp -

Now, consider

|ty = fle) | = [ Ax) = Ax) + fix) = fo) |

<|Ax) ~fx) |+ [ fx) = fe) | (By triangle inequality) |,

[ )
<5 tse when |x—c| <8

<g, when |x—c|<d.
. Given € >0, 38 > 0 such that ‘
| fix) = flc) | < € where x and ¢ are any two points of [a, ] such that |x/— c|<8
= fis uniformly continuous on {a, b).

Hence, ,
fis continuous on a closed and bounded interval {a, b}

= fis uniformly continuous on [a, b].

SOLVED EXAMPLE

Examplc‘ 1. Show that the function fx) =x>+3x,x € [~ 1, 1] is uniformly continuous in
[-1,1]. g
Solution. Let € > 0 be given . .
Let “x, € (=1, 1]= | Ry = fx) | =] (67 + 3x) — (xf +3x)) |
=|(xf = x0) + 30 - x) |
2 (r,—x) (p+x, +3)]
L w3
3 il [+3)

"

1A

Comtinuity
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<5 x5 | [V oxnxme[-L1=|x|{<land|x|<1]

£
= | fr)) = flx) | <€ for | x, - x, |<§'

Thus for any €< 0,36 = % > 0 such that

| fx) = fix) | <&, whenever | x,— x, [ <8, Vx,,x5€ [~ 1, 1],
Hence, f{x) is uniformly continuous in {— 1, 1].
Example 2. Show that the function f defined by flx)= s uniformly continuous on
[-2,2].
Solution. In order to show that the function fis uniformly continuous we have to prove that
for a given € > 0,38 > 0 such that
) | Ax2) = fx1) | <& when 0 <{x2— x| <8 where x|, x2 € [~2,2]
Consider '
| fox2) = fxt) | =] 62 = x|
=0~ x) (7 4 3+ xp%0) |
<lxp=xp | [ 27 |+ % |+ ] wina []

<12 x%-x| (- xpxe-2,21=1x1<2|xn)<2)
| fxz) = flxy) | < € whenever | x; — x; ) < €/12.
Therefore, given € >0, 3 8 = (/12) such that
| Axz) — flxy) | < € whenever ) x; —x; | < 8. %), x5 € [~ 2,2].
Hence, fis uniformly continuous on [- 2, 2].
Example 3. Show that the function f defined by
f(x)=x£, vxe 10, 1]

is not uniformly continuous in 10, 1].
Solution. In order to show that the function f is uniformly continuous in ]0, 1] we have to
prove that for a given £ > 0, 38> 0, independent of the choice of x, (x € ]0, 1]) such that

|ﬂx)—f(c)|=~i—% <€ whenever 0<fx—c|<d
ie., |x—c|<8=>16_x <€
‘ cx
ie., o xeJe-8,c+d[= €2 ce. (D)
: cx

Let us take ¢ =9, then 1c — 8, ¢ + 8[ =10, 28(.
Since, the condition (1) must hold V x € 10, 2§[.

asx—>0,5—_5—>ooandxe 10, 28[

X
ie., if we choose x close to zero, then condition (1) does not hold.
1. e . .
= fx)= ¥ is not uniformly contiruous in 10, 1].

-Example 4. Show that the function f defined on R* as

ﬂx)=sini, Vx>0

. . N . +
is continuous, but not uniformly continuous on R".

Solution. Let a € R”.

~We have _
LHL=fla-0)= lim fa—h)= lim sin L =s'mi

A0 Ao 0 a-h a




1

RHL=fla+0)= lim fla+hA)= lim sin =sin—
: h=0 hoC ath a
Ra)=sin -
a
= fa+0)=Ra)=fla-0)
= fis continuous at a.
Since, a is arbitrary point in R*.
Therefore, fis continuous on R*.
Now, to show £ is not uniformly continuous on R*.
Let § be any positive number. Take
R ! _ 2
N w2 @nt )@ Vrerene z
such that x| = L 2 <d.

2 m T @n+1)m
NOW, |XI _X2|<8 but

[fx) = Ax) | = sinr1n~sin%(2n+l)‘n =1>¢

which shows that for this choice of €, we can not find a 8 > 0 such that

| Ax)) = fxy) | < e for | x - x| <8 V x.x€ R

. . . +
Hence, fis not uniformly continuous on R".

SUMMARY

Cauchy definition of continuity : ‘A function f is said to continuous at x =a if for given
€ > 0 there exists a 6 > 0 such that

|f(x)-f(a)]<€ whenever|x—a}<8
Discontinuous function : If a function f is not continuous at x = q, then it is discontinuous at
x=a.
(i) Removable discontinuity : A function fis said to have removable discontinuity at x = a if
lim f(x) exists but it is not equal to f(a).

ry—=a

i.e., fl@a=0)=f(a+0)=f(a).

(ii) Discontinuity of first Kkind : A function f is said to have discontinuity of first kind at
x =a if both f(a —0) and f(a + 0) exist but not equal to each other.

(iif) Discontinuity of second kind : A function f is said to have discontinuity of second kind
at x = a if none of f(« —0) and f(a + 0) exist.

(iv) Mixed discontinuity : A function fis said to have mixed discontinuity at x =a if it is_

discontinuous of first kind on one side of a and discontinuous of second kind on other side of
a. .
Uniform continuity : A function f defined on an interval I is said to be uniformly continuous
in T if for given € >0, &> 0 (depending on € not on x) such that

lf(x) —f(y)| <& whenever |x -y <38.

Continuity

Self-Instructior..t Material 15
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* STUDENT ACTIVITY

1.

2.

7
A

1, when x is rational

. 1s discontinuous al
— 1, when x is trrational

Show that the function f on R defined by f(x) = {

every point of R.

Show that the function fon [- 2, 2] defined by f(x) = s uniformly continuous on [- 2, 2].

.’/ A

« TEST YOURSELF

s

1.~

2.
3.

Let f: R — R given by f{x) = x%. Show that £ is not uniformly continuous on R.

Show that the function .\'2 and x3 are not uniformly continuous on [Q. cef. '
In each of the following cases, show that fis continuous but not uniformly continuous on their

respective intervals.

(i)‘f(x):sin;l. vxel0 1 (i) ﬂx):EI;- Ve [-1.0[

(iii)f(x)=ﬁ, Vxelo I (iv) fix) = ¢, ¥ x€ [0, eof.

If fix + v) =Ax) . A¥), V x,y € R, show that fis continuous on R if and only if fis continuous
at least one point of R. If fis continuous at some point a € R, prove that f is uniformly
continuous on every bounded subset of R.

~ Show that the function f defined by

2. ]
x“sin— for x#0

f(x) - ~ X.’.
0 for x=0

is uniformly continuous in [- 1, 1]."



Fill in the Blanks :

1. Afunction fix) is continuous at x = a if lim fx)= ...
. X—=a
2. A function is said is have .......... if
fla +0) =fla-0)=fa). .
3. Iffla+0)+#fla-0)then fix) is said to have a discontinuity of .......... .
4. 1f fis continuous then | f| is ..cco........ . ‘ '
S.  Every uniformly continuous function is .......... .

True or False :
Write ‘T’ for true and ‘F’ for false :

1. Every continuous function inclosed interval is bounded.
2. Every continuous function in open interval is bounded.
3. For lim fx) do exists, the function fx) must be defined at x=a.
x—a
4.  The limit of products is equal to the product of the limit.
5. oxr=1_2
lim ==

2 3

=1 x =1
Multiple Choice Questions :

Choose the most appropriate one :
1. M lim fx)=/and f{x) 20, then:

xX=a
(a) 1=0 (b) 10 ) i120 (d) None of these.
2. If lim fx)=1then lim [fix)|= :
xX—a xX—a .
(a) 1 (b) 1] (© 0 (d) 1.
3. If lim fle)=/and lim g(x) does not exists, then :
X =00 X =300 '
(a) lim f{x) - g{x) does not €xists
X =)o
(b) lim Ax)- g(x) exists necessarily
x—deo
(c) lim fx)- g{x) may or may not exists
x—peo
{d) None of these.
4. lim 1"—‘3—‘: :
xa2 X722
(@ 0 by 1 (c) 2 (d) Does not exist.
ANSWERS

Fill in the Blanks :
1. fla}) 2. Removable discontinuity 3. First kind
True or False :
1. T 2.F L F 4. T 5T
Multiple Choice Questions :
1, (¢) 2.(6) 3(c)

4. Continuous 5. Continuous

4.(d) S.@

(T/F)
(T/F)

(T/F)
(T/F)

(T/F}

aaa

Continuity
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UNIT
'DIFFERENTIABILITY
STRUCTURE

Defivative of a Function
. Continuity and Ditferentiability
Algebra of Derivatives

Rolle’s Theorem

Lagrange's Mean Value Theorem
Cauchy’'s Mean Value Theorem
O Summary .

o Student Activity

o Test Yourself

® & & & & °

‘_LEARNING OBJECTIVES

After-going through this unit you will learn :
‘How to obtaln the derivative of a function ?

- How fo check the dlffere_ntlavbllny of a function ?
What is Roille’s Theorem ? .
What is Lagrange's Mean Value Theorem ?

What is Cauchy’s Mean Vaiue Theorem ?
How 1o apply these theorems 7 -

* 2.1. DERIVATIVE OF A FUNCTION

Ifa functlon f(x) is dehned on nbd of a point ¢ and

tim Lat=fla)

h—>0 h
exists (finitely), then the function fix) is said to be differentiable at a and this limit is called
derviative of the function f{x) at a. :

Symbolically, this derivative, is denoted by f’(a) and is tull read as the derivative of fx) at
x =a with respect to the variable x.. The process of evaluating f’(a) is called differentiation.

If the above limit exists infinitely even then we shall admit it as the derivative at a. But the
admission does not seems to serve any fruitful purpose in our discussions. Therefore the case when
the limit exists infinitely is excluded.

Left hand derivative. The left hand derivative (regresswe derivative) of fat x = a is given

by
&_LA_Z T h>0

I:—)O

and, is denoted by Lf'(a). .
Right hand derivative. The right hand derivative (progressive derlvatlve) of fat x=a is

given by
ﬂﬂﬂLﬂl Jh>0.

h—>0
It is denoted by Rf '(a).
The derivative f’(a) exists when Lf (@) = Rf (a).
Differentiability in an Interval.
(i) A ftunction f: la, b — R is said to be difterentiable in la, 6( lff it is differentiable at every
pOlnt of ]a, b[.




(ii) A function f: [a. b} — R is said 1o be differentiable in [a, b] iff Rf'(a) and Lf’(b) exists
and fis differentiable at every, point of ]a, b[.
(iii) Let f be a function whose domain is an interval /. If /; be the set of all those points x of

I at which fis differentiable i.e. f’(x) exists and if /; # ¢, we get another function f’ with domain

/). 1tis called the first derivative of £. Similarly 2™ 37 . ™ derivative of fare defined and one

denoted by f”.f”, ..., f" respectively of course, in order that f” (x) may be defined, it is neccssary
(though not sufficient) that £~ l(x) may be defined for all x in some open interval containing a.

e 2.2, CONTINUITY AND DIFFERENTIABILITY

A necessary condition for the exis(ence of a finite derivative. Continuity is a necessary but
not a sufficient condition for the existence of a finite derivative.

Proof. Let fbe differentiable at a. Then lim &‘)——éﬂ exists and equal to f {a). Now we

Xr—=a
may write .
Sy - fiay = B2 (g (f x % a)
(x-a)
Now, taking limit as x — a. we get .
lim [fx)-fa)l = lim M(x-a)
xa x=-a (x-a)
- lim {M} lim (x - a)
x=a x—-a
(. limit of the product of two function is equal to product of their limits)
=f(a).0
=0
so that lim Ax)=fa).

x—a

Hence, fis continuous at x = a. Thus continuity is a necessary condition for differentiability.

» 2.3. ALGEBRA OF DERIVATIVES

Theorem 1. Ler functions f and g be defined on an interval 1. If f and g are differentiable
atx=a€ [, then f+ g is also differentiable and

(fg) (@) =f(a) £ g'(a).

Proof. Since. the functions fand g are differentiable at a, therefore

lim t!-\‘! : !!l‘l! =fl(a) .“(l)
x—a a
and lim Mzg,(a) o
roa X—a i
+ 3y —
Now, consider lim (fre ) -(tg)(a)
r—a X—a ‘ -
= lim 1Rx) 2 g)) — {Ra) * gla)]
xa X—-a
= lim [f2)=f9) , 2() — g(a)
x=a xX—a xX—-a
= fim {29 4 i, £0) - 2@
xma XTa4 x5 X-4
=f(a) t g'(a).

Hence f+ g is differentiable at a and
(F£gY (@)=f"(a) £g'(@).
Theorem 2. Let a function f(x) be differentiable ar a point a and c € R, then the function
cf is also differentiable at a and

) (@) =cf'(a).

YL Differentiabitity
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Andlysis . Proof. By the definition of the derivative of a function at x = @, we have
.- fx)=Ra
fim SR =AD s

< xoa X4 .

Now, consider

HEO-EN@_ |, cf)-cfla)

~ lim
x—=a x—a x—a x—a
e = lim {c¢ M
. x>a x—a
- lim 1) =fa)
x—=ra x—-a
=cf'(a).

Hence ¢f is differentiable at a and (¢f)’ (a) = cf '(a).
Theorem 3. Let, the functions fand g be defined on an interval L. If f and g are differentiable
ata € 1, then f. g is also differentiable and .
(f8) (@) =£"(a) gla) +f(a) §'(a)

Proof. Since, fand g are differentiable-at a, we have

lim /M =f'(a _ S (1)
x=a ;
and lim gi“%f-‘;iﬂl:_g'(a). | (2)
Consider  lim fe) ) = () (@) _ lim £2) 500 = fla) g(@)
' xoa x-a x=a xX—a
, _ i 2800 = @) gx) +Aa) 8(x) - fia) ela)
x—>a X—a
= lim [&i_:.gﬂl - g(x¥)+ fa) : M:I
= lim [M} lim ex) + f(a) lim 80 -~ ¢(@)
. . . ‘x—oa x—a x—a - x2a x—a
: . =f'(a) g(a) + fla) g'(a).
' [By applymg the theorem on limits of sums and products and using the fact lim g(x) =g(a))

, x—a

Hence, fg is differentiable at ¢ and -

(fg) (a)=f"(a) g(a) + fla) g'(a). i

Theorem 4. If a function f is differenticble at x=a and fla) #0, then the function }17 is

differentiable at a and

=t

(Ra)l
Proof. Since f is differentiable at a, therefore, it is also continuous at x = a.
. Also, since Ra)#=0.
S O
! . f)"fla) _ [f-f@] L 1L b

Consider Y a “i=a |'F0 f@ | (D
Since f is differentiable at x = g, therefore, .

lim M—f (@), « Q)

xoa X7 b

-Also, fis continuous at x = 4, therefore

lim f(x) = fla) #0. Foo o (3)

r—a
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By applying the theorem on the limits of a product to (1), and using (2) and (3), we find that

RN
xoa ﬂ‘) ﬂ ) !'gd!

exists and equal to —
- WP
Theorem 5. Let f and g be defined on an interval 1. If f and g be differentiable at a € |,
and if g(a) 0, then the function f/g is also differentiable ar a.
Proof. Let F=f/g. Then, we have
F(x) - Fla)=(7g) (x) - (f/8) (@)
L) _fa)

g(X) gla) g gl
[fix) g(a) - fla) g(a) + Ra) gla) - fla) g(x)).

[Ax) 8(a) - fia) g1

) g(a)
Therefore  lim 2= F@ iy H&uu o) ~f) {gu;gu}
x—=a X—a X—a g(x)g(a) —-a XxX—a
l L4 ’
or F(a)= 2@ 8@ [f (a) gla) ~ fla) g'(a)]
[ ’ _ ‘(a) g(a) - fla)g'(a)
- (g] @ g(@)T

Theorem 6. Let f and g be functions such that the range of f is contained in the domain of

g. Iffis differentiable at a and g is differentiable at f{a), then g o f is differentiable at a and
(gofY (@=g(fa) . f'@)

(This is known as Chain rule).

Proof. Since, the range of fcontained in the domain of g, thercfore, g 0 fhas the same domain
as that of f.

Now, let y = flx) dnd yo =fa).

Since, fis differentiable at a, we have

fim f8=AD _ oy

r—a x—a
or fx) ~fla) = (x - a) [f"(a) + A(x)}.
where A(x) > 0} asx — a.

Further since g is differentiable at y;, we have

fim 80) ~800) _ ¢Go)
Yoy Yo ’
or 8 — g(vo) = (v — yo) [g'(vo) + BOY)]

where B(y) — 0 as y — yg.
Now (g 0/) (x) — (g 0 ) (a) = g(fx)) - g(Ra)) = 8(y) — &)
=(y - o) [8'(vo) + B)]
= [fix) - Ra)| ['(yo) + BO)] .
= (x—a) {f"(a) + A()] [8"(v) + BO)1, (By (1)
Thus if x # a, then :

_S____g_ﬂ.g_). ’
0NN =& ONW@ _ y4y) + B) If (@) + AR : (3)

Also f being dlfferentlable at @ is continuous at a and hence x — a, f{x) — fla) i.e. y — ¥,
= B(y)—>0asx—>aand A(x) 2 0asx—>a.
Now, taking the limit as x — a, we get from (3)

(g Of) (x) - gg O.f) ((1) =g'()’o)f'(xo).

X1

lim
X—a

Hence, the function is differentiable at @ and

(g o (a)=g'(fla)) f'(@.

Differentiability

(1)

-(2)

[By (2)]
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»

Theorem 7. (Derivative of the inverse function). Iffis differentiable at x = a and is one-one
Sfunction defined on interval i win‘r f'(a)y #90, then the inverse of the function f is differentiable at

Ra) and its derivative at fa) is ——

f ( a)
Proof. Let the domain of fbe X and let its range be Y.

If g be the inverse of f, then g is a function with domain Y and range X such that
f=y =) =x

Now, let us suppose y = fx) and y, = fla).

Since, fis differentiable at a, we have

. f-fa)
lim o =f(a)

or fx) - fla) = (x —a) [f"(a) + A(x)) ~(1)
where A(x) — 0 as x — a. Further, we have
g —glvo) =x—a, [by definition of g]
80 -8 x-a _x-a 1

x = .
Y=o . ,V Yo _f(X) —ﬂa) _f'(a) + A(x) [BY (D]

It can be easily seen that if y 5 Yo, then x — a. -

In fact, f being differentiable at a, it is also continuous at a, which implies that g = ™'
continuous at fla) = y, and consequently

g(y) > gl)asy > ypie x—aasy— y,
so that A(x) — 0 as y — y,.

S ORI, 1 1
vy Y Yo H‘Uf(a)+A(x) f(a)
or ng)=F(7) or g(f(a))—f @

Theorem 8. (Darboux’s Theorem or Intermediate Value Theorem). If f is finitely
differentiable in a closed interval [a, b] and f'(a), f'(b) are of opposzte sign, then there exists at
least one peint ¢ € la, b{ such that f’(c) = 0.

Proof. Let us suppose that f'(a) >0 and f'(b) <0, then there exists intervals ]a, @ + /[ and
16— h, b[, h > 0, such that

f>fla), ¥ x€ Ja,a +Ir[ : (D
Ax)>RAb), Vxe [b-h bl : ~(2)
Now, since fis finitely differentiable, then it is continuous in [a, b] and hence it is bounded

on [a, b] and attains its supremum and infimum at least once in [, b}. ['." A continuous function
attains its supremum and infimum at least once in [a, b]].

Thus if M is the supremum of fin {a, b], then there exists ¢ € [a, b] such that flc) =M. It is
clear from (1) and (2) that the upper ‘bound is not-attained at the end points @ and b so that
c € Ja.bl. .

Now we shall prove f'(c) = 0.

If f(e)>0, then there. exists an interval ]c.c+A], >0, such that fxy>fey=M,
V x € Je, ¢ + hf, which is not possible, since M is the supremum of the function f{x) in {a, b].

If f(c)<OQ then there exists an interval [c—h,c[, h>0 such that flx)>flc)=M,
¥V x € [c - h, c[, which is not possible.

Hence, we conclude that f(c) = 0.

SOLVED EXAMPLES

' Exami)le 1. Prove that tl;e Sunction fx)=|x|+|x— 1] is not differentiable at x =0 and
x=1. . , ' . :

Solution. Here, we observe that

() |¥{=-xand|x-1[=1~xwhenx<O.

(i) |#|=xand [x—1|=1-x, whenO<x< .

(iii} |x|=xand [x -1 {=x-1 when x> 1.

Hence, the given function can be rewritten as



Rx)=—-x+1-x  =1-2x, x<0
=x+l-x =1 , O0<x<lI
=x+x-1 =2x-1, x> 1.

Now. firstly we check the differentiability of f{x) at x = 0.

We have RF(0) = lim &i%;ﬂgl:lim AR —f0)

ho0 k-0 h
1_
= im ——
h—o N
=0 : o
and 1f7(0) = fim {0 =AO
C >0 -h
= lim M
ho0 —h
o 1=-2=mn-1"
= lim -
h-0 —h
. 2h
= lim —=-2.
noo

Thus Rf(0) # Lf’(0). Therefore the given function is not differentiable at x=0.
Now, we check the differentiability of fx) at x = 1. §

We Have RF(1) = tim LA =AD)
' : ho0 ) h
- iim R+kH-1]-1
h—>0 h
. 242h-2
= lim ————
>0 h
=2
, . 1-hm-A1
and Lf'(1)= 1lim L
_ ho0 . —h
1 -
= lim ——
A—0 h

Thus RF’(1) # Lf'(1). Therefore the given function is not differentiable at x = 1.

Example 2. Prove that the function fix) =| x| is continuous at x = 0, but not differentiable at
x =0, where | x | is the absolute value of x. ‘

Solution. Firstly, we check the continuity of the function fix) at x = 0.

We have AOy=|0{=0
fI0+0)= lim AO+A)= lim f(h)
h—0 h—0
= lim |h]=lim h=0
h—0 h=0
f0-0)= lim AO—£K)=lim f~h)
h—>0 h—0
=lim |-h|=lim h=0.
h>0 h—0

o J0+0)=70)=H0-0).
Hence, fx) is continuous at x = 0.
Now, we check the differentiability of the function f{x) at x=0.

We have, RF(O) = lim LM =0 _ ;. AR -FO)
h—=0 h h=0 h
= lim l_h.l__():l
b0 h

Differentiability

Self-Instructional Material 23



Analysis

24 Sélf-Instructional Material

nd L= tim JO=R=1O) _ A=) -£0)
h=0 A "0 ~h
= tim A0 i A
h—0 —-h o0 —-h
= RF'(0) # Lf'(0). _

Hence, the function f{x) is not differentiable at x = 0.
Example 3. If

) = xz.rt'n; , if x#0
0 , if x=0
then, show that fix} is continuous and differentiable everywhere.
Solution. We have '

AO+0)=lim AO+Ah)= lim (0+4)*sin
h—0 B0 O+h

= lim/ /% sin 1 =0
h0 h

AO-0)=lim AO-h)y = lim (0-h)’sin !
ho0 h—0 0-h

=— lim /tzsinl=0
h>0 I
f0)=0
= SO0+0)=/0)=(0-0)
Hence, the function is continuous at x = 0.

Now RF(©)= tim {OXA ROy, [0 -FO)
R0 h ho0 h
hzsinl—O .
. h . 1
=lim —————= lim Asin—=0
h—0 h A0 h :
and LF(©0) = lim LO=M=AQ) _ o f=1) - RO)
: ho0 ~h h—=0 —h
hsin[-+ -0
1 h
= line H =
K0 o /D
= Rf'(0) = Lf’(0)

Hence, fix) is differentiable at-x=0. .
Example 4. A function f is defined as follows :
fy=1+x if x<2
=5-x if x>2.
Test the character of the function at x =2 as regards its differentiability.
Solution. Here
R = tim L2HR=S2)

k>0

. 5—-!2'+h!—~3
lim
I

A0

—lim == lim (-l=-1
oo N ho0

and L) = tim {2 =fD) _ o 1+ @-h)-3
. h0 —h P -
T '
—h11_r510 ‘/I_l
= Rf'Q)# Lf'(2)

Hence, the function fx) is not differentiable at x = 2.
Example 5. Examine the following curve for differentiability at x = 1



X, for x<0
=41 , for 0<x<1
I/x , for x> 1.
Solution. Here,

Rf'(l) = lim ﬂl_"“_h_tﬂll

h—>0 h
L -1
= lim 1+h - im l~-1-h
i h T he H(1HE)
| A
T
’ . ZI - Z—JI 2
Now Lf(1) = lim ‘l h L
h—>0 -h
-1 y=x?
=lim —>=1m 0=0
h—0 —-h h—0 ) >N
= Lf (1) # RF'(1).

Hence, fix) is not differentiable at x = I.
The graph of the function consist of the following curves

2-x , x21

i y=x for x<0 ., (parabola)

i) y=1 for O<x<l ,  (straight line) -

(iiyy=1/x for x>1 ,  {rectangular hyperbola).
» TEST YOURSELF-1

-1, -2<x<0

1. Let ﬂx)-{x—l , 0<x<2.

Test the differentiability.
2 Determine the set of all points where the function fix) = ﬁx—i is differentiable.
3.  Show that ix) =|x -1}, 0<x <2 is not differentiable at x = 1.

_|—=x , when x<O0. . . _
4. Show thatf{x) = { * . when x>0 is not differentiable at x = 0.
if x2
S Show that the function f(x) = 2+, ?f x20 is not differentiable at x = 0.
2-x, if x<0 .

6. Show that the function fix) =]x—1]|+2|x—2{+3|x -3 |is not differentiable at'the points

1,2 and 3.
7. Show that the function f(x) = { X 05x<lie gifferentiable at x= 1.

ANSWER

1. Not differentiable 2. Differentiable in ]— oo, oof

e 2.4. ROLLE’S THEOREM

Statement. If a function f defined on [a, b] is such that it is
(i) continuous in the closed interval [a, b),
(1) differentiable in the open interval ]a, b,

(iii) fla) = f(b),

then there exists at least one value of x, say c, (a < ¢ < b) such that -

fe)=0.
Proof. Since, the function f(x) is continuous on [a, 6]

= flx) is bounded . Every continuous function is bounded]

Differentiability
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ie.

= flx) attains its bounds [ A function, which is continuous on a
closed bounded interval [«, b], then it attains its bound on [a, b}]

Let M and m are the supremum and infimum of f{x) respectively.

Now there are two possibilites

() M=m (i) M#m.

() If M =m, then obviously f{x) is a constant function, and therefore its derivative is zero,

f(x)=0 Yxe ]la, b[.
(ii) If M #m, then at least one of the numbers M and m must be different from the equal

values fla) and fb).

Let us assume M # fa).
Now, since, every continuous function on a closed interval attains its supremum, therefore,

there exists a real number ¢ in [a, ] such that fic) = M. Also since fla) # m # f{b).

Geometrical Interpretation of Rolle’s Theorem. )

Therefore ¢ # a and ¢ # b, this implies that ¢ € Ja, b{.
Now, f(c) is the supremum of fon [a, b] - :
: fx)sfle)y Yxe la,b) . AD
(By the definition of supremum)
In particular, A
f(c—h) <Rey h>0.-
= czh=fl9) (2)
-h
Since f’(x) exists at each point of la. b, and hence, f(c) exists.
Hence, from (2) SR
Lf'(cyz0. = ' (3)
Similarly from (1) : :
: Re+h)y€fRe), h>0.
Then by the same arguments '
Rf'(c)£0. (4
Since fix) 1s differentiable in Ja, bl = f'(¢) exist : }'IF
= Lf'(c)=f"(c) = Rf "(c).
Now from (3), (4) and (5)
Fl=0. ‘
Similarly we can consider the case i @)
M = fla) # m.

5 /1(c)=0

Geometrically, Rolle’s theorem means that if the curve ) . Fig. 2

¥ = f{x) is continuous from x = a to x = b, has a definite tangent at
each point of Ja. 5[ and the ordinates at the extremities are equal. then th(,re exists at-least one point
between @ and b at which the tangent is parallel to x-axis.

2.5. LAGRANGE’'S VALUE THEOREM

Let f be a function defined on [a, b] such that
(i) fis continuous on {a, b}
(ii) fis differentiable on a, b[.

Then, there exists a real number ¢ € la, b[ such that

K_L&lf()

Proof‘. Let us define a function F(x) such that
F(x)=fx) +Ax VYV xE€ [a,b] (D

where A is a constant to be suitably chosen such that

Fla) = F(b).
Now



(1) Since, [ is continuous on [a. b} and Ax is continuous on [«. b] therefore, F is continuous

on [a. b} [*." sum of two continuous functions is again continuous]

(ii) Similarly F is differentiable on [a, b]
(iii) Fla)=Fb)y=-A= ﬂ_)—m (2}

sl

Hence. we find that F satisfy aIl the conditions of Rolle’s Theorem on [a, b] and consequently,
there exists a real number ¢ € Ja. b[ such that F'(c) =0, this gives

fe)+A=0
= -A=f"(c).
Now, from (2) and (3), we have
&)_L(_l ~£(c).

Geometrical Interpretation of Lagrange’s Mean Value Theorem.

If the curve y=f{(x) is continuous from x=a and x=54 }'4
and has « definite tangent at each point on the curve between
x=a and x=05, then, geometrically, the first mean value
theorem means that there is at least one point between
x=aand x=b on the curve where the tangent to the curve A
parallel to the chord joining the points (a, fla)) and (b, b))

Let ACB be the graph of the function y=f{x) then the | /(@) !
co-ordinate of the points A and B are given by (a.fle)) and 9o a ¢ b >X
(b. flb)) respectively. If the chord AB makes an angle 8 with the . Fig. 3
x-axis, then’

tan 0 =&[))—:'§Q— =f'(c), wherea<c<b.

[mportant Deduction from the First Mean Value Theorem :

Theorem 1. If a function f(x) satisfies the conditions of mean value theorem then

() f(x)=0 Vxe la.bl = fis constant on [a. b], ‘

iy f'(x)>0 Y xe la, bl = fis strictly increasing on [a, b],
and (i} f'(x) <0 Vx€ Ja, bl = fis strictly decreasing on [a, b).

Proof. (i) Let x|, x5 (where x| > x,) be any two distinict points of [a, b], then by Lagrange’s
mean value theorem,

ﬂ\z) ﬂ ')
X —
= f(-‘z) = flx1).
= function keeps the same value. Therefore fx) is constant on (a, b].
(ii) From (1). we have

=f(c)=0, xy<c<x; (D

M = f’(c) for some ¢ € ]x, x,f.

Xy = X)

But fc)>0 [ f(x)>0 ¥Yxe [a, b])
= fx) = flx)>0

= fixa) > fixy)

Thus x> X = flxg) > fix) Vo, xn€ [a, bl

Therefore, f is strictly increasing on [a, b].
(iii) Same as (ii).

+ -2.6. CAUCHY’S MEAN VALUE THEOREM

Theorem 2. Let fand g be two functions defined on a, b] such that
() fand g are continuous on [a, b],
(i) fand g are differentiable on la, b[,

and (i) g'(x) # 0 for any point of la, bl.

Differentiability
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Then, there exists a real number ¢ € la, b{, such that
fb)-fa) _f(e)
8b)—gla@) g'c)

Proof Let us define a function

Fx)=flx)+A . g(x) (1)
where A is a constaut, to be suitably chosen such that
F(a) = F(b). .(2)

Now, the tunction F is the sum of two continuous and differentiable functions. Therefore
‘(i) F is continuous on [a, b},
(ii) F is differentiable on la, &[,
and (i) F(a) = F(b).
Then, by Rolle’s theorem, there must exists a real number ¢ between a and b such that

F'(c)=0.

Here F(x)=f"(x) +Ag'(x)
Fc)=0 =f(c)+Ag(c)=0

= -A =M:£l'
g g'(c) .
Now Fla)=F(b) = fla) + Ag(a) = fib) + Ag(b)
’ _a_fb)-fa)_
= ' A=) 5@

From (3} and (4), we have
Sy -Jf@) _f(c)
gb)-gla) gc) .
Geometrical Interpretation of Cauchy’s Mean Value Theorem
(1) Under suitable conditions, Cauchy’s mean value theorem geometrically means that there
is an ordinate x = ¢ between x = @ and x = b, such that the tangents at the points wherex ¢ cut the

graphs of the function fx) and % (x) are mutually parallel.

(2) The ratio of the mean rates of increase of two functions in an interval is, equal to the ratio
of the actual rates of increase of the functions at some point within the interval.

SOLVED EXAMPLES

Based on Rolle’s, Lagrange’s and Cauchy’s Mean Value Theorem :

Example 1. Discuss the applicability of Rolle’s theorem in the interval [- 1, 1] to the function

fx)=]x|

Solution. Here, we have f(x)=|x]|

= f-H=1 .
and ' ﬂl)=1} = A =A-1D.

Now, the function f{x) is continuous throughout the closed interval [~ 1. 1] but f(x) is not
differentiable at x=0¢€ ]- 1, 1[. Hence, Rolle’s theorem is not satisfied (due to the second
condition).

Example 2. Discuss the applicability of Rolle’s theorem to

) ‘
x“+ab | . -
fix)=log a+ ) x:‘ in the 1_nte; val [a, b].

Solution. Here, we have

2
fla)=log a—ﬂ]ﬂogl:O

_(a+b)a
’ [ B> +ab e
and f(b)=iog _m}Aog 1=0
= : Ra)=Ab)=0.

Also, it can be easily seen that fx) is continuous on [a, b] and difterentiable on Ja, b[.



Thus all the three conditions of Rolle’s theorem are satisfied.
Hence f’(x) =0 for at least one value of x in Ja, bf.

: 2x 1
Now 'x =0 = -==0
f@ Faab X
= 2 - (@ +ab)=0
= ] x*=ab or x=Vab.

Obviously Vab € )a. bl{being the geometric mean of @ and b
Hence, the Rolle’s theorem is verified.
Example 3. Verify Rolle’s theorem for

f)=x(x+3) e in {-3.0).
Solution. Here, we have
Ax)=x(x+3)e*?

) =Cx+3) e+ (P +3x) 2 ,[_ %J
=¥ [2x +3- % o+ 3x]]

= -%[xz—x—(’u] e,

= f’(x) exist for every valuc of x in the interval {~ 3, 0]. Hence, fx) is differentiable and

hence, continuous in the interval [- 3, 0].

Also, we have
f=3)=R0)=0
= All the three conditions of Rolle's theorem are satisfied. So
S=0=2(*-x-6 e =0

=2 -x-6=0
_ =x=3,-2.
Since, the value x = — 2 lies in the open interval ]- 3, Of, the Rolle’s theorem is verified.
Example 4. [f a + b + ¢ = 0. then show that the quadratic equation 3ax® + 2bx + ¢ =0 has at

least one root in 10, 1.

Solution. Let us define a funtion f{x) such that

f)=a’ +bx’+cx +d.
Here we have fl0)=dand fl)=a+b+c+d=d (o at+b+c=0)
Obviously. fix) is continuous and differentiable in ]0, I{ (being a polynomial).

Thus, f{x) satisfies all the three conditions of Rolle’s theorem in {0, 1] Hence, there is at lcast.

one value of x in the open interval 10, 1[ where f(x) =0

ie.,

3ax® + 2bx + ¢ = 0 has at least one root in 10. 11.

Examply 5. Find ‘c’ of the mean value theorem, :f
fy=x{x-Dx-2);a=0,b=1/2.
Solution. Here, we have  fla)=f0)=0

) =f(1] -3
-0
0

3
fo)-fla) _8 "~ _3
b-a ~1_ 4
2
Now A =x>-3x"+2x
- C ) =350 - 6x+2
= f©)=3c"—6¢c+2.

Putting all these values in the Lagrange’s mean value theorem

B _ iy @<een

Differentiability
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we get 1=3c2ﬂ6c+2 or c:li--'2—l-
4 6
Hence ¢ = L _6 1 lies in the open interval 10, %[ therefore, it is the required value.

Example 6. Show that

—<log (1 +x)<x, for x>0.

1+
Solution. Let, fixy= loa(l+;\)-l—+—
Obviously f0)=0.
Then fy=—l L0+n-x.1
1+ (1+x)°
_ L1
THx (14
= x .
(1 +x)°

Here, we observe that f'(x) > 0, for x > 0.
= flx) is monotonically increasing in the interval [0, e<[. Therefore

fx) > A0), for x>0

] X
= {0g(1+x) l_‘_,‘_j‘)O, for x>0
X . .

= log(l+x)>l+x, for x>0 (1)
Now, let T Fx) =x-log(l+x)
Obviously F0)=0.

rpx I x
Then F'x)=1 Tox T4x

Here, we observe that F ‘(x) > 0, for x > 0. Hence F(x) is mono- tomcaliy increasing in the
lntcrval [0, oof.

. F(x)>F(O) , for x>0
= [x-log(1+x)]>0 . , for x>0
= x>log(l+x) , for x>0. (2)

Now, from (1) and (2), we get
l+ —<log (1 +x)<x, for x>0.
Example 7. Verify Lagrange’s mean value theorem for the function

Ax) =sinx in [o, ﬂ :

Solution. The function f{x) =sin x is continuous and differentiable on R. Hence it is
continuous as well as differentiable in [0, n/2]. Then, by Lagrange’s mean value theorem, there
must exists at least one c¢ in ]0, m/2[ such that

ﬂ%ﬁ@: 0. (D)

Here f10)=0, An/2)=1

f(x)y=cosx = fc)=cosc.
Put all these values in (1), we have
1-0
n/2

2 12
=COsC = CcOSC=—" = ¢=C0S |_|.
n T

Since, 0 < 2/m < 1, therefore the value of ¢ = cos™ ' {%] lies in le, g[ s0 the required value

of ¢. Hence, Lagrange’s mean value theorem is satisfied.



Example 8. Verify Cauclty’s mean value theorent for the function &2 and 2 in the interval

Soltuion. Let us suppose flx) = x* and g(x) = x°.

Then, obviously flx) and g(x) arc continuous in [1, 2] and diiferentiable in ]1, 2[.

‘Also g(x) = 3x* # 0 for any point in 11, 2(.

Then, by Cauchy’s mean value theorem there exist at least one real number ¢ € }1, 2[, such
that

-1 _ [, )
g2y —g(l) g
H’

5 which lies in the open interval 1, 2[. Hence. Cauchy’s mean

After solving, we get ¢ =

value theorem is verified.
Example 9. If fix), g(x) and h(x) are functions such that
(NAX), g(x) and h(x) are continuous on [a, b}
(iDAX), g(x) and h(x) are differentiable on }a, b,

f(c) gy I(c)
then fb) gb) hb)| =0 wherece Ja. bl.
flay  gla) M)
Sonlution. Consider the function fix) such that
- Ax)  gx)  h(x)
F =16y gb) h(b)] =0. (D
fa) gla) hla)

Obviously, F(x) is of the form A fix) + B g(x) + C hi(x), where A, B, C are some real numbers.
From the condition (i) and (ii), F(x) is continuous on [a, ] and differentiable on Ja. bf.
AlsoF(a) = F(b)=0. :
= F{x) satisfies all the conditions of Rolle’s theorem. Hence, there exists a ¢ € Ja, b such
that F'(c)=0
fey &)y I
ie.. fby  gb) h)|=0.
Ray  gla) Ia)
Example 10. Show that
sin o —~sin 3 = cot®
cos P - cos .
n
>
Sotution. Let f{x)} = sin x and g(x) = cos x, for x € {a. ], where 0< < < /2.
f/(x)=cosx and g'(x)=-sinax.
It can be easily seen that both the functions fx) and g(x) are continuous in the closed internal

fo. B] and differentiable in the open interval Jo, .
Hence, by Cauchy’s mean value theorem there exist at least one 0 € R, 8 € Ja, B[ such that

LB -fo) _f(8)
e(B) —g(o)  £'(®)

sinB-sina. _ _cos® _

where 0<a<B<P<

ﬁ - -
cosP—-cosot -sin®
= Slﬂ‘l‘Slﬂ@_:cole.WhereO<a<e<B<n/2
cos - cos a
* SUMMARY
+  Left hand derivative = Lf” (a) = lim a-h)-f(a
h—0 '*h
“(1-!'/1!-—“(1!

e Right hand derivative = Rf“ (a) = lim
h=0 h

«  fis diffcrentiable at x = a if Lf (a) = Rf’ (a).

Differentiabitity
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Continuity is the necessary condition for the existence of a finite denvattve of a function f
(fxe) (@)=f" (a)+ ¢ (a)

(cf) (@) =cf" (@)

(f8) (@) =fla) &'(a) + [ (a) & (a)

g ) - L

f [f ()
[ f (@) g(a)- f(a)g (a)
(@)= >
[g (a)]

Cham Rule ; (fog) (@) =f"(g(a)).& (a). :
Rolle’s theorem : If a functlonfdeﬁned on [a, b] is such that it is
(i) continuous on [a, b],
(ii) differentiable on (a, b), and
(iii) f (@) = £ (b)
then there exists atleast one value of xsay cin (a b) such that f* (¢} =0.
Lagrange’s Mean Value Theorem : If a. function fdefined on {a, b} is such that it is
(i) continuous on [a, b], and
(ii) differentiable on (a, b), .
then there exists atleast one value of x say ¢ in (a; b) such that
LO-1@) _pe o) )
Cauchy’s Mean Value Theorem : If functions f aid g defined-on [a, b] are such that
(i) f and g are continuous on [a, b], ; '
(ii) f and g are differentiable on (a, b), and

(i) g’ (x) 2 0 for all x € (a, b), then there exists atleast one value of x say L\‘E {a. b) such that

f (&)~ fla) _f'(c)
gb)y-g@ &)

*

STUDENT ACTIVITY

State and prove Lagrange’s mean value theorem.

Showthatﬂﬂm_ip—:cotG,0<0c<9<[3<-7—t

cosff—cosa 2




« TEST YOURSELF-2
1. Discuss the applicability of Rolle’s theorem of the following functions :
@) fv) =2+ x - 1¥? in the interval [0, 2] ‘
(b) flx) =2%in2<x<3
(c) imy=tanxin0<x<n
(d) fix)=x* - 322+ 4 in the interval (- 4. 4] v
2. Show that between any two roots of ¢'cosx=1, there exists at least one root of
¢ sinx—1=0. -
3. Let niol + % + n(izl ..+ ””2_ !+ an=0. Show that there cxists at least one reaf x between
0 and 1 such that
' aor"-!-a,,\‘""+.,..+a,,=0.
4. Verify the Rolle’s theorem for the following functions :
(a) flv) =" — 3x + 2 on the interval [1.2]
(b) flx) =x%on the interval [- I, 1]
(c) fix) =x*~ 1 onthe interval [- 1.1}
5. Verify the Lagrange's theorem for the following functions :
@ f=x>in{-1.1] (b) fix) = sin x in [0, 7/2)
(©) fix) =222 —Tx+ 10, x€ [2,5).
6. Find the value of ¢. of mean value theorem, when
@ )=V -4 inthe interval (2.4]
(b) fix)=2x%+3x +4 in the interval [1,2)
(c). Ax) =x (x ~ 1) in the interval [1, 2].
7. @Iffl)= Vx and g = 1/vx. then show by Cauchy’s mean value theorem c is the geometric

mean between a and b.

)y Iffix)= -1—7 and g{x) = % + then ¢ is the harmonic mean between @ and b.

X
ANSWERS
1. (a) Not applicable (b) Not applicable
(c) Not applicable (@) Verified
4. (a) Verified {b) Verified
(c) Verified (d) Verified
5. (a) Verified (b) Verified (c) Verified.
6. @c=1V6 (b) c=3/2 (¢) c=3/2.

OBJECTIVE EVALUATION

Fill in the Blanks :

s

Every differentiable function is .......... .

Every continuous function is .......... .

Sum and difference of two differentiable functions is again .......... .
The first mean value theorem is also known as .......... .

If £'(x) > O then f{x) is known as .......... .

True or False :

R W

Write T for true and F for False :

Every continuous function is differentiable. (T/F)
Every diffcrentiable function is continuous. ' (17F)
Every differentiable function is bounded. (T/F)
A function is said to be differentiable if Lf'(x) = Rf (x). (T/F)
If £/(x) > 0. Then fix) is an increasing function. (T/F)
The function fix) =| x| is differentiable everywhere. ) (T/F)

Differentiability
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Multiple Choice Questions :

Choose the most appropriate one :
1. Afunction f: [a, b] — R is said to be differentiable if f'is :
(a) differentiable at each point of [a, b]
(b) differentiable at the ends points only
(c) differentiable at each point of [a, b] except the end points

{d) none of these.

2. A function f{x) is said to be differentiable at x = a, if :
(a) right hand and left hand derivatives at a exist and equal
(b) only right hand derivative must exist
(c) only left hand derivative must exist

{d) none of these.

3. Every differentiable function is :

(a) necessarily continuous

(c) may or may not be continuous

(b) never continuous
{d) none of these:

4. If f is finitely differentiable in a closed interval [a, ] and f"(a), f'(b) are of opposite sign,

then :
(@) f(c)=0 Y ce [a,b)
(€) f(c)=0 Vce la, b

5. Every continuous function is :
(a) necessarily differentiable

®BYf(c)=0for at least one ¢ € ]a bl
(d) None of these.

(6) never differentiable

(c) may or may not be differentiable (d) none of these.

Fill in the Blanks :

1. Continuous

3. Differentiable

5. Increasing function
True or False :

1. F 2.T

Multiple Choice Questions :

1. (a) 2. (a)

ANSWERS

2 not necessarlly dltferentlable
4. Lagrangc s mean value theorem

3T 4T 5T 6F
) 4L 50
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LIMIT AND CONTINUITY OF FUNCTIONS OF
TWO VARIABLES

YAy STRUCTURE BiSs8% 1 34 et TR S006
® Function of Two Variables
e Limit

e Neighbourhood
]

.

SRGIR S

Algebra of Limits

Continuity of a Function of Two Variables
Q Summary

2 Student Activity

0 Test Yourself

RSl R EARNING . OBJECTIVES S it iieta g

After going through this unit you will learn :
e What are functions of two variables ?

e What are simultaneous and iterated limits ? .
o How to check the continuity of functions of two variables ?

¢ 3.1. FUNCTION OF TWO VARIABLES

Let f be a function from a set of ordered pair of real numbers to a set of real numbers; then
fis said to be a real valued function of two real variables or, briefly. a real function of two variables.
The value that f assumes at the arguments (x, y} is naturally written f{x, y). Lect us suppose this
value is called z. Then we write z=f{x, y), where x and y are the independent variables and z is
the dependent variable.

We shall write z = z(x, y), which means that we are considering some function of two variables.
where the independent variables are x and y and the dependent variable is z.

If to each pair of values of x and y there exists only one value of z, then the function is said
to be single valued function. On the other hand, if there are two or more values of z correspond to
some x and y or all of the values assigned to x and y, the function is called multiple valued.

Let flx. ¥) is a function of two variables x and y. then we say lim flx. y) exists and is equal
XXy
¥y

to 1. if for every € >0. 3 a 8> 0 such that
' [fx.y)~1l]<e
for all values of x and y in the neighbourhood of (xg. yo) defined by
|x-xo[<8 [y=-yo|<38.

e 3.2. LIMIT

Let fx, v) is a function of two variables x and y. we define several kind of limits.
If (xp. ¥o) is the limiting point of a set of values on two.dimensionat space, then we have
lim flx.y). lim lim fix.y).

Y=g 1NNy

lim flx.y), lim
NNy XX YN
y—V
Then limit of the first kind is known as simultancous limit and the last two types are known
as itcrated limits.

Limit and Continuity of Functions
- of Two Variables
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.determined by a posmve number § is the square bounded by

Non-existence of a limit. To determine whether a simultaneous limit exist or not. it is a
difficult matter but a simple consideration. which we describe. says us to decide about the
non-existence of a limit. ,

it lim  foy)=1

o (x.y)>(ab) ' '

and if ¢ is any func“on of a single real variable such that

Ilm ¢(A) b.
Then lim f [xv, d(xY] =1

r—=da
Thus, we can determine two functions ¢1 and ¢, such that
lim f[x, tj),(r)] # hm flx §.(3)].
X =t A=
Then, we can say that the simultaneous limit
llm ./(-Xx"y)
(x.¥) > (a. b) J

does not exist.

SOLVED EXAMPLES
i

(1oes Hnot exists.

Example 1. Show that the l’imit.-l"l'im_ fx, y), where fix, y) =

(r.3) (0,0 CE y
-y - i
Solution. Here fx.y) = 22X
: X +}
- . 1—n? .
Now taking y =m . x, then, we have lim flx, nx) = 5 » which depend upon .
=0 1+m
Since, lim flx, mx) is not unique. Hence lim Jx, ) does not exists.
=0 (x.3) = (0.0)

Example 2.  Show that rhc simudtaneous limit, lim

=0 x +}
y=0

Solution. Let (x y) tends to (0, 0) through the line y =1x, Wh](‘h is a line through the origin.
Put y = x. in the function, we get -
x* X
lim ———=lim ;=0
20 X°+X  io0 l+x°

does not exists.

Agam let (x. y) = (0. 0) through the curve x = V.
Puty_—x , in the given function, we obtain

6
lim _L_l
y—0 y +) 2

=The limit obtained by two different methods are different.
Hence, the simultaneous limit does not exist.

¢ 3.3. NEIGHBOURHOOD

Rectangular neighbourhood of a point (a, b). CYA
Let neighbourhood of a point (a, 5) in the xy-plane be ' v=h+8

the lines R a--8=x a+8=y
_L\‘=a—8, x:a+8,, =
=b-8. y=b+3. y=b-5
If a point (x, y) kes in the neighbourhood, we have ST
‘ a-8<x<a+d = |x—a|<d [
b-3<y<b+8 = |yv-b|<d.
The centre of the square is at the point (a, ). This square
is called the neighbourhood of the point («, b). For every value 0f8 we WIII get a neighbourhood.

Fig. 1



Circular Neighbourhood of a Point.(a, bj.
A circular neighbourhood of a point (a. b) in R? is the sct of all

points (x. ¥) whose distance from the point (a. b} is less than some given
8> 0 ie. the sct of all points (x. ¥) such that
\[(.l‘ -a)+ (v .b)2 <6
ic. | 3)=(a. b)|<d
Here, | (x. y) — (a. b) | stands for distance between the points (x. y) and (a. b) i.c..
Ve-al+ (v - b2,

Fig. 2

» 3.4. ALGEBRA OF LIMITS

It lim  fx.v)=I, and lim glx,y) =14
(v 3) = {a. b) (x )= {a.b)
then
) lim Ax.+ex. Ni=h+12
(x. VY= (@b
(i) lim M) =-glx.l=h-1
x.¥) = (a. b)
(iii)  hm A, y).gxe.n}=h .
(x.¥) = (0. H)
C !
@) lim [f—(l-—‘l] == (provided I2 # 0).
(x. v) - (. b) gxy) | R

Theorem 1. Let £ =flx. y) be a function, then lim Six, ). if exists is unique.
2. ¥) = (a. b)

Proof. Lct z=fx, v) be a function.
Let if possible ,
lim fx. =1

(. ¥) - (a. b}
and lim  flx, =1L
.y} = (a. b} :
Now, to prove ly=1.

Let us first suppose  lim fx. ¥v)y=1,. then by the definition of limit, we have
{1, 3> (. b}

“given €>0. 3 &, > O such that”
|Ax.y) -1 |<€/2 whenever |(x.¥) ~{a.b)| <,

‘Now supposc lim  Axy)=l
. (.3}~ (a. D)

“given £ >0, 3 §,> 0 such that”
[Ax.y) -] <€/2 whenever |(x,y)=-(a.b)|<8;
Let : 8 =min {§,.8,}.

Hence, we have

Now., consider
= hi=lh-fxy) +fixy) - ]

(D)

[fix.y) =1 | <€/2 and |fix,¥) - 12| <€/2 whenever |(x,y) - (a.b)|<d

<[y = foe ) |+ 1 ) = | (By triangular incquality)

S = [+ fx y) - 12|
<e/2+e/2
=€

Since € is arbitrary and small. hence
11-12=0 = [2=12
= limit of a function is unique.

SOLVED EXAMPLES
Example 1. Ler f: R* = R be defined by

Limit and Continnity of Functions
of Two Vuriables
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XV
= 5 s ,(x,y) ¢(Ov 0)
ﬂxi y) = .Xz + yZ

0 » (%»)=(0,0)

Prove that,  lim fix.y) does not exists.
{09 )
Solution. Since, if lim  flx,y) exists, then this limit is independent of the path along
(x.y) > (a, b}

which we approach the point (a, b).
Let (x, y) — (0, 0) along the path y = nix, where m € R
As x — 0, from y = mx, we have y — 0.
Consider lim  foy= lim 2=

(x. ¥} = (0.0) (- 0.0 X+ _yz

. . X
lim  fny=  lim
*) = 0.9 nN=-00 X +y
Putting y =mx
i X mx
= lim ——
x>0 X +mx
§] 2
. mx” .
lim SCUNEENEN
a0 X (1+m%)

It

m 1

I

tim
im0 L+m®  1+m?
which will be different for different values of m.
Therefore, lim  flx, y) does not exists.
(x.7}—(0.0)
1
Example 2. If fix,y)=y sin i +x sin ; where x #0, y #0.

Then prove that
fx,y) >0 as (x,y) > (0.0)
Solution. Let € be any given arbitrary small positive m.gmber since, £ > 0, let us take § = €.
Also, let Ix-0]<e/2, |y-0|<e/2 '
| )= ©.0)[=Vx -0+ -0
<|x-0]+|y-0]

<t/2+¢€/2
=t
! .
= [fx,y)—0|=|ysin—+xsin—=
x y ‘
< ysinl + xsinl ‘
.X y
1 !
< sin— | + =1
[y] sin | x| sin
. ! !
S|yl +]x| o |sin=]<land |sin—|<1
x y
<&/2+¢€/2
= |ﬂxr }') -0 ! <&
Hence lim fx,»=0
(x.3)—(0,0)
. _ 2xy”
Example 3. Show that the simultaneous limit' lim . 7xy 5 does not exit.

(xy—-00 X +Yy

Solution. Let y = mx,

38 Self-Instructional Material



. 2y
lim 5 24
(-0 X t+Y¥

2 ()’
= lim ===
x50 X"+ mx

2
= lim 2xm -0

=0 l-i-m“}(2

,
when y* =, then

2 -

lim 2 20
{x. y) = (0.0) X +y x=0 x+Xx
2

= lim —<5=1
x—=0 2)2

Thus along the line y = mx.-and along the curve y2 = x, imultaneous limit are different, hence
the limit does not exit.

o 3.5. CONTINUITY OF A FUNCTION OF TWO VARIABLES

(i) A function fix, ¥) is said to be continuous at the point (a, b) if  lim
() {ab)

fix. y) exists

and equal 1o fla, b).
(i1} A function flx. y) is said to be continuous at (a, b), if for every £€> 0, 3 9 > 0 such that

|fix.y) = fla. b)| <€, whenever |x-a|<d, |y-bj<8d.

SOLVED EXAMPLES
Example 1. Show that the function f* R* — R defined by
2 () #(0.0)

Xy {x~ -
+¢
0 , othervise

fxy) =

is continunous at (0. 0).

Solution. Let €3> 0 be given.
Now, let us suppose | x-0[<Ve and {y-0f<Ve

Consider, .
2.
[fix.3) = f0.0) | = -L(f—zﬂ—ol
AT+ y
2 2
=l {575
x +v
22
<l [ L2 - <2457 |55 51]
x“+y
= A y) =f0.0) [<fx{|y]
= | fx, ») - A0, 0)[<\f€. N
= | fix. y) - 0. 0) | < &.
Hence, we have  lim  flx, y) exists and equai to 0. 0).

(x. ¥} (0.0}
Example 2. Show that the function
3
Xy
Sy =g

'+V6

x#20,y#20 and f{0.0)=0

is not continuous at (0. 0) in (x, y).
Solution. Heref{0, 0) =0 (given)
3

Let us suppose (x, y) = (0, 0) through the curve x = y°.
6

Then im fy)=lim =t
(x. )= (0.0) yo0 y +y 2

Again. let (x, vy} — (0. 8) through the line y =, then

Limit and Comtinuity of Functions
of Tiwo Variables
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.’(.X3

[

lim

lim . fx,y)=

2, .6
(- (0.0 x>0 X +x
i
= lim 7=0
‘ . ‘ =0 1+x .
Since, the limit obtained by two different approaches are different, Therefore.
lim™ flx,y) does not exnsts Hence, the given function is not continuous.

(x.3) = (0,0}
Example 3. Show rhat the funcnon

fey)= o x#0, y¢0 and f(O 0)=0
- (" +}' ;
is conmmous at the.origin in (x y) toget/:e
Solutlon. Let €>0 be given.

Letus’ suppose =1 cos 8, y= rsin® '
"'.Then i . f(rcosG rsin G) L cosGsmG fcosesme
' : erm 6+cos e -
=%rsm.2.6 ‘

--Now consider '
|j(: cos 0, r sin 6) f(O 0)[—|f(1 cosG r sme)l

—]—r Sln2ei
A‘=—r|sm 20|

<L, [ |sin20]<1]

w~

Now if we choose r= 28
‘Therefore we have € > 0 such that = X
_ | f(r cos B, rsin ) | < ¢ -for all values of 6 C (.
Equation (1) is true for all pomts within'a circle about the origin and radius r = 2¢. Therefore
Arcos B, rsin 6) is uniformly contlnuous in r for all values of 8. Hence f(x, y) is conlmuous in
(x, y) at the origin. '
Example 4. Let f R2 - R be a ﬁmcnan defined by
—‘y—, when (x, y)#(0,0)
Sy = ¥ :
'o when (x,y)=(0,0)

Show that | Jis .not contuwous at (0 0) but is connnuous in each variable separately
. Solution; For point (x, y) on the X-axis, we havey 0 and flx, y) = fix, 0) =0, so the function

"has the constant value, 0, everywhere on the x- axis, Wthh gives that f{x, y) is continuous at x = 0.

Simiilarly flx, ¥) has the,constant value, 0, at.all points on the y-axis, so.if we put x =0, the
function flx. v) is contmuous aty= 0 Now we shall show thalf(x, y) is not continuous at origin.

- Let - ) o CLo¥s x.
o T ' 2o
Then - ' f(x VAR x)=5 =
. . . g 2.
Also - o f(O 0) 0 (glven)

Since there are pomts ontheline arbttrarlly close to the ongm and smcef(O 0) :t ,the fun(,tlon

| of two variable flx, y) is not contlnuous at the origin.

. SUMMARY
»  Simultaneous limit :
I1m f(x y).



+ Intercted limits :
Hm  lim f(x,y)and lim - lim f(x,y)
F¥oY Y Yy, £
< Rectangular nbd of a point (a, b)
[x—al<8, [y¥-56/<8
+  Circular nbd of a point (a, b)
v ) - (@, B)] <
or . Vx—a) + (v - b) <8
«  Continuity of f (x, 5} at {a, &)
' f{x.y) is continuous at (a. b) if

lim f(x.y)=f(a.b).

4\'—’.'0
L ‘ ¥
» STUDENT ACTIVITY
. X\'3 N
1. Show that lim —=— does not exist.
x=axp Xty

Y-y

.

Show that the function f'(x, ¥) = ﬁy—? x#0, v#0andf(0,0)=0is con;infxous at (0, 0).
. xXTHyr o T o

« TEST YOURSELF

1. LeS: Rz'_-—la R be defined by fix. y) =22+ y%. show that
e lim  Alx,1=0: " :
) (x. 1> (0.0) ' o,

' . N A_3
2 Show that  lim ' 2'—;-—%=0.

(x,3) = (0.0) x +y

C . 2x -y o
3. Show that fim 7_'% does not exists. '
\ (x. )= (0.0) X"+ ¥
"4, Provethat lim  fx,y) does not exists, where

()= (0.0)

foay)= —‘2—‘;’”—‘4 . (x.y) % (0. 0).

Limit and Continuity of Functions
of Twao Variables
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6.

—2X | when (x
, ) #(0,0)
Let [, y) = -\/XZ_{_yZ
: 0 . when (x,y)=(0,0)
Show that f{x, y) is continuous at (0, 0).

Jcsini , if y#0
y
0 ., i y=0

is continuous at (0, 0).
Show that the function f{x, y) be defined as

Let fix, y) =

fryy=177 7 i x#£0,y#0
’ y

0 if x=y=0

2
x° -

is discontinuous at the point (0, 0).

8
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e Introduction
e Rules of Partial Differentiation
o Partial derivatives of the higher order
e Homogeneous functions

0 Summary

o Student Activity

0 Test Yourself

R R LEARNING OBJECTIVES 4 S0

After going through this unit you will learn :
e How to find the partial derivatives of the functions ?

e How to apply Euler's theorem ?

* 4.1. INTRODUCTION

. . . - . . - Y
We know that the differential coefficient of fx) with respect to x is  lim 8x409 = fn) &gx 2L
&c—=0

provided this limit exists, and it is dcnoted by
oy g
S (x) or I Fi€3)R

If u=fx,y) \be a continuous function of two independent variables x and y. then the
differential coefficient of « w.rt, x (regarding y as constant) is called the partial derivative or partial
differential co-efficient of # w.r.t. x and is denoted by various symbols such as

Ty

Symbolically, if « = f(x. y). then
Ao+ 8x, ) ~f(x, v)
lim
§x =0 &x

if it exists, it is called the partial derivative or partial differential co-efficient of u w.rt. x and is
denoted by

%org‘forj}or

Similarly, by keeping x constant and allowing y alone to vary, we can define the partial
derivative or partial differential coefficient of u w.r.t. y. It is denoted by any one of the symbols

du of
ay av f\(‘ ))f}-

1y

. du fx, v+ 8y) = fx, y)
Symbolically === lim
Y Y dy Sy =0 8y
provided this limit exists.

If u=ax’ + 2hxy + l)y2
then u =2ax + 2hy
ox
and %‘ =2hx + 2by.

Limit and Continuity of Functions
of Two Variables
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* 4.2. RULES OF PARTIAL DIFFERENTIATION

Rule (1) : _

(a) It # is a function of x, y and we are to differentiate partially w.r.t. x, then v is treated as
constant.

(b} Similarly, if we are to differentiate « partially w.r.t. y, then x is treated as constant,

(¢) 1f u isa function of x, y, z and we are (o differentiate parfially w.r.t. x, then y and z are
treated as constant.

Rule (2) If z=wutv, where u and v are functions ol x and y, then

g;_ du + ov an dz _ du Lo v '
T ox T ox dy dy  dy

Rule (3) : If z = uv, where « and v are functions of x and y, then

Qﬁ—i(uv)=uﬂ+v@
ox Ox ox  Ox
dz _4d dv  du
and 2 _ L A AN
an v~ 9y (uv)y=u PR 1 3y
Rule (4) : If z = l‘—f , where u, v are functions of x.and y. then
- v §££ — i @
Oz_9d(u)__dx ox
oxr odx\v ) Vv
v du _ u I
dz_ 0 [ " J dy  dy
and — = = |= 5 .
A dv Oy e
Rule (5) : If z = fu), where u is a functlon of x and y. then
Oz _dz du 0 dz _d: ou
A ox  du’ ox dy du’ ay ’
REMARKS '
‘4 Partial means a ‘part of”".
& . a',' d-
If z is a function of one vandble x, then — =—.
ax  dx
& a a”
If z is a function of two variable x; and x,, we get — and
a aX7 .
“ . dz Oz 0z

If z is a function of n varables x|, x» ... x,, we can find =—

ox;  dx T dx,

Symmetric Funcrtion of x and y. A function u=u(x,y) is said 10 be symmetric if, on
interchanging x and y, v remains unchanged.

* 4.3. PARTIAL DERIVATIVES OF THE HIGHER ORDER

We can find partial derivative of du and u just as we found those of « for — i and u are

ox dy dx dy
itself functions of x and y.
The four derivatives, thus obtained. called the second order partial derivatives of u or

fx.y)are
DA
dxi dx )" dyl ox dy }* oy dy ) .
and are denoted as
Pu . P Py
a L dyvox’ 8\8y a

or fx.tvf\vfmfw'



REMARKS

»

and

and

and

Pu 0 (du and 8 w  dfdu
axdv oxlay ) ‘" dvax ay\ ax
O au du
ox 3\ v

a'l
aa aa

successively differentiated w.r.t. x and y. but it will be scen that, in general they arc equal.

The partial derivatives 5= are distinguished by lhe order in which u« is

SOLVED EXAMPLES
du %

Example 1. Verify that ==—— ,whenu=xsiny+ysinx.
P i dxdy Jdyox y

Solution. u=xsiny+ysinx. (D
Differentiating partially both sides of (1) w.r.t. x and y respectively. we get

a—:=siny+ycos.t ... (@
%;i=.\-cosy+sinx. .. (3)
Again differentiating (2) partially wr.t. y and (3) w.r.t. x. we get
ay;tzcosy+cosx ... (4)
“u
atay=cos y+cosx . (5
From (4) and (5). we obtain
% B u
Oyox Oxdy

. ou  du  Ou
Example 2. If « =x2y + y + 7. then show that M + = 3t oz ={(x+y+ 4)
'y A

Solution. Given that

u=x2y+yzz+zz.r. L AD
Differentiating partially both sides of (1) w.r.t. x, ¥ and z respectively, we get
du .
—= 'tz AN 2
ox 2“ @)
g'y 242 (3
?—vhza. )

Adding (2). (3) and (4). we get

au du au
it av a- =2y + T+ 2y k4 22
el
=x?+y? + 27+ 2y + 2yz + 2ax
=(x+y+ 2% ' Hence proved.
% _ 19%

Example 3. If z=fx + ay) + ¢ (x = ay), prove that a— =q F
y x

Solution. Given that

z=fix + ay) + ¢(x — ay). ' (D
Differentiating partially both sides of (1) w.r.t. x and y respectively, we get
gz, »
3=/ wra) e -ay) )

Limit and Comtinuiry of Functions
of Twa Variables
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and

and

and

g—;=af’ (x+ay) — ad’(x — ay). .. (®

Again differentiating partially both sides of (2), w.r.t. x and (3) w.rt. v, we get
2

a 77
'a—z—f(x+av)+¢ ().—ay) )]
e , 2.
82 =a’ f'(x +ay) + a"(x — ay). ' o (5)
From (4) and (5), we get, |
aiz =a’ & Hence Proved
"oy’ axt’ ’

Example 4. If i = log (x3 + y3 +2- 3xyz), show that

(_ii+i+i]2u'=_ 9
ox dy Oz @+y+2?’

Solution. Here, we have

=log (X +y* +2° - 3xyz).

'leferentlatmo pamally with respect to x, we have

ou 1
T .
u___ 3 (xz ~3)

(3x - 3yz)

= (1
ox 4 y +2 - 3xyz )
. ou 3(v* - zx)
Similarl = .2
y Iy P+ y3 +7 - 3xyz @
ou _ 3G - xy)

(3
9 P4yt =3z

Adding (1), (2) and (3). we get
du du ou_ 3P4y 4 —yr-ax—xy)
C+y 2 -3z

+—+
o dy o0z
_ 3y P —yz- - ) __3
xHy+) (P P oy xy) XYL

Ao, (242, 0V, (2,2, 02 2 a3
- T {lox 9y 0oz ox Bv 32 ox dy oz

and

au au au i _3_ 3
ay ab o dx a 8: X+v+z

a 1 i 1 ]
x+y+z ay X+y+z a x+y+z

dx

{ 1 B 1 jl__ 9
x+y+4.)‘ (t+v+<.)‘ .:c+y+z)2 (x+y+z)2

2

=y +y°, show that

(3
E

Example S. If u = f{x), where

% P,
a‘; yu—f()+f(:)

- Solution. Here, we have

2 2 2
rF=x"+y
ar rox
= 21—_2A or —=-—
ox ox r
(D
or ar v
2;’—=2_v or —==
dy y r

Since : u=£fr)



du
= oo L2
Fu_ 3 [ du 1,
and Ye ar(ax) [x.r.f (r)]
1 drl. x 0, 0r
BT G| BRI OF:
1 , 2
=2f0 -3 7f )+
1, % p < ” ‘
=21 -jf O +—§f (). - (2)
Similarly, ‘;_ -—f (n- ?f (,)+Lf" ) .. (3)
Adding (2) and (3), we get
T ”
N L RETACE —’—f ()+——-2-f ")
i’ 9y
2. [ 2o
=25 0500
2 ’ l ’ 7 173 1 ’
=2 = f O OO+ )
Example 6. If X'y'z" = c. Show that at x =y =z.
a?'z __ -1
Wy fx log ex]
Solution. Here, we have
. xXyZ=c (D
Here, we observe that z can be regarded as a function of two independent variable x and y.
Taking logs of both the sides of (1), we have
xlogx+ylogy+zlogz=loge. ’ )
Diff. (2) partially w.rt. x, we get
1 1 dz _
x.;+ I .logx+[z. . +1 .Iogz]ax-o.
dz _ (1+logx)
= ox  (1+logz) - ()
Similarly differentiating (2), w.r.t. y, we get
0z __(L+logy) . @)
dy  (1+logz) -
Al 82 3 ac i[_ l+logz ]
SO oxdy ox\dy ) ox 1+logz
- 9 -
=—(l+logy) pw {(1 +logz) ']
=—(l+logy) [-(l«rlogz)'2 i "QZ—]
' z ox
(1+logy) [_( 1 +logx)]
Tl +logd) 1 +logz
At x=y=z, we have
2 (L+logx)® _ 1 1 _
oxdy x(1 +log %)’ T+ Iogx) x [log e + logx] < loge=1]
L -1
=~ oz () = [-x log ex]
e TEST YOURSELF
1.  Find the first partial derivatives of

Limit and Continuity of Functions
of Two Variables
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10.

(i) . log (x* + %) (if) cos™ ! [iJ
y

Find the sccond order partial derivatives of log (' +¢"). |

7 3%

ox 3 T ovorx’

(i) z=log (vsinx+xsiny) (i) z=1 (

Verify that
xz + \'2
xy
)(2 + vz N .
(iii) z = Iog( ) (iv) z=sin"’ 3— (v) z=2"

x+y _
If x=rcos 9, y=rsin0, show thut-gé—g 188\9 %

If 1 = log (tan x + tan y), prove that sin 2x @— + sin 2y g; =2,

ox

1y 2 1 X 82u XE - V2
-—y“tan  —, prove that =<,
x 7 y P dxdy x* 4y’

If u=x*tan”
7
el

A dy”

fTu=2 (gvc+by)2 - +y2) and a” + b =

If u=log (.1:3 + y3 - xzy - xy%), prove that

. Ou  du _ _1 au %u azu__ =2
(1) §;+$’—2(x+y) (n) 8x8))+§;.—2'_ -4 (x+y)

Fu

If e =flx +2y) +g(,\ 2y), show that 4 TEE— -
S

3

u
Oxdydz

If u = €%, show that = (14 3xyz + x5 ¢

ANSWERS

L 2x .2y
L) 55—, 3
XT+yT xT+y
e.\‘+‘v _ex-f)- ex+\'

2. ., _— ,
(€ +) (E+) (e + )

2

(ii) = 2

- )f‘/.vz—xf

4.4, HOMOGENEOUS FUNCTIONS

A function f{x, y) is said to be homogeneous functon of order », if the degree of each of its

terms in x and v is equal to n. Thus

apx +ai "y +ax" B+ “k,,_,xy"_' +a,)" (D)

is homogeneous function in x and y of order 1.
REMARKS

>

This definition of homogeneity applies to polynomial functions only. To widen the concept
of homogeneity so as to bring even transcendental functions within its scope, we define u as
a homogeneous function in x and y of order or degree n, if it can be expressed-in the form

y
of x"fl =
f o ,
This definition also covers the polynomial function (1), which can be written as

X {ao+a|‘z+a2( IJ“*“... +a,,[»”%) i|=x’y(ij.

". It is a homogeneous function of order .

L . X
A homogeneous function in x and y of degree » can also be written as y"f( ; ] .

Some Important Theorem

Jut
Theorem 1. If u is a homogeneous function of x and yof degree n, Ilzen eaclz of = (m(/ a—

are homogeneotts function of degree (n -1



Proof. Since. 1 is a homogeneous function of x and y of degree n therefore, u can be expressed

u-:x‘f'[‘\-!} - (H
x

as

Now from (1)

="~ x a function of *
N

_.on-1 Yy .
=X g[xJ(say).

which is a homogeneous function of degree (n — 1).

@_Ji ¥ | ST R T £ . . Ay
Also. ay—xf (x)'x X f L= x a function of "

a—1 y
=X Q| = sa
[*] ’

which is a homogeneous function of degree (2 — 1).

Theorem 2. [Euler’s Theorem on Homogeneous functions].
If u is a homogeneous finction of x and y of order n then

au ou
“ox Yoy

Proof. Since. « is a homogeneous function of x and y of degree n, then it can be expressed

u=.r”f(l).
x

-g-%=nr" ](i]+x"f'( J( —)'ux" I(X]—yx"'zf'[%).
Also, %ﬁ‘;a\"f’(;) —i: . f()—]

Ju du
Now, LHS-Aa +y av

e 2o (1) (1)
:nx"f(f)—yx"_lf( ]+y,x"_lf (%)znx"f(jy;)=nu
H.S.

as

Theorem 3. If u is a homogenecous function of x and y of degree n, then prove that

2 & u + 2 7 120 u

ax® 7 oxdy N :

Proof. Since. # is a homogeneous function of x, y of degree n therefore, by Euler s theorem
a!t alt

\:——n’u ..‘.(l)

unt dy
Difterentiating (1) partially w.r.t. x, get

a9 au+8 du w_E‘)_(L)
orl Yo )T Yoy T ax Y

(".* Each ofa— and 75— Qu is a function of both x and y)

=n(n—1u

ax dy
= ¥ du +ﬂ 1 o u _'” @
ot ox Yo dy " ox
O ’u _ Ju
= X 32 +y ax o =(n-1) Ew @

Limit (.u.rld Continuity of Functions
of Tivo Variables
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Again differentiating (2) partially w.r.t., y, we get

Ou o%u ou Fu  Fu
@+x'a;a—y—(u 1)5; ayaxzaxay )]
Now, multiply (2) by x; (3) by y and then adding, we get
2
g aag 2au (n—i)[ 8u+ygu:|
=(n—-Dnu=n{n-u
SOLVED EXAMPLES
Example 1. Verify the Euler’s theorem for the function u = axy + byz + czx.
Solution. Here, we have
: u=qaxy+byz+cxx
which is 2 homogeneous function of x, y and z of degree 2.
To verify the Euler’s theorem, we must show
x u +y du +z u =2u
dx “dy oz
Now gLi:ay+cz ~a—u='ax+bz @=by+cx.
ox T dy 7 0z
x@-+y§£+za—=x(ay+cz)+y(ax+bz)+z(by+cx)
ox “~dy "oz
=2 ((L;cy + byz + czx) =2u.
Hence, Euler’s theorem is verified. ‘
2,2
Example 2. If u= sin”! [%}i— :I, show that x% +y g—z = tan u.
Solution. Here, we have o
P e
sinu="—" y
2, .2
Let v= Xty
x+y
= v is a homogeneous of x and y of degree 1.
Then, by Euler’s theorem, we have
x%ﬁwg—;:v o (D
v=sinu = é’X:cosu@ and @=cos u@.
dx dx oy dy
Putting now these values in (1), we get
xcosugﬁ+vc05u%=v
ax dy
= 8u~ au-L-M-ta nu.
o cosu cosu
Example 3. If u = sin”* ( = ) +tan”" ( X) show that x du +y = u_
¥ x ox dy
Solution. u=sin"! ( X ) +tan”! ( X J
. : y . X

=x°[:s‘in' : (-1—)+tan'z,' (2)]=x0( A function ofx}
y/x Colx X

=> u is a homogeneous function of order 0.
Thcn by Euler’s theorem, we have
x%+y“@“—0xu—0 !

ox ~ dy



* SUMMARY
. _[_ fx+dx,y)-fx. y)
If f=fix. y). then i slel-;o o .
Ay LEy+B) =)
dy Sy —0 dy
2 PE
Similarly we can find _E)_f af af etc.
ax*  Oxdy’ gy’

»  Homogeneous functions : A function of the form « = x"f (‘E) is said to be a homogeneous

function of degree n.
*  Euler’s thecorem on homoge:: ous function : If # is a homogencous function of degree » in
x and y, then

a" Q = nu.
ut 3 o
e STUDENT ACTIVITY
1. Ifz=fx+ay)+ 06 (x - ay), prove that
Pe_ 29
ax? Y%

2,2
2. Ifu=sin”'| 2L showthntx@i»ya— tan «.
x+y ox a}

* TEST YOURSELF

1. Verify the Euler’s theorem for the following functions

. x (¥ =y .. i (.X) Zsi (y_)
= e—— = =X sin
(i) u x3+y3 (i) u sin S (iii) u i S
(ivyu= \GZIT\TT WMu=x logf
2. (i) fu=x "-J),provc!halx%+y%—-u
iy 1ru=/ 2 CLON/
(i) Ifu f(x] prove lhalxa +\a)‘ 0

1

1
Limiéc and Contitueity of Functions
of Two Variables
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(iii) If o = A)(fj , prove that x %— +y g—’: =2u.

4. Ifu=tan™' i , show that (using Eulec’s Theorem)

T
a, ‘
S. 1ftc=$in_'%%,showthatx%%-%yg—;?_.
6. (i) Ifu:[ogi show1ha1x—g-+yg’y‘
(i) Ifu=logi—_tyl3 showlhdtx-g—+vg—;=2

Fill in the Blanks :

> 2y 18
2 2

3. ffu=se™ al:+at,f=' .........
X" dy”

True or False :
Write ‘T’ for True and ‘F’ for False :

3,3
_ ey
3. Ifu=tan I(Xx_; ),show thatx%i-)’g—;:sinZu.

— . 1 = .
1. cos™'Z is a homogeneous function of degree .........
X .

2, .2
2. If¢=sin_'(m),thenxa—¢+‘yaﬂ' DT
Xty X

-OBJECTIVE EVALUATION

1. An exporession in which every term is of same degree is called homogeneous function.(7/F)
- 2. In homogeneous function every term is not necessarily of same degree. (T/F)
3. Ifuisa homogeneous functlon of x and y of degree n, then g— and gy are also homogene-
ous function f degree n. (T/F)
Multiple Choice Questions :
Choose the most appropriate one :
1. sin ' (3/x)isa homogeneous function of degree : -
{2y 1 by 2 () 3 (dy 0
2. Ifz= .1'yf( i ) then x 2%— +y % is equal to :
@ z (b) 2z (c} xy (d yz
. 2
3. Iff=sin”’ Liy—Jthen \—[+y—zls
) x+y dy
@ f " (b) 2f (c) tanf (d) sinf
_ ANSWERS
Fill in the Blanks =
- 1.0 S 2.tan¢ - 3.0
True or False : o .
L. T 2.F - 3. F -
Multiple Choice Questions :
1. (d) 2. (b) © 3.(c)
[
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UNIT

D

JACOBIANS
D e Y STRUCTUREN SIS Rl S ity

® Some definitions of Jacobians

® Theorems of Jacobians

e Jacobian of Implicit Functions .

e Necessary and Sufficient Condition for a Jacobian to be Vanished
2 Summary
0 Student Activity
0 Test Yourself

S LEARNING :OBJECTIVES i Sttt it s

After going through this unit you will learn :
e What is Jacobian ?
o How to find Jacobian of a function ?

* 5.1. SOME DEFINITIONS OF JACOBIANS

(i) [f u and v arc the functions of two independent variables x and y. then the determinant

dx  dy
a o
dx Oy

is called the Jacobian of w and v with respect to x and ».
, I, v
It is denoted by 9w, v) or J{u, v).
a(x, y)
(ii} If u.» and w are the functions of three independent variables x,y and z, then the
determinant .

W
ox dy oz
o o
dx Jdy 0oz
dx dy Oz

is called the Jacobian of u. v and w with respect to x, y and z.

A, v, w
It is denoted by 282222) o gy ),
_ ax,y,2) " A
(i) I u). 15, ..., 11, arc the n functions of, independent variables x(, x3, .... x,. then the

detcrminant

dxy Oxy dxy T ax,
9_:}_2_ O, Oun oty

ox 1 a.\") 67_‘; o 5:,,

du, du, Odu, ou,

a.\‘| Ox» 8.\'3 o 57,,

Jacobians

e
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o 3w an
dxy ;2 Oy; ox

du_ ) e

axzn ic1 9y 9xp

du_'3 B

a3 ;=) 9y Ox

3 ds o

ax - =1 O ' ox,

a3 aw o

Oxs ;=) dy Oxy

du 3 Qu;y 9y

and 5‘31: iz:l 5%5%3

Now, consider
Aduy  duy  duy| |9n aﬁyl_ I ‘
I 3y s {on Ox O
oy, . u3) 001 y2y3) _|Ouz OQuy Oup| [y, Oy2 Oy2
iy y3) O k2 x3) |Oy1 Ay, dys| [Ox Ox; Oxs).
Ju; Quz Juyf|dys dy; Iy
Oy 3y Oy |dx Ox, O

wdy By By
dy; dx dy; dx, dy; dx;
g dy A dy o dy
oy; a-’{ i dy; Oxy ay; 9x3
duydy gy g d
dy; ax, dy; Oxa dy; Ox;

Putting the values of each element of the determinant from the above relation, we get
du; du, Oy
a_Jﬁ 0x; b—A‘f:; )
aug allz 3112
x ax on
Jduy . duy duy
ox; . a_xz 0x3
_ d(“lv i3, “3)

- d(xy, xz, X;)‘

Theorem 3. If functions u, v. w of three independent variables x, y and z are not independent,

then the Jacobian of u, v, w with respect to x, y, z vanishes.

Proof. Here, we have, the functions u, v and w (of three independent variables x, y and z)

are not independent.
Then there will be a relation
F(u, v, w)=0
which will connect these independent variables.
Differentiating (A), with respect to x, y and z, we get
OF u OF v OF dw_,
du Jdx dv Ox oOw Ox
OF du OF dv OF dw
du dy dv dy dw dy
OF du F v OF dw
du 9z dv 9z ow Iz

and

-.{(A)

(1)

-.(2)

..(3)

“Jacabians
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oF,
ox,

ax,
dF;

=1

3,

_-E)x_,

oF,

ax 2
o

JF,
o
3F,
%,
oF,
o

axg

o,
aX )

aF,
ox,
F,
ax,
oF,
ox 2

oF,
T O
dF,
axy
IF;
ox,

9F,
ax3
oF,
0x3
dx;

—- 1) O(F1, Fy Fy)
a(xls X2, x3)

]

e 5.4. NECESSARY AND SUFFICIENT CONDITION FOR A JACOBIAN TO
BE VANISHED

Theorem 1. If v, vy, ...,

v, be the functions of n independent variables x|, xa, ..., x, such that

F(vi,va, .oy vy) =0

it is necessary and sufficient that the Jacobian
a(VI’VZ' -—an) . . .
should vanish identically.
‘ axy, X0 ...y X,)
Proof. Necessary Condition. Here, we have, if there exists a relation of v, v,, ..., v, such

that

Fvi, vy, ..., v) =0, (D

The, Jacobian is necessarily zero.

exists a relation between Vi V2, -

Ve

Sufﬁclent Condition. If the Jacobian J(\qJ vy, .

- The equation connectmg the functlons Vl» Vo, oee
'wrntten as

Differentiating (1) partially with respect to xy, x5, ..., x,,, we get
av1 a.X] aV2 Bxl a\’" axl o
OF I oF +£‘,av,,=0,
v, dx; OJvy Oy dv, Ox,
OF O OF O 9F Ov_
dv; 0x, av2 . Ox,, av ox,
NV aF aF oF
Now, ehmmatmg a—Vl »— avz S m from.these equations, we get
v v %
al?l ' axl. ax|
M o CY
. axz_ a.X2 8)(2‘ =0
JET il
S|ox; ox, T O,
N a(vl’ Vs oeon n) ‘. =0
) . a(xl, X7, e Xn) )

.., V,) is zero, then to show that there must

,v, and the variables x;, x,, ...



81 (.\'|. R TP $ Vl) =0
&2 (x‘.’.'x?»' e Ky ¥, V) = 0

Sk (Ib AL s veea Xpa Vi Vo ceny Vl’) =0

& (.1‘,,, Vs Voo oo Vn) 0.

Then, we have
M&:’_g_n),]

A1, oy s W) (X1, X0 1 Xn)

"a(Xth. ....x.rl)—( W

(¥, Vo, «eey V)
-

91 98 98
ox; Oxy  dx,

=1

dv, vy T v,
1f J =0, then
?_é_l_ . ag?. % agn
axl dx, T 9x, " 9x,
8 98

= At least one of———-* %&n is zero.
3\1 3x2 8.\',,

=0

dgy
2 0 for some value of & between | and n.

0xy
= For that particular value of &, the function g, must not contain x; and hence
8k (Kt 1e ooy Xy Vo Ve ooy ) =0, (2)
Now we may easily eliminate the variables x,(.Xt42,....%, betwecen (2) and
8+1=0,g,,2=0,....g,=0and an equation between v, v,, ..., v, alone. can be obtained.

SOLVED EXAMPLES

Example 1.l[fx=rcos®, y=rsin0, sImw that

dlx, v a(r.0) _
@ 3.6~ T
Solution. (a) Here, we have
a(x, ¥ _ cos® —rsin8]

ox/dr 0ox/d0}
d(r,0)  |[dy/0r dy/d8|~
=rcos’ @+ rsin®@=r-

(b) From the given relation, we get

rP=x*+y* and tan O =y/x.

sin 8 rcos 6

Now differentiating partially w.r.t. x and y, we obtain

o _ Ior _x
2 axl—2x r dx T
ar dr _y
7, 80 _ or _
s 2y o 3y
and tan 0 = y/x :secza@=_l
- ox JE!
or _a_9=_ -y y - __
ox  x*sec?®  FcostBsec’d

Jacobians
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d0 g0 1 cos"® x 1 x
and Rl AR =2 o S
y X oy x sec” 0 X 2ox 2
a o
81 r, G; _ ox ay _ x/r _\'/I‘
ox,y) 190 98| T \—y/P i/
dx 9y
AP SR _Fa
3 3 3 2 r
ro } ¥
Example 2. If x=rsin @ cos ¢, y = rsin 8 sin 0, 7 = r cos 6, show that
9y, 2) _ 2.
3.0, 0) r~sin Q.
Solution. Here, we have
a* u o
dr 90 9o
o(x,v.z) _[dy dy Oy
9(r.0,9) |or 36 Jdb
or 96 0o
sinBcos¢ rcosBcosd —rsinBsind
=|sinOsind rcosOsing rsinBcosd
cos 6 ~rsind 0
=cos 8 (r2 sin 8 cos B cos® ¢ + r*sin © cos 8 sin® ¢)
+ rsin © (r sin® 8 cos™ ¢ + r sin® @ sin” ¢)
fexpanding the determinant along the third row]
=% sin O cos® 0 + 7 sin’ 0 = /¥ sin B (cos” O + sin® B)
=r"sin 0.
Example 3. If x=c cos w cosh v and y = sin.u sinh v prove that
Iy L _
) (cos 2u — cosh 2v).
Solution. We have E
x=ccosucoshv and y=csinusinhv
&*—csin wcoshv, o*=cosusinhv
du Ty o
and =ccos usinh v, =csinucosh v
: du dv .

ox  ox
dx,v) lou av
O(u,v) [dv Oy
du Ov

—ccosucoshy ccosusinhv
ccosusinhv  ¢sinwucoshv

.2 2 2.2 2
=~ ¢?sin® u cosh® v — ¢* cos® u sinh® v

2
< .
7 [2 sin” u cosh® v + 2 cos” « sinh® v]

2

It

; [(1 —cos 2u) cosh® v + (1 + cos 2u) sinh™ v]

-

c . .
== [cos 2u (smh2 v —cosh®v) + cosh? v + sinh? v]



N

2
4 ~
y == b {= cos 2u + cosh 2v]

<

S e BN
.’ 2.

='£“ [cos 2u — cosh 2;)1.

Example 4, If v =xd b W + v —.\ + v then prove that

agu,v!: 1y N
3 aHx, y) 2 av‘(u— vy L

Solution. Here we can write above-relations, as> * *
B T
' . . ) LIS | F25“2+\’2—13—y3=0.
o (. v) _ NF\. F) 4 o(Fy, F
"Now Awv) _ Fr. 1) g ol Fa),
a(X. y) Ax:y) 79, v)
v aF, F,
- ci e ¥ E) B oy | |-t -1
Towe have At et o ae
C v e 0, o [0, OF =3 s 3R L L iasduat s,
. ax ay e f’
4 X r :’;.‘l‘* . i
=3yt - 3x2 =3 0’2”' ) i
o(Fy. Fa)y 2232ty
and —g(ﬁﬁ 32':‘ , 2" 6u v - 6uv =Guv (u—-v)
- From (a) L
' A 3 (Farxd). sy 2t
= O(x. y) = 6uv (i = v)" = 2uv (u vy e
Example 5. If ‘ ) . ) Yf- '..:...Uu

u=x+2y+z,v=x—-2y+3z and w —2xy—-,\<,+4y"—2..2, b
then prove that they are not independent.
Find the relation between u, v and w.

Solution. We have _— ‘
A, v, w) 1 -2 . 1
——l=) -2 b T3
x. . 2) 2y—z 2w+4z -xdy-4dz)
1 . 0:‘ el 0 s -
=] 1 Yo-4 2 by ¢ ~
2y=z 2x=dy+6z —x+2y-3¢ .
1. 0o - -0
=-2( 1 2 o2 =0.
12y -z .x+2y Bz -4 2y- 3¢, R
by

(3}
these functions are not 1ndcpcndent so there must bc cmsts a, relauon bctwccn them

We have u?—v? -(r +‘."lyl4)-‘c) -E.x 2y+3<.) y -
=(x+4) (@y-22) , .
=4(x+22)(2y-2) ¢, ..

By simplification
=4 (2xy —xz+4yz - 252) = 4w,
Therefore 1% — v* = 4w, required rclation between «, v and w.
Example 6. Show that the functions
HExdvizny=xy+yidzw=x 4y +2° - 3nz
are not independent, also find the relation between u, v and w.

Solution. We have

el

2ciand ¢y - ¢

Here last two columns be ldchCﬂl So the Jacoblan ‘of the functions u. v, w is zero, therefore

+
!

i
by

=N

_—— =y —

S e e s — —

& .
Jacobiany
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o

T e — ——— o ——
t— —

et g, i m————

- . b ! it (1. v, )
— - e I TN . — 1 —
6= v2+ Tov=x+ y+‘ W= XY 4+ yz 4o +Slmw that the Jacobian o e v, ;v vanish |
oL y.3 . . .2 A ek Lee

~idéntically."AlSo find the relation between 7. v afﬁd Wt
¥ luuwcm.umw-*tvmzoma‘lﬁ'{.0&000!!13*\31“ q

ANSWERS: si¢ x) 6
(ANSERS 1, gl

= :
(‘! » 2 ,9.\)6
y " X - -2y b3 _xy
—_—] e S v = g+ 2w ( stanv=u
PAS
1 1 0 o t

_OBJECTIVE EVALUATION ___x-¢

Fo u‘,—uu ty+r) (C-x)ic+rey)

Fill in the Blanks :
1. _If «wand v be the functions of two mdcpcndcnt variables x and v, then Jacobian of « and v with

| respect o x and y is denou:d by oo i o n o
2. T The™function "u v and "w " of - thrcc}mdcpendcm “variables X, .Y Fand T will ot T if
— r 2) = b ' 3 = o
M=O. lx -y -{r"&‘} - {1 ¥’9“
— 0, v.2) - : .

3. M x=rcos 8, y=rsin8, then the value of {L=t tw) enfumn buls demticat}

n..c ATV) & oz e, therefore function are not md:{mdem. therefire, a4 relabeny tat up between
00 ) =

4, Thevalucofé%—\?- 3 ‘—f'..*n"t - 32 .
| R (x+ y+ 5T 4‘?‘1“&_&_,'{,*5 %Tu.ﬁv‘w Wit S

True or False :
)6
| Write ‘T’ for true and “F’ for false &3 [(“u““‘l"‘db’ “""L‘ &

WrawWiyy © “r )\

11, Ifwg. uzare funcnons of yi.v2 and v;, y2 are functions of X1.A2 lhcn

R u—;)! oy lh)" o(v,? ya)nmufreh.x:x
T A ao’ 72 36 ) - Y
2 .La(u. ) a(x.,\a) —Oripectinasod s el ~
o(x\ 32). A, i) Y I@u du |
3. TIf the” funclléﬁs_"u VoW (_)&thrce mdcpcndenl Variables X V.Zare not mdcpcndcm then the
—Jacobian of u-vow w:lh respect tox.y.z z vanishes. et : : (T/F)
Multiple Choice Questions : 13, 5. % . S
Choo#c the most approprmte one a e . .
'T' l Jﬂ' i
1. _If.the functions u, v.w of. thrée mdcpcndcnl variable x. y and z and _GM 0 then the
. ) (avr) [ax' Xy as ! . . (""')
== functions are @~/ %7 0) § 5 A e
(a) [ndcpcndent {b). Not mdepcndent
= () May be andcpcndcm_._..(d) None of these. .. - - ‘
A4 L
Py Auv) Ay s T T 3J32AU0Y TE3T -
2. L. The \'alue of —
Btenay 2, 00 )y _; -

3. The necessary and suﬂ"ucn( condition for the existence of a rclduon F(lu 2. u,,) Qis

t that the Jacobian must'be {xr)&a'l“NQm v 1r1. 3 117{’3??41’:1 “'____gg, “c_x_:__ ml S
@ cqualto! IR, equal to 2 (er. w & I*
It )" vanish 1denuc.|lly"°“°m €(d) " Tione of these.riables &3 fo L% Mls:ﬁ wod2” g
Fivivp oo va) =0 (v n)G ()b
. then a(‘.. 3o e, ANSWERS &‘. S\‘ + +_l_=_l_ o= “‘n ’v
. : 0 {2y, 70 ooy Ky} X
Fill in lh(; Bianks : G+ (=% (x-3) (3“‘!)‘*“ (,, N “)6
5%‘—-:—3- or J(u, v) - 2. Independentg43. 1 Wl RS
True or False : .‘xn-a%’%"xsmwm.&-&w.@:=nl Py
1.T 2.F 3.T ! i) .
Multiple Choice Questlons oo o el wod2 ™2
1. (b 2. (a) (c)!;- ’+ ‘('!' 1 W IHY=REY S+

.msm‘_naow):d noisl:n ot bt 02lA dardsoas #n6 Yo smsbraqibar e ()17}

1 (“)ulbc"-* ‘®) Olfnmmﬂ %% ie fmé.?")(d)"NO"c ofthcsc';.m—'-g,n[ A
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ENVELOPS AND EVOLUTES

likde STRUCTURE

e Family of Curves

e ‘Envelope of a family of curves with one parameter

e Working procedure for iiriding the envelope.

e Envelope of the family of curves of the form MZ+BL+C=0.

e Envelope of the family of curves with two parameters connected by a relation
e Geometrical interpretation of the envelope

e Evolute

. ,

Evolute of pedal form of curves
a Summary
0 Student Activity

‘T Test Yourself

{L'EARNING OBJECTIVES!

After going through this unit you will learn :

‘@ How to define a family of curves with one and two parameters.
e How to define envelope and evolute of a given curve.}

/

* 6.1. FAMILY OF CURVES

(i) Family of curves with one paratheter. An equation in two variables x and y of the form
F(x,v»,A\)=0 ’

where A is any constant, is known as a curve. o

If A takes all real values, then the equatlon F(x ¥, 7&) O is known as fannly of curves with
one pdlamcter A

(ii) Family of curves with two parameters. An equatlon in two variables x and y of the form

‘ CFay A w=0

is known as a family of curves with two parameters A and p if A and W take all real values.

For Example (1). The euation x cos A + y sin A = p represents a family of straight lines with
one parameter A. '

(2) The equation y = nx + a/m represents a family of straight lines which are the tangents to
parabola y2 = 4ax with one parameter 1.

(3) The equation (v — &) + (y ~ B)* = a” represents a family of circles with centred at (c.. )
and radius @ with two parameters & and f3. :

« 6.2. ENVELOPE OF A FAMILY OF CURVES WITH ONE PARAMETER

Let F(x,y.A)=0 be a family of curves with parameter A and let F(x,y,A)=0 and
F(x,v,A+3A)=0 be two members of a family of curves F(x,y,A) = O corresponding to the
parameter A and A + 8A, suppose P is a point of intersection of two members F(x,y, A) =0 and
F(x, y. A +32) = 0. As 81 — 0, the point P tends to a definite point Q which depends upon A. Thus
the locus of such points O gives an envelope of the family.

Definition. The locus of the limiting positious of the points of intersection of any two members
of the family of curves F(x, y, A) =0, when one of them tends to coincide with the other fixed point.

\ .
Envelops and Evolures
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REMARK

» The envelope of a family of curves is the locus of the poims of intersection of
consecutive members of the family.

* 6.3. WORKING PROCEDURE FOR FINDING THE ENVELOPE

Let F(x,y, A) =0 be a family of curve with one parameter A.

Suppose F(x, y, A) =0 and F(x, y, A + 8A) = 0 are two consecutive members of the famlly of
curves corresponding to A and A + 8A. Thus the co- ordlnates of the point of intersection of these
two members are obtained by the equatlons _ C. _ ‘

: S Fy.A)=0 . (D
and Flx,y.A)— F(x,y,A+8)0) =0 .. (2
Divide ;‘he equation (2) by 6A, we get : '
Fx, 9. M)~ F(x,y, A + 8&)
A
Flx, v, A+ 8\ - Flx, vy, A _
Taking limit as 5A — 0, we gét

9F(x, y,A) _ 0
S 7

or

. (3)

Now ehmmatmg A between F(x,y,A)=0 and ﬂ%)- 0, we therefore, obtain the

envelope of the family of curves F(x, y, A) = 0.

Remember. To obtain an envelope of the family of curves F(x ¥, A) =0, we use following
steps:

Step L Differentiate partially F(x, y, ) = 0 with respect to A, we get
| 9F _
o
Step IL. Now eliminating A between F(x, y, k) and g}k =0, we therefore obtain envelope of

the given fanuly of citrves.

SOLVED EXAMPLES

Example 1. F md the envelope of the family of stratght lines y = mx + — , the paramerer being

in.
Solution. Here, the family of straight lines is

. a ‘
= +— - e l
y=mr+ : (1

Differentiating (1) partially with-respect to m, we get
0=x-2 @)
I

Eiiminating m between (1) and (2), we get
From (2), we have

From (1), we have

ym= m'x+a

= - :yzm2 = (mzx + a)2
. \ R . . .
2 a a . 2 ) L..2_a
= yl— =t —.x+a Someo=
x x ) x
v’ .
= — (2a)



= yZ = 4dax.

This is the required envelope.

Example 2. Find the envelope of the familv of straight lines : x cosec 8 — y cot 0 =c. the
parameter being 0.

Solution. Since the family of straight lines is

xcosec@—ycotO=c. .. (D
Differentiating (1) partially with respect to 8. we get
— xcosec B cot 0 + y cosec’ 0=0
or xcot@—ycosec 9=0. ... (2)
Eliminating 8 between (1) and (2), we get
{x cosec 8 - ycot 0)2 —{xco1 9 - ycosec 0)2 = ¢
or  x*(cosec’ B - cot® 0) — y* (cosec? 0 - cot® 8) — 2xy cosec B cot § + 2xy cosec 6 cot 8 = ¢*
or X - yz =c% .- cosec’ B~ cot? 0 = 1)
This is the required envelope.

* 6.4. ENVELOPE OF THE FAMILY OF CURVES OF THE FORM
A2+ B+ C=0
Since the family of curve is .
AN+ BL+C=0 (D)
Differentiating (1) partially w.r.L. to A, we get
2AL+B=0. o (2)
Eliminating A between (1) and (2), we get

b T B
A[‘ﬁ_l +B[—2A]+C—0

B B
or A oAt c=0
or B*-4AC=0.
This is the required equation of an envelope.

REMARK

» i the quation of the family of curves is a quadratic equation in paramcter, then its
envelope is obtained by D =0, where D is the discriminant of the quadratic.

* 6.5. ENVELOPE OF THE FAMILY OF CURVES WITH TWO PARAMETERS
CONNECTED BY A RELATION

Let F(x, v, A, ) = 0 be a family of curves with two parameters A and u. Let fA, p)=0be a
relation between A and .

To obtain the envelope. we proceed as follows :

Differentiating the cquations F(x, y, A, 1) = 0 and f{A, p) = 0 with respect to A regarding x and
y as constants and p as a function of A, we get two equations. Now eliminating A, p between the
given equations and two obtained equations. We therefore obtain the envelope.

¢ 6.6. GEOMETRICAL INTERPRETATION OF THE ENVELOPE

Let the equation of the family of curves be
Flx,y,A)=0 : (D)
where A is a parameter.
Thus the cnvelope of (1) is obtained by eliminating between (1) and
aF
3 =0 - (2)

Therefore. we can say that (2) is taken as the equation of the envelope of (1), if A is a function
of .x and v but not constant.

Lnvelops and Evolures
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ax Torar ) Loy Ty
aF dF dh
dy _ o al ox
dx aF OF dA
’ dy a)x 3y
This gives the slope of the tangent to the envelope of (1) at any point (x, y). Where (x, y) is
a common point to the member F(x, y, A) =0 of the family of curves and the envelope.

(aF oF ak) (aF oF ax)

(3)

F
Ifg— #0and g # 0 at (x,-y), then the slope of the tangent to the member F(x, y, A} =0 is
dy __OF/ox
dx dF/dy -4

But F(x, y, A) =0 is also the equation of the envelope if A is a function of x and y, which is
iven b oF _
BVERDY 0 T 0

Since at every point of the envelope - oF =0, then the slopes given by (3) and (4) are same.

A
Hence the curve of the family and its envelope have the same tangent lines at the common
point. Consequently the envelope of a family of curves touch each member of the family.

REMARK
oF

» If=—=0and B_F‘_‘_ 0 at any points on the curve, then the envelope may not touch a

ox dy

curve at that points.

SOLVED EXAMPLES

Example 1. Find the envelope of the family of straight lines y = mx+ a V1 + m’, the parameter
being m.
Solution. Here the given equation of the family can be written as :

(- mx)?' =a* (1 +m?)
2 2y 2 2, .2 '
or " ~a)m =2mxy~-a’+y =0 . (1)
This equation is quadratic in m. Then the envelope of (1) is obtained by equating the
discriminant of (1) to zero, we get

(-2 -4 (P -a) (" -aD)=0 : ¢ B'—4AC=0)
or 4,\'2y2 -4 [)c2y2 -xXa - azy2 + 04] =0
' 22, 22_ 4
or Xa tay =a
2,.2, 2
or X"ty +a.

This is the required equation of envelope.
Example 2. Find the envelope of the fumily of circles (x — 0)2 +y* = 1* where the parameter

being c.
Solution. Here equation of family of circle is
o (x—o)f+y'=+ (D
It can also be written as ’
C 2 2,.2 2
C=2xc+x"+y —-r=0 ... (2)
This is quadratic in ¢, so that the envelope is
(207 -4. 1. +y* =) =0 (- B*-4AC=0)
or xz—xz—y2+r2=0
or e
or y=r, y=-r

These are the required envelopes.
Example 3. Find the envelope of the circles drawn on the radii vectors of the parabola

y* = dax as diameter.



Solution. Let (ar’. 2af) be any point on the parabola v =4ax. Then the equation of circles

drawn on the line joining (0. 0) and (arz. 2ar) as diameter is - :
(x=0) (x—ar) + (y = 0) (y ~ 2a) =0

or .r2+y2—axl:—2m,\'=0 . - - ()
where 1 being the paramcier. :

Ditferentiating (1) partially with respect to ¢, we get

. =2axt -2ay=0 .

or xt+y=0 . ... (2)

Eliminating 1 between (1) and (2), we get o

ay’ 2ay*
2 2 y
or AWty ———r——=0
x X
el
or x (.\‘2 + yz) +ay =0..

This is the required envelope.

. . . . X
Example 4. Find rthe envelope of the family of straight lines ot i = Ll where a, bare connected

. 12 .
by a relation o +b*=c*, ¢ is a constant.
Solution. Since the equation of family of straight lines is

x
~4==] (1
_ a b (1
and a+b=c . ' .. {2)
Diffcrentiating (1) and (2) w.r.t. @ treating x and y as constant and ‘0" as a function of ‘a’, we
get
—Ln Do
a- b° da
: db _ x/d*
or av _ i ... (3)
dﬂ ):/b"
and 2a+2b db =
. da
db a
@w__a .. 4
or ) da b @)
From (3) and (4). we get
2
_Xa__a
w6 b
or xa_a
xta _v/b
or e . (5)
a b
Eliminating a and & between (1). (2) and (5), we get
x/a _y/b _x/a+y/b_ 1 L
e e ] using (1) and (2)]
a” b° at+ b ¢ i &
x/a |
—=— = XC"=a
a ¢
= 0= (xc’)"“‘
/b1
and )bz =;—2-
= yr:2 =5
= b=(cH"

Envelops and Evolutes
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or

Putting these values of @ and b in (2), we get

)2/3 + (yc?.)’Z/J =02

2/3 /. 2
ey =

(Jcc2

This is the required envelope.

TEST YOURSELF-1

Find the envelope of the family of straight lines.

ax sec 0 — by cosec 0=a>-b°
where 0 being the parameter.
Find the envelope of the following families of straight lines :
(i) y=mx+an’, the parameter being 7.
(it} y =mx + ant’, the parameter being m.
(iii) x cos® o+ ysin’ =a,0 being the parameter.
Find the envelope of the family of straight lines
xcosQ+ysin=a
where o being the parameter, and interpret the result.
Find the envelope of the family of straight lines §+ % =1, where two parameters a and b

are connected by a relation a + b = ¢, ¢ being the constant.

Show that the envelope of the family of straight lines y = mx + Va“m” + b”, @, being the
2 2

parameter is x—, + y—, =1

a b

ANSWERS

1.
2. D4 +27ay’=0 () (-1 .+’ =0 (i) " (P +y) =2y
3 Jc2+y2=a2

4. xl/z_l_yl/lzcl/’l

6.7. EVOLUTE

Definition. The evolute of a curve is the envelope of the normals to that curve.
In other words, The locus of the centre of curvature of a curve is called evolute for the curve.
Since th centre of curvature of a curve for a given point P on it is the limiting position of the

intersection of the normal at £ and the normal at other point Q as Q tends to P. Thus the envelope
of the normals to a given curve is called an evolute of that curve (Remember).

6.8. EVOLUTE OF PEDAL FORM OF CURVES

Let the pedal equation of the given curve be
p=fr - e (D)
P=Ar)
. C

M




and let C be the centre of curvature of (1) at the point P. Then PC = p (radius of curvature) and
the equation joining P and C is the normal to the curve (1) at P. The point C will be on evolute
corresponding to the point P on the curve.

Since the evolute of the given curve p =f{r) is the envelope of the normals at P of the curve,
so that the normal PC of the given curve is a tangent to the evolute at C.

Here PT is the tangent at P to the given curve p = f{r} and OT is perpendicular to PT such
that OT=p and OP =r. Now draw a perpendicular OM from O 10 PC such that OM =p’ and
CO =7 . Then in triangle OPC, we have

2,2 2
coséOPCzr—izPTB—'/-

#? =+ p* = 2rp cos LOPC
=r2+p2—2rpcos(-;r-—¢J

=2 +p?-2rpsing
PP =~ +p*-2pp ¢ p=rsing)
7=+ p-2p. , -
Since OTPM is a rectangle, so that OM = TP =p’, then in APTO,
r2 =p2+p/2
= p'2=r2—p2. o ’ ... (3)
Also, we have i :
dr )
=r— .. (4
p=r dp 4)

Now eliminating r, p and p between (1), (2), (3) and (;t), we get the pedal equation of the
evolute of the curve p =f{r).

REMARK
» In above formulation the rclation between p” and r* gives the evolute of the curve

p=f().

SOLVED EXAMPLES

Example 1. Find the evolute of the hyperbola x*/at - yz/bz =1,
. Solution. Let P(a sec 8, b tan 8) be any point on the hyperbola
x/a - yz/b2 =1.
.The equation of the normal at P to the given hyperbola is
ax cos 8 + by cot 8 = a* + b%. ’ (D
Differentiating (1) partially w.r.t. 8, we get '
~axsin 0 — by cosec’ 0 =0

or sin39=-£)‘2
) ax
173
or : sin,Gz(-g‘!)
ax
Rz
cos(-)=\/!-sin26,= l—(-af)
L by 273
and cotf= ;
_by
ax

Putting the values of cos 8 and cot 8 in (1), we get
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b 2/3
by 2/3 1- ;}
ax[ lq(ax) :|+by R = (@’ + b}
)
o \’(ax) T - —LWar)’”—(bv)m = (a2 + b
or - V(ax)zn—(by)'m [(ax)*” (by)z”]—(a +6Y)
or - . I I 4,)2/3._(b )2/3 3/2_(a +b2)
or o (m)z/% (bv)2/1‘—(a +bq)2/3

Thns is the requm:d evolute of the given curve.
_ Example 2. Show that the evolute of an equiangular spiral is an equiangular spiral.
Solution. Since the pedal equation of an equiangular spiral is '

p=rsine - (D
so that 2'2=sir1'0t.
s dr
dr
p—r&;—r. Sinazrcoseca,
or ‘ P = r cosec QL. : . (2)

" Let(p’,r") be zmy pomt on the evolute corresponding to the point (p, r) on the curve (1). Then
we have,

2 2
=t pt=2pp |
' 2.2 2 :
=r"+r°cosec” o¢—2rcosec O . rsin O

5
=r" COSCC2 o — r2

‘ = rfeotta. A R . (3)
Also, we have ' '

2

p —n ~p —r—r smOL

=, (l - sm Ot) -
- pP=pcos® o A . )
Divding (4) by (3), we get ‘ ' ' '
. 2 2 .2 ) ) : R
p_rcosa sin? o .l

2 2 .
" Peotta

p'2 2sinta
or . p=rsina.
Thus the locus of the point (p’, r) isp=r sin @, WhICh is an equmnoular splral

SUMMARY

. Famlly of curves :
(i) F (x,y,A) =0 is a family of curves thh one, parameter A
L) F(y,y, Ay =0isa famlly of curves with two parameters-A and’ u
* . Envelope of F(x,y, }\.) 0 : .

The equatlon obtained by eliminating A between F(r y. A)=0and gg =0is caIled envelope. ‘
. Envclope of F(x,y, Ap)= - o

The equduon obtained by ehmmatmo Aand p between Flo,y, hop) = 3;\.: =0, gu =0, is

called envelope.”

‘ +  Evolute of F(x,y, ) =0

If ¢ (x, v, @) = 0 be the equation of the normal to the curve F(\ ¥, l) 0; then the cnveiopc of
o (x, y.a) =0 is called evolute of F (x, y, 2} = 0.



« STUDENT ACTIVITY

1. Findthe envelope of the circles drawn on the radii vectors of the parabola _)'2 = 4qx as diameter.

2.  Find the evolute of the hyperbola

2 2
X
(:2 b2
« TEST YOURSELF-2

1. Find the cquation of the evolute of the parabola y? = 2ax.

2. Show that the equation of the cvolute of the ellipse X2/d +y2/b2 =1is .
(ax)*? + (l')v)y3 = (a1 p)3,

3. Find the evolute of the curve x* + y*% = o>,

2 2 2
4. Show that the whole length of the evolkute of the ellipse l—_{ + ‘;—2 =1lis4 ( % - % )
a

5. Find th evolute of the parabola y* = dax.
ANSWERS

1.27ay’ =8 (x - a)’ 3+ P+ (- 9P =2a"" 5.3x% +4ay-dax+4a°=0

oBJ ECTIVE EVALUATION

Fill in the Blanks :

1. . If the equation of the family of curves is A}g + BX) + C =0, where A, B, C we are functions
of x, y: then its envelope is -........

2. The envelope of a family of curves ......... each member of the family.
3. = 2vm +a =0 is a family of straight lines, where m being the parameter, then its
envelope is .........

4.  The envelope of the normals-to the curve is .........

True or False : ' '

Write ‘T’ for true and ‘F’ for false :

1. The equation F(x, y. A) = 0 represents a family of curve with one parameter. (T/F)
2. The envelope of a family of curves intersects each member of the family. (T/F)

Envelops and Evolutes
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3. If the equation of a family of curves is AA> = BA + C = 0 then its envelope is 8% - 4AC =0.
' : (T/F)

‘Multiple Choice Questions :
1. The envelope of a family of curves ......... each member of the family :

(a) intersect (b) touches (c) is perpendicula to (d)None of these
2. The envelope of the family of curves xm® — 2ym +a=0, m being the parameter is :

@ y'=dax  (b) y*=2ax © y'=ax @ x*=ay
3. The locus of the centre of curvature for a curve is :

(a) envelope  (b) evolute {c) radius of curvature (d) none of these .

ANSWERS - '

Fill in the Blanks :

1. B*~4AC=0 2. Touches 3.y =ax 4. Evolute
True or False :

LT 2 F 3.T :
Multiple Choice Questions : '

L{®) 2.() 3.

0o -
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MAXIMA AND MINIMA OF FUNCTIONS OF
TWO AND THREE VARIABLES

w55 STRUCTURE 5t s ik -4 Sty v ™

8 LV AT e e S TR

e Maxima and Minima of a function of Single Independent Variable
e Maxima and Minima of a function of Several Independent Variables
o Necessary Condition for the Existence of Maxima or Minima
e Sufficient condition for Maxima or Minima : The Lagrange's Condition
a Test Yourself
e Maxima and Minima of the function of Three Independent Variables
o Maxima and Minima for a function of Three independent Variables : The Lagrange's

Condition
a Test Yourself

e Lagrange’s Method of undetermined Multipliers
0 Summary
a Student Activity

L0 Test Yourself

IR S er - LEARNING OBJECTIVES

After going through this unit you will learn :
o How to find the maximum and minimum values of a function of two or more than two
independent variables ?
o What are Lagrange’s multipliers and usmg these multiplies how to find the maximum

| and minimum values ?

e 7.1. MAXIMA AND MINIMA OF A FUNCTION OF SINGLE INDEPENDENT
VARIABLES

Let flx. y) be a function of two independent variables x and y. If fx. y) is continuous and
finite for all values of x and y in the neighbourhood of their values x=a and y = b respectively,
then fla. b) is said to have a maixmum or a minimum values of fx, y) according as fa+ /1. b + k)
is less than or greater than fa. b) for all values of /: and k (where / and & are sufficiently small may
be.positive or negative), provided both are not equal to zero.

e 7.2. MAXIMA AND MINIMA OF A FUNCTION OF SEVERAL

INDEPENDENT VARIABLES
Let fix, y, z. ...) be a function of several independent variables x, y, z, ... . If fis continuous
and finite for all valucs of x, y. z, ... in the neighbourhood of x =a, y = b, 2 = ¢, ... respectively, then

the value of fla, b.c,...) is sa:d to be a maximum or minimum if fa+ h, b+ k,c+1, ...) is less
than or greater than fla, b, c, ...) for al} values of /1, k, I, ... (where h, k. I, ...) are sufficiently small,
may be positive or negative) provided they are not all zero.

Or

In other words we can say, the value of fla, b, c, ...) is said to be a maximum or minimum if
Ra+h.b+k c+1..)—fla, b, c,...) maintain an invariant sign (may be positive or negative) for
all values of A, k. 1. .... positive or negative provided they are taken sufficiently small and finite.
Stationary and Extreme Points.

A point (ay. a. -... a,) is called a stationary point, if all the first order partial derivative of the
function f{x, x, .... X,) vanish at the point. A stationary point, if it is maximum or minimum is
known as extreme point and the value of the function at an extreme point is known as an extreme
value.

Maxima and Minima Functions of
Two and Three Variables
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REMARK
> A stationary point may be a maximum or minimum or neither of these two.

|+ 7.3. NECESSARY CONDITION FOR THE EXISTENCE OF MAXIMA OR

MINIMA

Let f{x, y, z, ...) be a function of several independent variable x, v. z ... . It is clear from the
definition of maxima and minima that maximum or minimum of fx, y, z, ...) will occur for those
values of x, y, z,".... for which the expression -
Sx+hy+kz+l..)=-fxy,2,..)

maintain an invariant sign for all sufflc;lently small and finite values of /i, &, {, ..., positive or
negative.

Now, expanding fix + i, y + k, z+1, ...) by Taylor’s theorem, we have

" — o a a i a . e
fox+hy+k z+!1 .._.) =flx,y, 2, ...)-+[h —Iax +k—£ay +1—iaz }
+ terms of second and higher order.

= f(x+lz,y+k,z+l,...)—f(x,y,z,...)=(lt'é'£+k—'£+[—a‘};

+ terms of second and higher orders.  ...(1)

Now, since f1, k, {; ... are sufficiently small, the first degree expression

o Lo o,
[a ”‘ay”& J

of the equation (1) can be made to govern the sign of right hand side and hence, of the left hand

Slnce left hand side is to preserve an invariable sign for maxima or minima, therefore, as a
necessary condition for maximum and mmlmum values, we must have

Ax, ¥, 2, ...) will have a maximum or a minimum value.

REMARKS

X, ¥, 2, ... to be maximum or minimum is given by

Lo/ N
3 =03, =05,70

of the funtion fix, v, z, ...). These conditions are not sufficient.

Maxima and Minima for a Function of Two Independent Variables.
(1) To find the condition which governs the sign of a quadratic expression.
Let us suppose, there is a binary expression
I=ax’ +2hxy + by2
of two variables x and y. Then / can be written as
I=ax" + 2hxy + by2

- i fax + hy)* + (ab - 1) y7).

If (ﬁb— 1) is positive, the sign of I will be the same as that of a.

af af af
a +k a} aﬁ =0. | | |
Now, since /1, &, 1, ... are arbitrary and independent of each other, we must have _
g{=0;g§=0,%=0...ctc. ' 3)

> The necessary condition for a function fx, y,z....) of the independent variables :

side as well. Thus, by changing the sign of the left hand side of the equation (1) will also change. "

If the number of independent variables be n, we shall get n simultaneous equations in these n .
variables, which will give the values a, b, ¢, ... of the n.variables x, y, z, ... respectively for which -

> The conditions given avove is only a necessary condition for the maxima and minima | -



Butif (ab - hz) is ncgative, then. the expression within the brackets may be positive or negative
and so therefore we can not say anything about the sign of expression /.

Stationary and Extreme Points (For the Function of Two Indcpendent Variables),

Let f{x, ¥) be a function of two independent variables x and y. A point (a, b) is called a stationary

du

A stationary point which is either a maximum or minimum is called an extreme point.
REMARKS
>

point, if both the first order partial derivatives (_B[ and gﬂ of the function fx, y) at («, b) vanish.
)

A stationary point is not necessarily an extreme point, hence a stationary point may be
a maximum or a minimum or neither of these two.

»  The value of the function at extreme point is called extreme value.

» A point at which function is neither maximum nor minimum., is known as saddle points.

Necessary Condition for Maxima or Minima.
Let fix, y) be a function of two independent variables x and y.
Then, it is clear that, we have the maximum or minimum of fix,y) at x =« and x = b if the
expression _
fa+h b+kK-fla b)
is of invariable sign for all sufficiently small independent variables / and & provided both of them
are not ecqual to zero.

We observe that,

(i) If the sign of fla+h.b+k)—fla,b) is negative, then we have a maximum of
fx,y)atx=a,y=b.

(i) If the signof la+ 1, b+ k) ~Ra, b) is posmvc, we have a minimum of flx, y) at x=a,
=D

Expand fla + &, b + k) by Taylor’s theorem, we have

2
fla+h.b+ k=1, b)+(h-'£+/ —1) +—’~[ —£+2u—f—a +L‘—-£) .

d¢ [x=a 2!
v=b

= ﬂa+/;,b+g)—ﬂa.b)=/z(3f) M+k[g§]
- =b ‘,

x=a
¥

y=b
+ term of the second and higher orders in £ and %.
Now. since /r and £ are sufficiently small, the expression

k) [(9f
h [a.\')x=n Tk [ay)x=n

y=b y=b

of the cquation (1) can be made to govern the sign of right hand side and hence of the left hand
side as well. Thus by changing the sign of /i and £. the sign of the left hand side of the equation
(1) with also change.

Since L.H.S. is to preserve an invariable sign for maximum or minimum, therefore, as a
necessary condition for maximum and minimum values, we must have

of (of)  _
I [ax).r=n +k [ay x=a 0. -(2)

y:b y=b

d a

If k=0, we find that if (_a[J #0, the RH.S. of (2) changes sign when A changes sign.
X=
y=b

Ox jx=a

. .. (9
Therefore fix, ¥) can not have a maximum or minimum atx=a, y=b if [—[ 20.
y=b

Maxima and Minima Functions of
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Analysis Similarly, taking /= 0, we see that f{x, y) can not have a maximum or a minimum at x = a.

y=b if[gﬂ _ =0,

y=b

Thus, a set of necessary conditions that f{x, y) should have a maximum or minimum at

x=a,y=Dbis that
I\ oy _
(Bx x=a 0 and By x=a 0.

y=b y=b

¢ 7.4. SUFFICIENT CONDITION FOR MAXIMA DR MINIMA : THE
LAGRANGE’S CONDITION

Let flx, y) be a function of two variables x and y.
20 2 2

Letr= 'a—'% s 5= _3L st = of

ox” dx dy 3y

As a set of necessary conditions for a maximum or minimum, at (a, b) we have

gf=0 and g‘f=0 at (a, b)

atx=aand y=>b.

then  fla+hb+k)—Afa, b)=%[ﬂi2+2slxk+:kl]+ R

where R consists of terms of third and higher order of small quantities / and 4.

Now, by taking /1 and.k sufficiently small, the second degree terms in R H.S. of (1) may be
made to govern the sign of R.H.S. and therefore of the L.H.S. also i.e. for sufficiently small values
of /2 and &, the sign of

%(rlzz +2shk + %) + R

is same as that of
it + 2shk + th?.

If the sign is negative, then the function is maximum at (a, b) and if the sign is positive, thcn
the function is minimum at (a, b).
Now, there are following three cases :

Case (i) If (7t — 5%) > 0.
Here, neither r nor r can be zero. Hence, we can write

e+ 2shk + 1k = % [PP1% + 2rshk + rik*]

= f— [(rh + sk)* + (rt = 5 K]

since rf - s> 0, therefore
(rh+ sk)2 +(r1— sz) >0
for all values of /i and & except when rii+ sk =0, k=0 i.e. at 1 =0, k=0, which is not possible.
Hence in this case the expression rh® + 2shk + tk* will have the same sign for all values of

hr and &, and the sign is determined by the sign of r.
Thus, the function fix,y) will have a maximum or minimum at x=a and y=»5b. If

rt—s°>0. Further, the function f{x, y) is maximum or minimum according as r is negative or
positive.

Case (ii) (17 - sz) <.

If 11 — 57 is negative, we are not sure about the sign of second degree term of R.H.S. of (1)
and hence there is neither a maximum nor a minimum value.

Case (jii) 77 -5"=0.

If rt =5’ then quadratic expression

i+ 2shk + tk*
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becomes '1 (hr+ ks)z.

So that, the quadratic expression will be of the same sign as that of r or ¢ unless

h _ s
Phe r-a(say)

ie., ‘ rh + sk =0.

If this condition is satisfied, then the second degree expression in R H.S. of (1) vanishes and
hence, the sign of the R.H.S. of (1) depends upon third degree expression in 4 and k, which change
sign with the change of sign of /1 and k and hence, the sign of L.H.S. of (1) will also change and
hence, there will be neither maximum nor minimum. Thus, the necessary condition for the existence

of maxima and minima now is that the cubic terms must vanish collectively in R.H.S. of (1) when

h__ f = (; and then the biquadratic terms of R.H.S. of (1) must collectively of the same sign as

k

rand 1, when
h__s_q
k r

ie., hr+ks=90.

Hence, the case is doubtful.

Thus, if 11 - s° = 0, the case is doubtful and further, investigation is needed to determine the
maxima and minima of f{x, y) at (a, b).

Working procedure. To discuss the maxima and minima at x=a, y = b, we must find

) _[u] [
N axz r=a - Ox dy |x=a’ - ayz x=a
y=b y=b y=b

Then, calculatert — s%.

Now following cases arise :

(i) Ifrt—s*>0,then

(A) If r is ncgative then, f{x, y) is maximum atx =a, y=b..
(B) If r is positive then, fix, y) is minimum atx =a, y = b.

(ii) If r£ — s2 < 0, f{x, y) is neither maximum nor minimum at x=a, y = b.

(iii) If rf ~ 5% = 0 the case is doubtful, and further investigation will be required.

An important identity. While solving problems, we frequently used the identity, given by
Lagrange

{(a2+bz+cz) (p2+q2+ r?’) - (ap +bq+cr)2}
= {(br - cg)* + (cp —ar)* + (aq - bp)’}.

SOLVED EXAMPLES

Example 1. Find all maxima or minima values of the function f(x, y) = ¥+ £y +xt
Solution. Since we have

fey)y =y + Py +x°

of _

5;—21)"!‘1’3

of _ 2
and ay—2y+x.

For a maximum or minimum of f{x, y), we must have
S _ o _
F 0 or 3y =0
oo = 2y +4a’=0
ox

= 2x(y+x)=0 ‘ )
—§€=0=>2y+x2=0 e (@)

Maxima and Minima Functions of
Two and Three Variables
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Solving (1) and (2), we get
x=0, y=0
Thus (0, 0) is the only point 0 maximum or minimum.
0% 2
Now r= ( a_é ](0 0) = [2)) + 12x ](0‘0) =0
If T
0T [ dx dy )(0 0 =122l0.0 =0
RUEIN O & P,
l—[ 3 o ())—[2](0.0)—2
. . -5 = 0 @~ 0l=
T hyus the case is doubtful and further mvesngatlon w11! be rcqutred

)

Example 2. Find the ma.nmmn or minimuni values of the funcnon X y (l —x= y)

Solution. Let H=x ) (1 ~-x— v)

au

RS Lo _ g 22 _3,2'
= . o 3xy” (l ' y) Xy
and o .:g—;‘*ny(l—\—v) xy*
For & maximum or mininium of x, we must have
' i ou
i 0 nd a‘ ‘-0. o | o
= , 3A“y“(l—x y) x3v2“0' - - o . ) (D)
and 205 (1 —x=y) -5 2 = 0. ' _ - ) D)

Now, subtracting (2) from (1), wc'have
xy(l—\—y)(?y 29 =90
which gives - y= %x.

. 2
11 . ’ -
SO L*z- '3 be the point of maxima or minima.

ou 2 22 3

Now r=-——==0xy" — 12x7y" — bxy
ax”

i 11
T (2 ’ 3J
2
(= R Ty

0y’

2 ‘.
Now, rt—s"= positive.

Also, r is negative, hence the function « has a maximum at x =

3, \2
. . 1Yy (1 1 1
The maximum value is —[2] [:J (I 573

N
8 T 123

*y = 8x’y — 0x?y?

LU
PR

__1
T 432

Example 3. Find the maximum and minimum values of xy (a — x — y).

Solution. Let

u=xy(a—x-—y)



ot
Then =—=ay-—2xy- _\'2
ox
0 .
and e gx - - 2xv
dy
For a maximum or minimum of ., we have
du ot
—=0 and =
ox dy
Thus, we have
a_v—2xy—y2:0 = v(e—2x-y)=0 (D
ax-x"-2y=0 = 1(a—x~2¥)=0. (2)

Solving (1) and (2). we get the tollowing pairs of values x and y which makes the function
stationary

0, 0), (0. @), (a, ). (% a. % a] ,

a 1
Here r= Py =-12y,
2
o
s= 2 9y =a—2x+2y
Fu
and t:a,,:—Zx.
. }i-'
For (0, 0). r=0,5s=a.t=0.
2. .
= rt— 5" 1s negative.
.. We have neither a maximum nor a minimum of « at (0. 0).
For (0, a). r=-2a,s=—a.t=0
= - s s negative.

. We have, neither a2 maximum nor a minimum of u at (0, a).
Similarly. we have, neither a maximum nor a minimum of « at (a, 0).

For la,la

373
r:—ga s=—Sat=—Ta
37 37 3
= -5 s positive.
Since, -5 >0.

1
*. u has an extreme value at ‘é‘ a, 5 a

= u has a maximum if r is negative, i.e. if a is positive and « has a minimum if r is positive,
i.e. if a is negative. . :
& & \
. s . 2
Example 4. Show that the minimum value of u=xy +|— |+|—|is 3a".
X y

Solution. Here, we have

& &
H=xy+l—f+i—=
x ¥
- due @
=y -
o x
ou a
and PR
y )/"
For a maximum or minimum of «, we must have
on du
—=0 and ==
ox dy

Maxima and Minima Functions of
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a ' .
ax—O = y-—xg—O -1
Q—O:» r—a—3*0 : C (2
3y ¥=7=0.
Solving (1) and (2), we get x=a, y=a
A 24 - %
N == — =
ow r PR =39 1
2 3
and t= du = 2%
. o ayz y
Atx =y =a. We have
r=2,5=1,t=2
= 4 1t-s"=3>0.
Thus, at (a, @), rt — s?>0and r> 0. Therefore u i‘s minimum at x=a, y=a.
‘ 3 3
The minimum value of| u=a.a+| & |+ %
- a a
, =3d%, -
Example 5. Determine the points where a function x* +y* — 3axy has a maximum or minimun.
Solution. Here, we have
u =)rjx +y3 ~ 3axy
= %}% =35 —}ay
du 2 :
) y - 3y - 31‘1.x .
For a maximum or minimum of ;' we must have
M all a!t
—= —=0
| 3 0 and 3y
which gives, $* —ay=0 e
and y'—ax=0. ‘ {2}

Solving (1) and (2), we get
x=0,y=0;x=a,y;a.
Thus (0, 0) and (a, a) are the stationary points of u.

2 2 2
Now r:—u=6x, s= Ou =-3a, t=§f=6y.
\

Cox? dx dy
Forx=0,y=0.r=0,s=-3aand =0 '

rt—st=-94%<0, for all values of a.
=>  u is neither maximum nor minimum at x =0, y=0.
Forx=a,y=a.
r=6a,s=-3aand t=6a

= rt—s*=27a*> 0, for all values of a.

Also r = 6a, which is positive if a > 0.

Thus (i) «is maximum atx=qa,y=aifa<0

and(ii) uis minimum-atx=gqa,y=aifa>0.

Example 6. Discuss the maxima and minima of the function u is given by
w=sinxsiny sin(x+y).

Solution. Here, we have
u=sinxsiny sin (x +y)

- %zsiny[sinXCOS (x +y) +cosxsin (x +y)]
X



d . . .
and 5;{ =sinx [sin y cos {x + y} + cos y sin {x + y)].
For a maxima and minima of «., we must have
u =0 and u =0.
ox dy
= siny[sinxcos (x+y) +cosasin(x+y)]=0
and sin x [sin y cos (x + ¥) + cos y sin (x + y)] =0.
Equation (1) and (2) gives
tan (x +y)=—tanx ()| = tanx=tany
and tan{x+y)=—tany (2} = x=y

From (1) and (2), we have
tan 2y =~ tan x = tan (T — x)

= 2x=M—-x
x=m7
=2
S 3 =y.
all . . .
Morcovcr.a =0, gives siny=0 = y=0
du . .
and $=Og1ves sinx=0 = x=0.

Thus, we get the following pair of values, which makes the function « stationary.

©, 0), [g g] .

2

Now r= i—'; =2 sin ycos (2x + y).
ox
Fu )
s=30 o sin 2 (x + v),
and t=a—”7=2 sin x cos (2y + x).

For (0, 0). r=0,5=0;7=0
= -5 =0

..this case is doubtful and need further investigation.

nn
l"or(3~3].

r=2 sin%n.cosnz—\’?a_.

) [411) . N3
S=8M|—t=-—-SinT=——T"

3 3 2
L
and f=2sm;ncosn=—\(3_.
2 9 ..

=y =E= positive.
Also r=-13.

. w7
Hence, ¢ has a maximum value at 3 » —3— .

Example 7. Find the maximum value of >+ y?' + 2> when ax + by+cz=p.
Solution. Here. we have

2,2, 2
H=x"+v +z
given that av+byv+cz=p

_p-ax—by

[

] Z

A

-
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Analysis : Put this value of z in equation (1), we get

u= x+y +___(p ax—byy
2
c
= ‘ g—z—Zx——(p ax—by) -
du
and ay«Zy—CZQU—ax—b)J).
Ju Ju
Foramax1maand mlmmaofu, we must have—:O nd =0
ox dy
- =@ 4 y:_bL, )
2, .2, 2 T 2,42, 2
a+b +c a+b +c¢
a2 2
Now, r=-ai‘=2+2i2:
ax~ .
O _ 2ab
axay e
. . ] 2 A2
and tza—t.:=2+%
ay” c

= 5-41

= positive.
Since r is positive and 7 — 5> > 0, therefore u is minimum for the above values of x and y.
-2 .
S N

The minimum value is = :
2, .2, 2
a+b+c

TEST YOURSELF-1

1. Findthe pomts (x, y) where the functlonf(x y) =xy (l x= y)is maxunum or minimum. Also
find the maximum value of f{x, y).
2. Discuss the maxima and minima of the function

2,.2.2 2
y = + vy +-—-+—-
foxy)y=x"+y 4= y

Discuss the maxima and minima of the function flx, y) = xt 2x2y —x 4 3y2.
Examine for maximum and minimum values of the function flx, y) = X 3xy + y2 + 2x.

Examine the function f{x, y) <x2y yzx' x + y for maxima and minima.
Dlscuss the maxima and minima of the funcuon

S o kW

f(x,) 2$m—(x+y)cos—(x y)+cos(x+y)

7. Find points on zz =xy + 1 nearest to the origin.

ANSWERS
1 1 1
1. flx,y) is maximum at the point | = 33} ; maximum value = 57
2. flx,y)is minimum at (1, 1).
o V3 -1 Vil

3. fix,y) is minimum for[ > 2 and | - 5 T4l
' " L 4 6 C L .
A 4. Stationary point is x= 5=y The function flx, y) is neither maximum

nor minimum at 4, s
5's
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‘5. At(L Dand(-1,- 1) function is neither maximum nor minimum.
6. x=y=2nn+m/2 ‘ '

. x=y=nm+(~ 1)"n/6.
7. (0.0.1)and (0.0, = I).

¢ 7.5. MAXIMA AND MINIMA OF THE FUNCTION OF THREE
INDEPENDENT VARIABLES

(1) To find the condition, which governs the sign of the quadratic equation of three
independent variables. ,
Let / be the expression of three independent variables x, y and z given by

1=ax* + by* + cz* + 2fyz + 2gzx + 2Mixy
I can be written as

| \ _ .
== (@ + aby® + acz” + 2afvz + 2agzx + Talef])

[azx2 + 2ax (ge + hy) + aby2 +acs + 2afyz]

It

[ax + Iy + gz)* + aby® + acz® + 2afyz - (gz + hy)*]

Rl— = D |—

((ax + hy + g2)* + (ab - 1) y* + 2yz (af - gh) # (ac — gz) 4l
Here, we observe, that / be of the same sign as a provided the expression within the square
brackets is positive which will of course be so if
ab-h* and {(ab-Hh?) (ac - gz) —{af - gh)z} are positive f.e., if
ab—1* and a[abe +2fgh - af L bg2 - ¢h*] are both positive.
Hence, / will be positive if

a h g
. ;: 2( h &6 f
g8 [ ¢

be all positive and will be negative if these three expression are alternately negative and positive.

e 7.6. MAXIMA AND MINIMA FOR A FUNCTION OF THREE INDEPENDENT
VARIABLES : THE LAGRANGE’S CONDITION

Let fix. y, ) be a given function of three independent variables x. y and z.

2, 20 N2 2 2 2
Let A, B8.C. F, G, H stand for % : %’é , a%'gq £‘8Lz , fé 5—3—% respectively.
Let a set of the values of x, y, z obtained by solving the equations
F_U_U_,
ox 9dy Oz

be a. b, c.

By Taylor’s theorem, we have

Ra+h btk c+l).~fla b, c)
- % (AW + BK: + Cl+ 2Fkl + 2Glh + 2HRK] + R A1)

where, remainder term R consist of third and higher order of same quantity {(i.e., h. k, {}.

Now., by taking /, k. { sufficiently small the second term of R.H.S. of (1) can be made to
govern the sign of R H.S. and therefore of L.H.S. also.

If for all such values of £, k and !, these terms be of permanent sign, thqn we shall have_: a
maximum or minimum of f{x. y, z) according as that sign is negative or positive.

Hence. the function will be minimum if the expression

A H A H G
A. H Bl H B F| beall positive.
G F C :

Maxima and Minima Functions of
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The function will have a maximum value, if the above three quantities are alternately negative
and positive If these conditions are not satisfied, we have neither a maximum nor a minimum.
Working Procedure. Let us suppose f{x, y, z) be a function of three independent variables

x, v and z. Find the values of triads (a, b.¢) of the value x, y and z by putting gf =0, g{ =0,
—3{— 0. The values of triads (a, b, ¢) will give the stationary values of Ax, y, z).
Now, to discuss maximum and minimum values, at (a. b, c) we fmd the followmg six p'll‘tlal
derivatives of second order .
2 ’J
A= _..Z _.é _,..g _..L .G = iL and H= _.L
ax? dy 0z "~ dyoz Oz Ox dx dy
Now, we have the following cases :
Case (i) The function f{x, y, z) will be minimum at (a, b, ¢) if the expressions

A H A H G
A, ‘H gl> [H B F|beall positive at (a, b, c).
G F C :

Case (ii) The function fix, y, z) will be maximum at (a. b, ¢) if the expressions

A H G
A H -
A, H B" H B F

G F C

be alternately negative and positive.

Case (iii) If the expression, using in case (i) and (i) neither be all positive nor having
alternately negative and positive sign at (a, b, ¢). Then f{x, v, z) is neither maximum nor minimum_
at (a, b, ¢).

REMARK
> To find the maximum and minimum of the function at stationary point, it is sufficient
to find the value of a second order partial derivative of function with respect to any of
the independent variables. Then, the value of the function is maximum or minimum
according as the value of this second order partial derivative at the stationary point under
consideration is negative or positive.

SOLVED EXAMPLES

Example 1. Find the maximum value of u. whér’e
_ xyz
: T@+ G+ () +b)
Solution. Here, we have

_ X2
T@ERN ) ) b))
Taking, log of both the sides, we have
fogu=logx+logy+logz—log(a+x)—log(x+y)~log(y+2)— log (z +b).
Differentiating w.r.t. x, we have

! 1ow_1 1 v ay=x’
udx x a+x x+y_x(a+x)(x+y)'
du__ (ay=xhu _
=
_ax x(a+x)(x+y)

Similarl _u= (xz—y!u :
‘ fmifarty Iy yE+y)O+2)
E du _ gbz—zz)u '

and 0z z{(y+2)(z+b)

For, a maxima and minima of &, we must have



_8_1520 = xz—y2=0

dy
and QE':O = by-7=0.
dz
Here, we observe that x* = ay, y2 = xz, 2> = by which implies that a, x, y, z and b are in G.P.
Let r be the common ratio of this G.P.

b i/4
Then ar*=b or r= (—J .
a
Also x=ar, y=ar, z= ar.

Hence, we have
23
ar.ar .ar
a(l+nNar(l+nar(l+Har (1+r)
1 1 1

=a(l +r)4_ by B (a'/“+bl/4)4.
all+ 4

which gives a stationary value of u. Now, to decide whether this value of 4 is a maximum or a
minimum, we proceed to find the second order partial derivative of u such that

u - 2ux +ay- g)i u
al x@+rx)(x+y) WX ox x(@+x)y(x+y) |’

U=

3
Whenx=ar,y= arz, z=ar, we have

9%u 2u
A= o="5
ox ar(l+r)
Hence, the above stationary value of « is maximum.
Example 2. Find the maxima and minima value of the function

u=sinxsinysinzg
where x, y and z are the vertex angles of a triangle.
Solution. Here, we have
n=sinxsinysinz. (D)
where xX+y+z="
y=sinxsinysin [t — (x + y)]
= gin x sin y sin (x + y)

Ju A . . .
P cos X sin y sin (x + y) + sin x sin y cos (x +y)
=sinysin (2x +y) {(2)

Similarly g—: =sinxsin 2y +x). (3)
For a maxima and minima, we must have

du du

PR M

ou . .

—=0 = sinysin 2x+y)=0

ox

=siny=0 or sin(2x+y)=0

=y=0 or sin(x+x+y)=0

= y=0orsinxcos (x+y)+cosxsin(x+y)=0
= tan(x+y)=—tanx

= tan (x +y) =tan (— x) =tan (1 — x) (4
=S x+y=n-x ,
= 2x+y=1. ..{5)

Similarly, from (3)

Maxima and Minima Functions of
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1. Prove that the function & = x* + y* +z 2ix-2z- ch is minimum at[

y=0 or tan{x+y)=—tany. ..(6)
Now, by (4) and (6), we have
tanx=tany =x=y.
Hence, by (5), we have

T T -
Jy=n = y= 3 and x= 3
Here, the stationary points are [:I ’ 5 and (0, 0).
For (0, 0).
u=0
T T
For ( 3’ 3) |
ou ) ' \ !
r=—, =72 sin y cos (2x+y)
x
T 2n
—2sm§cos(?+ J -V3 <0,

2,
5= 8?: 3 =sin (’L\ +2y) sm(zTn-i»Z@-J

3
=sin an ——ﬁ<0; ”
3 -2 ,
2,

and =——251nxcos(z+2y)
oy* .

i

_=2isin-§cosn=—\f§<0.

Now ‘ : : |

—_

R i
-5 = (- F)( V3) - (% =%>0_. ‘. ,

Thus rt—s°>0and r<O.
b4

Hence, the function « will be maximum at( 3|

wm
u|;:1

N——

* TEST YOURSELF-2 : . -

wltq
I

W =
—

—

2. Find the maximum and minimum values of u =y +222 = 5xt 4 dx.
- ANSWER

2. Minimum at (1, 0. 0). neither maximum nor minimum 5(;(0, 0.0).

7.7. LAGRANGE’S METHOD OF UNDETERMINED MULTIPLIERS

Let u = flx, x,, ..., x,) be a function of n variables x,, x», ..., x,,.
Let us suppose, these, variables x;, x5, ..., x, are connected by & cquations

& (Xl,X'_s, ...,X“)'—‘O
g2 (X1 X2, .., %) =0

gk (X1, 3, %) =0 » -'
so that there are # — k independent variables out of these 1 variables.
For tae maxima and minima of &, we find ' L



ou du it 3

du = an, dx, +aM diy+ .+ o, dx, =0 (1)
a&i 98 dg)

Also dg, = ) de + 5 d 2 2t ... +$"dx,, =0 ()]

ag’o agg

dg, = dAl + a 5 dxo +...+ 3, dx,=0 (3)
%) g 0

do, = ag‘ di, + aéﬂ dy + . af‘ dx, = 0. (k41

Multiplying equation (1), (2), (3) ...(k + 1} by 1.1}, 15, .... {; respectively and adding, we get
the result, which can be written as

Pl (L\'l + P?_ d.X2 + P‘{ ({X} +...+ P" -({X" =0 (4)
ou , 98 882 3
her ! +h—=+. .+l
wnere Pk a X I] a.'l[\ a\l\ l;\ an
Now we have at our choice k multiple viz I}, /5, ..., [, and can be chosen such that

P=0,P,=0,...,P,=0.
Then, the equation (4) reduces to
Poordsi o+ Progdipa+ ... +P,dx,=0. ..(5)
Now, let us supposc that out of n variables, the following (1 ~ k) variables xz 41, Xp 42 ... X,
are independent.

Then. since n — k quantities dx . 1, dx; 4 2 ... dx, are independent so their coefficients must be

separately zero. Hence, we have
Pk+l=0‘ Pk+2=0, ...,P,,=0.
Thus, we k + 1 equations '

P1=0,P=0,...,P,=0
and £1=0,8,=0,..,8.=0

Hence, we get (n +4k) equafions which determine the & multipliers /, L, ..., I; and get the
possible value of . '
REMARKS

> The Lagrange’s method of undetermined multipliers is very convenient to apply.

» It gives the maximum and minimum values of the function without actually determining
the values of the multipliers iy, /5, ..., I}

> It docs not determine the nature of stationary point, which is the only drawback of this
method.

Application of the Method of Undetermined Multipliers.

The Lagrange's method of undetermined multipliers can be applied to determine the extreme
values of the given functions, it does not detemine the nature of stationary point. Now, it is more
convenient to find out the extreme values of a function £ with the help of new function, given by

V:g+llfl+12fl+"'+lmfm

and use the following method. Here, we give the method for four variables x, y, u, v connected
by the following two relations.

Let F = g(x, v, u. v) be subjected to the conditions
Sfileyou,v)y=0 (D
and . Hy,u,v)y=0. -(2)

For the maxima and minima of F, we have

Maxima and Minima Functions. of
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dF=Q&dx+§‘gdy+égdu+diV‘ )

ox dy du ov
Now, from (1) and (2), we have
_ ﬁ % _
dh=="dx+ 3 —dy+— o du + a dv =0 . S
_ _& fz LY _Ji
.and dfy= 5 det 3, dv+30d dv=0. .(5)

Multiplying (4) by [,, (5) by I, and adding thclr sum to (3), we get

B, %, ) (%, %, %),
{ax+ll ax"'lzax dv + a lla +l‘)a’ ([)

f1 fz fl aﬁ _

Here, we have | and /, are arbitrary, therefore we can choose them to satisfy the two linear

equations
g o R
a ll 8 +{y == I =Q - AD
_Qg A i

and 3 +1 = 3y 12 3y =0. (8

Using (7) and (8), equation {6) reduces to

% N afo _g afl af -

Since, the given function contains four variables (namely x, y, u and v) and we are given two
equations of conditions, so therefore, only two of the variables are independent and it is immaterial
which two of the four variables are regarded as independent. Let them be & and v then du and dv
are also independent, therefore their coefficients must separately zero. Thus

3f1 f
afx 3f2 _
a +4 = 3 —H—a 0. (10

Now, we have six equations namely (1), (2), (7), (8), (9) and (10) to determine the two
multipliers I;, /; and values of the four variables x, y, # and v for which maximum and minimum

values of F are possible.
Now, defined a new function V(x, y, u, v) such that
Vi, y, u, v) =g, y, u, VYF I O, v, 0, VY + D 5 (x, y, 1, 0).
Assuming thatx, y, u, v are now all independent variables. Herce, for the maxima and minima
of V, we must have ‘

3: %g_ 8fl ’25{ o I (1)
3;/ %g hgfl u%—%o ‘ (e
gv %g ol gfl !za o o ' (13)

Equatlons (11),(12),(13) and (14) are exact]y the same as the equations (7), (8), (9) and (10).

Hence, the maxima and minima of V(x, y, u, v) are same as those of F(x, y, &, v} assuming
that V(x, y. u, v) the variables x, y, «, v are now all independent.

Now, we proceed to find whether the values of F obtained with the help of above equations
are maximum or minimum. For this, adopt the procedure, which is discussed below.



From (3), we get

’ 2
2o (2 .9 C 9 2 9802 .02 2 080
d°F= 8x(L\+a dy+— (!U+a’dl] g+(axd2x+aydy+aud‘u+avdt .(15)
Also
2
2 (9, 8, 3 3 h o 2 0N 2 i p
df, = axd).+ay dy+ W du+a" dt] h+ I {{x-!- 8ydy+3ud E® —d%v ..(16)
3 b} 2 a -
and d°f= %(L\'—!-aa dv+aa du+§ d\r‘]ﬁ+a—f"d2 a_jy‘-d’ afz d’u —;'[a'"v=0. D)

Mutiplying (16) by !, and (17) by !, and adding their sum to (15) and using the result (11),
(12). (13) and (14), we have

) d d d
d&*F —[-a-dx+g*dy+a du-e—a dv) (g+hfHi+hf)

2
=[38— dy + aa dy + da du +-aa—d\f]
=d*.

Hence 4°F is cqual to d*V. where d*V is obtained by assuming all the variables x, y, v and v

. PO 2 . .
as independent. Therefore, it is clear that "V and d°F have the same sign. Hence, F will be
minimum or maximum according as V is minimum or maximum.

REMARK

> This method has the advantage over the Lagrange’s methods that it enables us
to decide whether the values are maximum or minimum.

SOLVED EXAMPLES

. . - 2,22 . .
Example 1. Find the maxima and minima of x° +y” + 2° subject to the conditions :

ax2+by2+ e =1

and Ix+my+nz=
Solution. Here, we have
u=.1'2+y2+z2 D
where, the relations betwecn the variables x, v and z are given by
ax*+ by’ +c =1 (2)
and Ix+my+nz=0. ..(3)
For the maxima and minima of «, we must have
du=0
= 2xdx +2ydy+2zdz=0
= xdx+ydy+zdz=0 .(4)
From (2} and (3), we get
axdx+bydy+czdz=0 (5}
and {dc+mdy+ndz=0. o

Now, multiplying (4) by 1. (5) by {, and (6) by I; and adding. we get
(xdx+ydy+zd)+ 1) (axde+bydy+czdy+ b ({dy+mdy+ndz)=0

= (talx+lh)de+ (y+ bl y+mby) dy + (2 +cliz+nly)dz=0.

Now equating the coefficient of dx, dy, dz to zero, we get

x+hax+1h1=0 (D
y+hLby+lm=0 .(8)
and 2+ l'IC}’ + lzfl = 0. (9)

Multiplying the equations (7)., (8) and (9) by x. y and z re_spective]y, and adding we get

Maxima and Minima Functions of
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x +y2+zz+ 4 (ax2+by2+cz?') +h(x+my+nz)=0

or u+l.1+1,.0=0 [by using (1), (2) and (3)]
= Lh=-u :
Substituting for {, in the equations (7), (8) and (9), we get

I Lhm bn : .
a1 "bu-1" T -1 ~(10)
Now from (10) and (3), we get
121'2 Lm® L
au—1 +bufl+'cu— 1

or P + ‘mz + n* -0 1D

au—-1 bu-1 cu-1 -~

which gives the maximum and minimum of u = x* + y2 +75
Example 2. Find the maxima and minima of x> +y* + z°, where

ax® + by + ¢zt + 2fyz + 2gzx + 2hxy = 1.
Solution. Here, we have
u=x2+y2'+ Z (1)
where the relation between the variables x, y and z is
“axt + by + e+ 2fyz + 29z + 2hxay = L. ' (2)
For a maximum or minima of &, we must have ' :
du=0 . . .
= xdx+ydy+zdz=0. -(3)

From (2), we have

2ax dx +2by dy + 2czdz + 2fy dz + 2fz dy + 2gz dx + 2gx dz + 2hx dy + 2hy dx =0
=S (ax+hy+g)dx+(h+by+f)dy+(gx+fy+cz)dz=0. : . (4)
Now, multiplying (3) by 1 and (4) by /;, and adding, and then equating the coefficient of

dx, dy, dz to zero, we have

and

and ‘

x+l(ax+ihy+gz)=0 .(5)
y+l (lx+by+f2)=0 ' ..(6)
2+l (gx+fy+cz)=0 B )

Multiplying (5) by x, (6) by y, (7) by z and adding, we get
X+ y2 + 2+ (ax® + lby2 +ert+ 2fyz + 2gzx + 2hxy) = 0
= u+l . 1=0 [From (1) and-(2)]
I =-u
Hence, from (5), we have
. x—uf{ax+hy+gz)=0

= (a—ﬂx+ky+gz=0. .(8)
Similarly from (6) and (7), we get | ‘
hx+(b-%}y+fz=0 ‘ (D
gx+fy+'c—% z=0 : : ..(10)
Eliminating x, y, z from (8), (9) and (10), we get
a —% ok g
h { —i) f |=0 (1)
g f [c - ':;]




Hence, the maximum or minimum values of « are the roots of the equation (11).
Example 3. Find the maximum and minima of u = 24 y? subject to the condition.
el ]
ax” +2hxy + by = 1.
Solution. Here, we have

u=x+y D)
where the relation between the variables x and y is
ax® + 2hxy + by =1. (2)
For the maxima and minima of «, we must have
du=0
= v dx+2ydy=0
= xdx+ydy=0. -(3)

Now, from (2}, we get

2ax dx + 2hx dy + 2hy dx + 2by dy =0
= (ax + hy) dx + (hx + by) dy=0. (8
Now, multiplying (3) and (1), (4) by {; and adding, then equating the coefficients of dx, dy to

zero, we have

and

x+4 (ax+hy)=0 ..(5)

v+, (hx+by)=0. ...(6)
Muitiplying (5) by x, (6) by y and adding, we get

x4 y"’ +1 (a.x2 + 2hxy + by2) =0

= u+l,.1=0 [Using (1) and (2)]
= u=-1,.
Therefore, from (5). we have

x—u(ac+hyy=0

= ((1 - f—() x+hy=0. (D
Similarly from (6), we have
hx + [b - 117] y=0. ' (8)
Eliminating x and y from (7) and (8), we get
a- 1 h |
“ (=0 . -(9)
h b-—

u

Hence. the maximum or minimum values of u are the roots of the equation (9).
Example 4. Show that the maximum and minimum values of

w=ax’ + by’ +czt + 2fz + 2gzx 4 2hxy

subject to the conditions

and

Ix+my+nz=0
2, 2,2
Xty +z7=1

are given by the equation

a-u h g {
h b-u f m

g f c—u n
! m n 0

Solution. Here. we have

u=ax?+ by + ez + 2fyz + 2gzx + 2hxy. (1)
The variables x, y and z are connected by the relation i
Ix+my+nz=0 -(2)

Maxima and Minima Functions of
Tiwvo and Three Variables
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By d=l ‘ (3)
Differentiating (1), (2) and (3), we get

du=2{ax+gz+hy)ydx+2 (by+fz+ ) dy +2 (cz+fy + gx) dz {4)
ldx+mdy+ndz=0 ~{5)
and xdx+mdy+ndz=0, ...(6)
For the maxima and minima of # we must have
du=0
= {ax+hy+ g da+(by+fa+hxydy+{cz+fy+gx)dz=0. A7)

Now multiplying (7) by 1, (5) by {; and (6) by /5, and adding then equating the coefficients
of dx, dy and dz to zero, we get

(ax+hy+gn+U, +l,x=0 ..(8)
(x+by+f)+im+hy=0 .(9)
-and (gx+fy+ec)+in+lz=0. 10)

Now, multiplying (8), (9) and (10) by x, y and z respecuveiy then adding and using (1), (2)
and (3), we get
u+l . 0+hL.1=0

= L=—u

Now putting /, =— « in (8), (9) and (10). we get
(@—wWyx+hy+gz+4LI=0 EDD]
hx+(b-uyy+fr+lim=0 -(12)
gx+fy+{c—w)z+lin=0. ..(13)

Now eliminating x, y, z and /; from (2), (11), (12) and (13), we get
a-u h g {
h b—u f m| _
g f c—u n
l n n 0
which gives the required maximum and minimum value of «.
Example 5. /na p[ﬁne triangle ABC, find the maximum value of
u=cosAcosBcosC.
Solution. Here, we have ‘
#=cos Acos Beos C. (1)

Since, we know that the sum of the angles of a triangle is always 180°.
The variables A. B and C are connected by the relation .

A+B+C=m. (2)
From (1), we get .
log u=logcosA+ Iog cos B+logcos C

= —du:—-tanAdA—taanB—mnCdC
For the maxima and minima of u, we must have
du=0
= tan A dA + tan BdB + tan C dC = 0. ' (3)
Also from (2}, . '
dA +dB+dC=0. .(4)

Now, multiply (3) by 1, (4) by { and adding, equating the coefficients of dA, dB and dC to
zero, we get
tanA+1=0
tan B+{=0Q
tanC+/{=0
= [=—tanA=-tanB=-tanC
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3
Now to show that the stationary value of u given by

Now from (2), A = B=C == i.e. the triangle is equilateral.

. .
A =B=C==is maximum.

3
Now, let C be a function of A and B, regarding A and B as independent variables.
From (1),
log 1 =log cos A + log cos B + log cos C
l du _ Q_Q
= WA tan A tanCaA»
Now, differentiating (2), partially w.r.t. A, we get
aC ac
l+aA—0 =aA-—l
1 du
oA tanA +tan C
1 Pu 1 (Y ac
Lou 2 (OH)| __ el 2~ 2L
= « 34 uz(aA) sec” A + sec C'BA
= — (sec’ A + sec’ C).
At station int Ju_ 0
nary po -0
u 2 2
5 =-u(sec” A +sec” C)
A

=-veforA=B=C=

wj:l

. T . S
Hence, i is maximum at A=B=C= 3 and the maximum value is given by

=| cos _E 3_ l 3_,.1..
“ 3 2 8

« Let f{x, y)=0 be a functon of two variables. For maxima or minima of f{x, y) = 0. we must
have

d
Suppose at the point (a, b). g{ =0, g‘}[’= 0, then we calculate

SEIREEOMEE
ol fany’ Ox 3y fa.ty oy’ fa.b)

We have following cases :

Casel :If rr—s° >0, then

(1) f{x, ) is maximum at (a, b) if r < 0.

(ii) £ (x, ) is minimum at (a. b) if r > 0.

Case Il : If rt — 5% <0, then

f(x.y}) is neither maximum nor minimum at (a, b).

Case 1 : If rt — 5* = 0. then this case is doubtful and further investigation will be required.
*  Letf(x.y, z) =0 be a function of three variables :

Yo F_g
T

Suppose at (a, b. ¢), —gf =0= o = A , then we calculate the values at (a. b.¢) :

dy 0z
& o &
A=—=, B= —, C = —L
9y’ dy~ 37
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Y ARy s i
F_ayaz' G zox’ ”_D,\'ay

We have following cases :
Case 1 : f(x, y, z) will be minimum at (a, b, ¢) if

Am| [AHGC .
A, ‘H B ‘, H B F | are all positive at {a, b, ¢).
G F C -
Case 11 : f(x, y, z) will be maximum at (a, b, ¢) if
A b la H G
A, B ] . | H B F | are alternately negative and positive.
G F C
Case III : f(x, y. 2) is neither maximum nor minimum if
A H A HG
A, , | H B F | are neither all positive nor fitted with alternative signs.
B 6 Fc

I w=f(x;,x ..., x,) be a function of n variables x|, x ...,x, and suppose that
X1, X2, X34 ooy Xg are connected by & equations :
& (x), Xgy ey x,) =0
81 (X1, X2, v X)) =0
g, Xay i x) =0
so that there are n — k independent variables.
For the maxima and minima of «, we define
’ du Ju du

lu=——dx +n—dx, =
du o, d v+ o, dx, ox, d.A”
98, g, g’
ng = ax1 aX] + 8)(2 (sz + ..+ 8_\-” =0
o agkagk ......
dg, === x| +5— dx, dx, =
2, a, ox| + o, dxy + ...+ o, %, =0
* STUDENT ACTIVITY
1. Find the maximum and minimum values of xy (@ —x - y).
2. Find the maxima and minima of x° + y2 +2° subject to the conditons :

ax® + l)y2 +c=1
and Ix+my+nz=0.




* TEST YOURSELF-3

Using Lagrange’s method of undetermined multipliers :
1. Find the maximum and minimum values of

,
E S
P T

1 2 2
X z
where Ix+my +nz=0 and—5+2;+%= I
a b

L

Find the maximum and minimum values of
F=a? + by
where x* +y2 +z7=1and Ix + my+nz=0.
3. Show that the maximum and minimum values of
_ 2 2 2
u=x"+y +z
subject to the conditions

2 1 2
px+qgv+irz=0 and 15+'L,,+z—2=l
a b ¢
are given by
22 b2
Lep vq

u-a* u-b?
4.  Find the minimum value of
Uu=x+y+z
subject to the condition

a
=+
X

Rl

\
5.  Find the minimum value of #=x"+ y2 + zz, subject to the condition

ax+ by +cz=p.

ANSWERS

1. The maximum and minimum values of the given function is given by the

equation
¢l e
rat mb* nc
2 2 2 =0.
au—1 bu-1 cu-1
2.  The maximum and minimum values of the given function is given by
2 2 2
! " n
5+ >+ - =0.
u—-a u—-b" u-c
4. Stationary points are

k=va (Vo +b +32), y=b (Va b 6ldch Vb +c)
minimum value is (Ya + Vb + \/;)2

Y A
(@ +b>+¢%)

5. Minimum value is

OBJECTIVE EVALUATION
Fill in the Blanks : ’

1. For a function f{x, y, z). to be a maximum or minimum, it is .......... that gl =0, gizo and
I
3z 0.

2. Inany triangle ABC, the maximum value of cos A cos B cos C is .......... .
If the Lagrange’s condition rt — s?>0and r> 0 are satisfied then function is .......... .
If the Lagrange’s condition rr — s2> 0 and r <0 are satisfied then function is .......... .

Maxima and Minima Functions of
Two and Three Variables
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True or False : ) _
Write T for true and F for false :

The value of the function at extreme point is always called minimum value.
The value of the function at extreme point is always called extreme value. -
The stationary value may be a maximum or minimum.

The stationary point can be obtaingd by solving the simultaneous equations
£'M:O,?[:O;,—a[:&
ox dy oz

Multiple Choice Questions : _

Choose the most appropriate one :

N W

_1' If the Lagrange’s condition rt — s < 0 is satisfied, then the function is :

(a) maximum . (b) minimum
(¢) neither maximum nor minimum . (d) none of these.

‘2. For the maxima and minima of a function u it is necessary that : -
(a) du=0 (b) du#0 " () du>0 (d)du < 0.
3. The value of the function at extreme point is called : Co

(a) extreme value .. (b) maximum value
(¢) minimum value * (d) none of these.-
4. The stationary value is : , , ‘ :
(a) always maximum 7 (¢) always minimum
(c) either maximum or minimum (d) neither maximum nor minimum.
S.  In any triangle ABC, the maximum value of cos A cos B cos C is equal to :
@) 1 (b) n (© % B NG
ANSWERS
Fill in the Blanks : o
1. Necessary 2. % © 3. Minime -4, Maximum
True or False : : :
1. F 2.F T 4T 5T
‘Multiple Choice Questions : - ' '
1. (c) 2. (a) - 3. (a) 4. (¢) 5. (¢).

The value of the function at extreme-point- is always called maximum value: -

(T/F)
(T/F)
" (T/F)
(T/F)

(T/F)

gaQ
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8

BETA AND GAMMA FUNCTIONS
S STRUCTURE G gt issing

Gamma Function

Properties of Gamma Functions

Some Transformation of Gainma Functions
Beta Function

Propenties of Beta Function

Transformation of Beta Function

Relation between Beta and Gamma Functions
Qa Test Yourself

Duplication Formula

9 Summary

0 Student Activity

Q Test Yourself

After going lhrough this unit you wnll learn :
e What are Gamma and Beta functions ?
e How to find the relation btween Beta and Gamma functions. )
e How to find the solutions of the concerned problems using Beta and Gamma functions?

-

¢ 8.1. GAMMA FUNCTION
(1) The definite integral

JO e Vdx forn>0

is known as the gamma function and is dcnoted by I'(n) (* read as Gamma n’]. Gamma function
is also called the Eulerian integral of sccond kind.

REMARK

> The integral is valid only for #> 0 because it is for just those values of m and s lhat
the above integral are convergent.

* 8.2. PROPERTIES OF GAMMA FUNCTIONS

(1) To show that I'(1)=1.
Solution. We have

) = L " Vdx, n > 0.

Pul n = | in equation of gamma function

I(1) =Io oy
=J; .e"vtl.\'=[— e"':[:= |

= 1.
(”) To show thar T+ 1)=n ['(n), n> 0.
Solution. We have

Beta and Ganuna Functions
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F(II)='[0 X' Vdx,n>0
replacing n by (n + 1), we have

F(u+l)=J-0 X dy
I v

=[x" (= e_*')l‘: - .[0 (X" ") (~e ") dx [on integrating by parts)

n <o
T+ 1)=- lim %+0+:IIO e lde A1)
X0 € .
 Lim X" "=0asn>0
x—=0
X ' X'
But Lim == lim 5 n
x> € x—oe I+L+L _l+ Xt
1! 2 nl (n+ D!
= Lim 1 1 1
X300 . A X
R L +(n+l)+”'
=0. .(2)
Also, by definition, we have
I(n)= _[0 5k, o (3)
Using (2) and (3), (1) reduces to
I'n+ 1)=nT(n)
(3) If n is a non-negative integer, then T(n +1)=n!.
Solution. We know that for n > 0,
Cn+ D)=nT(n)
=nl(n-1+1) .
=n n-DHI'trn-1) , [by property 2]
=n(n-1)(n-2)Tn-2) [by (1)]
=an-1)(n-2)...3.2.1.T(1)
=nl B [ ) =1]
4) To show that T(1/2)=vm.
Solution. By definition, we have
I(n) = L e " dm>0. (D)
Replacing n by 1/2 in equation (1), we get
F(l/2)=.|.0 e_'t_l/2(1r=2.|.0 " du -(2)
[Putting r = u”, so that dr = 2n du)
r(1/2)=2 JO ¢ dxand I(1/2) =2 _L e dy. E)

(limits remaining same)

Multiplying the corresponding sides of two equations of (3). we get



(T/2)1P =2 J; ¥ drf]2 JO eV dy

=4 J; .[0 C  de dy

Now. changing the variables to polar co-ordinates (r,0) where x=rcos8, y=rsin8

=x2 + }'2 = rz and dx dy =rdO dr we have

"2 g
=4Ie=0J1=0 ¢’ rdadr

The area of integration in the positive quadrant of plane is given by

/2
=2L

Putting > = v, so that 2r dr = dv

=2 I v [-< I 0

do.

-r:
J.O 2¢ " r.dr

0

n/2 w2
=2J‘0 d8=2{0) =n
0
these [T(1/2)}% = 7 so that I[(1/2) = Vr.
1
_(5)To show that T(n) = L (log 1/y)" "' dy.
Solution. By definition of gamma function, we have
[(n) = IO e x" don>0.

Putting x = log (1/y) in gamma function we get

0 1
I(n)=- L (log 1/yY" "' dy = IO (log 1/y)* "' dy.

» 8.3. SOME TRANSFORMATION OF GAMMA FUNCTIONS

Gamma function is given by

I'(n)=I0 Tl dx

(i) Show that H:ll = J; Yy 1 dy.
a
Solution. We have
(n) =J; X le de, n>0,

Put x = ay, so that dx = a dy.
When x =0, y=0 and when x = oo, y > oo,

I'(n) = IO Y@y .ady.

J‘O P a)'yn-l dy = F{:!
a

Hence,

)

(i) Show that

(1)

Beta and Gamma Functions
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{or

Solution, We have
I'(n) = _[0 e dx, n>0.

Put X'=t
So that mx™ ™' dx = dr, then (1) gives

oo
1/n

F(11)=,—11J'0 e dt

oo
170

- () =%J}, & d.

o

(i1i) Show that

Solution. We have I'(n) = J.O e x" ! dx.
Put x = ¢ so that dx = 2 dt

T(n)= IO AT 2t dr

T(n)=2 IO A
= m)=2 J.O e g,

[By the property of definite integral

T(n) =2_|‘0 e x* Ydx,n>0.

SOLVED EXAMPLES

Example 1. Evaluate :

) IO e xtdx x .§ (i) J;) L™ dx.

Solution. (i) We have Io e xtdx

_ X 5= g
’"J‘O e " x dx,

=TI(5)
=(4)!=24.

I———J‘ K e F dx.

(i) Let 0

Put 2x =1, so that dx = 1/2 dt then

AN
_ o1
I—IO (2)6 .2d1—27
I

[by definition of gamma function]

(1)

m- .
—f 7=
J.of t dt

[by definition of gamma function]



dx
Example 2. Show that I ——— =An.
® V(- log )

Solution. We know that
1
I(n)= J; (~log 0" "' dx.
Putting = 1/2, we have

!
I(1/2)= fo (- log 0¥~ dx

, . ‘
or ‘ \f1_th=J.0 (= logx)” 2 dx .
1 | :
T = _dx
or 7=, =

Example 3. Prove that

hat 2 2 :
— O _ o -
Fa) .[0 xe” ™ cos ﬁxdx———&—(a2+62)2~a>0
T e 20B
(b) JIO xe Msmﬁtdx=m‘2‘)’ OL?O
Solution. We know that

IO e“k"')'c"_ldx:%@fz’ n>0,k>0.

Putting k= o — i and n =2 in (1), we get

jo . ) 1

(o iB)®
oo a2 '
or J.O xe = ™ dx = (a j i) 5 asl(2)=1
(o~ if)” (ot + iB)
= . 2_n2 4;
-_—L) xe % P gr =2 ,ﬁ +21§B 2
(o +iB) (@ - iP)]
= '[0 xe & (cos fBx + i sin fix) dx
_ o — B +2i0p
(@ Py ‘
c o U R a-p . 208
or J' xe o"'cosffbcdx+1j xe” *sinfrdx = +i
0 0 ) @ +B (2 + P
Equating real and imaginary parts of both sides, we get
o 2_p2
- cos dx = L&_
J'O xe Bx (0 + B
and jﬂ xe “sinBx= _22_0@1_2.
(a”+f9)
Example 4. Show that J.O % dx = _I“(c_+_‘l+L| 1 ¢>0.
C (log ¢y

(D)

Beta and Gamma Functions
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o0 P oo
. X ¢ -
Solution. J —dx= J‘ Xt
0 o 0

= J.O X [€'% T dx [ e=e"% ifc20]

= J:) x((‘+ nH-1 e—.rlogw: dx

T(c+1) Tl ik )
=(1 < oo J.O X le "“'dx=rl£:1 n>0,k>0
og, ¢

* 8.4. BETA FUNCTION

Definition. The definite integral

1
J.() el (1 —x)"_] dx, form>0,n>0

is known as the Beta function and denoted by B(m, n) which is read as “Beta m, n”’, where
m, n are positive number or integers. Thus

1
B(m.n) ='J‘0 DA O IS L 1)

Beta function is also called the Eulerian integral of first kind.

* 8.5. PROPERTIES OF BETA FUNCTION

(i) Symmetry of beta function i.c., B(m, n) = B(n, m).
By the definition of beta function, we have

!
B(m, n) =.[O -0 ax
1 a a
-=I0 (=2 (L= (1= dx |- _[0 j(x)dx=J‘0 fla—x) dx
| . .
=J.0 (l_x)m—lxn—ldx

1
=f0 SN =-0" ax ,

= B(n, m) [By the definition of beta function]
B(n, n) = B(n, m)

i.e., the interchange of position of m and n does not change the value of beta function. This is
the fundamental property of beta function and also called symmetry property of béta function.

(ii) Beta function B(m, n) can be evaluated in an explicit form if m or n is a positive
integer.

Case I. When ‘n’ is a positive integer.

If n =1, then by definition of beta function

1
B(m, n) =J0 N X dx (D

i
= B(m. 1)=J.0 -0 dx
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Now, let n> 1, then from (1), we have
o 1

Jo =0t ax

]

B(m, n)
m ] l ”m
=[(1—x)"“'.%l-l—fo (n—l)(l—-x)"’z.(—{)';—!dx.

Integrating by parts taking X" ' as second function, we have
1

—o+" =L o tar [ > 1)
m
since lim (1-x)""'%Z=0
x50 m
|
_"'l (m+1)=1, _ s(a=-1-1
== Jo X (1 -x) dx
‘n—-_IB(I;l+ ILn=1)
T m ’ )
Thus B(m,n) = "—;—l-l— Bm+1,n=1). «{3)
Now replacing m by m + 1 and n by n~ I in (3) then we get
n-1~1
-~ )= -2). .4
Bim+1l,n=~1) o Bm+2,n-2) (4)
Using equation (4). the equation (3) becomes
n-1 n-2
B(m,n) = e B(m+2,n-2). (5
After applying the above process successively, we get
n=1 n-2 n-3
= N . +n-
Blun. m) m m+l m+2  m+n-2 Bln+n-1,1) ©

1
Xm+n-2 (l_x)o dx

_n=1 n-2 n-3 1 J'
m m+1 m+2 m+n-2J0

‘ 1
_n-1 n-2 n-3 1 Xt
m m+] m+2 "Tm+n-2\m+n-~-1

_n-1 n-2 n-3 I ) i
T m o om+l m4+2 m+n=-2 m+n~-1
n-1 n-2 n-3 1 1
B(m. m) = m m+l m+2 T men-2 mn-—1
(n-1)!

B(m, n) = (N

mn+d)y(m+2) ... (m+n=-2)(m+n-1)
Casc II. When m is a positive integer.
Since the beta function is symmetrical in m and n i.e., B(m, n) = B(n, m) therefore by case 1
interchanging m and n in case 1 equation and we get

_ (-1
Blm, n) = nn+)(n+2)...(n+m=2)(n+m—1) -+ (8)

Case 1I1. When both 1 and # are positive integers.
We have, by case 1

~ ) (n-1!
Blm.my=22 (m+ 1) (m+2)—(m+n=-2)(n+n-1)
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_ [1.2.3...(m-Djn-1)"! .
1.2.3...mm+1Y(m+2)...(m+u-2)(m+n~-1)
Multiplying both numerator and denominator by 1.2.3 ... (m—~ 1) !, we get

—“ D tn— 1!
B(m,n)=£m D!n 1)..

(m4+n-~- 1)1
¢ 8.6. TRANSFORMATION OF BETA FUNCTION

The Beta function

1
B(m, n) = '[0 PR S L : (A

can be transformed into many forms given below :
i x"“ldx _J’w xm—l p
0 (1 +x)m +n " Jo (l +x)m+n x.

and dx = - —%—

() B(m,n)=

Solution. Put x = and [y > 0 when x= ll. y —> oo, when x = 0].

1
(1+y)

0, | ! P T —a
) 1 —ay
B(m.n)—L (1 +y) [l _l+y]' [(H'Y)z]

=.|.ow o [—I_Jnhi»dy . |

(I +y)m+l l+y‘
= n-1
_ 4
—Jo (1+y)m+ndy‘
: _ & xn -1 dx ,
or B(m,n)= 0 (1+—x)m+: ' (D
Since m and n are interchangeable in beta function by symmetry property therefore (1) gives
P> -1 .
=l G
. A n—1 o m-1
: Y R S f X dx
s B =l (L™ 20 e
/2

A1) Bim,n)=2), cos™ ' @sin™ !0 d6.
Solution. Put x = sin 8 and dx = 2 sin 8 cos 6 dB
and when x=0.9=0,0=7n/2 when x=1.
' ' /2 .
- B(m, «)=2 IO sin® '@ cos” "' 040

2

:2[0 . cosz'"'llﬁs_in:z."_l 8do
'. . l_ [by symmetry property of beta function]

(D) B(n,n) = aT-IEl_n:_l . J‘o" 1 (g - x)" -1 dx

So‘lution. Putx=y/a,ie dx= % dy

and when x —> 0, then y — 0, when x = | then y — a.




L b l

i e
S ’ B —— tom=1, . oonvlb g
o (m, n)--am“_1 o YU (@ y)al dy

| : a
. LA _ ] J‘
R4 PRI am+n~l

' 1
vy _Blmn) _ J' N -x) gl dr
-1, .

a" (1 +a)m (x_*__a)!n +‘n‘ - wooN

"t-(l A
(a r)l s d{

R
T ¢

o

v s tLimmtped,
vy Ao U LY nicd g,

PRRIN

Solution. Let . L T ST A T
: l+a t+a .
s VT dl l v -.“"f'a .
:‘."'i. L d)"—'a(] +"a)'. - . al, bW
’ (t+a)
then we have Sy ’i -
1 T A m-l' _
B(m,n)-_-J‘ (1 *_ )lm..‘i _t o 1-4Y a(a+l)d
’ fha) l ast (t+a)
{1 =
=a"(l +a I ___.._L_)_—
(1+af e
: a
! tm+1 :_- nel
=a"(1+ay |, =g
-(4\4'(1); n
63..!‘4‘41!&)(.4 u.n.!O?
N 1
Hence, B(m. n) J (Q-x" dx !
o (l"(] .4_(.1)m (] L ’(A+a)'"“” FUOREE B S A g 1
) B(Hl, ") (a b)m-H: 1 1 (1' b)m l( )n ldx
; t—b ,
Solution. Put x=-— o ‘s L e et e
\dt
so that dxna~b'

N

. '*\ . b :. . .
Put all these values in the formula of Beta function, we get -

. a -1 n=1
t—b -t df-
Blm. my = L '(‘a - b] ' [:- ‘b} Ta-b.

[}

eyt b
1 R
¢ [ S——— . .y me1
@ T
ﬂ"(Vl)‘—l—"B::; ,,); l X':"'~(;li.;5);';"' ?-.'dxf
a'b™ 4 0 {a+ (b _a')x}'m +n

W

Solution. We put

£-2= -b.
y ox
b_ £+(b a)= a+gb ay
x Yy
by
p—4 =
a+b—a)y

A i A
(t~by""" (a-

n-1

-1)"" " dx

AR G e N
-1

-x)"" dx fa

S ACR O S

AL gt
T e

-7

. .
Beta and Gamma Funcriony

s
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. . " vy

rn'xm-le-x:J’o X"+'"-l}" le—(yi-l):dy

K, '*n ol
R

Integrating both sides wnh rcspect o x wnhin I|m|ts %20 o lo x=

ih - la.?slz(f'), ! 0%“:}"«::.1.. dx=

or

W

P [ o L :
Ceom- K 1. +m- ]»--(\+I)x Y l
5 c{r -I.O v[ XI‘

o
But J. x(n+1n) 1 -(_\*I)de .._r.(ii..!ﬁ)_ s E

0 . (1 +y)"'“' - 1

1” ~

Hence wnth the help of this rcsult and (2). we get from (3)

R

#-1
I'(n) l"(m) j T(u +m) (—y—'—-‘\dy

)" +m

(4

= l"(n + m)I —l—'— dy =1T(n+m) B(m.n) (i) .

)l‘m

gm!]"!u! e 1 W
Blm. n) = I(n +m) ' B '

n I t
Cor. 1. T(mT(1 -n)= o rtn_;,'.vfwrf" OfnT 1 . -l )
Proof. We know that - ~ » - )
n=1

t
' B(m n= . m> Q}n >0.

() (1+ )m+n

I ‘.ul,u.‘..' oo aEy T N ,l“
J X dx _T(mT) H
0

G+x)"t" = T(m +n) ;
Taking m+n =1, so that m=1 — n, we get i ]. i :
© a-t ~ "
Io f+rd“r=[(l"1“(nl))l_®’ enst
s Wt U ¢

But we know that

halRE I
o~ WX _4-.7{ -
o..C J.O e dx = i ‘md Iiy=1."

T -~
Sin I(iu::) I.:(n) O<ngl., e
Cor. 2. 70 show that T(1/2) = V. . el
Proof. We have just proved that " ‘L
. . -— ¢
P(n) T(1 - n) = vir
()1 =-n)= in ‘ L
Putting n=1/2 in (1). vi/e obtain ‘ .
r(1/2) 1(1 - 1/2) = —= B
. " sinn/2 L
T ras2)P=n S
. r(]/z):ﬁ_ O R ¢ ;.l. i
. i _ FmTa _
Aliter. We know B(m,n) = Tmem men -l
" Puttingm=n=1/2init, we gect o R

r(/2rQ/2)  (Fa/213.
ras2+1/2) gy

B(1/72,1/2) =

. Therefore the relation between beta and gamma functions becomes

$

hav

ELE ]

i

’u

~
-~
™

cl

sved sW (i) .colizlod-

A BT 1, |

-(3)

Loym>0=1-n>0=>n<1Alson>0]

(D



or

1
=I° iVl=x

: 1
Cor..3. To show that jo
1
)

Proof. e dr=

it

J'O -+ dx =

Cor. 4. To prove that

=

n/2 i
IO cos" O sin" 0do =

1
IO V=)V ax L

dx.

2sinBcos 0dB-

sin O \‘(l —sin’ @)

/2
2_[ 40 = 2|e] -Z(n/'?) n

{((T(1/2)) = I'(1/2)=Vn.

2
e * dx=%41?.

'<
~y
f, e

24“

lj. &y '
2 dy )
lj PN UCLIPN

2

Lrusy

2

2 *.

-*J—

m+n+2

For all values of m and n such that m > — l n>-1,

Proof. We put

sin (¢}
= 2sinBcos 040 =
= 25in0. V(1 -sin*6) dB =
= %21 -xdo=

(1 -x

R
f

=X,

dx

dx

dx

dx
')l/z'

-

v
P

whenB8=n/2,x=1and 6=0,x=0.
Putting these values in L.H.S. of the given ecfdii’ti’c’m’ we get

n/2
J

cos™ @ sin” 0 d6 =

J. s (1 sm G)”"2 sm Oa'e

A | 1 .
(N(1/2))*=B(172, 1/2)=.[o A (1 =)D g

putting x = sin’ 8

'L’dy, putting x* =y, 2x dx = dy .

: J.o é'x.'xf'__' dx=Tn

[ rgm)wa

e

Beta and Gamma Functions
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So that dx=1 v 5 dy. 9 i
. Py Y e 4 - Y .
{ , 'i‘n-;\\u';,_'.l./ﬁ'.‘.u-. 5‘*76") fﬁ—} s e YTy . 1Y)
1 .y d :
I=< «
; G J0 L+y y et 1
' i e T i'l i) W™ 8y a | uit)
. lJ'°° Y- X ¢
. “edo 1+ y dy avesd <7 (i} obelod
. L l] f
1 -] - .
N R (VO RS BdY - by e 1
.—éjo —Lﬂ—;ﬂiy l13(1/3 33"
C e UEDT n
ol an CFIU/s3)Ires), SITAATA-1/3) 1w
oD TeTuavy) e T TE - e m
, bt
. ) ' g I"ttF(l—l:)—
_fr.'::._‘n“ X _I'-!2_ﬂ,_’," Vo= bod1- . 1l
' (\/_/2) 6 V3 33
. . 2 ID__B ! r"".»".'_a l;" v
Example 2. Show that IO (8- ) 3 3d _2m ! /-

ﬁ‘_ i
L . )

Solutlon Let x* =8, then x =277 s ;)“ 3\ l :-’
S O A 5 . ‘-4

de=2r Vg ' .

3 {\?)\
and when x = 0'tc x = 21-0tot—1“"15

. 2
~.m'-f'(8 x).‘?dx J‘.a(s 853, i mdt _
Y0

sin nm

)

g Ty a;_?ig"
o BV RO Ay ﬂfmu»" #] s bnli
_(8)"’ %J. ‘2’3(1 2y P
0
- ' . b K seOD BRI e - AB 3.'_-:-" .
- . _l (1;3) 1 -/1) 1 (2/2) -
. T B Ty (1 t) (l ) dr
e ARETS ”“ R R L .
| T, f N R :
1 (1 2J 1 L3
=_B S A =5 . : l ., : *
37\3°3 .-3 l]_"Z‘ Wl ] SN | NP
< -~H3 3) ,
. T ‘ A SRR LI PR i
. , 1 21
SR 1)1 0 (3}
r woEFVL ey o by
|
: I,.m..2¢ :
(RS i =l = SR L AN
e bae gl S e
ot —( o Nyt
. 3 :
-Lf ——— Wre . — .
* TESTYOURSELF-1 ¢ ° e
1 -~ C} oa )
. o - 4x 3/2 3\/_" :
1. - .Show.that_‘.0 e zi_)q— s
S A AT & : <1
P R ‘ o 2 - .
2., Show that-IO e .fdx=\/7;~_ - X _
. 0, 7 i 1 ) " R ‘Ii”
- . J‘l \j—_p- " “T‘! ” - "-‘: .
3. Showthat | —&— - S ‘
: 0 \!( Iogx) R l:iq



4. Show that J.O X

1 174
5. Show that I [l - 1] dx=B(5/4,3/4) = ~=.

m=—1 ’
1 1 _T(m
(Iog XJ dx = " m>0,n>0.

0 |x

22

8.8. DUPLICATION FORMULA

Nn
22" -1

To prove that T(n) T(n +3) = T'(2n), n > 0.

Proof. We know that

_ I'(m) T'(n) .
B(m. n) T + n) where m> 0. 1> 0. (1)

Now putting m = n in equation (1), we get

B(n, n) = ng((%)lj)—- -(2)

By definition of beta function, we get
1
B(n. n) =_[0 PN ) 3
Putting x = sin> 8 so that dx = 2 sin 8 cos 8 d0 in (1), we get

/2
B(n. n)= IO (sin®@)" ! (1 - sin®B)" . 2 sin @ cos B dO

/2
=2f0 (sinB cos 8)” ' 40

n/2 2n -1
sin 26
=2 J; (T] do

| n/2
= J.O sin® "' 2040

Ja-2
1 T J
=Sm-2do Si"zn_"@—f By putting 26 = ¢, .. d9=%d¢
(" y
=22n-1¢0 Sinzn_l¢d¢
1 PT/2
=ym-2lo sin® ' ¢ do

. 2a a
[ '[0 fxyde=2 J.o fix) dx when f2a - x) =f(x)]

n/2
L J;, sin®~ ! ¢ (cos $)° do

2n—-1+1 0+1
1 2 2
g2n-2 :
2[{2"—- 1 +0+2]
2

Beta and Gamma Functions
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B(n, 11)=—71—-M as I(1/2) = V.

2271 T+ %)

Equating two values of B{n, n) given by (2) and (3). we obtain
P 1 IV
L(2n) 921 T(n + %)

or T r(n+%)=?n@r(zﬁ) S PR

- SOLVED EXAMPLES
Example 1. Express I'(1/6) in terms of I'(1/3).
Solution. By duplication formula, we have

L) T(n+1/2) = % I'(2n) ' . A

Putting 7 =1/6 in (1), we get
T(1/6)T{2/3) = ﬁl:zl/;S = I'(1/6)= \]“EF L73) .(2)
2 2 ress)
Also, we know that o

r

L) T = ) = (3)

sin AT ;7’ '

Putting n=1/31in (3), we get i ;
L
"T(1/3) 1f(2/3) S 2n/V3.
__m
V3 T(1/3)
Substituting the value of T'(2/3) given by (4) in (2), we get
VnL(1/3) N31/3) 3

2 273 21

r2/3)

= (T(173)]"

I(1/6) =

oo

Example 2. Prove that J‘_m cOs % *dx=1.

N\ o0 .
‘Solution. Let ) = J: ., cos % wldx.

Since cos % 7x° is an even function therefore (1) gives

o1, .
I=2j0 coszm dx. -2

Putting x*=tsothatx=1r"%and dx= /2 12 a"rthén equatipn (2) reduces to

I RSN G Y
1_—2_|‘0 0052m.,)t dr

Z ~

. - . 7
= Jo (t)VZ‘ "cos -l-xr:t di = Li72) cos[l - EJ

2 (/2)' " 22

T o
= J.O x".lcosbxdx=lb%:lcos%,lierem:E~b=g

_rasmy (1 i; Vo L
(n/2)'? Vr/N2 2

. =1
2°2



[T 5% (8 B BEPRR

Example 2. Prove that J cos (bx'{"y dx = {l%;—]i‘cc;s";;l
[ SRR

Solution. Let I=J‘0 cos (bx'"y dx -+ - L )I r“

-

L ¢ ——————-t — ——— . —

Putting x = 1* s0 S that dr = "= di the (1) gives

—— — . —— e B — e

I=n_[ cos(br) " 'dr-le:(ﬂlcosﬂ

2
‘ PN Wl
Fn+1y " nm’ RN
= COS —
b" 2

| .
Aliter. J zos (b (I::b—l, [ (n+ 1) cos imA.
. 0 . b

Solution: Put M =x
So that - z=nx" " d.

Io cos (bz'™) dz 5". cos (bxj " Vdx
- - . - & 0 .

=n J X"~ cos (bx) dx
0

= teal part ofnj e""rix""~dx" -
. 0o

- -

© =real part of ¥ ——= [‘(n) T

AT e LTSS

IERTIR ]

NRRT: T W NPy T

RN

YTiv TOA TUZAUTS

RETAT

= real part of %'(cos Y2 +isinn/2)""

= real part of—w( 7'; i sm%
o b
= ;,; I'(n + 1) cos (nm/2).

).

LA sro9

SUMMARY -

Gamma function :
Tn= J dx, n>0 _
Also, () (1) =1

(Y Tn+ D=nT@) ~
@) I'(n + 1)=n! nis a non-negative integer . .

(iv) r(-%):ﬁ -

Beta function :

Y|
B(m,n) =I =2 dy, m>0, n>0
0
Also (i) B (1, 1) = B (n. m) : - e e e

/1 ld\ J .A,"-l . -
B 28 Ay
(“) (’" “) J‘ (I +r)m+n 0 (J +x)m4‘ll X N

n/2 , N :
(iii) B (m, n) = z_j cos™ ' @sin” 19 do
0

R

Beia and Gaimma Functions

(1)
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U N I T . Multiple Integrals

9

MULTIPLE INTEGRALS

Double integrals

Properties of a double integral
Evaluation of double integrals
Applications of double integration

Triple integral

Dirichelet's theorem for three variables
Change of order of integration

0 Summary

0 Student Activity

a Test Yourself

RS LEARNING OBJUECTIVES:
After going through this unit you will learn : °

e What are double and triple integrals ?
e How can we use these integrals in the application of concerned fields such as areas,

surfaces and volumes
e How to change the variable to other variables ?
® How to change the order of integration ?

* 9.1. DOUBLE INTEGRALS

Double integral is an extension of a definite integral in Y
two-dimensional space. Let f{x, y) be a single valued function of
x and y, bounded and defined in the region R of XY-plane. Let A
be the area of region R and let R be divided in any manner into
n-sub regions 0., O, ..., &, whose areas are Osy, dsy, ..., Os,
respectively. Let p(&,m, be any point inside the region

Oy - Bn =f(§]-)'

n
Let B,= X A&, u,) s, then the limits of B, which is
r=1 o)
assumed to be existed as n — oo such that every ¢, — 0 in all its
dimensions is known as double integral of f{x, y) over the region
R and is denoted by

)L’

Fig. 1

IR Ax, y) ds

or IJ'R fx, y) dx dy.

Hence, the area R is called the region or field of integration for the double integral and ds is
called element of area.

* 9.2. PROPERTIES OF A DOUBLE INTEGRAL
(I) When the region R is partitioned into two parts say R; and R; then
IJRﬂx, y)dxdy= HR Jx,y) dxdy + HR fix, y) dx dy.

Similarly,\we divide the region into three or more parts.
Self-Instructional Material 121
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(IT) The double integral of a algebraic sum of a fixed number of functions is equal to the
algebraic sum of double integrals taken for each term separately. Thus

IIR .00 ) + Fo, 3) + fo( y) + ... ) dix dly

= IIR fitx, ) dx dy + HR Flx,y) drdy + JIR Al yydedy+ ... .
(ITI) A constant factor may be taken outside the integral sign. Thus
[T mfoy)axay=m] fis.)axay
where m is a constant.
* 9.3. EVALUATION OF DOUBLE INTEGRALS

(i) Over a rectangular region R. If the region R be given by the inequalities a < x <5,
¢ <y <d, then the double integral

.U g fx. ) dxdy = Lb,[,dﬂn yydxdy = Lb J:d Ax, y) dy | dx. (1)

d
We first evaluate J: fx, ) dy i.e., integrate flx, y) with respect to y regarding x as constant

and then resulting function of x is to be integrated with respect to x between the limits a and b

or IIR fx,y)dxdy = _[:d_[ab fx.y)dxdy = J:d J‘ab‘ﬂx, y) dx |dy. _ (2

b
Here, we integrate L fix, y) dx and then integrate with respect to y.

(if) Over the regions which are not rectangular. Let the region R be described by
a<x<band ¢;(x) £y < 0y(x) so that y = ¢;(x) and y = ¢,(x) respectively, the boundary of R then

Y

b poa(x)
IL flx,y)dxdy = L J.¢| @ flx, y) dy | dx.

% (%)

Here, the inner integral 0 ()

flx, y) dy is integrated first

and in this integral the result of integration is a function of x, say

@1(x), then ¢,(x} is integrated with respect to x between the limits o

a and b to obtain the value of double integral. Fig.2
In a similar way, if R can be described by

cSy<d, ¢;(N)Sx<h () v=d D

then we get
'l"l' Id J‘% 2
Jr fxoyydedy=J )}, o fxy)dxidy.

Here, the result of integration

j% o)
o0 SN d _ ¥

which is evaluated first, is a function of y say ¢, (), then ¢, (y) is integrat&dg.3ith respect to y
between the limits ¢ to d.




Working Procedure. While evaluating double mtcgrals firstintegrate with respect to variable
havir.g variable limits and treating the other variable as constant and then integrate with respect to
variable with constant limits. In case the limits of integration of both the variables are constants.

SOLVED EXAMPLES ; ”i o
/2 : . e
Example L Eva!ua!ej I ydydx R tit) 7 [ I [P
Sohmon. We have ) -5
' 2 "2 ) .
J. J ydydx= J.r'y [X] dy QJ." [%}’Jd)’ . R | T
J 2 ’ 2
B U KA SRa0 U D T Y IO I S
Tadi dy_2[3yj["6(2 1)
=7/6.- ’
Example 2. £ lateJ.I dx dy. .
p valu 0x2+y X ;) ‘ 5 .
Solution. We have ' R i ‘
2 o 2 ]
J * dxdy _ * dy dr Cear i
i 2, 2 P -

IO 2442 ) 0 x +j»-.i‘

°2
|5 ! 1= | 0)] dx

g * ..

2
dx .m L2
j, il [l?gxl‘!-

[log2—log 1]"-11:Iog2

Al.‘-‘l &

2 py2 3/2
Example3 Shaw thatj J‘O ’ ydydx j I ,\dxdy

Solution.. We have -{§ - . N TR - L

2 J77 2 . - o o
- . J‘J‘ }’d}’dx ‘[1)"[ dx dy . . .- T I |

e
* ¥

\E

2 ” 2 -
. =f,-y‘[x1; dy =I, y [y/2-0)dy

Multiple Integrals
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T6 14 24 56
* TEST YOURSELF-1
1.  Evaluate J. de (,\:2 + 3y2) dy. -
+ P
2.  Evaluate j J. _dxdy d
4+ x+ y )

/2
3.  Evaluate J.O L 45 €OS (x+y)dxdy.

4.  Evaluate fo .[0 xdxdy.

1p
— 5.  Evaluate fo J.O &7 dx dy.

Ipt
dxd
6. Eva]uateJ.I 24
O V- a-

7.  Evaluate H €~* ¥ dx dy over the triangle bounded by x =0, y = 0 and xty = 1.
8. Evaluate ” x sin (x + y) dx dy, where p is a rectanglé [0<x<m, 0<y<7n/2].
. P N N

2 pd 4
9.  Show that Il J;l (xy + &) dxdy= J; L (xy + €") dy dx.

10. Evaluate ” xﬁyz dx dy over the region bounded by x =0, y =0 and x4+ y2 =1.
2
11. Find the area of the elllpse =+ ‘z-— =1 by double integration.

12. Show that by double integration that the area between the parabolas y*=4ax and x* = 4by is
(16/3) ab. : S

ANSWERS

1. = 2.%10g(1+\lz_) 3.-2 4.

(SHE-|

2
n 1o,y
6.7 Tc(e-1 Qe+

8. m-2 9.2 L4

7 10. ©/96 11. nab

* 9.4. APPLICATIONS OF DOUBLE INTEGRATION

Double integration is generally used in area of curves, y D
volume and surface of solids of revolution. /
(a) Area of curves. Let AD be an arc of curve y = f{x). Q
Let area ABCD be divided into sub-area by drawing lines 4~
parallel to X and Y axis respectively such that distance between
two adjoining lines drawn parallel to Y-axis be 8x and those drawn -
parallel to X-axis be 8y. x=a Sl
Let P(x,y) and Q(x+8x,y+38y) be two neighbouring
points on the curve AD. PN and QM are the co-ordinates at P
and Q respectively. Then the arca of element shown by shadded ¢ B NM C
lines is &x 8y.

\

Fig. 5
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Therefore, the area of strip PN

fx)
= L= o@xdy wherey = f{x).

The required area

b Ax)
ABCD=| _ y;OdXdy'
(i) We can find the area bounded by the two curves Y

v =f; (x) and y=f, (x) and the ordinates x =a and x = b }

J- J-f1 (x} B.
“lxza dy=p (x)

(b) Volume of a solid. Consider the area dy dz on the
plane x = 0 through each point on the boundary of this small v
area. Draw the lines parallel to X-axis and thus construct a %
small cylinder whose base is area to X-axis. This cylinder C
cuits the given surface, and volume of this cylinder
=xdydz. V4
*. Volume of solid = Hx dy dz. Fig. 6

REMARKS
>

By cénsidering area dx dy on plane z = 0 the volume of solid = ” zdx dy.

> By considering area dx dz on plane y = 0 the volume of solid = _U ydx dz.

(c) Area of surface of a solid. Let the equation of surface be z = f{x, y). Consider a point
P(x, y, 2) on this surface surrounding this point P. Consider

VA
an element of area 8s of the surface. Let 8x 8y be the projection
of this area 8s on the plane z =0, then we have P(x3.2)
Sx 8y=08scos (D 8s

where ¢ is the angle between the tangent plane to the
given surface at P(x,y,z) and the plane z=0 then by
co-ordinate geometry, we have

wa\[L BB o I

y S5xdy

From (1) we have 8s = 8x 8y sec ot Fig. 7

=8x &y 1+ +1== (From (2)]
i Ix dy

~.the required area of surface
o [ () (oz
o I (2] (2] e

SOLVED EXAMPLES

O
Example 1. Find the area of ellipse — + ? =1.
a 2

Solution. Required area of ellipse
=4 (area of quadrants OABO of ellipse)

Ax)
= 4L 0 I dx dy, where y=f{x)=— \}(a 2)

Mudtiple Integrals
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Analvsis
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a a . . .
-4 J:) D™ dx = 4 J; Ax) di i
0 .
Y
s N
=4J-0 ” (a® = ¥%) dx ,
41) 1 “1{x o
Il - = = Fig. 8
p [2 N =Y +2 a” sin” [a]:[ . ig
U - & X
10 +a Hl= L 9= abn
Example 2. Find the whole area of curve a’x’ = y (2a - ¥).
Solution. The shape of curve is shown in fig. 9. The required area
=2 X area OAB ¥
2a 1163 !
=2 )'éo".[\- _o dydx ’ i 4 (0.20)
A _ J D -
where x = fy}ie., x=y"? L"a_i is equation of curve. é\v — 53
. the required area :
' 2a ) : v
v) . i .
=2L=0[x10 dy | ¢
! 2a°
. :2 0 ﬂy) dy . . - ., Flg.()
2 3”\]2(1 ' . \/2(1 -
=2, —a——dy o [ ) =x=
Put y=2a s_in2 0
dy =4asin 0 cos 8 O
at v=0,0=0
y=2a,0= Tt/2

/.
2
Required area =§.[0 (2a sin® 0)"* \J(Qa 2a sm 8) 4a sin B cos 8.0

n/2
=324° JO sin* 8 cos> 0 d6

_ 34T/ T(/2)
‘ 214 :
2.3/2.1/2\n 1/2«/_ o
2.3.2.1
Example 3. Find by double integration the area between y = 212) and 4v = x°.
. X"+
Solution. We have o
4y = A —3¥—
«? +2)
= 4dy= } 2, dy=2
= +2)
g 712)( = 27— 12v=0
(*+2)

= x(x+2x-12)=0
x=0.2




_n/(x +2)
Required area "'[ J v=r/a dx dy

2 3
3/ +2
:IO [.\']13‘ @
x4
2
_J. 3x \'2 di
0242 4

2 2
3 2x dx 1‘[ 5

M dx

“ado ¥+2 490

3r, 2 1(1 ,Y
-2 [!og o2 + 2)]0 4 (; x3J
N 0

2 llog (6) - log (2)]- 1 (8- 0)
f

l\)w

w

=—log3~

Y
RYTN)

1

Example 4. Find the volume bounded by co-ordinates planes and the plane 4 .l% +E=1,
- a ¢

Solution. The plane cuts X. Y and Z-axis at point (@, 0. 0). (0, . 0) and (0, 0, ¢) respectively.
The surface ABCD of co-ordinates planes will be equal to ¢ (1 - x/a — y/b)

b(=-x/a)pc(l —=x/a—y/b)
L J. I dy dy dz
J-(IJ-[)(I—Y/H) [
apb(l -x/a)
AL

* TEST YOURSELF-2

1. Find by double integration, the area of the région enclosed by curves
(a) y=4x —xz, y=x
(b) (.\‘2 + 402) y= 8a3, 2y=xand x=0

() y= 23’t—,4y=x2.
(" +2)
2.  Find by double integration the area included between the parabola x2=4ay and the curve
8
(o + 4a%)
ANSWERS
_9 2 3, .22 4Y) 5
L@ =3 ®@-Da  (©3lg3-2 2 [2@__ 3)0
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- Analysis e 9.5 TRIPLE INTEGRAL

Definition. Let f{x, y, z) be a single-valued function of the independent variables x, y, z in
finite region v. Divide the region v into n subregions 8v;, 8v,, 8vs, ... . Let P be any point on the
boundary or inside.

Take a point in each part and form the sum

=Sn =ﬂxl’ Yo Z;) 8Vl +ﬂx2‘ Y2. 22) 5v2 RS +ﬂxn’ Vi Zn) 8"::'

n
= 2 Ax.y~z,)0v, (D)

r=1
when s tends to infinity. The limit of sum (l) tends to zero is called the triple 1ntegral of function
Ax, v, z) over the region v and is denoted by . 1

”I fix, v, 2) dv
v
| the triple integral can be utilised in evaluating a number of physical quantities like, flx, y, 2) = 1.
i We find the volume, V = HI dV, and putting fx, y,z) = p _

we get, mass = ”I pdv.

Evaluation of Triple Integrals :

The region v divide into elementary cuboids by drawing
parallel co-ordinate planes. The volume V can then be considered . . 255 (x.y)
as the sum of a number of columns parallel to z-axis extending from
the lower surface of V say z = z; (x, y) to the upper surface of V say
z = Zp (x, y) the bases of these as column (only one column has been - -
shown in fig. 10) are the elementary area 8s, Which cover a certain
area S in x-y plane i.e., plane z=0.

. Summing up over the elementary cuboids in the same
column first and then taking the sum of all such columns we can . -

T

N

1

[
- b
i |
) r
B

/

7

kN

I

gty drtylylylpiylr=ly=he=

SAETRED

P T
P Rttt

write -
n e ] i N
z R yn ) 25 Z[Ef K v 2) 52] B, o4 ..
r= rom .
where (x,, y,, z,) is a pomt in the mth cuboid. N " Fig. 10 i |

When 85, and 8z tend to zero this becomes equal to B S

) ' . . .

(a) If the region V be specified by inequalities .
as<x<bhcsysd e<zsf C
then triple integral - o

J'J. Vf(x,y,z:)dxa'deIJ‘aJlC Sy 2ydxdyd: ) o

boopd  of :
=Ia dx‘l.{: dyJ.e ﬂx!y‘ Z) dz

Here we integrate first with respect to z keeping x and y constant and then the remaining
integration is done as in the case of double integrals. !
(b) If the limits of z are function of x and y and y as function of x and x takes the constant
values say from x = a to x = b then :

b ¥2 () J‘Zz (x,)
J‘J.J.V fx, y, 2) dxdy dz :J.a dx e dy 2 (5 9) fx v, 29 dz

The integration with respect to z is performed first regarding x and y as constant then integration
w.I. to y regarding x as a constant and then integrate w.r. to x. !
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SOLVED EXAMf’ LES

. l-x Ara
Example 1. Evaluate J; J;:Jn U xdydx dz. Ll i

Solution. Wc have

.

.‘ ‘ " ;
~.~6_"“ s ]. ] "; " L ’ : "
. 2 {:) xdydy ' Lo

; .
it Y
J‘J.z’[r(l x)dyd\ :

Example 2. E valuate

{

R

I-\ \I-x - ol
J‘_ J.,_ I 0 X)’ drdydz. ~ .4
! '

{

Solution. The given integral '

4

SIS B ‘

l=v[§=0.[0 . "«‘(2‘-1 de(['

o TV 'l I

1. ' 2 1

=E.r=0;[v=0* x}’(i-xz")’)(lxdy
N e "

-~ ,.e; l '

| 21 1'} Sk
YIS RAt

-x) -y dxdy

L I R
(! 1‘]- A
1 A== ==yt l
2-.\':0"[2(1 XYy 4)11'- .'{x

20 a0

!
‘l
Toobed T oslgminr

L. Sroisutoe

Multiple tiite grals
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J‘ ! 1 l’ 'l‘
=% 0 [;‘(l—x)(i x)-—(l t)]d.t
ATV “ J-'
2,2
=5Jo \(E-‘J(I—A) d e
r .l weoer i l’ i,j |
I 3. L2 1.3 1 6
=3Jo (=2 +\})dt-8[2,\ 2x +6\l
YO TCUN DA L
3127276 48 -
P A T
Example 3. Evaluate L L j() dz dx dy. ‘




J

Anals, So - 1:/2 J‘,,f ( -}ZJ 'rdté'dr 2348AI8AV 30 amﬁg ‘[ .
p1om mmm‘fdzwe Y&lom ]"'t"' id~uqv o) sgnsds sw dmil omo2 .tnscmné
1 2

bt bagnedd s bb (v J{ 40 r\
sy 1
mni bosayolanct 21 lo1g) :glduo}%"_ ,.f'{: (v ,n ﬂﬂ/z‘nom;lm :“f 1o enastf yd 1 .n

) 3
o ;;ﬁ[; e ] aw;j}i’t(w el

[ ' ] u"l‘ a!nga:m sldunb a) bnit o1 ysw I3inoveoo
lJu W

Fel

% 16|
Simlarty,  y" ldy=# (1/av™® 'dy RS R
prit ai R noig= of 3@'1-1?1 (1- -mrlj --lA-(’l =g )m ods 2i A bns | o &|° \ swrdw
. =27312 a2 L
Hence subject 10 the cc mtion /+ v 4335 |, th/ piven e ¢ % " wb
Example 3. By using the xmnsformanon x+y=u.y=vu, show that salgar-s

- SR ot . 2v dw
J J' ST g Iy e=1). * % 61ubeoed gribhoW
bd vb xb pond \o 1d0J0; sdf WA iﬂ _;;q*p,, ey usth @ ¢ sk (1)

! JF nriman s"nﬂ'nopw;,xwmwb% noigsy st b b b (V)
So!n:ﬂog Wc h."-l:f«::r- Jd " ‘(ly “:" d’:: -rgj -l-msfb ol .a&.-..'zlho-c)') 'mlgq ol apaged?)
Thc > region of integration is | boun ed by the lines bosrd .t s 1e plang ﬁ“t\ 18 2bF8= 3

1—-x

y=0, v=l—xr 0 and r—l I G 6[
co-o~lirate n ¥ p A
Changmc these cquations to new vanablcs wand v by using, the relatlon
b LITC VWil W o il I G - ’.I 7 A uw \ nun‘
-y= R - I vy
. the votume of the ;lv'c" %.tr*ncu‘ jH;.xo .S'I l-o - 6
and"\"': e have 18 extended to :.n Tmmc values of ¥ -r] R TP 1
Puta/a - u s/l = B ok ST TH T (50 2 2g¥ah AR
a"d a“(] M= «,.n\n(emzw 0 021} u
glvmg =0tov=1, u-Otou-l “

d: amsds r
Therefore for the g:ven rcglc;n v'vanes from 0 to | and  varies from 0 to |

1 thon the requied volumee \/( "'):!"'-!':;'/u 14 e"‘f" MAY MG |
Changing thé Variables t© &,V thc gwcn mtegral becomes “’u monit LI "q“‘“’ K
...
1

I 1 ‘sﬂlmw]l*(bﬂsu + v aved oW oidulod

= ududv = -[ ]Oudu -n= xf(by Dinchlats inter

0(. 0
Bbee Db 1272
; 6 wb
_ = (e -e)udu A 2bo o

» TEST YOU [ 2Li=, L,_ ;_:_;_ »:6 b T
‘L Show ot . —(e—l)f a’u—(e—l)[ l; =11(‘e‘]31) o,
| e Yokt
¢ TEST YOURSELF-5 g TETRARSNERL L
l ‘\ﬂ:&."ii.. a a_\ T .LXC!T'(M‘OJU. e ..wm\?ﬂfgt w"‘“\ﬂ"’"' ""
1. T{ff’f‘f(lm *o%:: ‘f,(* )’),.‘fi,‘!{’ by EL:?..SS"SI".“.&E’&"‘&&\ o dac ™ . S slgmer]

2.% By using the transformation x x + v— “'y Z v show that ™enor o d by
TS [y (5 2 v te et s !y

4 |
b Ortw 1St ebis g e ainr b r;\{ﬂs“ L e (Yan? - -
taken over the area of the tnang]e bounded by linesx=0,y }0 Yy -;1‘7'2_“ D e |

2 2 g Znnang 105 me v bowog, o
, 3., Transform the mtegral[ v

g ), Y y
e “E’V [l

St vd ot 1= e, e 1
! by changing 10 polar co-ordinates and hence solve it. s o> wokt

(-
|

Vip_r - Le103g 0 Yarze .\—(40
t: 0 moit esnusv 6 mgwd#wr v 088 omi s o +£x:>bm‘:dro"“q
I . lexgatng . t/ Y [Pt d . Ld “
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