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ContinuityUNIT

i
CONTINUITY

Continuity
Discontinuity
Four Functional Limits
Some Important Theorems
Uniform Continuity
Some Important Theorems
□ Summary
□ Student Activity
□ Test Yourself

lLEARNINe.OBJECTIVESSSt,;;?fiiaS|liSSi!!|Stimm
After going through this unit you will learn :

• What are continuity, discontinuity and uniform continuity ?
• How to check whether a function is continuous or not.

• 1.1. CONTINUITY
A continuous process is one that goes on smoothly without any sudden change. Continuity 

of a function can also be interpreted in yf 
a similar way.'For better understanding, 
consider the following figures.

The graph of the function in fig.
1(a) has sudden cut at the point x = 4 
whereas the graph of the function in fig.
1 (b) proceeds smoothly. We say that the ° 
function of fig. 1(b) is continuous, 
while function of fig. (a) is not 
continuous.

Ft

*->x o4 4

(a) (b)

Fig.l

Also, while defining lim the function /may or may not be defined at * = m Even if/
X —» (l

is defined at .v = «, lim //) may or may not be equal to the value of the function at x = a. If
X—> (l

lim ./(.y) =J{a), then we say that /is continuous at x-a.
X —* II

Systematic study of the continuous nature of various phenomena began at the close of the 
17th century. The french mathematician G. W. Leibnitz (l?111 cent.) was a pioneer who first specified 
the two concepts underlying various physical phenomena of the universe. The first of these is 
calculus, which is the natural language of the continuity, and the second is combintionai analysis 
which deals with the discrete or the discontinuous. The study of continuity of functions is the most 
important aspects of analysis and is based on the notion of limit.
Continuous Functions.

Continuity at a point. A function/, defined on some nbd of a point a, is said to be continuous 
at a if and only if any one of the following condition is saitsfied

(i) lim j{x)=f{o)
.y-*cr

(li) Aa ~ 0) =j[a + 0) =f[a)
(iii) Cauchy Definition of continuity for e > 0, 3,6 > 0 such that

Self-Instructional Material I



Analysis |yfa)-/(a) | < E, whenever 0 < | x - a | < 5.
The above all conditions are equivalent to each other, and being, simple, are of common use.

REMARKS
> Checking the continuity of a function from the smoothness of its graph is not a complete

method. Consider the graph of the function f(x) = a: sin —, then we observe that it has no

breaks in the nbd of * = 0. But this function is not continuous. Observe that the graph 
oscillate widly near zero.

Some More Definitions of Continuity.
(i) If lim j{x) =f[a), then we say that /

-V -» + 0
is continuous to the right of a (or right continuous 
at a).

> t

✓

(ii) If lim - f(x) =f{a), then we say that *'<-
.c —»<i - o

is
/is continuous to the left of a (or left continuous 
at a). / \(iii) A function/is said to be continuous in 
an open interval ]a, b[ if it is continuous at every 
point of ]a, b[.

(iv) A function /is said to be continuous in a 
closed interval [a, b] if it is

(1) right continous at a
(2) continuous at every point of ]a, b[
(3) left continuous at b.
(v) Afuncntion/is said to be continuous in a semi-closed interval [a,b[ if it is
(1) right continuous at a
(2) continuous at every point of ]a, b[
(vi) A function/is continuous in a semi-closed interval ]a, b] if it is
(1) continuous at every point of ]a, b[
(2) left continuous at b.
(vii) A function/is said to be continuous at a e /, iff lim j{x) exists, is finite and is equal to

X —> <7

Fig. 2

j{a), otherwise the function is said to discontinuous at .r = n. ,
(viii) Heine’s definition of continuity : The necessary and sufficient condition for a function 

/defined on an interval / c R to be continuous at a point of interval / is that for each sequence 
< «„ > in / converges to a, the sequence c/Vt,,) > converges to/a).

Here, we have that/is said to be continuous iff 
lim fifln) =/(«)• A

Graphical meaning of continuity of /O3)'1 £ 
a function. Continuity of a function/at a 
point a graphically means that there is no /(a)-e 
break in the graph of the curve y =f(x) at 
x = a and given however small 
e>0, 3,5>0 such that the graph of 
y =AX) fro™* = a- 8toa + 5 lies between 
the lines y ^f(a) - e and y =J(a) + e.
Examples on Continuous Function.

(i) Every constant function 
/:/?—» C is continuous on R.

For £>0, ae R, [x-a|<e=?|C-C| = 0<E
(ii) The identity functionfix^xe R is continuous on R.
For e > 0,5 = e and |.x-fl|<£=>|.x--a|<£Vrt€ R.
(iii) The function f: x xn, it e N is continuous on R

itm ~ -i
L

a~5 a a+5
<-28-»
Fig. 3

O
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Y For any a e R, lim /(.v) ^ <z''=/{«).
A' a

(iv) The polynomial function/(x) = a(, + ajx + ... -{ airx" is continuous on R. 

v For any a e /?, lim ,/(.v) ~J{a).
A —» (7

Conrinitiiv

i

• 1.2. DISCONTINUITY

(1) A function/which is not continuous at appoint a is said to be discontinuous at the point 
V, where V is called the point of discontinuity of/or/is said to have a discontinuity at a.

(2) A function which is discontinuous even at a single point of an interval, is said to be 
discontinuous in that interval.

(3) A function /can be discontinuous at a point x = a, because of any one of the following
reasons :

(i) /?» is not defined at x ~ a.
(ii) lim J[x) does not exists.

-I —* (7

(iii) lim J(x) andf(a) both exist but are not equal.
.v —» a

Types of Discontinuity.
(i) Removable discontinuity. A function fis said to have a removable discontinuity at a point 

a if lim f[x) exists but is not equal to the function value at a /.<?.,
X -* II

/(a-0) =/(a + 0) */(«).
REMARK

^ In the above case, a function /can be made continuous by assigning some suitable value 
to «, such that

lim Ax)-Aa)-
x —> u

For example. Suppose/is a function defined on ]0,1[ as follows : 

2, 0<*< 1, x*!
m-

Then, it is clear that / is continuous in ]0. 1 [ except at the point * = ~ At the point x = |, we

11, •X - T2

11/h-tvt2
1 = 14 2

1
removable discontinuity at x - 2*=>/has a 

The discontinuity at = 2
1I may be removed by choosing / 2 J " 2‘

. f -^1 umA a function fis said to have a discontinuity of first kind at a 
- 0) am! fia + 0) exist but are not equal The point a is said to be a 

7- ,J ' sryf-rvm tfie (eft or from right according as 
fia - 0) ± f{a) =J{a + 0)
/n - 0) =/i» */(a + 0).

For example. Consider a function/defined on ]0, 1[ as follows

1/2, 0 <x < 1/2
_ i 

X 2 
-1/2, 1/2 <x< l

Obviously,/is continuous over the open interval }0, l/2[and] 1/2, L[ 
At the point x = ^

0,

Self-Instructional Material 3



iAnalysis' i*0=/(I/2)~h -

r\<\ 1
/ ^- + 0 = lim / t + /j =-t*0=/ -

2 J A-»0 ^ j “

M ^ f 1 )/ 2 — 0 ^/i + 0=>

I/has a discontinuity of the first kind at * = -•
(iii) Discontinuity of second kind. A function f is said to have a discontinuity of second kind

..... point a if none of the limit/(a - 0) andf[a + 0) exist at a. The point a is said to be a point of
discontinuity of second kind from the left or from the right according asf[a - 0) orj[a + 0) does 
not exists.

=>

at a

/ \
— defined an ]-«>. ccj. The graph of theFor example. Consider the function f(x) = 

function as given below :
>• nObviously, at the point .v = 0. both the limits lim cos

cos x\ /

and lim cos’ -1 do not exist.
M -♦ 0+ .1

Hence, * = 0 is a point of discontinuity of the second kind.
(iv) Mixed discontinuity. A function f is said to have a mixed discontinuity at a point a if 

fhas a discontinuity of second kind on one side of a and on the other side a discontinuity of first 
kind or may be continuous.

1
= <?IA srn-For example. For the function f(x)

lim f{x) does not exists and the function is not defined at x = 0. Therefore. 
*-»o +

the functibn has a discontinuity of first kind 
from the left and a discontinuity of the 
second kind from the right at .v = 0. Thusrthe 
function has a mixed discontinuity at,r = 0.

(v) Infinite discontinuity. A function 
f is said to have an infinite discontinuity at -2\ -] 
x = aiff{a + 0)orj[a-0)is + °°or-<x>. If \
/has a discontinuity at a and is unbounded______ X.
in every nbd of a. then f is said to have an 
infinite discontinuity at a.

x
lim /(.v) = 0.

i
A -> 0 -

n A
\

+ ».Y0 2

XJ

rig. 4
1.For Example. Suppose/*) = — in ]-

It is clear that /is continuous on )-<», <»[ except at
* = 0. At * = 0. te limits do not exist but lends to infinity. So,
* = 0 is a point of infinite discontinuity. Hence, a rectangular 
hyperbola is a curve with one point of infinite discontinuity. 
Jump of a Function at a Point.

lfj[a + 0) andf[a - 0) both exist, but not equal, then the 
jump in the function at a = a is defined as the non-negative 
difference J{a + 0)-J{a-0).

REMARK

F aoo ool

J
2

A'
J 2

-i
i

1 ■ t
• ]

Fig. 5
f

^ A function having a finite number of jumps in a given interval is called piecewist 
continuous or sectionally continuous. i •

i

• 1.3. FOUR FUNCTIONAL LIMITS
Let us suppose the function/*) be defined on thfe closed interval [a, b] and let *0 e fit. />]j]

4 Self-Instructional Material



CoiilituiilvLet the upper and lower bounds of the function J[x) in the right hand nbd [x0, x0 + h] of xq 
denoted by M and m respectively where M = M(h) and m = m(h). Let the'sequence of diminishing 
values ./i],/?2» ••• be assigned to h, which converges to zero, then ... is a
decreasing sequence and so it possesses a lower limit.

Similarly, the sequence mf/q), m(hy) ... is an increasing sequence and have an upper
limit. These lower and upper limits are respectively known as the upper and lower limits of the

function _/{x) at x = xn on the right and are denoted byj^xo + 0) and/(x0 + 0) respectively.

/(x« + 0)= lim A/(/i) and/(xo + 0) = Hm m(h).
A-»0

If the right hand upper limits ./fx0 + 0) is equal to the right hand lower limit 
J[x0 + 0), then their common value is known as the right hand limit of the function/(.v) at x = xq and

is denoted by/(x0 + 0)

/(xo + 0) =/(xo + 0) =/(x0 + 0)-i.e..

Similarly, if we consider the left hand nbd [x0 - b, x0], then the upper limit of ni(h) and the 
lower limit of M(h) are respectively known as the lower and upper limits of the function/(x) at 

.v =x0 on the left and are denoted by /[x0 - 0) and/x0 + 0) respectively.

If the left hand upper limit /(xn - 0) is equal to the left-hand lower limit J{x0 - 0), then their

common value is known as the left hand limit of the function/x) at x = x0 and is denoted by
/(-v()-0)

/(xo - 0) =/(xo - 0) = /(xo - 0) -i.e..

REMARK

The four numbers /(xq + 0), /x0 + 0), /x0 - 0) and /xq - 0) are known as four

functional limit of the function/x) at x~xq.

The four functional limits of the function/x) at x = x0 are independent of the value 
of the function

>

At x = 0, the functional limits are denoted by►

/(+0),./(+0),/(-0) and X(-0).

SOLVED EXAMPLES
2-iY

Example 1. Show that f{x) - - is continuous for all values of x except x = 1.
x - 1

Solution. If x?* 1, thenX*) = (x + 1) is a polynomial. 
=>f{x) is continuous for all values of x * 1.

(Y Every polynomial function is continuous) 

If x= LX*) 's of the form which is not defined and so the function X*) is discontinuous

at x = 1.
Example 2. Show that the function j[x) is defined by

2, x = 1
is discontinuous at x- \ .

Self-Instructional Material 5



Analysis Solution. Here the value of./(*) at jr = 1 is 2
yu)=2.

RHL=y(l+0)= lim Xl+*)= lim (l + /i)2-l
/i->0

LHL =f(l - 0) - lim ^1-/0= lim (l - h)2 = l
' h-»0 /i->0

Now,
/i-»0

Also

Therefore, we have
Al+0)=Al-0)^/(l)
Jl.x) is not continuous at v = 1. 

Example 3. Examine whether or not the function 
sin 2x , when x *0 

, when _v = 0
A*) = X

2
is continuous at x = 0.

Solution. Gjven that_/£*)= 1, whenx-0

sin 2(0 + h)Now, RHL=^0 + 0)= lim f{0 + h)= lim
h^O (0 + h)h->0

sin x= 2 lim 1 i

x.t —»0

sin 2(0 - h)
(0-/0

and LHL=y(0-0)= lim A0-h)= lim
h-*0 h—*0

= 2.

Therefore, we have
Ao + o) =j[o - o) =y(0) = 2.

Hence, ^.r) is continuous at a: = 0.
Example 4. A function fix) is defined as follows

(x2/a) - a, when, x <a 
, when x- a 

a- (a /x), when x> a
Prove that the function fx) is continuous at x = a. 
Solution. Here, we have

o

2a iRHL =fa + 0) = lim fa + h)= lim 0 (a + h)A~»0 h->0

2
By using~a-^-forx> a

x
2

a~~ = (a - a) = 0.

(a-It)2 I:
and LHL - fa - 0) = lim fa — h) = lim 

ft—>o
- aaft-)0

2X[By using/(y) = — -a for jr <«]
r

i2a
...(2)— - aa

■}= 0.

Also fx) = 0 for x = a

fa) ~ o.
Now, from (1), (2) and (3), we have

fa + 0) =fa - 0) =fa) = 0

.-(3>
■ |!i

=$fx) is continuous atA‘ = n.

6 Self-Instructional Material
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ContinuityExample 5. A function j{x) is defined as follows
jl+* ifx<2 

J{ > }5 -x if x>2
check the continuity offx) at x-2. 

Solution. Here, we have
/(2) =1+2 or 5-2 = 3. 
RHL=y(2 + 0)= lim ffl + h)

...(1)
Now,

= lim [5-(2 + /i)]= lim [3-/i]=3
h->0

LHL -f2 - 0) = lim f2-h)=hm [1 + (2 -/i)] = 3.
/i-»0

...(2)
/ h —> 0

•••(3)and
h-*0

Now, from (1), (2) and (3), we have
A2 + 0) =f2) =f2 - 0) = 3.

Hence, the function y(A') is continuous at x = 2.
Example 6. Test the following function for continuity at x=-0

1(0 fx) = x sin — ' x ^ 0, fx) -0 at x = 0. 
X

1 ’ x ^ 0, fx) = 0 at x = 0.(»)/(x) = - l/x\-e
Solution, (i) Here, we have

LHL=/(0-0)= lim f0-li)= lim f-li)
h->0 h^O

1= lim (-/i) sin —- 

= lim /isin-f

= 0 x a finite quantity lying between 1 and - 1
= 0

RHL=/{0 + 0) =- lim ^0 + /?)= lim fh) 
/?->o

and
/i-»0

ilim h sin — 
h->o h

= 0.
Also, given that/(0) = 0

fiP + 0) =f0-Q) =f0).
Hence, the function fx) is continuous at x = 0. 
(ii) Here we have

LHL =f0-0)= lim fO-h)
/i-»0

1- lim f-h)= lim — 
/? -»o

RHL =f0 + 0) = lim fO + h)

= 0\/hh->o 1 - e
and

1- lim fh) - lim = 1- ]/a
h-*o 1 - eh-*Q

f0) = 0
f0 + 0) *f0-0) =A0)

Hence, _/(x) is discontinuous at x = 0 and this discontinuity is of first kind. 
Example 7. Discuss the continuity of the function fx) defined by

Also,
=*<

Self-Instructional Material 7



Analysis a2 for x <-2 
4 for - 2<x <2 
x~ for x>2.

Solution. Here, vve shall check the continuity of /(a) at a = - 2 and 2. 
At a - - 2.
Here, we have_/(- 2) = 4

LHL =J{~ 2 - 0) = lim J[-2-h)= lim (-2-/i)2 = 4
h^O h->Q

and RHL =f{- 2 + 0) = lim f(-2 + li)= lim 4 = 4
/j —^ oh->0

A-2-0) =f{- 2) =X-2 + 0) = 4. 
Hence,/(a-) is continuous at a- = - 2.
At a = 2.
Here, we have/(2) = 4

RHL =f{2 + 0) = lim J{2'+h)= lim (2 + h)2 = 4 
a -»o

LHL=yt2-0)= lim /(2 -/i) = lim 4 = 4 .
h~*0

j(2-0) -J[2) =yt2 + 0)=4.
Hence, fx) is continuous at a = 2.

A-*0

/i —> o

REMARK

At a = 0, neither function value nor limit exist. Therefore, the function J[x) has 
discontinuity of second kind.

Example 8. Show that the function fx) defined on R by 
1, when x is rational.

- 1, when x is irrational

is discontinuous at every point of R.
Solution. Let us first suppose, a be rational. Then ./(a) = 1. For each positive integer n, let 

A/t be an irrational number such that jA„-A| <—. Then the sequence <a,j> converges to a. Now. 

by definition /(a„) = 1 V h

'.L

lim Ax,) = - 1
}

Hence,/is discontinuous at each rational point. j
Now suppose a is an irrational number. Th&i/A) = L For each positive integer n, let a„ be

the rational number such that |a„-a|<—. Then, the sequence <-a„ > converges to a. Now

/(a„) = 1 V /j so that
'im fxn) - 1 ^/(a).

Therefore,/is discontinuous at each irrational point.
Hence,/is discontinuous at every point of R.

i

• TEST YOURSELF-1
1. Discuss the continuity of the following functions 

' (i) Ax) = cos
1 , when a ^ 0,/0) = 0
A

Isin a ,a*0,AO)=1(ii) Ax) =
A

1 when a * 0, and /0) = 0mAx) = l/x1 -e

:
8 Self-Instructional Material



Continuitysin x*0.j[Q)=\(iv)A-0 = -v •
gIA sin (l/.v)

(v)yi.v) = .v * 0 andy(0) = 0

(vi)/(*) = - , x * 0.J[0) = 0
' • • l/v . I C + 1

2. Examine (he following function for continuity at .v = 0 and .v = 1
.v2 if a- < 0

Kx)= 1 ifO<A<l
1 /x if a- > i .

3. A function /deilned on [0, 1] is given by
A’, if a is rational 

1 — a-, if a is irrational.

Show that /takes every values betwcen'O and 1, but it is continuous only at the point .v = ~

4. Examine the continuity of the function
-a-2 , if. A'<0

5a*-4 , if 0<a*< 1 
4a*2 - 3a , i f 1 < a < 2 
3a+ 4 , if a > 2

A-v) =

at a = 0. 1 and 2.
xe'/x

5- Show that the function / defined by ./(a) = a * 0.J{0) = 1 is not continuous at a = 0l/a*1 + e
and also show how the discontinuity can be removed.

ANSWERS

(ii) Continuous alt = 0(i) Discontinuous at a = 0 
(iii) Discontinuous at a = 0 with ordinary discontinuity

1.

(iv) Continuous at a = 0
(v) Discontinuity of the second kind at a = 0 
Continuous at a = 1.2, discontinuous at a = 0.5.

• SOME IMPORTANT THEOREMS
Theorem 1. Iff and g be two continuous functions at a point a e l then the function
(0 f+8 
mfs

(ii) cf
(jv) f/g [5 {a) * 0] are also continuous. 

Proof. Since/and 4’ are continuous at a. we have
lim fix) =f(a) and Urn s(a) = £(<7).

x-*n
(i) By definition, we have

(/■+*>W=Aa)+*(a) VaG /. 
lim (f+ g) (a) = lim |/a) + s(a)]= lim f(x)+ lim s(a)

.V-ifl .1—» rt X-rttl.»—>«

= (f+g) («)
=>(/■+ 4) is continuous.
(il) By definition, we have

(c/)(a) = c/(a) Vxe l. 
lim (cf)(x)= lim cj[x) = c\\m J[x)Therefore

.r —»n.1 —»rt
\!-cf(a)

= (CJ) (a) ■
Hence, c/is continuous at a = a.

Self-Instructional Material 9



Annfv.si.v (iii) By definition, we have
tfg) (^) =AX) - ,?(A') v j g /. • 

Therefore, lim (fg) (x) = lim \J{x). g(x)]
x —) a

Hm J[x) ■ lim g(x)
.»•-» a x—*a

=A<0‘g(a) 
= (fg) (a)

Hence,/# is continuous atx = a. 
(iv) We have

(£\ (x) = V x £ I, g(x) ± 0.
g(x)g !

'£
g(a)

Therefor, lim
x-*a

(x) = lim >rg\ /
Z;Hence, is continuous.
8

Theorem 2. Iffis continuous at a e /, then |/| is also continuous at a. 
Proof. Since/is continuous at x = a 

lim j{x)=f{a).
x—* a

We know that
I/I (*) = !./(*) I. 1

lim |/|(4= lim \AX)\= Hm Ax) = l/(4 I = I/I(«)•=>
x—* a a —* (t x~-> a

Hence, |/| is continuous.
Theorem 3. (Boundedness theorem). If a function f is continuous in a closed interval 

[a, b], then it is bounded in [a, b].
Proof. Let, if possible / be unbounded on /. Then for each /? e N, 3 x„ e / such that 

|y(xn) | > n. The bounded sequence <xn > in / has a subsequence <a‘„; > such that it converges to a

point x0 g / (v every subsequence of a convergent sequence is convergent)
; i< xnt > -> Xq and [f{xa) | > V 6 N 

<flxrlt) > can not converge to f[xo)

--/.is not continuous at x0. 
which is a contradiction.

=> A
=>
=j-

This contradiction leads to the result that/is bounded on I.
Theorem 4. If a function f is continuous on a closed and bounded interval [<v, b], then, it 

attains its bounds on [a, b].
Proof. Since, the function/is continuous on the closed and bounded interval [a, b], therefore, 

it is bounded
=^supretnum M and infimum m of/exist in [a, b].
To show, there exist two point X|, x2 g [a, b) such that

f(x\)=ni*Ax2) = M.
Then, by definition of supremum

/x) <M V x e [a, b].
Let, if possible/x) * M for any x e [a, 6],.then//) < M V x g {a. 6]. Therefore, 

M-/x)>0, Vxe [a,/>].
Since, /x) is continuous on (a, 6] and M is constant, therefore M-/x) is continuous on

1

• f.
[a. b]. -1

Also M -/x) * 0 for any x e [a, b\
1 is continuous on [a, b)=>

M-A*) f '&

10 Self-Instructional Material i.



Continuity1 is bounded on [a, b]
M-fa)
3 a number K>0 such that=>

1 <K, Vjtg [a, b]M-Ax)
1M-Ax)>Jtz* Vxg [a,b]=>
K

1Ax) <M V xe [a. b] K=>

an upper bound if/on [a, b] such that=>

1
M-~<M=s\ipAx)K

which is a contradiction
3 a point x2 e [fl, b] such that=>

M=Ax2)-
Similarly, we can show that if m = inf//r) 3 a point X] such that

in =Axi)-
Theorem 5. If a function f is continuous in \a,b] and Aa)->Ab) have opposite signs, then 

there is at least one value of x for which Ax) vanishes.
Proof. Since, the function//) have opposite signs for a and b 

An) < 0 and//?) > 0.i.e..

Let us define
5 = [x : A' e [«, b]>Ax) < 01-

Now, since/«) < 0, therefore n g £=>.$*<]>.
u - sup S.

Now. to show a < u <b and/w) = 0.
First, we shall show that u *a. Since/«) <0 and/is continuous at a,

=> 3 a number 81, such that/x) <0 VxG]rt, a + 5i[.
=?• [rt. rt + 8i] C 5
=}> sup S must be greater than, or equal to a •+ 5]
Therefore,
Now, to show u^b
Since,//?) > 0 => 3 82 such that/x) >0 V x G [Z? - 82, Z>]

]i-82,fr[c5 
u = sup S<b - §2<b 
u*b.

Now, we shall show that/w) ^ 0. Since a< u<b. Therefore, if/«) > 0. Then we can find a 
number 83 > 0, such that

Let

M > rt + 8l M * fl.

Ax) > 0 for w - 83 < x < « + 83. 
Also, u = sup S. Therefore, 3 xj e S : u - 6^ < x\ < u

/x)>0.
x, g 5 =>/xi) < 0Also

which is a contradiction
Au)±0.

Now, we shall show that/u) ^ 0. If/«) < 0, then we can find a positive number S4 such that 
u + 84 < /> and /x) < 0 for w - S4 < x < u + 84.

If x2 is any other point such that m <x2 < w + S4. Then/x2) < 0. But this is a contradiction to 
the fact that u is the supremum of S consequently/«) -ft 0 

Hence,/t<)=0-

Self-Instructional Material 11



Analvsis Theorem 6. (Intermediate value theorem). Let f be a function continuous on the closed 
and bounded interval \a, b). If K be any real number between fla) and f[b), then there exists a real 
number c between a and b (a <c < b) such that

Ac) = K.
Proof. Let us suppose

Ao)<K<Ab). ...{D
Define a fucntion g such that

-(2)g(x)=f{x)-K-Xe [a,b].
Now. since/is continuous on fa, b] and A1 is constant, g is continuous on fa, b]. 
From (1), we have that K lies between//*) and//). Therefore, either 

f{a)<K<Ab) orm<K<M-

...(3)

From (2)
g(a)=M-K<0 
g(b)=f(b)-K>0 

g(a) ■ g(b) < 0.
Now, from (3) and (4) there exists a point c e ]a. b[ such that

g(c) ^ 0 ■
'm-k=o

f(c) = K.
Hence, there exists a point c such that a <c <b and f(c) = K.j

• 1.5. UNIFORM CONTINUITY
Since, we know that if a function j{x) is.continuous in the closed interval /. then for a given 

positive number e, 3 a positive number 5 > 0 such that 
|//) -fa) | < e for | .r - a | < 5, a e /.

Here, we observe that the number 5 depends besides 
E, on the point a as it is a function of a. In general, 8 is 
different at different points in /. ,

For this, let us consider the figure'9, where PQ, divided q 
into equal parts, each of length e.

The corresponding subdivision of / = [a, b] is such that 
8 is not the same for all points x in [a, b).

Therefore, if we can find a positive number 80 such 
that for a chosen £, \f[x) -/a) | < £ for | x - a j < S(, where 
the number Sq is independent of the point a, then the function 
/x) is said to-be uniformly continuous on [a, b].

Defintion. A function J\x) defined on an interval I is 
said to be uniformly continuous in 1 if to each e>03 a 
positive number 8 > 0, {depending upon £) but independent 
ofx e / such that

!l

/

£ B
£

£

£ i

O x=-bx-a

Fig. 9

\Axi) ~Axi) I < e’ whenever] x2 - x, | < 8
where X), x^e /.

• 1.6. SOME IMPORTANT THEOREMS
Theorem 1. If a function f is uniformly continuous on an interval /, then it is continuous on

/.
Proof. Let us suppose that/is uniformly continuous on / 

given £ > 0,3 8 > 0 such that 
|/x2) -/x]) | < E, whenever j x2-xi | < 8, V xbx2 e / 

Let X| e I and x2 G x, then we have

|/x) -/xi) | < £, whenver 0 < | x - X| | < 8

/

1;

[;
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Coniiiwify=> fix) is continuous at x\ (= /.
Since. x{ is arbitrary, consequently ./(a) is continuous on I.
Theorem 2. If a function fx) is continuous on an dosed and bounded interval I - [<?, b), then 

it is uniformly continuous on [a, b].
Proof. Since/is given to be continuous in the interval [«, b].
Let e > 0 be given [a, can be divided into a finite number of subintervals such that 

£
\J(x2) -fxi) l <2 ' w^ere a,, a2 are any two points of the same subinterval.

Let us divide the whole interval [a, b] into n sub-intervals, say 
[x0 = a,xl], |a,.A2j. [.v2.a3].......[x„-1tx„ = b]

~AX ") i< 2’ where x\ x " belongs to the same subinterval...(1)

Let 5= min {Si, 52 ... 8r. ... 5„} where 5r denotes the length of the /h subinlerval i.e.,
5, -1 ax-u ■ i

•*<1-1 xnsli-'V-l xr x»l° - -*o •*2 •v3

Let a and c be any two points of [n, b) such that 
I A - c | < 8.

Since 8 > 0. less than the length of each subinterval. Therefore, following two cases may arise: 
Case (i) When a and c belongs to same interval :

\Ax) ~Ac) | < when | a - c | < 8=>

where a, c e [n, b]
=> function/is-uniformly continuous in [n,/?].
Case (ii) When a and c belongs to the two consecutive sub-intervals say

A, _ ! < A < Ar < C < Ar + ].
Now, consider

W-v)-m i = \m -A*) +/w -Ac) i 
s \Ax) ~A-'V) I + \fixr) -ftc) I (By triangle inequality)

+ when |a~c| <8 

< e, when | a - c | < 8.

<

Given 8 > 0, 3 8 > 0 such that
|/(a) ~Ac) | < 8 where a and c are any two points of (n, b] such that | a - c | < 8 

-■> /is uniformly continuous on b).
Hence,
/is continuous on a closed and bounded interval [«, b] 
=> /is uniformly continuous on [a,b].

SOLVED EXAMPLE
Example 1. Show that the function fx) = x^ + 3a, a G [— 1, 1 ] is uniformly continuous in

[-LU.
Solution. Let 8 > 0 be given .
Let 'A|,A2e [- 1, l]=>|A^)-^1)l=al(A22 + 3a2)-(a12 + 3a-,))

= |(*22--Vi2) + 3(a2-ai)|
= I (a2 - A|) (a2 + A| + 3) |

11 A2 + Ai + 3 I
I + I A; [ + 3)

~ I
<
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Analysis
< 5 | A'? - -V| |

1^2) “M) | < e for I x2 - ATj I < |-

g
Thus for any e<0,38 = ->0 such that

\Axi) I < whenever | a-2 - x, | < 8, Vxj, xj e f- 1,1].
Hence, J[x) is uniformly continuous in [- 1, 1],
Example 2. Show that the function f defined by f(x) = .v3 is uniformly continuous on

[v xi,x2 e [- 1, 1] => | a-j (< I and |x2 j < 1]

[-2, 2].
Solution. In order to show that the function/is uniformly continuous we have to prove that 

for a given £ > 0, 3 8 > 0 such that
iZ-Yz) -f(x\) | < £, when 0 < |x2 - *| | < 5 where xi.xz e [- 2, 2]

Consider
\fix2) -/X|)| = |A23 3-AT]

= I(*2-*1)(X22 + *12 + X,X2)! 

<\x2-x] I [|xj2| + |x22| + |avv2 |]

< 12|x2-x, I 
\flx2) -f{x\) | < e whenever | ,v2 - xj | < e/12. 

Therefore, given e > 0,3 5 = (e/12) such that
\f[x2) -f{xi) | < e whenever | x2 -xj | < 8. x,,x2 £ [- 2,2].

Hence, /is uniformly continuous on [- 2, 2].
Example 3. Show that the function f defined by

(V x„x2e [-2,2] => | X| I < 2 | x2 (< 2)

\

Ifx) = -, Vxe ]0, 1]x
is not uniformly continuous in ]0, 1].

Solution. In order to show that the function /is uniformly continuous in ]0, 1] we have to 
prove that for a given £ > 0, 3 8 > 0, independent of the choice of x, (x € ]0, 1]) such that

Wx)“^c)l= X c

1 is c-xx - c < 8 ------cx

< e whenever 0 < | x - c | < 8

< ei.e..

x e ]c - 8, c + S[ => — - X <e.i.e.,
cx

Let us take c = 8, then ]c - S, c + 8[ = ]0,28[. 
Since, the condition (1) must hold Vxe ]0,28[. 

S-xas x ^ 0, —=— ■» 00 and x e ]0, 28[
8x

if we choose x close to zero, then condition (1) does not hold. 

fx) = - is not uniformly continuous in ]0, 1],
X

Example 4. Show that the function f defined on R+ as

fix) = sin —, V x > 0 x
is continuous, but not uniformly continuous on R+.

Solution. Let a e R+.
We have

i.e., !'■

1 1LHL -fia - 0) - lim fia — h) = lim sin—
/j-»0 /i-»o a

- = sin - 
h a
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1 . 1 ContinuityRHL =/(tf + 0) = lim f{a+h)- lim sin
/7->C

= sin —a + h a/i-»0

1j{a) = sin —
a

/(« + 0)=/(a)=Aa-0)
=> /is continuous at a.
Since, a is arbitrary point in R+.
Therefore,/is continuous on R+.
Now, to show/is not uniformly continuous on R+. 
Let 5 be any positive number. Take

1 1 2 where ne Z?x\ =~>x2 = rnz + n/2 (2n + 1) (n)/l7t

21such that <§.Xi-x2 = -z (2n + l).7ttm

Now, | jcj - | < S but
1J/(a-|) -J[x2) | = sin nn - sin — (2/i + 1) tu = 1 >£

which shows that for this choice of e, we can not find a 5>0 such that 
|/a-]) -7(a2) | < e for | a, - a2 | < 6 V a,, a2 g R+.

Hence,/is not uniformly continuous on R+.

• SUMMARY
• Cauchy definition of continuity : A function / is said to continuous at a = n if for given 

e > 0 there exists a 5 > 0 such that
|/(a) —/(n)| < f. whenever | a-a| < 8

• Discontinuous function : If a function / is not continuous at a = a, then it is discontinuous at 
x = a.
(i) Removable discontinuity : A function/is said to have removable discontinuity at a = n if 
lim /(a) exists but it is not equal to/(n).

x —* n
f(a-0) =f(a + 0) *f(a).t.e.,

(ii) Discontinuity of first kind : A function / is said to have discontinuity of first kind at 
a = a if both f(a - 0) and f(a + 0) exist but not equal to each other.
(iii) Discontinuity of second kind : A function/is said to have discontinuity of second kind 
at a = n if none of f(a - 0) and f(a + 0) exist.
(iv) Mixed discontinuity : A function / is said to have mixed discontinuity at a = a if it is 
discontinuous of first kind on one side of a and discontinuous of second kind on other side of
a.

• Uniform continuity : A function/defined on an interval I is said to be uniformly continuous 
in I if for given £ > 0, 5 > 0 (depending on e not on a) such that 

l/W-/Cv)l<£ whenever IA-y| <5.

Self-Instructional Material 15



Analysis • STUDENT ACTIVITY

1, when x is rational 
— 1, when x is irrational

1. Show that the function/on R defined by f(x) = is discontinuous at

every point of R.

32. Show that the function/on [- 2, 2] defined by f(x) =.r' is uniformly continuous on [- 2. 2].

/

• TEST YOURSELF

Let/: R —> R given by /(,v) = .x-2. Show that/is not uniformly continuous on R.
•y *7

Show that the function x* and .r are not uniformly continuous on [0. °o|.
In each of the following cases, show that/is continuous but not uniformly continuous on their 
respective intervals.

(i) fix) = sin - ^ V * e ]0, 1 [

1.
2.
3.

1
(ii) y(jr) = —• Vxe [-1.0[2.rx

J
(iv)//•) = £/ Va’G [0, oof. Vxg ]0, 1[mm* i - .\-

lff(x + y) =f{x) V x, ye R, show that /is continuous on R if and only if/is continuous 
at least one point of R. If /is continuous at some point n e R, prove that /is uniformly 
continuous on every bounded subset of R.
Show that the function/defined by

4.

5.

x2 sin for x a 0yw = X
!0 for x = 0

.^iis uniformly continuous in [- 1, 1].
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ContinuityFilJ in the Blanks ;
1. A function7(a) is continuous at a-= n if lim /(a) =

x —} a
2. A function is said is have

Aa + 0) =A«-0)*Ao)-
3. If/(n + 0) *Aa ~ 0) then/(a) is said to have a discontinuity of.....
4. If/is continuous then |/| is..............
5. Every uniformly continuous function is...........
True or False :

Write ‘T’ for true and ‘F’ for false :
3. Every continuous function inclosed interval is bounded.
2. Every continuous function in open interval is bounded.
3. For lim /a) do exists, the functionXa) must be defined at a = a.

x a
4. The limit of products is equal to the product of the limit. 

a3-1_2
.v ->! a:2 - 1 3

Multiple Choice Questions ;
Choose the most appropriate one :

1. If lim /a) = / and//) > 0, then :
x-*a

(a) 1 = 0
2. If lim /a) = /, then lim |/(a)|= :

.v—* a
(a) /

3. If lim J[x) = land lim ^(a) does not exists, then :

(a) lim fix) ■ g(x) does not exists
A—K»

(b) lim Ax) ■ $(*) exists necessarily
A —» 00

(c) lim A-x) ■ A'W may or may not exists

(d) None of these, 

lim
.V-4 2

if

(T/F)
(T/F)

(T/F)
(T/F)

5.
lim

(T/F)

(d) None of these.(c) />0(b) /<0

x-*a
(b) M (c) 0 (d) 1.

V'

I a ~ 2 |4.
a-2

(d) Does not exist.(c) 2(b) I(a) 0

ANSWERS

Fill in the Blanks :
1./a) 2. Removable discontinuity 3. First kind

True or False :
1. T 2. F 3. F 4.T 5. T

Multiple Choice Questions :
l.(c) 2. (b) 3.(0 4. (d) S. (a)

4. Continuous 5. Continuous

□□□
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Analysis UNIT

2
DIFFERENTIABILITY

«.
Derivative of a Function 
Continuity and Differentiability 
Algebra of Derivatives. . . 
.Rolle's Theorem
Lagrange's Mean Value Theorem 
Cauchy’s Mean Value Theorem
□ Summary
□ Student Activity
□ Test Yourself .

;

After going through this unit you will learn :
• How to obtain the derivative of a function ?
• How to check the differentiability of a function ?
• What is Roille’s Theorem ?
• What is Lagrange’s Mean Value Theorem ?
• What is Cauchy’s Mean Value Theorem ?
• How to apply these theorems'?

• 2.1. DERIVATIVE OF A FUNCTION
If a function A>) is defined on nbd of a point a and

■fja + h)-Aa)lim hh-*0
exists (finitely), then the function J{x) is said to be differentiable at a and this limit is called 
derviative of the function fx) at a.

Symbolically, this derivative, is denoted by f\a) and is full read as the derivative of fx) at 
x = a with respect to the variable x.. The process of evaluating/'^) is called differentiation.

If the above limit exists infinitely even then we shall admit it as the derivative at a. But the 
admission does not seems to serve any fruitful purpose in our discussions. Therefore the case when 
the limit exists infinitely is excluded.

Left hand derivative. The left hand derivative (regressive derivative) of/at x = n is given

l '

.]■

by
rfja ~ h) -fa)lim ’ /i > 0— h>i-»0

and, is denoted by Lf'(a).
Right hand derivative. The right hand deri vative (progressive derivative) of/ at .v = a is

given by vi
f{a + h)-Mlim ’ /i > 0.hh—*Q

It is denoted by Rf\a).
The derivative/'^) exists when Lf'(a) = Rf(a).

Differentiability in an Interval.
(i) A function/: ]n, b[ —> /? is said to be differentiable in ]«, b[ iff it is differentiable at every 

point of ]n, 6[.

I.; |]

it
MI

i i
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(ii) A function /: [a, b) —* R is said to be differentiable in fn, b] iff Rf'(a) and Lf'(b) exists 
and/is differentiable at every,point of ]n, b[.

(iii) Let/be a function whose domain is an interval /. If / be the set of all those points x of 
/ at which/is differentiable i.e.f'(x) exists and if / *<J>, we get another function/' with domain 
/,. It is called the first derivative of / Similarly 2nrf, 3^,nlh derivative off are defined and one

denoted by /"./'"....../" respectively of course, in order that fn (x) may be defined, it is necessary
(though not sufficient) that fn~ ‘(-r) may be defined for all x in some open interval containing a.

■ Dijfcn'niidbility

• 2.2. CONTINUITY AND DIFFERENTIABILITY
A necessary condition for the existence of a finite derivative. Continuity is a necessary but 

not a sufficient condition for the existence of a finite derivative.

exists and equal to/^(fl). Now weProof. Let/be differentiable at a. Then lim

may write

(x - a)fx)-fa) = (x-a) (If**fl)

Now, taking limit as x —> a. we get
\flx) - fa)
[ (x-a)
[f(x) -fa)

lim [/(a-) -/fa)] = lim (x-a)
x->n X-*fl

= lim
x a

. lim (x - a)x-a

(Y limit of the product of two function is equal to product of their limits)
=/'(«)-0
= 0

lim fx)=fa).so that
x-*a

Hence,/is continuous at x = a. Thus continuity is a necessary condition for differentiability.

• 2.3. ALGEBRA OF DERIVATIVES
Theorem 1. Let functions f and g he defined on an inten’al !■ If f and g are differentiable 

at x = a € /, thenf± g is also differentiable and
(f±g)'(a) =f(a) ± g'(a).

Proof. Since, the functions/and g are differentiable at n, therefore
fix) -Aa) =f'(a)lim ...d)x-ax —* a

,g(x) ~ }>(a)
= 8 (a)lim •••(2)and x-aX —» <7

<f±g)M-(f±g) (a)Now, consider lim x - a
[fix) ± £(*)] ~ [/fc) ± ^(a)]= lim

x-aX—* ft
fix) - fja) ^ jg(x) ~ ^(a)= Mm

x—* a x-a x-a

fix)-Aa) x(x)-g(a)= lim
X-4rt

± lim
x-ax-a x—* a

=f(a) ± g’(a).
Hence/± g is differentiable at a and

(f±g)'(a) =f'(a)±g'(a).
Theorem 2. Let a function fix) be differentiable at a point a and c £ R. then the function 

cf is also differentiable at a and
(cf)' (a) = c/'(n).
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Analysis Proof. By the definition of the derivative of a function dXx = a, we have
Kx) -m =/'<»•lim

x- a• x —> a
Now, consider

(cf) (4 - (cj) (a) cf(x)-cf(a)lim = lim
x - a x- ax—*n

. Kx) -Ka)
■■■ a; = lim

X—i(l x- a

f{x) - Ka)= c lim
x - aX—i 0

= cf'{a).
Hence, c/is differentiable at a and (cf)' (a) = cf'(a).
Theorem 3. Let, the functions f and g be defined on an interval I. Iff and g are differentiable 

at a G I, thenf. g is also differentiable and ■!

(fg)' (a) =f'(a) g(a) k-ffa) g'(a)

Proof. Since,/and g are differentiable at a, we have

X—» <7 X

g(x) - g(a)

=/'(«) ...(1);- a

and =.8,(a).lim -.(2)x- ax-i a
(fg) (x) ~ (fg) (a) fix) g(x) - fja) g(a)Consider lim

x->a
= lim

x~ a x- a
fix) g(x) -,fia) g(x) +fia) g(x) -fja) g(a)= lim

X—» <7 x - a
fix) - fia) g(x) - ^(a)= lim

A —» (7
• gW+fia) :x — a . x - a

fix) - fia) . g(x) - g(a)= lim
x —* a

lim g(x)+fia) lim
x - a x - aX —» (7 x^a

=f'(«)g(a)+fia)g'(a)-
[By applying the theorem on limits of sums and products and using the fact lim g(x) = «(«)]

Hence,/# is differentiable at a and
(fg)' (a)=f'(a)g(a) +f(a)g'(a).

Theorem 4. If a function f is differentiable at x = a and fia) 0, then the function — is 

differentiable at a and

f'(a)1
(a) — -/

Proof. Since/ is differentiable at a, therefore, it is also continuous at a = a. 
Also, since fia) t- 0.

1 1
Ax) fia) fix)- fia) J____ 1_

'Ax) fia)
Consider -d)x - a
Since /is differentiable at ^ = a, therefore,

x - a

■ fix) - fia) =f'(a).lim ...(2)x - a
-Also,/is continuous atjc = r/, therefore

lim fix) = fia) *0.
x —> a

■[

* r:
...(3)

/
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DifferentiabilityBy applying the theorem on the limits of a product to (1), and using (2) and (3), we find that 
I 1

Ax) A<t)
lim

.T—» rt I'Mexists and equal to -
W«)]2x - a

Theorem 5. Letf and g be defined on an interval /. Iff and g be differentiable at as I, 
and if g(a) * 0, then the function f/g is also differentiable at a.

Proof. Let F=f/g. Then, we have
F(x)-F(a) = (f/g){x)-(f/g) (a)

g(x) g(a) gix) g(a)
1 ■\f{x) g(a)-Aa)g(x)}

1
[/W s(a) -fa) g(a) +ffa) g(a) -fa) g(x)l

g(x) ~ g(a)
g(x) g(a)

X c*
F(x)-F(a) 1

Therefore lim
x—ta

= lim --------------- X
g{x) 8(a)

\f\a)g(a)~Aa) g{a)]

x-ax - a x—r a
1F{a) =or

5(«) 8(a)
f,(a)g(a)-f(a)g,(a)l (a) =

g
Theorem 6. Let f and g be functions such that the range of f is contained in the domain of 

g. If f is differentiable at a and g is differentiable at fa), then gofis differentiable at a and
(£0/)>) =/(/(«))./>)

(This is known as Chain rule).
Proof. Since, the range of/contained in the domain of g, therefore, g o/has the same domain

as that off.
Now, let y =Ax) and =Aa)‘
Since,/is differentiable at a, we have

Ax) -Aa) =f'(a)lim x-a
Ax)-Aa) = (x-a)(f'(a)+A(x)]. • ••(I)or

where A(x) —> 0) as x —»a.
Further since g is differentiable at y0, we have

g(y) - gCvo)
= g'<yo)lim

y-yo
s(y) - g(yo) = (y - yo) [^'(yo) + £(y)]

y -»y0

...(2)or'
where B(y) —> 0 as y —> yo'

Now (g of) (x) - (g Of) (a) = g(f(x)) - g(ffa)) = g(y) - g(y0)
= (y - yo) L?'(yo) + ^(y)]
= -Aa)\ [g'(yo) + B(y)]
= (x - a) If'(a) + /\(x)] [g'(yQ) + B(y)],

[By (2)]

[By (1)]
Thus if x ^ fl, then

(R of) (x) - (g of (a) = [g'Oo) + 5(y)3 [f'(a) +x-a
Also/being differentiable at a is continuous at a and hence x—> a, f(x) —>Aa) i.e. y —>yo- 

==> B(y) 0 as x —> a and A(x) 0 as x ^ a.
Now, taking the limit as x —> a, we get from (3)

0? o/) (x) - (g o f) (a) = g'(yo)f'(xo)-lim x-ai—» 77

Hence, the function is differentiable at a and
(? Qf)' (a) =g,(Aa))f'(a)-

i
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Analysis Theorem 7. (Derivative of the inverse function). Iff is differentiable atx = a and is one-one 
function defined on interval I with f'{a) £ 0, then the inverse of the function f is differentiable at

1fa) and its derivative at fa) is

Proof. Let the domain oifbeX and let its range be Y.
If g be the inverse of f then £ is a function with domain Y and range X such that

fx)=y & g{y)=x.
Now. let us suppose y =fx) and yo =fa).
Since,/is differentiable at a, we have

fx)-fa)lim =/(«)x- aA —» £1

K*) "./(«) = (* “ a) \f'{a) + M*)]or
where A(a) —> 0 as x a. Further, we have 

s(y) - ^Cyo) = x-a, 
g(y) ~ g(yo) x

fby definition of g]
1- a x - a

[By (1)]y - fx) -fa) f'(a) + A{x)y ~ >'o
It can be easily seen that if y —> y0, then x —> a.
In fact,/being differentiable at a, it is also continuous at o, which implies that g=f 1 is 

continuous at/fa) =y0 and consequently
5(y) sCvo) as v he. a -> o as y y0,

so that A(x) —» 0 as y —» y0-
1 1lim

y -* >b
= lim

y -»v0 f\a)+A(x) f'(a) 

or g'(f'(a)) = ~

y-yo
i

g'iyo) =or
f'(a) f\a)

Theorem 8. (Darboux’s Theorem or Intermediate Value Theorem), if f is finitely 
differentiable in a closed interval [a, b] and f'(a), f\b) are of opposite sign, then there exists at 
least one point c 6 ]a, b[ such thatf'{c) = 0.

Proof. Let us suppose that f'(a) > 0 and f'(b) < 0, then there exists intervals ]a, a + h[ and 
]b - h, b[, h > 0, such that

fix) >fid), V AG ]fl, fl + /l[ 
fix) >fb), Vag [b~h,b[.

Now, since/is finitely differentiable, then it is continuous in [«,£>] and hence it is bounded

-U)
••.(2)

on \a, b] and attains its supremum and infimum at least once in [a, />]. [v A continuous function 
attains its supremum and infimum at least once in [«, 6]].

Thus if M is the supremum of/in [«,/>], then there exists c e [a, b\ such that/(c) = M. It is 
clear from (1) and (2) that the upper bound is not attained at the end points a and b so that 
ce )a.b{.

Now we shall prove/'(c) = 0.
If /'(c) >0, then there exists an interval ]c. c+ /?],/?> 0, such that fx)>fc) = M,

V a G ]c, c + h[, which is not possible, since M is the supremum of the function/(a) in [a, b\.
If /'(c) < 0 then there exists, an interval [c-/?, c[, /i>0 such that fix) >fc) = M,

V a g [c — h, c[, which is not possible.
Hence, we conclude that/'(c) = 0.

SOLVED EXAMPLES
Example -1. Prove that the function fix) = | a | + | a - 1 | is not differentiable at a = 0 and

x= 1.
Solution. Here, we observe that
(i) | a | = - a and | a - 1 | = 1 - a when a < 0.
(ii) | a | = a and | a - 1 | = 1 - a, when 0< a < 1.
(iii) | a' | = a and | a - 1 ) = a - 1 when a > 1. 
Hence, the given function can be rewritten as
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DiffcrciuinbiliryJ{x) = -x+ 1 -x 
=x+l-X 
-X+X- l

= 1 - 2x, A- < 0
, 0<A<1

= 2a - 1, A > 1.
Now, firstly we check the differentiability of/(a) at a = 0.

= 1

KO + h) -AO) m-mRf'ity = lim
Zl-4 0

We have = lim
il h

1 - 1= lim
/i -»o '1

= 0
■/(0-/0 -/(0)//'(0)= lim

/i^O
and -h

£k±h) -m- lim .
h->0 -h

1 - 2 (-/») - 1.
-7i.

= lim 
h —> 0

2/j= lim = - 2.
-/i/!->()

Thus /?/'(0) //'(O). Therefore the given function is not differentiable at a = 0.
Now, we check the differentiability off{x) at a = 1.

Ai+h) -m/r(l)= limWe have hh-*0

[2(1+ h) -11-1- lim
h^O h

2 + 2/i - 2- lim
/i-»0

/j

= 2
./U-/»)-./U)Lf\\) = limand

-/t/>-»o .
1 - 1= lim
-h/i->0

= 0.
Thus Rf'{l) + A/"(A)- Therefore the given function is not differentiable at a = 1.
Example 2. Prove that the function f[x) - | a | is continuous at a = 0, but not differentiable at 

a = 0, where | x | /j the absolute value of x.
Solution. Firstly, we check the continuity of the function ^a) at a = 0.
We have A0) = |0j = 0

/[0 + 0)= lim A0 + /j)= lim ffh)
h~>0h->0

= lim \h\= lim h = 0 
A -»0

f[0-0)= lim >(0-/0= lim ff-h)
;?-^o

ft->0/i-»0

- lim 1-/21= lim h - 0.
>i->0 /i-»0

X0 + 0)=X0) =xo-o).
Hence, X^) ‘s continuous at a = 0.
Now, we check the differentiability of the functionXx) at a = 0.

XQ + /Q -X0) : m-mRf(0) = lim 
>!-»0

We have, = lim
h —t0h h

- lim
A-40

= 1h
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Analysis K-h)-mand Z/(0) = lim - lim 
/!->0~h - h

-h\~0 h---- \----= lim —-= lim
fc-»0

= - 1-h -hh—*0

Hence, the function^) is not differentiable at a: = 0. 
Example 3. If

0 1x~ sin — , if x^O x
, if x=0

then, show that f{x) is continuous and differentiable everywhere.

!•
Ax) =

0

Solution. We have
1/(0 + 0)= lim f(0 + h)= lim (0 + /*)2sin 

h->0 0 + hh->0

2 1- lim/ h sin — = 0
/i-»0 "

1;
i(0-0)= lim A0-h)= lim (0-/02sin 

h-»0 0-/1h->0

lim h2 sin 7- = 0 
h->Q h

A0) = 0
/(0 + 0) -ffff) = (0 - 0)=>

Hence, the function is continuous at a: = 0.
KQ + h)-m m -m/?/,(0) = lim 

—»o
Now = lim

h h

/i2sin7-0
h 1- lim

h —> 0
lim /isin —= 0

h —*0 h

n-h) -m
h •

M-h) - mLf'{Q) = lim 
h^>0

and - lim
/i^0-h -h

(- h)2 sin ---0
U hl- Iim= hm /?sin) =0—

>, _» 0 h—*0 ~

Rf(P)=I/'(P)- 
Hence, fix) is differentiable at x = 0.
Example 4. A function f is defined as follows :

fix) = 1 + x if x <2
= 5 - x if -x > 2.

Test the character of the function at x = 2 as regards its differentiability. 
Solution. Here

=>

fi2 + h)-fi2) 5 - (2 + /t) - 3Rf'(2) = lim = lim
fc-»0h hh-»0

= lim -p- - lim (- 1) =
h->o h h^0

K2-h) -A2)

- 1

1 + (2 - /i) - 3if'(2)= lim 
ft-40

and = lim
h—*0-h -h

= lim —7 = 1. 
h^o ~h

RfX2)*Lf\2)
Hence, the function/{x) is not differentiaTile at x = 2.
Example 5. Examine the following curve for differentiability at x = \
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Differentiabilityx2 , for x<0 
, for •() < ;c < 1 

\/x , for x > 1.
A*) = 1

Solution. Here,
/U+/Q-/U)/?/'(!)= iim 

/?^o h
1 - 1

1+ Iv 1 - 1 - /!= lim- lim
h->0 h{l+li)h

Y +
- 1= lim 1l+h;i-»o

y=iAi-h) -fll) (i.DLf'(l) = lim ^
/i-»0

Now
}~}/x

1 - 1= lim
h—*0 -h >A'

O (1,0)

Fig. 1
Z/#(l)^/?/#(l).

Hence, is not differentiable at a: = 1.
The graph of the function consist of the following curves
(i) y = x2
(ii) y=l
(iii) y = l/x

for * < 0 
for 0 < x < 1
for x> l

, (parabola)
, (straight line) ’
, (rectangular hyperbola).

• TEST YOURSELF-1
- 1 , -2<x<0 

x-l ,A*)*1. Let Oct <2.

Test the differentiability.
2 xDetermine the set of all points where the function/(.t) =-—:—:1 + | x I
3. Show that Ax) = | x - 1 |, 0 < x < 2 is not differentiable at x = 1.

- x , when x < 0 
x , when x > 0

is differentiable.

is not differentiable at x = 0.4. Show that/(x) =

2+x, if x>0 
2 - x, if x < 0

5. is not differentiable at x = 0.Show that the function/(x) =

6. Show that the function f(x) = | x - 1 | + 2 | x - 2 | + 3 | x - 3 |is not differentiable at-the points 
1, 2 and 3.

f x
7. Show that the function/(x) = j 2 _ , 0 <x< 1

X , X > 1
is differentiable at x= 1.

ANSWER

1. Not differentiable 2. Differentiable in ]-

• 2.4. ROLLE’S THEOREM
Statement. If a Junction f defined on [a, b] is such that it is
(i) continuous in the closed interval [a, b],
(ii) differentiable in the open interval ]a, b[.
(iii)/(a) =/(/>),

then there exists at least one value ofx, say c, (a <c < b) such that
f'(c) = 0.

Proof. Since, the function_/(x) is continuous on [a, b] 
=> fix) is bounded [v Every continuous function is bounded]
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Aiinlysix
=> J[x) attains its bounds A function, which is continuous on a 

closed bounded interval [a, b\, then it attains its bound on [a, Z>]]
Let M and tn are the supremum and infimum of /(a) respectively. 
Now there are two possibilites 
(i) M = m . (ii)
(i) If Af = m, then obviously/(a) is a constant function, and therefore its derivative is zero.

i.e.

/'(a) = 0 V a e ]a, b[.
(ii) If Af m> then at least one of the numbers M and m must be different from the equal 

values/(a) and/(/>).
Let us assume
Now, since, every continuous function on a closed interval attains its supremum, therefore, 

there exists a real number c in [a, b) such that/c) = M. Also since/(rt) * m *f{b).
Therefore c ^ a and c^b, this implies that c 6 ]n, b[.
Now,/(c) is the supremum of/on [a, b)

Ax)<Ac) Vae [a,b] ... (1)
(By the definition of supremum)

In particular,
Ac - h) < Ac) h > 0. 

Kc-b) -M-tQ
••.(2)-h

Since/'(^) exists at each point of ]«,•/?[, and hence,/'(c) exists. 
Hence, from (2)

//'(c) >0. -(3)
Similarly from (1)

Ac + h) <Ac), h > 0.
Then by the same arguments

Rf'{c) < 0.
SinceA^r) is differentiable in }a, b[ =>/'(c) exist

...(4)

Lf'(c) =/'(c) = /?/'(c).
Now from (3), (4) and (5)

/'(c) = 0.
Similarly we can consider the case

Geometrical Interpretation of Rolle’s Theorem.
Geometrically, Rolle’s theorem means that if the curve 

y = AA‘) 'S continuous from a = a to a = Z>, has a definite tangent at 
each point of ]«. /;[ and the ordinates at the extremities are equal, then there exists at least one point 
between a and b at which the tangent is parallel to A-axis.

/(«) f{b)>/'(c)-0

1^-VO
Fig. 2

• 2.5. LAGRANGE’S VALUE THEOREM
Let f be a function defined on [a, b] such that
(i) f is continuous on [a, b)
(ii) / is differentiable on ]«, b[.
Then, there exists a real number c £ ]c, b[ such that i

m-fta) =f\c).b-a
Proof. Let us define a function F(x) such that 

F(a) =J[x) + Ax Vae [a, b] 
where 4 is a constant to be suitably chosen such that

...(1)

F(a) = F{b).
Now

i;
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Differentiability(i) Since, / is continuous on |n. /;] and Ax is continuous on [a. b] therefore, F is continuous
(v sum of two continuous functions is again continuous]on [r/, /;']

(ii) Similarly F is differentiable on [a, b]

(iii) F(a) = F(b) =* - A = m-m ...(2)b-o
Hence, we find that /-'satisfy all the conditions of Rolle’s Theorem on fa, b] and consequently, 

there exists a real number c £ ]«, b[ such that F(c) = 0. this gives
f'(c) +A =0 

-A=f'(c). ...(3)
Now, from (2) and (3), we have

m -f(a) =f\c).b -a
Geometrical Interpretation of Lagrange’s Mean Value Theorem.

If the curve y=j{x) is continuous from x-a and x = b T'h 
and has a definite tangent at each point on the curve between 
x-a and x = then, geometrically, the first mean value 
theorem means that there is at least one point between 
x = a and x = b on the curve where the tangent to the curve 
parallel to the chord joining the points («,./(«)) and (b./V;)).

Let ACB be the graph of the function y=J{x) then the 
co-ordinate of the points A and B are given by (a,j{a)) and q 
(b.f{b)) respectively. If the chord AB makes an angle 0 with the 
.v-axis. then

|CA f(b)
/(«)

i—a c
Fig. 3

Kb) -Ra) =f'(c)< where a<c <b.tan 0 - b-a
Important Deduction from the First Mean Value Theorem :

Theorem 1. If a function Rx) satisfies the conditions of mean value theorem then 
(/) f'(x) = 0 VAr€]a. Z>[ =* f is constant on [a. b],
(ii) f\x) >0 V a € ]a, b[ =*> f is strictly increasing on [a, b], 

and (iii)f'(x)<0 V a 6 ]a,/>[ => f is strictly decreasing on [a, b].
Proof, (i) Let x\, x2 (where xt > A2) be any two distinict points of [a, b], then by Lagrange’s 

mean value theorem,
/to)-y(A,)

- f'(c) = 0, x\<c <x2
^2" -^i

Rxi) =Rx\)-
=*> function keeps the same value. Therefore7(a) is constant on [a, /;]. 
(ii) From (1). we have

Rx2)-RXl)
=f'(c) for some c e ]a:i, a2[.

*2 ~ *1

But [v /'(a) > 0 V a € [a,b]]f'(c) > 0 
Rx2) —Rx\) > 0

Rx2)>Rxl)
x2>Xi => J[x2)>Rxl) Va„a2G [a,b].

Therefore,/ is strictly increasing on [a, b).
(iii) Same as (ii).

=>

Thus

• 2.6. CAUCHY’S MEAN VALUE THEOREM
Theorem 2. Let f and g be two functions defined on (n, b] such that 
(/) fand g are continuous on [a, b],
(ii) fand g are differentiable on ]a, b[, 

and (iii) g'(A) * 0 for any point of]a, b[.
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Analysis Then, there exists a real number c G ]a, b[, such that
m-M _m_
g(b) - g(a) g'(c)

Proof. Let us define a function
F(x)=f(x)+A.S(x)

where ,4 is a constant, to be suitably chosen such that
...(1)

F(a) = F(b). -(2)
Now, the function F is the sum of two continuous and differentiable functions. Therefore
(i) F is continuous on [a, b],
(ii) F is differentiable on ]a, b[t 

and (iii) F(a) = F(b).
Then, by Rolle’s theorem, there must exists a real number c between a and b such that

nc)=o.
F'(x)=f'(x)+Ag'(x) 
nc) = 0 =>f'(c)+Ag'(c)=0
-A=m.

Here

gXc)
F(a) = F(b) => f[a) + Ag(a) =ftb) + Ag(b)

m -m _
g{b)-g{a)

Now

-4 =

From (3) and (4), we have
• m-m _f'(c)

g(b)-g(a) g'(c)
Geometrical Interpretation of Cauchy’s Mean Value Theorem.

(1) Under suitable conditions, Cauchy’s mean value theorem geometrically means that there 
is an ordinate x = c between x = a and x = b, such that the tangents at the points where * = c cut the

m -m g(x) are mutually parallel.graphs of the function^) and

(2) The ratio of the mean rates of increase of two functions in an interval is. equal to the ratio 
of the actual rates of increase of the functions at some point within the interval.

8ib)-Aa)

SOLVED EXAMPLES
Based on Roile’s, Lagrange’s and Cauchy’s Mean Value Theorem :

Example 1. Discuss the applicability of Rolle’s theorem in the interval [- 1, \}to the function
./W = M-

Solution. Here, we have f(x) = \ x
A-i) = i 

Ai) = i =* Ai)=A-i).and

Now, the function/(x) is continuous throughout the closed interval [- 1. 1] but/[.t) is not 
differentiable at a- = 0g Hence, Rolle’s theorem is not satisfied (due to the second
condition).

Example 2. Discuss the applicability of Rolle’s theorem to
x2 + ab

Ax) = l°g in the interval [rt, b].(a + b) x
Solution. Here, we have

a1 + ab
= log 1=0f{a) - log {a-\- b) a

b2 + ab
Ab) = tog - log 1 = 0and (a + b) b

f{a)=f{b) = 0.
Also, it can be easily seen thatX*) is continuous on [n, b] and differentiable on ]a, b[.
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DifferentiabilityThus all the three conditions of Rolle's theorem are satisfied. 
Hence f'(x) = 0 for at least one value of .r in ]a, b\.

1 = 0
x2 + ab x

rw=o =>Now

lx2 - (x2 + ab) = 0
x2 - ab or .x: - VflF.

Obviously 'fab € ]a, Z?((being the geometric mean of a and b] 
Hence, the Rolle’s theorem is verified.
Example 3. Verify Rolle's theorem for

=i>

Ax) = x(x+y)c~x/2in {-3.0].
Solution. Here, we have

-x/2ffx) = x (x + 3) e 

/'(x) = (2x + 3)e

= e~x/2 2x + 3-|[x2 + 3x]

= - [x2 - x - 6] e~x/2.
£

=> f\x) exist for every value of x in the interval [- 3, 0). Hence./(x) is differentiable and 
hence, continuous in the interval [- 3,0].

Also, we have

-x/2 -x/2+ (X2 + 3x) e
2

A- 3) =7T0) = 0
=> All the three conditions of Rolle's theorem are satisfied. So

/,W = 0=»i(^-Jr-6)e-x/2 = 0

=> X2 - X - 6 = 0
=> x - 3. - 2.

Since, the value x = - 2 lies in the open interval ]- 3,0[, the Rolle’s theorem is verified. 
Example 4. //« + b + c = 0. then show that the quadratic equation 3nx2 + 2bx + c = 0 has at 

least one root in ]0, 1(.
Solution. Let us define a funtion/(x) such that

ffx) = ax2 + bx2 + cx + d.

Here we have fff)) = d and/(l) = fl+b + c + d = d 
Obviously,./(x) is continuous and differentiable in ]0, l[ (being a polynomial).
Thus,y(x) satisfies all the three conditions of Rolle’s theorem in [0, 1]. Hence, there is at least 

one value of x in the open interval ]0, If where/'(x) = 0
3nx2 + 2bx + c = 0 has at least one root in ]0,1 [.

(v a + b + c = 0)

/.e..
Examply 5. Find 'c of the mean value theorem, if
j[x) =x (x - 1) (x - 2); « = 0. b = 1/2. 

Solution. Here, we have f[a) =f(0) = 0 

^ =/(!]=| 

m-Aa)
i-0 4

Ax) = x3 - 3x2 + 2x 
f'(x) = 3x2-6x + 2 
/'(c) = 3c2-6c+ 2.

\
b - a

Now

Putting all these values in the Lagrange’s mean value theorem
m-Aa) =/'(c), (a <C

b -a
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Analvsis VJT3 - 2
4 'C

l*es 'n open interval ]0, |[ therefore, it is the required value.

- 6c + 2 or c - '±-6-we get

Hence c =

Example 6. Show that
-V

< log (l + x) < x, for a: > 0.1 +x
XSolution. Let, /U) = lOg(l+A-)-

m=o. 
fX*) =

1 + -V
Obviously

i.(l+x)-x.l1Then
1 +* (1+x)2

1 1
1 +* (1+^)2

JC

(i+x)2
Here, we observe that f'(x) > 0, for x > 0.

f(x) is monotonically increasing in the interval [0, <»[. Therefore
x>0M >A0), for

l08(1+j:)~TTJ >o, for at > 0=>

xlog (1 +x) > for ar > 0. -O)=>
1 +x ’

F(x) = x - log (1 + x) 
F(0) = 0.

Now, let 
Obviously

1 xThen F'(x)=l-
1 + X l + X

Here, we observe that F '(x) > 0, for x > 0. Hence F(x) is mono- tonically increasing in the 
interval [0, <»[.

F(x) > F(0) 
[x-log(l +x)]>0

, for x > 0 
, for x > 0 
, for x > 0.x> log (1 +x) 

Now, from (1) and (2), we get
-(2)=>

X— < log (1 + x) < x, for x > 0. 

Example 7. Verify Lagrange’s mean value theorem for the function

fix) - sin x in 0, ^ .

Solution. The function/(x) = sin x is continuous and differentiable on R. Hence it is 
continuous as well as differentiable in [0, n/2). Then, by Lagrange's mean value theorem, there 
must exists at least one c in ]0,7t/2[ such that

fn/2) -fO) =f'(c). ...(1)n/2 - 0
Here fO) = 0, fn/2) = 1

/'(x) = cosx => /'(c) = cos c.
Put all these values in (L), we have 

1 -0 (2]2 -1= cos c => cosc = — => c = cos
71/2 n n

2 I— lies in 0,— , so the required value-1Since, 0 < 2/ti < 1, therefore the value of c = cos

of c. Hence, Lagrange’s mean value theorem is satisfied.
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Diffeivniiability2 3Example 8. Verify Cauchy's mean value theorem for the function x and x in the interval
H.2].

Soltuion. Let us supposed) = .v2 and ^(x) = x3.
Then, obviously/(x) and g(x) arc continuous in [1,2) and differentiable in ]1, 2[.
Also i'(.v) = 3a2 ^ 0 for any point in ]1,2[.
Then, by Cauchy's mean value theorem there exist at least one real number c e }L 2[, such

that
fl2)~qi) _f'(c)
^(2)-fi(l) g'(c)

After solving, we get c = ’ which lies in the open interval ] 1,2[. Hence, Cauchy's mean

value theorem is verified.
Example 9. Ifj[x), g(x) and h(x) are functions such that
(i) j\x), ^(x) and h(x) are continuous on (n, b)
(ii) f[x), g(x) and h(x) are differentiable on )a, />[,

/'(c) 5'(c) //(c)
At>) g(b) h(b)
J{a) g(a) h(a)

Solution. Consider the function7(a) such that 
ffx) g(x) h(x)

/rW= fib) g(b) h(b) =0.
J[a) g(a) h(a)

...d)

then = 0 where c e ]«. b[.

• ••(I)

Obviously, ^(a;) is of the form A f{x) + B £(a') + C h(x), where A, B, C are some real numbers. 
From the condition (i) and (ii), F(x) is continuous on [n, b] and differentiable on ]n, b[. 
AtsoEfn) = F(b) = 0.
^ /r(A) saf'sfies all the conditions of Rollc’s theorem. Hence, there exists a c e )o,/>[ such 

that F '(c) = 0
/'(c) g\c) h\c)
J{b) g(b) h(b) =0. 
fa) g(a) h(a)

Example 10. Show that
sin a - sin [3
cos P - cos a

- cot G

0<a<G<p<y-where

Solution. Let ffx) = sin x and ^(a') = cos x, for x e [a. P), where 0 < a < p < n/2. 
f'(x) — cos x and g^x) = - sin a\

It can be easily seen that both the functions/(x) and g(x) are continuous in the closed internal 
[a, p] and differentiable in the open interval ]a, P[.

Hence, by Cauchy's mean value theorem there exist at least one 0 e /?, 0 G ]a, p[ such that
AM-Act) rm 
S(p)-*(a) /(G) 

cos 0sin P~ sin a_______
cos P - cos a - sin 0 = - cot 0=>

sin a - sin P = cot0, whereO<a<0<P<rt/2
cos P - cos a

• SUMMARY
f(a-h)-f(a)• Left hand derivative = Z/'(n) = lim

h-*0

• Right hand derivative = 7?/'(a) = lim
/i-»0

• /is differentiable at x = n if if' (n) = Rf' (a).

-h
f(a + h) -f(a)

h
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Analysis Continuity is the necessary condition for the existence of a finite derivative of a function/.
if-SY (a) -f (fl) ± s' («)
{eft {a) = cf' {a)
ifg)' («) g\a) +f' {a) g (a)

1 Y f'ia)(a) = -
Via)}1 

f ia) -f{d) g (fl)
/
L {a) =

[£ («)]2
Chain Rule : ifo ^)' (n) =/' {g («)). g {a).
Rolle’s theorem : If a function/defined on [a, b) is such that it is 
fi) continuous on [a,/?],
(ii) differentiable on (a, b), and 
(iu) f(a)=f{b)

8

then there exists atleast one value of x say c in (a, b) such that/' (c) = 0.
Lagrange’s Mean Value Theorem : If a.function/defined on [a, b] is such that it is
(i) continuous on [a, b], and
(ii) differentiable on (a, b),
then there exists atleast one value of x say c in (a< b) such that 

fib) -f(a)

1

=f(c).b-a
Cauchy’s Mean Value Theorem : If functions/arid g defined,on [a, b] are such that
(i) / and ^ are continuous on [a, Z>],
(ii) /and g are differentiable on {a, b), and
(iii) g' (a-) * 0 for all a e (a, b), then there exists atleast one value of .t say 'c £ {a. b) such that

f{b)-f{a) _f{c) 
g{b)~g (a) g (c) 'I

• STUDENT ACTIVITY
1. State and prove Lagrange’s mean value theorem.

sin a - sin 32. -cotG, O<a<0<P<^.Show that
cos p - cos a

'!r
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Differentiability• TEST YOURSELF-2
1. Discuss the applicability of Rolle’s theorem of the following functions :

(a) ffx) = 2 + (a* - 1 )2/3 in the interval [0,2]
(b) fix) = a2 in 2 < a < 3
(c) J[x) = tan x in 0 < .y < 7t
(d) ffx) = a4 - 3-y2 + 4 in the interval [- 4.4]

2. Show that between any two roots of <?rcoSA = l, there exists at least one root of
eT sin a - 1 = 0. •

+ ... + = 0. Show that there exists at least one real a between*0 ai3. Let /i + l n /i - 1 
0 and 1 such that

rtoA" + n | a" "1 + ... + an = 0.
4. Verify the Rollc's theorem for the following functions :

(a) /(a) = a-’ - 3a + 2 on the interval 11. 2]
(b) ffx) =a2 on the interval f- l, 1]
(c) ;(a)=a4- 1 on-the interval (- 1. 1]

5. Verify the Lagrange's theorem for the following functions :
(a) ffx) — A’3 in l- 1. J]
(c) fx) = 2x2 - lx + 10, a G [2, 5].

6. Find the value of c, of mean value theorem, when 
(al fx) - ^a2 ~4 in the interval [2, 4]
(b) Ax) = 2a2 + 3a + 4 in the interval [1,2] 
fc)._/{-v) =a (a - I) in the interval [1,2].

7. (a) U'ffx) = 'lx and g(A) = I/'Ja. then show by Cauchy’s mean value theorem c is the geometric 
mean between a and b.
(b) IfflA)=-^and£(A) =

(b)/(A) = sin a in [0, ti/2]

— ’ (hen c is the harmonic mean between a and b.
A

ANSWERS

1. (a) Not applicable 
(c) Not applicable

4. (a) Verified 
(c) Verified

5. (a) Verified
6. (a) c = ± VtT

(b) Not applicable 
(d) Verified 
(b) Verified 
(d) Verified 
(b) Verified 
(b) c = 3/2

(c) Verified, 
(c) c = 3/2.

OBJECTIVE EVALUATION
Fill in the Blanks :
1. Every differentiable function is...........
2. Every continuous function is...........
3. Sum and difference of two differentiable functions is again
4. The first mean value theorem is also known as...........
5. If/'(a) > 0 then/(a) is known as...........

True or False :
Write T for true and F for False :

1. Every continuous function is differentiable.
2. Every differentiable function is continuous.
3. Every differentiable function is bounded.
4. A function is said to be differentiable if //'(.v) = Kf\x).
5. If/'(A)>0. Thcn^A) is an increasing function.
6. The function/(a) = | a | is differentiable everywhere.

(T/F)
(T/F)
(T/F)
(T/F)
(T/F)
(T/F)
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•" Analysis Multiple Choice Questions :
Choose the most appropriate one :

A function f :[a,b]—>R is said to be differentiable if/is :
(a) differentiable at each point of [«, b]
(b) differentiable at the ends points only
(c) differentiable at each point of [a, b] except the end points
(d) none of these.
A functionis said to be differentiable at x = a, if :
(a) right hand and left hand derivatives at a exist and equal
(b) only right hand derivative must exist
(c) only left hand derivative must exist
(d) none of these.
Every differentiable function is :
(a) necessarily continuous 
(c) may or may not be continuous

1.

2.

3.
(b) never continuous 
(d) none of these:

If / is finitely differentiable in a closed interval [a, b] and f'{(i),f'{b) are of opposite sign, 
then :

4.

(a) f\c) = 0 V c e [a, 6]
(c) /'(c) = 0 Vce }a,b[
Every continuous function is :
(a) necessarily differentiable 
(c) may or may not be differentiable (d) none of these.

(b) /'(c) = 0 for at least one c e ]n, 
(d) None of these.

5.
(b) never differentiable

ANSWERS

Fill in the Slanks :
1. Continuous 
3. Differentiable 
5. Increasing function

True or False :
l. F

Multiple Choice Questions :
2. (a)

2. not necessarily differentiable 
4. Lagrange's mean value theorem

2. T 5. T 6. F3. T 4. T

1. (a) 4. (b) 5. (c)3. (a)

□□□

• i .
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Limit and Continuity of f'uttctions 
of Two VariablesUNIT

3
LIMIT AND CONTINUITY OF FUNCTIONS OF

TWO VARIABLES

Function of Two Variables 
Limit
Neighbourhood 
Algebra of Limits
Continuity of a Function of Two Variables
□ Summary
□ Student Activity
□ Test Yourself

After going through this unit you will learn :
• What are functions of two variables ?
• What are simultaneous and iterated limits ?
• How to check the continuity of functions of two variables ?.

• 3.1. FUNCTION OF TWO VARIABLES
Let /be a function from a set of ordered pair of real numbers to a set of real numbers; then 

/is said to be a real valued function of two real variables or, briefly, a real function of two variables. 
The value that / assumes at the arguments (a, y) is naturally written/jv.y). Let us suppose this 
value is called z. Then wc write z-J[x,y), where x and y are the independent variables and z is 
the dependent variable.

We shall write z = z(x, y), which means that we are considering some function of two variables, 
where the independent variables are x and y and the dependent variable is z-

If to each pair of values of a and y there exists only one value of z, then the function is said 
to be single valued function. On the other hand, if there are two or more values of z correspond to 
some x and y or all of the values assigned to x and y, the function is called multiple valued.

Lety(.r. y) is a function of two variables a- and y, then we say lim f(x, y) exists and is equal
x-*x0
y -».'’o

to /. if for every £>0. 3a8>0 such that
|y{A-, y) - /1 < e

for all values of a and y in the neighbourhood of (aq. yo) defined by 
|.v-.v0|<5. | y-y01 < 8.

• 3.2. LIMIT

Let J[x. y) is a function of two variables a and y. we define several kind of limits.
If (a0,vo) is the limiting point of a set of values on two-dimensional space, then wc have 

lim/(A.y), lim lim /(.v. y). lim lim f(x.y).
s->s0 S-*X„ y-»y0 y-+y0 i.v-»x0
y -».'’o

Then limit of the first kind is known as simultaneous limit and the last two types are known 
as iterated limits.
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Analyxis Non-existence of a limit. To determine whether a simultaneous limit exist or not. it is a 
difficult matter but a simple consideration, which we describe, says us to decide about the 
non-existence of a limit. !

If lim
(.v. v) -»(a. b)

and if 0 is any function of a single real variable such that
lim ^(x)-b.

x -> a

J{x. y) = I

Then lim /[ar, <!)(*)]=/.•
X —> (I

Thus, we can determine two functions 0i and 02 suc^ that 
lim /|x, lim /|..v. 02(-v)j'

A —» Clx —* a
Then, we can say that the simultaneous limit

Ax<y)lim
(x. y) -» (n. b)

does not exist.

SOLVED EXAMPLES
9

i,
x'Example 1. Show that the limit, lim. f[x, y), where v) ~

(.v. y) -» (0. 0)

-V2 - \
X2 + y2

— does not exists.
.2

2
Solution. Here A*-y) = -

-----^4 - which depend upon m.
1 + in

Now taking y = m. x, then, we have lim f(x, nix) =
.r —» 0

Since, lim /;u:) is not unique. Hence
,v-»0

lim f(x, y) does not exists, 
(x. >•)-*«). 0)

;3
x)Example 2. Show that the simultaneous limit, lim

-*-»o x2 + /
y ^0

Solution. Let (ar, y) tends to (0, 0) through the line y =*, which is a line through the origin. 
Put y = .v. in the function, we get

does not exists.

4 2A"
lim = lim = 0.

x —* 0 A“ + A^ 0 1 + A-2

Again, let (a. y) —»(0. 0) through the curve x = y3. 
Puty = a3, in the given function, we obtain

6 1y ■lim
y —»o yG + y6 ^

=>The limit obtained by two different methods are different. 
Hence, the simultaneous limit does not exist.

• 3.3. NEIGHBOURHOOD
Rectangular neighbourhood of a point (a, b).

Let neighbourhood of a point (n, b) in the Ay-plane be 
determined by a positive number 8 is the square bounded by 
the lines

} A

y=/>+5

n+8-.v
A' = a - d, x — a + 8., 
y = b- 5. y = b + 5.

If a point (a, y) hes in the neighbourhood, we have 
fl-8<A<fl + S^ | a -«|< 8 
b~d<y<b + 5 => j y - 6 j < 8.

The centre of the square is at the point (a, b). This square 
is called the neighbourhood of the point (a, b). For every value of 8, we will get a neighbourhood.

y=/)—<’>

■XVo\

Fig. 1
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Umit and Omtinuily of Ftnictionx 
of Two Variables

Circular Neighbourhood of a Point (a, b).
A circular neighbourhood of a point (a. b) in R2 is the set of all 

points (.r. y) whose distance from the point (<•/. b) is less than some given 
5 > 0 i.e. the set of all points Cv.y) such that 

V(7-T)2 + (y - i)2 < 5 
I (x- y) - (o. /j) | < 6

Here,) (a\ y) - (n. b) \ stands for distance between the points (a\ y) and (a. b) i.e..
^T-af + iv-b)2.

8
P(x.v)

(a. b)

Fig. 2
t.C.

• 3.4. ALGEBRA OF LIMITS .
If lim j{x. y) = /, and

(.v. >') -» {«. b)
SU. y) = l2lim

(x. v) -♦ (n. b)

then
(i) lim [fix. y) + g{x, y)] = /| + /2 

(.v, y) -»(a. b)
\A.X. y) - s(x. y)] =l\-l2(ii) lim

(.v. y) —* (a. b)
(iii) lim \Ax.y) S(x.y)} = h -h

(a. y) —) [a. b)

l\Jlx. y) = — (provided/2 A 0).(iv) lim
(a..v)->(«./>) .Six. y) 12

Theorem 1. Let be a function, then lint J{x. y). if exists is unique.
(a, y) -* (n. b)

Proof. Let z =J{x, y) be a function. 
Let if possible

lim fix-}') = ii
(a1, y) —»(«. b)

lim Ax. y) = /2-and
(a. y) -> (n. b)

h-k-
J{x. y) = /j, then by the definition of limit, we have

Now, to prove 
Let us first suppose lim

(a..v)-> (n, b)

“given E>0. 3 8| > 0 such that”

| Ax. y) •“ /11 < e/2 whenever | (a. y) - (n./;) | < 5|

lim Ax.y) = h 
(.>•>’) —»(«• b)

“given E>0. 3 82 > 0 such that”

...d)
Now suppose

\f{x. y) - /2 | < e/2 whenever | (a, y) - (a, b) \ < 52 
5 = min {8|.52}.

•••(2)
Let

Hence, we have
\f{x. y) - /| | < e/2 and \Ax, y) -l2\< e/2 whenever | (a, y) - (a. b) | < 6

Now. consider
\h-h\ = \h-Ax,y) +Ax- y) -12 \ 

s|/. ~Ax. y) | + \Ax. y) - k 1

^ l + !A^y)-/2l
< e/2 + e/2

(By triangular inequality)

= e
Since £ is arbitrary and small, hence

/i — /2 = 0 => l2 = Ii 
=> limit of a function is unique.

SOLVED EXAMPLES
Example 1. Let f: R2 —> R be defined by
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Analysis rv!- , (x,>)^(0,0) 

0 , (-T, _y) = (0, 0)
Ax, >')= x2 + )-2

Prove that, lim f{x, y) does not exists.
f.ir, v) —» (0. 0) ‘

Solution. Since, if lim Ax,y) exists, then this limit is independent of the path along
(.t. >•) -»(a. b)

which we approach the point (a, b).
Let (*, y) —»(0, 0) along the path y = mx, where m e R 
As .r 0, from y = nix, we have y —» 0.

Consider lim /(a:, y)= lim
U\ y) -»(0.0) i

xy
a. >') (0,0) -V2 + y2

lim Ax, y) = lim
(A-, v)(0,0) x2 + y2(a-, )’) —> (0. 0)

Putting y = wu:

- lim , 22
A- _» 0 * + /?! A'

A //!A

2WA
= Hm , 7

a o a" (1 + nr)

= lim in m
o 1 + in2 1 + m2

which will be different for different values of m.
Therefore, lim Ax,y) does not exists. 

(*.*)-> (0.0)
1 1

Example 2. If J{x, y) = y sin — + x sin — where a * 0, y * 0. 

Then prove that
yX

Ax, >0 -» 0 as (a, y) -»(0. 0).
Solution. Let 8 be any given arbitrary small positive number since, 8 > 0, let us take 5 = e. 
Also, let | a - 01 < e/2, | y - 0 | < e/2 

\(x,y)-(0,0)\ = 't(x-0f + (y-0f 
<|A-0| + |y-0|
< e/2 + e/2
= e

lA*’/) - 0 | = y sin — + a sin —=>
A y

i . i
< y sin — + a sin —

yA

. 1. 1
*\y\ + |a|sin — sin —

yx
. 1

<|y|+|A| 

< e/2 + e/2

sin — <1 and < 1sin —
A y

= e
|/(A,y)-0|<e

Ax, y) = 0
=>
Hence lim

(x, >) -* (0,0)

2Ay2
Example 3. Show that the simultaneous limit lim ,

(a. y) —»(0.0) A- + y
Solution. Let y = mx.

j does not exit.
•i
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Limit and Continuity of Functions 
of Twit Variables

2xy2 lx (mxflim = lim —z---- 3—r
a —»o x2 + mV*(.v. v) —»(o, 0) x2+y*

2xm2
Jim = 0i . 4 2,r —» 0 \ + III X

when y~ =x, then
2x/ 2x(x)o 4= lim 2 

(.T,y)_»(o,o) x' + y x—*o x + x
lim

2x2
= lim —r = 1.

.t —♦ o lx2

Thus along the line y = »uvand along the curve y~ - x, imultaneous limit are different, hence 
the limit does not exit.

• 3.5. CONTINUITY OF A FUNCTION OF TWO VARIABLES
(i) A functionary) is said to be continuous at the point (a, b) if lim f(x,y) exists

(,r. v) -* (a b)
and equal iof(a, b).

(ii) A function/^, y) is said to be continuous at (a, b), if for every e > 0, 3 5 > 0 such that 
y)-yjn, £) | < £, whenever |;t-fl|<5, |y-Z>|<6.

SOLVED EXAMPLES
Example 1, Show that the function f.R2—*R defined by

. (x,y) * (0, 0)
4- y-y) =
o , othenvise

is continuous at (0, 0).
Solution. Let e>0 be given.
Now, let us suppose (-01< Vfi" and |y-0[<Vi" 
Consider,

•vy (x2 - y2) n
2,2 U x +y

= |A-y| ^

\J[x.y) -/(0, 0)| =

2-y2
2 . 2 x +y

2 2
i 2 2 > , i 2 . 2 i X — y• U -y l^l-r +y ! -r^x +y

<\xy\

|Av.y) -^0.0)|<|A ||y[
|y(ry)-m0)\<^e .'Is
\Ax,y)-f{0.0)\<e.

=>

Hence, we have lim y(A,y) exists and equal toy(0,0).
(,>O)-»(0.0)

Example 2. Show that the function

X) • a: * 0, y * 0 and /(0. 0) = 0A* y) = A-2 + y6
is not continuous at (0. 0) in (x. y).

Solution. Herc/^O, 0) = 0 (given)
Let us suppose (a. y) —»(0, 0) through the curve x - y3.

6 1J[x. y) = lim 6- 
)■—»o y +y z

limThen
Uy)-(0.0)

Again, let (a, y) —4 (0.0) through the line y = x, then
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Analysis 3
X . XKm . /fov)= lim ,

(.v. >') -> (0.0) a* —> o x~ + x
2Xlim = 0

o 1 + x4
Since, the limit obtained by two different approaches are different. Therefore, 

ytx, y) does not exists. Hence, the given function is not continuous.

Example 3. Show that the.function

lim
(A. V) ^ (0, 0}

xyAv,y) = ’ x*0, y^O tf/id/(0,0) = 0

is continuous at the origin in (x, y) together.
Solution. Let e>0 be given.
Let us suppose . x = rcos0, y=./;sin0

r2 cos 0 sin 0Then /(r.cos 0, r sin 0) = = /• cos 0 sin 0
r vsin2 "0 + cos2 0 ; 
^/■sin'20

• Now.'consider
\J[r cos 0, r sin 0) -f[0, 0) | = |/(i- cos-0, r sin 0) | ;

-| ‘/-sin2Gi

= ^ /■ | sin 20 |

I'.' | sin 20 | <1]

Now, if we choose r = 2£.
Therefore we have e > 0 such that •

!/(/-cos 0, r sin 0) | < e for all values of 0 
. Equation (l) is true for all points within a circle about the origin and radius r = 2e. Therefore 

fir cos 0, r sin 0) is uniformly continuous in r for all values of 0. Hence fx, y) is continuous in 
(x, y) at the origin.

Example 4. Let f\ R2R be a function, defined by

.-(1)

^ when (x, y)*(0, 0) 

0 'when (x, y) = (0, 0)
Ax, y) = | x2 + y

Show that f is not continuous at (0, 0) but is continuous in each variable separately.
. Solution; For point (x, y) on the x-axis,.we have y = 0 and/(x, y) - fx, 0) - 0, so the function 

has the constant value, 0, everywhere on the x-axis, which gives that/O^.y) is continuous at x = 0.
Similarly y(x, y) has the.constant value, 0, at. all points on they-axis, so. if we putx = 0, the 

function/(-x. y) is continuous.at y = 0. Now, we shall show thatjftx.y) is not continuous at origin.
• Let

'2. 1fx, y) =/(x, x) = “ 
2x-

Then
2 "

7(0,0) = 0 (given)Also

Since there are points on the line arbitrarily close to the origin and since/(0, 0) ^ y,.the function 

of two variable7(x,y) is not continuous at the origin.

• SUMMARY
Simultaneous limit :

lim /(x,y).
A->A0

y -»>0 i
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Until and Cotuinnity of Functions 
of Two Variables

Intcixtcd limits :
lim lim /(.\\v)and lim • lim f(x,y) 

y >‘o f —* -roV -> >b

• Rectangular of a point (a, Z»)
|.v-rt|<8, |<5

• Circular nM of a point (a,/>)
|(,v, v) - (a, />)[ < 5

V(.v - a)2 + (y- b)1 < 8or
• Continuity of/(.r,j') at {<?,£) 

f(x.y) is continuous at (a.b) if
lim /(.v. y) =/(«• b).

x —* .i 0 
V -* >’o

• STUDENT ACTIVITY
,3x\1. Show that lim does not exist.

a-2+/.v —> .VO
V -4 VO

xy , x* 0, y* 0 and/(O, .0) = 0 is continuous at (0, 0).• 2. Show that the function/(a\ y) =
Va-2 + y

• TEST YOURSELF

Ijst/: /?2 -» R be defined by/(A\y) =a2 + y2. show that
y|A\y) = 0. .lim

(jf.y)-»{0.0)

? .3 _ 3
Show that lim “—V = ^-

(,v. v)(0. 0) a- +y 
2.y- y2 does not exists.

4. Prove that lim J{x, y) docs not exists, where
tv. y)(0.0)

3. Show that lim ^
(jr.y)-*(0.0) x~ + y

2
-V) • (A-.y)*(0.0).

2 , 4x +y
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Analysis xy , when (x, >>) ^ (0,0)
Ax, y) = Vx2 + y25. Let

0 , when (x, >>) = (0,0)
Show thaty(x, y) is continuous at (0,0). 

x sin — , if ^ 0 

, if y = 0
6. Let/fa, v) = y

o
is continuous at (0, 0).

7. Show that the function/fa, y) be defined as
*2- y

f(x,y) = \x2 + yl
0 if

is discontinuous at the point (0,0).

2
if **0,y*0

x = y = 0
■!

□ □□

;

i-

; •
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Limit miff Continuity of Functions 
of Two VariablesUNIT

4
PARTIAL DIFFERENTIATIONS

• Introduction
• Rules of Partial Differentiation
• Partial derivatives of the higher order
• Homogeneous functions 

o Summary
□ Student Activity
□ Test Yourself

After going through this unit you will learn :
• How to find the partial derivatives of the functions ?
• How to apply Euler’s theorem ? 

• 4.1. INTRODUCTION
Ax + bx) -fix)Wc know that the differential coefficient of^.v) with respect to x is lim

&t->0 $x
provided this limit exists, and it is denoted by

f’M or

If n=j[x,y) \be a continuous function of two independent variables x and y. (hen the 
differential coefficient of it w.r.t. .v (regarding y as constant) is called the partial derivative or partial 
differential co-efficient of it w.r.t. x and is denoted by various symbols such as

du
3a- ' 3.r >fAx.y)Jx-

Symbolically, if tt =f{x. y). then
Ax 4- S.t. y) -/(x, y)lim

6a-&r-»0

if it exists, if is called the partial derivative or partial differential co-efficient of u w.r.t. x and is 
denoted by

du 3/
t- or -r- or fx or ttx.
3a- 3a-

Similarly, by keeping a- constant and allowing y alone to vary, we can define the partial 
derivative or partial differential coefficient of u w.r.t. y. It is denoted by any one of the symbols 
du 3/ 
dy ' 3y ’ J - y

Ax, y + dy)-Ax, y)duSymbolically lim3y 5y5>'^0
provided this limit exists.

u = ax2 + 2hxy + by2If
duthen Tj- - 2ax + 2/jy

duand -r- - 2/ia- + 2by.dy
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Analysis • 4.2. RULES OF PARTIAL DIFFERENTIATION
Rule (1) :
(a) If ii is a function of A\_y and we are to differentiate partially w.r.t. .v, then y is treated as

constant.
(b) Similarly, if we are to differentiate u partially w.r.t. y, then .v is treated as constant.
(c) If u is a function of a, y, z and we arc. to differentiate partially w.r.t. a, then _y and c are 

treated as constant.
Rule (2) : If' e = « ± v, where u and v are functions of a and y, then

dz du | dr 
By dy ~ By '

Rule (3) : If c = uv, where u and v are functions of a and y, then

dz Bit . 3v
± and 

oa dr oa

^(-) =dz di- Bu
+ v~

Bx Bx 
Bz d , . 
^ = ^(WI') =

dA

dv duand U By V By

Rule (4) : If z = -r , where u, v are functions of a.and y, then
v ■

Bu Bv
“ Bx- d (a 

dA _ d^ l r>
dA

2

du Bv
V By U Bydz- _ _d_ ^ £ 

By By ^
and 2V

Rule (5) : If z =A‘1)' where u is a function of a and y. then 
Bz__ dz_ du 
dx du Bx

dz _ dz du 
dy du By

and

REMARKS
/--■ Partial means a ‘part of’.

If z is a function of one variable a, then v1 = .
dr dx

Bzfa ^ —
If z is a function of two variable a^ and x?, we get and

dx2dx'i

dz dz dz<t2

If z is a function of n variables X|, a2 ... a„, we can find -—
dxj ’ dxi ’ dx,,

Symmetric Funcrtion of a and y. A function m = h(a, y) is said to be symmetric if on 
interchanging x and y, it remains unchanged.

• 4.3. PARTIAL DERIVATIVES OF THE HIGHER ORDER
du du Bu BuWe can find partial derivative of and -r- just as we found those of u for and ~ are 

dy dv dy• dx
itself functions of a and y.

The four derivatives, thus obtained, called the second order partial derivatives of u or
Kx, y) are

B_(Bu
dx ^ dx J ‘ dy \ dx J ’ dx ^ dy J ’ dy ^ dy J '

d Y du' d f Bu B ( Bu

and are denoted as

d3u . d2u d2u d2u •
_ 2 Jxx'Jyx'Jxy’JyyBx2 '■ dy dx ’ dx dy '. dy
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Limit and Continuity of Functions 
of Two Variables

REMARKS

d2M d2tt___ d_( du
Dy d.x dy ^ 3.v

_ l(<kL
d.x Dy Da' ^ Dy

____  du du
dx Dy dx dy

^ d2tt d~it
The partial derivatives ^ g- and ^ arc distinguished by the order in which it i

successively differentiated w.r.t. a- and y, but it will be seen that, in general they arc equal.

>
and

a2«>

SOLVED EXAMPLES
D2«

Example 1. Verify that

u = x sin y + y sin x.
Differentiating partially both sides of (1) w.r.t. a and y respectively, wc get

, when tt = a sin y + y sin a.

• ••(I)Solution.

du ... (2)^ = sin y + y cos a

du ...(3)and g- = a cos y + sin a.

Again differentiating (2) partially w.r.t. y and (3) w.r.t. a. we get
d2u

... (4)= cos y + cos aDy Da

D2m
.••(5)and = cos y + cos aDa Dy

From (4) and (5)f we obtain
d~it d2 u

Dy Da Da Dy
du duExample 2. If it = x2y + y2; + z2x, then show that — + — + -^ = (a + y + z)2. 

Solution. Given that
u - A2y + y2z + z2x.

Differentiating partially both sides of (1) w.r.t. a, y and z respectively, we get
... n>

... (2)Da

Dm 2i0 — = x+ 2yz ...(3)Dy
D/i 2 « -r- = \' + 2zx. 

■ dz ■

Adding (2). (3) and (4). we get 
du du du 
dx + Dy + Dz "

...(4)and

2.xy + z2 + a2 + 2yz + y2 + 2zx

2 + y2 + z2 + 2 Ay + 2yc + 2 vc 
= (a + y + z)2 ■
= A

Hence proved.
^ ^2_

Example 3. If z =f{x + ay) + 0 (a - ay), prove that —^ = a” —-
dy' dx2 '

Solution. Given that
...G)2 =J[X + ay) + 0(a - ay).

Differentiating partially both sides of (1) w.r.t. a and y respectively, we get
Dz ... (2)— =/' (,r + ay) + 0'(a - ay)
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Analysis dzand — = af' (x + ay) - a^(x - ay).

Again differentiating partially both sides of (2), w.r.t. -v and (3) w.r.t. y, we get

... (3)

d2z
T2 =f'(x++ (A‘ ” ay)ox

... (4)

S2z a2 f'(x + ay) + a2§"(x - ay).and ... (5)By2
From (4) and (5), we get,

d2z 2 d^z 
dx2'

Hence Proved.—^ = aBy2
Example 4. If w = log (x2 + y3 + z3 - 3Ay<:), show that

a a a f 
9x+3y + azJ U

Solution. Here, we have

9
(x + y + z)2'

u = log (a3 + y3 + z3 - 3Ayz). 
Differentiating paitially with respect to a, we have

du 1 (3^-3yz)
dx x3 + y3 + z3 - 3xyz

3 (a2 - yz)du
... fl)dx x3 + y3 + Z3 ~ 3xyz

3(y2 - zx)duSimilarly (2)
By x3 + y3 + z3 - 3xyz

3(z2 ~ Ay)du
... (3)and

Bz j3 + + z3 - 3xyz
Adding (1), (2) and (3). we get

du du 3(x2 + y2 + z2 - yz - zx - xy) 
dx dy + dz x3 + y3 + z3 - 3xyz

3(x2 + y2 + z2 - yz - - X3O
(x + y + z) (x2 + y2 + z2 - yz - - Ay) x + y + z

3

a a a fax + ay+ az) H _a_ _a. _a v a a a
dx dy dz
jL + JL A.
dx dy dz

Also, + + J"
du du du 
dx + dy dz

a a a
dx + dy + dz

3
x + y + z

a aa 11 1
: +t- + azl x + y + z_axlx + y + z 3y l x + y + z

91 11
= 3

(x + y + z)2 (x + y + z)2 x + y + z)2 - (x + y + z)2

Example 5. If u =j{x), where r2 = x2 + y2, show that 
a2M d2U rt> , s A /•/ / \
~^=f W+7/ (D.

Solution. Here/we have
2 2,2 /• = x + y

dr2r = 2x or=> dx ... (1)
drand 2r^~ = 2y ordy

Since « =Kr)
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Until mid Coniinuiiy of Functions 
of Two VariablesW1'^=7/ (r)

dx2 3.* 9* J L ^ ‘ '

= i--rf'(r) + W

= i/'W-^£/'W + 4/"W
r r r r

= i/'M-4/,W + ^/"W-
r /• /•“

fT=7/'w-4r(')+4/"w
dy r r r

=>

and

. f 1 8r I x tr„ , 3r(r)]L-7 ^J+7^ w]a;

...(2)

• ••(3)Similarly,

Adding (2) and (3), we get
32« , 32« 2 ,

= “/ (^) - 3.v" 3y" r
i±l /'(r) + ^-^r(r)

r3
2 2

;/' W-^/'M + ^.rw

t/' w - V w+/" ('•) =/" m+t/' (')•
Example 6. //./y's' - c. S/iow that at x = y = z.

dh = ~[xlogex]3.v 3y
Solution. Here, we have

/y^z1 = c.
Here, we observe that z can be regarded as a function of two independent variable x and y. 
Taking logs of both the sides of (1), we have

a- log a + y log y + z log z = log c.
Diff. (2) partially w.r.t. a, we get

... (1)

...(2)

i iA . — + 1 . log A + 2 . “ + 1 . log 2 
X 9 ^

dz (1 + log x)
3a (1 + logz)

Similarly differentiating (2), w.r.t. y, we get 
3z _ _ (1 + log y)
3y (1+logz)

d2z _ 3 8 ~
3a 3y 3a 4 3y j 3a

= -(l+\ogy)~[(l^\ogz)-i]

= - (1 + logy). |^ - (1 + log z)'2.7 . |^ j

(1+logy)
z(l + logs)2

...(3)

• •.(4)

1+logy
1 + log zAlso,

r_f i + 10^^^
L 1^1+logzJ

At a = y = z, we have
32z (1 + log a)2 1 1 [••• log e= l]

3a 3y j:(1 +logjr)3 a (1 + log a) a [log e + log a) 

= [-a log ex]-1
a log {ex)

• TEST YOURSELF
Find the first partial derivatives of1.
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Analysis
(i) . log (.r2 + y~) x(ii) cos

v
2. Find the second order partial derivatives of log (ex + ev)

a2-
Verify that ^ ^ .

ox oy ay ox
d2z3.

7 t 
X- + y-(i) z = log Cv sin x + x sin y) 

x2 + y2

(ii) z= log
xy

(iii) z ~ log (iv) - = sin (v) s - xv.x + y .v

If x - r cos 0, v - rsin 0, show that =
ox or r d0 ox

4.

0// du5. If u = log (tan x + tan y), prove that sin 2x + sin 2v = 2
ox ' Oy

If u = x2 tan- 1 _ i x ,. d2u
- , prove that ~—=r

2 2_x -y 
dx dy x2 + v2 '

y2 tan6.
x y

d2u d2u •If m = 2 (gx + by)" - (x2 + y2) and a'’ + b2 = 1, prove that 

If u = log (x3 + y3 - x2y - xy2), prove that
-vO

...v 0~ll ~

" 3? + 2'
-^2

If // =J{x + 2y) + g(x - 2y), show that 4 -^4 

03
If u = exyz, show that

■ ox oy Oz

7. = 0.+
0x2 dy2

8.
d2u d2u _ . _2

^ — — 4 (x‘ + v)
... du du n ,
(,) &+^=2(x+},)

-1

d2u
9.

ax2 ay2'
- (1 + 3xy<; + x2y2z1) eyyz.10.

ANSWERS

x“ + y x- + y"
, e-'+/ /+'’

‘ (/ + £rv)2 ' (/ + e )2 ' (/+ev)2

1 x
(ii)- .Vy2 - x2 ' y Vy2 - x2

• 4.4. HOMOGENEOUS FUNCTIONS
A function/(x, y) is said to be homogeneous functon of order /?, if the degree of each of its 

terms in x and y is equal to n. Thus

aox'1 + fl|x" ~ 'y + a2xn 
is homogeneous function in x and y of order n."
REMARKS
>■ This definition of homogeneity applies to polynomial functions only. To widen the concept 

of homogeneity so as to bring even transcendental functions within its scope, we define u as 
a homogeneous function in x and y of order or degree n, if it can be expressed in the form

0fX"fVxj

This definition also covers the polynomial function (I), which can be written as 

.v" «0 + Oj ^- + a2
x \XJ i /i i j ~ V A’ J

It is a homogeneous function of order n. '

A homogeneous function in x and y of degree n can also be written as y,!f( - .

Some Important Theorem
Theorem 1. If u is a homogeneous function of x and y of degree n, then each of ~~ and -r-

ox .. Oy
are homogeneous function of degree (/t - 1).

I_2y2 + - [Xyn ~ 1 + o„y" (1)

2

2 n -i
V 2 2= x"f+ ... +an\-

y

du du
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Proof. Since, tt is a homogeneous function of x and v of degree n therefore, u can be expressed
as

“=^)

Now from (i)
dit i

dx

l1]= .v"- +/•«/l A'A' X

= .\/i 1 x a function of
A

^;)(say).
— xn

which is a homogeneous function of degree {n - 1).
du ^ =x" 1 x a function of j^-'Udlrx"fAlso.

A.V X X

= x"~' a ^ say
x

which is a homogeneous function of degree (n - 1).
Theorem 2. [Euler’s Theorem on Homogeneous functions].
If u is a homogeneous function of x and y of order n then

du dux -z~ + y — = nu. 
ox oy

Proof. Since, u is a homogeneous function of a- and y of degree n, then it can be expressed
as

vu=x"f\
x

du
3.v .V

du 1l y^=A-rAlso.
8a- AX X

duduL.H.S. - a- — + y tt— 
dr ov

Now,

V ■V+ v/_,r= A
A A

"V:/(x)
= nxnf ^ l = ;m

A A

= R.H.S.
Theorem 3.1/ u is a homogeneous function of x and y of degree n, then prove that

-i d~u . ..
+ y —- = n{u ~ 1) u. 

dy~
d~u2 d"U

2 + 2x)A
8a dydx

Proof. Since, u is a homogeneous function of x.y of degree n therefore, by Euler’s theorem
du d/t ...(f)Xdl + ydy

Differentiating (1) partially w.r.t. a, get

= nu.

dud d du I- (nu)•v 8a 8adx 8a 8y
dudu

(v Each of and t is a function of both x and y) 
8a ■ dy

^ .. . d~u du
Xdx2 + dx'l+ydxdy~"dx

d2u du

d2ud2u du
... (2)A-----7 + V

8a2 ' 8a 8v dx
!
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Analysis Again differentiating (2) partially w.r.t., y, we get
d2u -}2 d u d2 u B2 uBu= (n-l)±- --(3)yTi+x Bx By

Now, multiply (2) by (3) by y and then adding, we get
jB2u . „ B2u . 2 B2u , , f Bu Bu

Bx2 BxBy dy2 K Ji Bx yBy.

By By Bx Bx ByBy

- (n - 1) nu -- n(n - 1) u.

SOLVED EXAMPLES
Example 1. Verify the Euler’s theorem for the function u = axy + byz + czx.
Solution. Here, we have

u = axy + byz + czx
which is a homogeneous function of x, y and z of degree 2.

To verify the Euler’s theorem, we must show
Bu Bu Bu „X-r- + y — + 4-r- = 2u. 
ox By dz

Bu Bu ou-z~ = ay + cz, -x~ - ax + bz, = by + cx. Bx By dz
Now

x^- + y^z- + z^r-x (ay + cz) + y (ax + bz) + z (by + cx) 
Bx dy dz

- 2 (tay + byz + czx) = 2u.
Hence, Euler’s theorem is verified.

r 2 T -|X +y~ 
u x + y

3m 3 m-1Example 2. If u = sin 

Solution. Here, we have

, show that x^— + y — = tan u. 
Bx By

x2+y2
sin m = x + y

2 , 2 x + yLet v =
x +y

=>■ v is a homogeneous of x and y of degree 1. 
Then, by Euler’s theorem, we have 

3v 3v 
X& + ^ = V ...(1) .

3m 3v 3m3v
v = sinM => — = cosm-^- and t- = cosmt-.Bx Bx By By

Putting now these values in (1), we get 
3m 3m

X COS M — + V COS M — = V3x ' 3y
3m 3m

X

V sin m = tan m.
cos m cos M

, show that x^- + y^~ = 0.
Bx dy

-i 1Example 3. If u = sin + tan xy
x -i ZSolution. + tanm = sin
y X

1 i1 f ^ = x° ( A function of ^- x° sin i + tan
y/x

=$ m is a homogeneous function of order 0. 
Then, by Euler’s theorem, we have 

dwx—+yt— = 0xm = 0. 1 
3x dy
3m

50 Self-Instructional Material



Until and Catttitudfy of Functions 
of Two Variables• SUMMARY

fix + 5.V, y)-Ax, y)z. lim• \i'f=f[x. y), then Sx&r ^ 0
f(xty + &v)-f(x,y)lim

5vBy 5>'—»0

d~f’ d~fSimilarly we can find —4 . 4- , —4 etc.
dx- dxfy dy2

• Homogeneous functions : A function of the form u =An/^ j is said to be a homogeneous 

function of degree n.
• Euler’s theorem on homoge::‘.-ous function : If it is a homogeneous function of degree n in 

A' and y, then
dudu

Xdx+yBy - ntt.

• STUDENT ACTIVITY
If z - fix + fly) + 0 (a - ay), prove that1.

— = a2 — 
3a2 3v2

' A2 + y2

v x + y
du du

2. If w = sin . show that a -r— + y — = tan «. 
oa ay

• TEST YOURSELF
Verify the Euler’s theorem for the following functions 

(ii) u = a” sin f ^
1.

_A(-r3-y3)
X>+y3

(iii) u = x'’ sin [ ^(i) h AA

1 (V) H = AJ lOg ^

(i) If a = a/I ^ J . prove that a-^- + y — = m

(ii) If n =/^ j, prove that a + y ^ = 0

(iv) // =
Va2 + y~

2.
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Analysis (ij, prove that,| + v|(iii) If u =xy = 2u.

j^ + v3 8a du-i3. If a = tan , show that x-^+y~ = sin 2a.dyx-y
If u = tan 1 ^4. ^, show that (using Euler’s Theorem)

du dux t- + y — = 0. ox dy
'Jx-'Iy , , du du „
-7=----, show that x + y t = 0.'lx +iy dx dy ■

x4 + v4 , , 8a dii _
----- , show that x + y — = 3.x + ^ ox dy '

, , 8a 8a _, show that x + v = 2.dx ' 8>>

OBJECTIVE EVALUATION

5. If a = sin'

6. (i) If a = log

a-3 + V3
(it) If a = log x + y

Fill in the Blanks :
” i ycos is a homogeneous function of degree

a2 + y2
• x + y

tc mv i 82a 82a •
It u = e ' cos mx, then —x + —^ =

8a' dy'

1.

1, then -r + is 
j dx dy

- ]If (J) = sin2.

3.

True or False :
Write ‘T’ for True and ‘F’ for False :
1. An exporession in which every term is of same degree is called homogeneous function.r/'//rt

(T/F)2. In homogeneous function every term is not necessarily of same degree.
8a 8aIf a is a homogeneous function of A" and y of degree n, then and — are also homogene-3.

dy
ous function f degree n.

Multiple Choice Questions : 
Choose the most appropriate one :

(T/F)

- I1. (y/x) is a homogeneous function of degree : •
(c) 3

If £ - xyf[ - ) then x “ + y ^ is equal to :

(c) xy
df df.+ y xr~ is : 
dx

sin
(a) 1 (b) 2 (d) 0

2.
x

(a) z

3. If/= sin- 

(a) f

(d) yz(b) 2i
-v2 + y2 then x

8yx + y 
' (b) 2/ (c) tan/ (d) sin/

ANSWERS

Fill in the Blanks :;
■ 1* o

True or False :
2. tan 4) • ' . 3. 0

h T 2. F 3. F
Multiple Choice Questions :

1. (d) 2. (b) 3. (c).

□□□
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JncobiaiisUNIT

5
JACOBIANS

• Some definitions of Jacobians
• Theorems of Jacobians
• Jacobian of Implicit Functions
• Necessary and Sufficient Condition for a Jacobian to be Vanished 

a Summary
□ Student Activity 
o Test Yourself

^MillRNINO'^BpEqtlVESiJIfei^^gMSa^E?im mm
After going through this unit you will learn :

• What is Jacobian ?
• How to find Jacobian of a function ?

• 5.1. SOME DEFINITIONS OF JACOBIANS
(i) If u and v arc the functions of two independent variables .v and y. then the determinant

da du
dx dy
dr
3.y dy

is called the Jacobian of it and v with respect to x and y.
d(«. v)It is denoted by or J(uf v).
*{x,y)

(ii) If a. v and w are the functions of three independent variables x,y and z, then the
determinant

du du du
dx dy dz

dv 3vdv
dx dy dz
dw dw dw
dx dy dz

is called the Jacobian of u. \> and w with respect to x,y and z.
d(", v, hQ or J(ti, \\ u’).It is denoted by

(Hi) ?f «i.rr2...... rr« arc the a (unctions of. independent variables v2, then the
z)

determinant
9i<i du\ diij
3x, 8.v2 dxj,
dn2 du2 du2
dxi dx2 8a'3

dui
dx„
dlh
dx„

du„ du„ dun 
dxi dx2 dx2

du„
dx/fi
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' Jocobinns2, du2 dy^ 
dy, dxi

l, du2 dy; 
dy/ dx2

v dt‘2 dyi 
dy,- dx3

d"} ^ du3 dy,-
d*i (=1 tyi

l du3 dy,- 
d)^ dx2

l du3 dyi 
dy,- dx3

du2
T^= Zdx, i= 1

du2 Z9^2 /= I

9*3 /=)

9«3
T-*= Z
dx2 i= i

du3
Iand 9a*3 /= i

Now, consider
9}-i9k i 9ni 9k i

dyi dy2 dy3
du2 du2 du2
dyi dy2 dy3
du3 du3 du3
dy{ dy2 dy3

9y, 9>>,
dx2 dx3dx\
^2dy29(k1>k2. k3) 9(yi,y2,y3) 

9(yiO'2’V3) 9(.vj, a2i a^) dx2 dx3dxi
hi dy39v3
dx2 dx39*i

9hi dy; ^ 9k | 9>'t- ^ ^“1 hiIX dyi 9a 1 " dyi dx2
9i(29^ ^ 9k2 dy{
dyi 9a 1 9>'( 9a2 ^ 9}',- 9a3
du3 dy/ du3 9y(- ^ du3 dyj

h dx3 
^ dut hiX

XX 9>’( 9a2 dyi dx3hi dxi

Putting the values of each element of the determinant from the above relation, we get
9k] 9k i 9ki

9a 1 9a2 9a3
9k2 9/<2 9k2
9ai 9a2 9a3
9u3- 9k3 9k3
9aj . 9a2 9a3

9(ki, »2. ^3)
9(a,, a2,a3)

Theorem 3. If functions u, v, w of three independent variables x, y and z are not independent, 
then the Jacobian of u, v, w with respect to a, y, z vanishes.

Proof. Here, we have, the functions u, v and w (of three independent variables a, y and z) 
are not independent.

Then there will be a relation
•••(A)F(m, v, w) = 0

which will connect these independent variables.
Differentiating (A), with respect to x,y and z, we get 

dF du dF 9v dF_ 9vv ^

dF 9t£ + 9/[ h.+ d]L 9w q
du dy dv dy dw dy
dF du dF dv dF 9vv -
9k 9z 9v 9z 9w 9z

••.(2)

•••(3)and
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Analysis dF\ 3F[ dF,
dx 3^2 3a'3i
3F2 3F2 3F2
3a, 3a2 3a3
3F3 3F3 3F3
3a | 3a2 3a3

3F] 3F] 3F(
3a2 3a3

3f2 3f2 3f2
3a| 3a2 3a3
3F3 3F3 3F3
3aj 3a2 3a3

3a i

= (-D3

3(^1, F2, FQ= M)3
3(a,,a2, a3)

i

• 5.4. NECESSARY AND SUFFICIENT CONDITION FOR A JACOBIAN TO
BE VANISHED

Theorem 1. //vj, v2, v„ be the functions ofn independent variables a,, a2, a„ such that

F(v,, v2, v,,) = 0
it is necessary and sufficient that the Jacobian

3(At, A2, Ah)

Proof. Necessary Condition. Here, we have, if there exists a relation of V|, v2,vn such

should vanish identically.

that
Ffvj, v2, ■ ■ ■, v„) - 0.

The, Jacobian is necessarily zero.
Differentiating (1) partially with respect to Aj, a2, ..., a„, we get 

3F 3vi 3F dv2 3F 3vn
3v] 3a| + 3v2 3ai + 3i'n 3a,

3F^1 3F 3^2 3F' 3v^
3vj 3a2 + 3v2 3a2 + '" 3V,, 3a2 ’

..•(1)

_L 3F 3v2 3F 3v„ 
3vi 3a„ 3v2 3a„ ■" 3v„ 3a„
3F 3v

Now, eliminating 4^ * 4— ’ • from.these equations, we get
dvj 0V2 ovfl

dF

3v| 3v2
3a j 3a, 
3v, 3v2
3a2. 3x2

3a,
3v„
3a2 = 0

3v„3v, 3v2
3a,; 3a„ 3a

-3(vi 1 ^2.......vH) Q
3(a,,a2, ..., a„)

S=>

Sufficient Condition. If the Jacobian y(vt, v2,v„) is zero, then to show that there must 
exists a relation between v1, .v2, ..., vn.

The equation connecting the functions v,, v2, ..., v(] and the variables a,,a2, a„ can be
written as
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Jacobianxgl(.V|..v2.......vj) = 0

g2(X2'Xy.......X'r «'2) = 0

■ ^Xn. v,,v2.......I’t) = 08k Xk T b •

8n(x,r »'|.V2...... V„) = 0.
Then, we have

9(g|.g2.
3(^1 .^2......3(Vi, 1'2......O

= (-D"rJ -
3(^1 .^2........ ^»i) 3(g]><?2? •••<<?«)

3(vi, v2...... vfl)

fdsi 352 3^' 
5a'i 3^2 3x„

)n \= (-0
352 3g„N 

3v, 3v2 ’ 3v„
/

IfV = 0, then
35i. 352 3^. 3^, _
3x! 3x2 "3x/"3x„

a. i . 3^2 3$n.
At least one of ^ -tt— ... —

OXj OX 2 ox„
is zero.

3,?*
-r— = 0 for some value of k between 1 and n.
oxk

=> For that particular value of &. the function gk must not contain x^ and hence

**> VI»V2.......v*)=0.
Now we may easily eliminate the variables xt + ^x^ + j. between (2) and

^r +! = 0, ^r + 2 = 0,.... 5,, = 0 and an equation between v,, v2.......v„ alone, can be obtained.

8k (xk+, ...(2)

/SOLVED EXAMPLES
Example 1. If x = r cos Q, y = r sin 0, show that

3(x,v) 3(r. 0) 1
(6) 3(^» y) ~ r(a) = /* = —•

3(r, 0)
Solution, (a) Here, we have

3(x, y) _ 3x/9r 3x/30 _
3(r, 0) 3y/3r 3y/30 sin 0

= rcos2 0 + r sin2 0 = r

cos 0 -rsin0 
rcos 0

(b) From the given relation, we get
r2 = x2 + y2 and tan 0 = y/x. 

Now differentiating partially w.r.t. x and y, we obtain
dr ‘ x 
3x r

dr
2r — = 2x or

3x
dr dr y 

dy r

tan 0 = y/x => sec2 9 3- = - — 
ox

2r 3- = .2y or
dy

and
x2

30 >’ . .. = 2. 
3^ x2 sec2 0 r2 cos2 0 sec2 0 r2

- yor
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Analysis 2 ,
X 1 A"2 r, dG 1 sec Q - ae I cos 0and or

dy x sec2 0 2 ,2A' .V XI I

dr dr 
dx dy 
30 30
dx dy

d(r, 0)
d(*,y)

2 2,2 2 ^__x + y _ r_2 1X
- 3 + 3 

r r
Example 2. //x = r sin 0 cos <]), y - r sin 0 sin z = r cos 0, show that

P

d(x> v. <■) = r~ sin 0.d(/-, 0,(J>)
Solution. Here, we have

8x dx dx
dr 30 3([)
3y 3v d)*
dr 30 3(()
dz 3^
3/- 30 3d

3(x, V. z)
d(r, 0, d)

dz

- r sin 0 sin 0 
r sin 0 cos 0

sin 0 cos 0 
sin 0 sin 0 

cos 0

/ cos 0 cos 0 
r cos 0 sin 0 
- r sin 0 0

= cos 0 (r2 sin 0 cos 0 cos20 + r2 sin 0 cos 0 sin2 0)
-i- r sin 0 (r sin2 0 cos2 0 + /• sin2 0 sin" 0) 

[expanding the determinant along the third row] 
= r2 sin 0 cos2 0 + r2 sin3 0 = r2 sin 0 (cos2 0 + sin2 0)
= r2 sin 0.

Example 3. Ifx = c cos u cosh v and y = sin a sink v prove that
B(x,y) 1. = — (cos 2m - cosh 2v).3 (m, v) c-

Solution. We have
x = c cos u cosh v and y= c sin u sinh -v

dx dxc sin u cosh v. = cos u sinh v
3m 3v
dl fryand = c cos it sinh v. = c sin it cosh v
3m dv

dx dx
3U»y) 3m 3v 

3v dy 
du dv

3 («, v)

_ - c cos m cosh y 
c cos it sinh v

= - c2 sin2 m cosh2 v - c2 cos2 it sinh‘ v 
2

£ 2 ^ o 2— [2 sin it cosh- v + 2 cos” u sinh v]

c2
— [(1 - cos 2m) cosh' v + (1 + cos 2m) sinh' v]

2
0 o ") o ^— [cos 2m (sinh" v - cosh v) + cosh" v + sinh' v]

c cos u sinh v 
c sin m cosh v
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Jacobian*2 ,C— [- cos 2u + cosh 2v]i

' - -j ' 2*.

= jY [cos 2u - cosh 2v],

Example 4. If u3 + v3 = a* + v, u2 + v2 = a-3 '+ y3, then prove that
d(utv)! l ' y2 - a2 
5{a, y) 2 wy*(« - i')

Solution. Here we can write above-relations, as' v

4=V +V3-*
F2 = u2 + v’2 - a3 - y3 = 0.

iMtM /d(Fi'F2)
3(A;y) '/ '■ 3(», v)

I

)
s

l
i

/

3(a, v) •••(a)= (-0’ Now 3(x, y)
3F! 3F]

3(Fr, r2) 3a- 3y _ - I - 1
: -3.tr. ■I'lurfu'-Ll

^ r. ^ lWe have i3F2;. y3F2 
3a 3y t:

= 3y2-3jr2=3(y2;-A2)

_ 3»2^ 3v2 
3(i<; v) ‘5 2m ' 2v *

I
4 ? .

= 6m2\’ - 6mv2.= 6mv (m - v)and

f fFrom (a) ;
aOvfli :3 (y2rT A?).

- 3(.v, y) ■:::-6mv'(m - t>)' 2'uv (it - v)“ yr;A^:.:u2Example 5. If
x + 2y + z, v = a - 2y + 3z and w = 2xy — az + 4yz - 2z2, ^ 

then prove that they are not independent.
Find the relation between it, v and w 
Solution. We have

a =

I

i

1 2 I3(m, V, w)

2y-z 2a +4z ‘'-A"4-'4y —4z
1 . -2

3(a-, y, z)ii

0't 01 r '.
by - 2c| and c3 - c,-4 21

2y-z 2x+Ayf6z -A + 2y-3z

o ■■01-
! < = 0. t2= - 2 I 2

2y-z -A + 2y-3z -A + 2y-3z '

Here last two columns be identical.4 So the Jacobian of the functions u. v, tv is zero, therefore 
these functions are not independent so,there must be exists a relation between them.

it’ - v A(X + 2y + z)2 - (a - 2y + 3z)2 } ,
= (Zt + 4z)(4y-2z)
= 4 (a + 2z) (2y — z) 0,

- '

I
.'•7

Wc have
t

' *
\By simplification

= 4 (2av - az + 4yz - 2z2) = 4iv.
Therefore m2 - v2 = 4u\ required relation between u, v and w. 
Example 6. Show that the functions

m = a y y + z, y = xy + yz +zx. tv = a3 + y3 + z3 - 3.r\‘z 
arc not independent, also find the relation between u, v and tv. 

Solution. Wc have

f
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/i nnlysix i \ t1 l — d(it. r. iv) —
"“■a.-- y.^yamsh, /d(.Y,Jv:.-) v»«- *

6. iftt^a-2 +3'2 +l2.^= A- + ^ + m‘ = ,ry + + rx f Show that the Jacobian
____ _ _ _ __ • s_-2 . , - . ? , . ? ■1 w

identically. Also find the relation between u.-v and wJ , ’L^-. • ‘/T" ’ " ,
imu won* ,u eoyi - j nre 0 ,^eo5 0 ma^ * t il .(

IANSWERS j ,x)6
{V,0,V)6

l -xy
-3 y

o. *tan v = u— 1. — -y~ — 5. — v2 = a + 2\v
Iv I n it

OBJECTIVE EVALUATION
jx-.rz f+

j - r >

:ill in the Blanks :
1. _ If a and v be the functions of two independent variables .v and y, then Jacobian of u and i^with 
} respect to x and y is denoted by
2. ^ The”function ”7.' v ‘and ’vv 'of * three”independent rvariableT^Ty”and ’z" will “riot
-3(».'
— d(x, y. z)___!

l fi ft. if
i mTTT^TT-l** f + z)\* -v:

1
If .v = rcos 0, y = r sin 0. then the value of__ _____ columnbil^! d^ttcHI

*n?c: 0(.v; \Q * u rrxo. Lberefbrc function arc not indcrwidcnt, therefore, a rebtwrs wt iofeet*c^
tfwrr0(/-,0}—..........— "7*,"ri---------— --------- --------^—:-----------------------------------

The Valuer
(a.v) +> + .,^(1vojq

True or False : , ,z i, ^ r /„
Write ‘T’ for true and^F’Torfalse.^^^1^ •

If «l. iQ are functions of yi.y2 and yi?y2 are functions of .vi. A^'then 
dOb- in)'* 3(H|. i«2); B(>'i*)’^ rcl

i

4.
+ CuH s

1.
♦ *•

B(.Yh.v2) 30’tO’:) BCy,,a-2) OVF)
‘"7^(U|T//2);B(Ah.Y2)

2. M; — fl^r\ ». juA •* ■ • . . _

_ _ „ _______ -I ‘Bu | . _ .
3. If the functions u, v, K^ofjthree^indcpcndent vafiab!esxy.£

-^Jacobian of u. v. w with respect toxy. z vanishes. ■
/lultiple Choice Questions : i-fo. -^-j------ --------- :___r^_

__Choose the most appropriate one. V *
t V~" ‘T~r I

1. _If.the functions u, i\n» of,three independent variable x.y and z and.
' i*. v. K) ' dr , '

-funcl.ons arc : \ ■ UZ ------
(a) Independent (M Not independent

__i.(c)_May be independent _ _( td) None of these.
I W* W/

^ A ■*'.. 3(«. '0 :3(x v) •2. -^.1 he value oi -^-zrr,- v-/'—'( js •
jui.aiv y) civ’h '' *,c t; .. i
If (a)n]be'V "(b? “ifeUtiom Wr.r^.ie r. 1 N'T of ,he.;f >5 As *> U .

3. The necessary and sufficient condition for the existence of a relation F(uu iq. .vr, u„) = 0 is 
It that the Jacobian
f.(a) equal to I , (b) equal to 2 W ^
11 {c)v vanish identicitlly^0118 c(d) ‘none of theseT”*^ ***{£ (7» wQ(jg ■ r

“ ’ W rM)b (X#7.)6

4—L
3(.Y,..V2) 0(«|,M2)

are not independent then the 
------- - ----- ------------- (T/F)

I3(/t. v. vv) . = 0 then the
d(x y, z)>*

dv

V- ^J32HU0YTS3T •

. i
.1 t

i£
r*.

i

a(v,^,..^ANSWERS
s ^

i

»cttM .r• then 7.:<i
d (xi> x2. ft*)

Fill in the Blanks :
3(ff. r)
B(-v. y)

‘ rue or False :

(s + +*)(y-*) (x-s)fc- ^.v
- 2. Independent; h 3. r «**»»£or J(u, v)1.

.Sh - « woda - S: * v .'pZ - a II
(9 A)b

£
2. F 3. Tl.T cnoittrari ertt JedJ uotiZ * .2

Multiple Choice Questions :
1. (b) 3. (c) + ^ + = '* .i +-v- Y. x =1 2. (a)

.marii n»wi&d nougln arb bnft oalA .ladiou anolo Jnsbny^hnr J^oQQQI
Cl t ^wt^naf i,y-r ’ *
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Envelops and EvohnesUNIT

6
ENVELOPS AND EVOLUTES

k'-hf.
Family of Curves
Envelope of a family of curves with one parameter 
Working procedure for finding the envelope.
Envelope of the family of curves of the form AX2 +.BX + C = 0.
Envelope of the family of curves with two parameters connected .by a relation
Geometrical interpretation of the envelope
Evolute
Eyolute of pedal form of curves
□ Summary
□ Student Activity
□ Test Yourself

llgMIKEARNING-OBJECTIVES^lC^t^^ia^i*
After going through this unit you will learn :

' • How to define a family of curves with one and two parameters. 
• How to define envelope and evolute of a given curve. X

//
• 6.1. FAMILY OF CURVES

(1) Family of curves with one parameter. An equation in two variables x and y of the form
Ffr, y, X) = 0

where A is any constant, is known as a .curve. ...
If X takes all real values, then the equation F(jc, y, A.) - 0 is known as family of cun>es with 

one parameter X.
(ii) Family of curves with two parameters. An equation in two variables a- and y of the form

F(x, y, A., H) = 0
is known as a family of curves with two parameters X and ja if /V and jx take all real values.

For Example (1). The euation x cos A. +y sin =p represents a family of straight lines with 
one parameter A..

(2) The equation y = nix + a/m represents a family of straight lines which are the tangents to 
parabola y2 = 4ax with one parameter m.

(3) The equation (y - a)2 + (y - P)2 = a2 represents a family of circles with centred at (a. P) 
and radius a with two parameters a and p.

• 6.2. ENVELOPE OF A FAMILY OF CURVES WITH ONE PARAMETER
Let F(x,y, A,) = 0 be a family of curves with parameter A. and let F(x,y, A.) = 0 and 

F(a, y, X + SX) = 0 be two members of a family of curves F(x, y, A.) = 0 corresponding to the 
parameter X and A. + 8A., suppose F is a point of intersection of two members F(a, y, A,)=0 and 
F(a\ y. A + 5A.) = 0. As 5A. —»0, the point P tends to a definite point Q which depends upon A.. Thus 
the locus of such points Q gives an envelope of the family.

Definition. The locus of the limiting positions of the points of intersection of any two members 
of the family of curves F(x, y. A.) = 0, when one of them tends to coincide.with the other fixed point.
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Analysis REMARK
The envelope of a family of curves is the locus of the poims of intersection of 
consecutive members of the family.

>

• 6.3. WORKING PROCEDURE FOR FINDING THE ENVELOPE
Let F(x, y, A) = 0 be a family of curve with one parameter A.
Suppose F(x, y. A) = 0 and F(x,y, A + 5A) = 0 are two consecutive members of the family of 

curves corresponding to A and A + 8A. Thus the co-ordinates of the point of intersection of these 
two members are obtained by the equations.

' • • F (x, y. A) - 0
F(x, y. A) - F(x, y, A + 5A) = 0 

Divide the equation (2) by 6A, we get
; F(x, y. A) - F(x, y, A + 5A) _ Q

•••(1)
and •••(2)

5A
F(x, y, A + SA) - F(x, y, A) _ Qor

5A
Taking limit as 5A —» 0, we get

dF(x, y, A) _ q
... (3)SA

dF(x, y. A)Now eliminating A between F(x,y,X) = 0 and = 0, we therefore, obtain thedA
envelope of the family of curves F(x, y. A) = 0.

Remember. To obtain an envelope of the family of curves F(x, y. A) = 0, we use following
steps:

Step I. Diffetentiate partially F(x, y, A) = 0 with respect to A, we get
^0.
3A

dFStep II. Now eliminating A between F(x, y, A) and ^ = 0, we therefore obtain envelope of 

the given family of cun>es.
\

SOLVED EXAMPLES

Example 1. Find the envelope of the family of straight lines y = mx + — , the parameter being
\

m.
Solution. Here, the family of straight lines is 

y = mx + m
Differentiating (1) partially with respect to m, we get

0 = x~~ 
in

Eliminating m between (1) and (2), we get 
From (2), we have

a ... (1)

...(2)

2. am x
From (1), we have

= m2x + a
2 2 y nr = (m x + a)

\
2 f a

ym
2 2=>

2a— .x + a=> y XXX
2

^ = (2«)2
X
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v2 = 4ax. Envelops and Evolnte.s=>
This is the required envelope.
Example 2. Find the envelope of the family of straight lines : x cosec 0 - .v cot G = c. the 

parameter being 0.
Solution. Since the family of straight lines is 

x cosec 0 - y cot G = c.
Differentiating ()) partially with respect to 0, wc get 

- x cosec 0 cot 0 + y cosec2 0 = 0 
x cot 0 - y coscc 0 = 0.

Eliminating 0 between (1) and (2), we get
(x cosec 0 - y cot 0)2 - (x cot 0 - y cosec 0)2 = c2 

or .v2 (cosec2 0 - cot2 0) - y2 (cosec2 0 - cot2 0) - 2.ry cosec 0 cot 0 + 2.ry cosec 0 cot 0 = c2

(y cosec2 0 - cot2 0 = 1)

...d)

...(2)or

x1 - y2 = c2.or
This is the required envelope.

• 6.4. ENVELOPE OF THE FAMILY OF CURVES OF THE FORM
Ak2 + B),+ C=0

Since the family of curve is
AX2 + B), + C = 0 ...(1)

Differentiating (1) partially w.r.t. to X, we get
2AX + B = 0.

Eliminating X between (1) and (2), we get

* l2 J ^

• ••(2)

+ C = 02A
B2 B2—- + C = 0or 4A 2A

B2 - 4AC = 0.or
This is the required equation of an envelope.

REMARK
If the quation of the family of curves is a quadratic equation in parameter, then its 
envelope is obtained by £> = 0, where D is the discriminant of the quadratic.

>

• 6.5. ENVELOPE OF THE FAMILY OF CURVES WITH TWO PARAMETERS 
CONNECTED BY A RELATION

Let F(x, y, X, p.) = 0 be a family of curves with two parameters X and p. Let/(X, p) = 0 be a 
relation between X and p.

To obtain the envelope, wc proceed as follows :
Differentiating the equations F(x,y, X, p) = 0 and/(X, p) = 0 with respect toX regarding a- and 

y as constants and p as a function of X, we get two equations. Now eliminating X, p between the 
given equations and two obtained equations. We therefore obtain the envelope.

• 6.6. GEOMETRICAL INTERPRETATION OF THE ENVELOPE
Lot the equation of the family of curves be

F(x, y, X) = 0 •••(1)
where X is a parameter.

Thus the envelope of (1) is obtained by eliminating between (1) and
dF— = 0. ...{2)ax

Therefore, we can say that (2) is taken as the equation of the envelope of (I), if X is a function 
of .r and v but not constant.
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Analyxis ( ^E. d-E. ^ dy
v dy dX dy t dx

dF dF dX 
dx dX 3.r = 0.

dF dF dX 
dx dX dxdy _ ... (3)=>
dF dF dX 
3y dX dy

This gives the slope of the tangent to the envelope of (1) at any point (.v, y). Where (a\ y) is 
a common point to the member F(x, y,X)=0 of the family of curves and the envelope.

dx

dF dFIf ^ 0 and — * 0 at (x, y), then the slope of the tangent to the member F(x, y, A.) = 0 is

dy _ dF/dx 
dx dF/dy

But F(.r, y, X) = 0 is also the equation of the envelope if X is a function of x and v, which is
• . dF -given by ^- = 0.

-..(4)

dFSince at every point of the envelope

Hence the curve of the family and its envelope have the same tangent lines at the common 
point. Consequently the envelope of a family of curves (ouch each member of the family.
REMARK

= 0, then the slopes given by (3) and (4) are same. •'dX

dF dFIf — = 0 and -Tj— .= 0 at any points on the curve, then the envelope may not touch a 

curve at that points.
>

SOLVED EXAMPLES
Example 1. Find the envelope of the family of straight lines y = mx + <Wl + w , the parameter

being m.
Solution. Here the given equation of the family can be written as : 

(y-mx)2 = a2(l +m2)
(a2 - a2) tn~ - 2mxy - a2 + y2 = 0 ... (1)or

This equation is quadratic in m. Then the envelope of (1) is obtained by equating the 
discriminant of (1) to zero, we get

(- 2xy)2 - 4 (a2 - a1) (y2-a2) = 0 
4x2y2 - 4 [x2y2 - x2a2 - tfy~ + a4] = 0
x2«2 + a2y2 = a4
2,2,2 a +y +a .

This is the required equation of envelope.
Example 2. Find the envelope of the family of circles (x - c)2 + y2 = r2 where the parameter

(V B2 - 4AC = 0) • ‘

or
or
or

being c.
Solution. Here equation of family of circle is

(x-c)2+y2=, 2 ... fD
It can also be written as

c2 - 2xc + x2 + y2 - r2 = 0.
This is quadratic in c, so that the envelope is

(-2a)2-4. 1 . (a2 + y2 - r2) = 0
2 2 2 , 2 0 a -a -y + r =0

... (2)

(••• B2-4AC = 0)

or
2 ..2or • y =>
y=r, y = -r.or

These are the required envelopes.
Example 3. Find the -envelope of the circles drawn on the radii vectors of the parabola 

y2 = 4fl* as diameter.
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Envelops mid EvelinesSolution. Let (a/2. 2ai) be any point on the parabola f - 4tfu\ Then the equation of circles 
drawn on the line joining (0. 0) and (at'. 2at) as diameter is 

(.v - 0) (,v - a!2) + (y - 0) (y - 2at) = 0 
x2 + y2 - axl2 - 2oty = 0 • ...d)or

where t being the parameter.
Differentiating (I) partially with respect to /, we get

- 2(L\t - 2ay = 0 
•tf + y = 0 ...(2)or

Eliminating / between (1) and (2). we get 

.v2 + y2 - at ZJ>’ = 0
o 2 flv2 2ay2 n 

x* + v - + —— = 0
' X .V

x (.V2 + y2) + ay2 = 0..

- 2rt
xx

or

or
This is the required envelope.

X V
Example 4. Find the envelope of the family of straight lines —+ ^ = J where a, bare connected

by a relation a2 + b~ = c2, c is a constant.
Solution. Since the equation of family of straight lines is

x v 
a + b

a2 + b2 = c2.

Differentiating (l) and (2) w.r.t. a treatingx andy as constant and 'b' as a function of ‘n\ wc

...(1)= 1

...(2)and

get
_a_ _ _y_ db n 
n2 b2 dt* ~

db x/a2
... (3)or

y/b1da

2a + 2b^r- = 0and da
db a ... (4)or da b

From (3) and (4). we get
x/a2 a
y/b2 b 
x/a _ a~
y7B~7
x/a y/b

or

...(5)or 2 b2a
Eliminating a and b between (I). (2) and (5), we get

x/a _ y/b _ x/a + y/b _ 1 
a2 b2 a2 + b2 c

•> 7
=* xc' - a'

(using (ij-and (2)]

x/a _ 1 
"2 ~2a c

2x1/3=> <7= (XC')

y/b _ 1 
b2 c2 
yc2 = b*

/p = (yc2)l/3.

and

=>
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Annly.'iix Putting these values of a and b in (2), we get 
(.rc2)273 + (yc1)

,r2/3 + y

2s 2/3 2= c
2/3 2/3or = c

This is the required envelope.

• TEST YOURSELF-1
Find the envelope of the family of straight lines.

ax sec B- by cosec B = a~ - b
1.

where 0 being the parameter.
Find the envelope of the following families of straight lines :
(i) y = mx + an?, the parameter being m.
(ii) y = mx + anf, the parameter being m.
(iii) x cos3 a +y sin3 a = a, a being the parameter.
Find the envelope of the family of straight lines

x cos a + y sin a = a
where a being the parameter, and interpret the result.

X VFind the envelope of the family of straight lines —+ ^= 1, where two parameters a and b
a b

are connected by a relation a + b = c,c being the constant.
Show that the envelope of the family of straight lines y = mx + ^la~m~ + b2,a being the

2.

3.

4.

5.
2 2x y = i.parameter is — + , 

a~ b~

ANSWERS

1. (axr' + ibyr^tf-bY3
2. (i) 4r3 + 27ay2 -0 (ii) (p - l)p" 1 . +/a/-1 = 0 (iii) a2 (:r+y2) = jc2/
3. x +y = a
4. xl/2 + y

2/3 2/3

•I!
1/2 1/2- C

• 6.7. EVOLUTE
Definition. The evolute of a curve is the envelope of the normals to that curve.
In other words. The locus of the centre of curvature of a curve is called evolute for the curve. 
Since th centre of curvature of a curve for a given point P on it is the limiting position of the 

intersection of the normal at P and the normal at other point Q as Q tends to P. Thus the envelope 
of the normals to a given curve is called an evolute of that curve (Remember).

;r

'!

• 6.8. EVOLUTE OF PEDAL FORM OF CURVES
Let the pedal equation of the given curve be

... (1)
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Envelops aiul Evohttesand let C be the centre of curvature of (1) at the point P. Then PC = p (radius of curvature) and 
the equation joining P and C is the norma) to the curve (i) at P. The point C will be on evolute 
corresponding to the point P on the curve.

Since the evolute of the given curve p =^(r) is the envelope of the normals at P of the curve, 
so that the normal PC of the given curve is a tangent to the evolute at C.

Here PT is the tangent at P to the given curve p =/(r) and OT is perpendicular to PT such 
that OT=p and OP-r. Now draw a perpendicular OM from O to PC such that OM = p' and 
CO = /. Then in triangle OPC, we have

r + p2 - /2
cos /.OPC -

2rp
/2 = r2 + p2 - 2rp cos /.OPC 

= r2 + p2 - 2rp cos ^ - <j>

= r2 + p2 - 2rp sin (j) 

r'2 = r2 + p2 - 2pp 
/2 = r2 + p'2 - 2p.

Since OTPM is a rectangle, so that OM = TP = p\ then in &PTO,
r2=p2 + p'2 

P'2 = r2-p2.

(v p = r sin <j)) 
■■■(2)

•••(3)=>
Also, wc have

dr ...(4)p = rTP
Now eliminating r,p and p between (1), (2), (3) and (4), we get the pedal equation of the 

evolute of the curve p -j{r).
REMARK

In above formulation the relation between p' and r gives the evolute of the curve►
p =!(>)■

SOLVED EXAMPLES
Example 1. Find the evolute of the hyperbola x2/a2 - y^/b2 = 1. 
Solution. Let P(a sec 0, b tan 0) be any point on the hyperbola

x2 / a2 - y2/b2 = 1.
The equation of the normal at P to the given hyperbola is 

ox cos 0 + by cot 9 = n2 + b2.
Differentiating (1) partially w.r.t. 0, we get 

- ax sin 9 - by cosec2 0 = 0
sin3 9 = --^

-d)

or ax
i \l/3

sin 0 =or ax

MS)2/3
cos 0 = Vl - sin20,=

V1 -
cot 0 =and 173

ax
Putting the values of cos 9 and cot 0 in (1), we get
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Analysis

Vi-M
1 flA'

2/3

“[■v.-(S)2/3
= (fl2 + ^+ 6>- ' sl/3

rtA
Ml/ZA V(flA)273 - (^) ^x)z/i-(by)2/i =(a2 + b2)

^(axf^ibyf7 [(axf3 - (by)2/*] - (M + bz) ' 

[(ox)273 - (M)273]3'’2 = {a2 + b2) 
(a,x)2/* - (by)2/3 = (a2 + b2)2/3. .

2/3or , >,1/3(a*) . 1/3(by)
dr

or

or
This is the required evolute of the given curve.
Example 2. Show that the evolute of an equiangular spiral is an equiangular spiral. 
Solution. Since the pedal equation of an equiangular spiral is

... (i)p = r sin a 
dp
j = sm-a. dr

so that

dr 1
p^r-r^r. 

dp
p = r cosec a.

Let (p', r) be any point on the evolute corresponding to the point (/?, r) on the curve (1). Then 
we have.

= rcosec a
sin a

... (2Jor

r'2 = z-2 + p2 - 2pp

= r2 + r2 cosec2 a - 2r cosec a . r sin a
•’2 2= r cosec a - r

r'2 - r cot2 a. ... (3)
Also, we have

/2 2 2 2 - r2 sin2 ap - r - p - r 
= r2 (1 - sin2 a)

p'2 = r2 cos^ a. ... (4).
Divding (4) by (3), we get

p'2 r2 cos2 a 
r2 cot2 a 

p =//2sin2a 
p' ~ r' sin a.

- Thus the locus of the point (p',/) is p = r sin a, which is an equiangular spiral:

= sin2 a.',2r
,2

or

• SUMMARY
• Family of curves :

(i) F (.v, y, ^.) = 0 is a family of curves with one. parameter X.
(ii) F(.v, y, X, p) = 0 is. a family of curves with two parameters A and p.

• Envelope of F(*,y, A.) = 0
9F •

The equation obtained by eliminating X between Fix, y, X) = 0 and ^ = ^ *s caHed envelope.

• Envelope of F(x,y,X, p) = 0

The equation obtained by eliminating X and p between F(a, y, X, p) = 0, -rr = 0, -r— = 0, is
ok dp

called envelope.
• Evolute of F(A,y, X) = 0

If (j) (a, y, rz) = 0 be the equation of the.normal to the curve F(a, y, X) = 0; then the envelope of 
p (a, y, a) = 0 is called evolute of F (a, y. A) = 0. ^ '

/
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Envelops and Evolutes

• STUDENT ACTIVITY
2

Find the envelope of the circles drawn on the radii vectors of the parabola v = 4ru as diameter.1.

2. Find the evolute of the hyperbola

£1 ± 
a2 b2

L. = 1

• TEST YOURSELF-2
Find the equation of the evolute of the parabola y~ = 2ax.

2 2 2 2Show that the equation of the evolute of the ellipse /a +y /b = 1 is 

Find the evolute of the curve x273 + y273 = n273.
Show that the whole length of the evolkutc of the ell ipse ^ + ^=1 is4^y-- — 

Find th evolute of the parabola >>2 = 4av.

1.
2.

3.

4.

5.

ANSWERS

5. 3a:2 + 4ay - 4ar + 4n2 = 03 3. (a: + y)273 + (a- - y)273 = 2«2731. 27m 2 = 8 (a- - a)

OBJECTIVE EVALUATION
Fill in the Blanks :

. If the equation of the family of curves is Ak~ + Bk + C = 0. where A. B, C we are functions 
ofA:,y; then its envelope is .........
The envelope of a family of curves

1.

each member of the family.
xm' = 2ym + n = 0 is a family of straight lines, where m being the parameter, then its 
envelope is...........
The envelope of the' normals to the curve is...........

True or False :
Write ‘T’ for true and ‘F’ for false :

The equation F(x, y. A.) = 0 represents a family of curve with one parameter.
The envelope of a family of curves intersects each member of the family.

2.
3.

4.

1. (T/F)
(T/F)2.
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Analysis If the equation of a family of curves is AX2 = BX + C = 0 then its envelope is B2 - 4AC = 0.
(T/F)

3.

Multiple Choice Questions :
1. The envelope of a family of curves 

(a) intersect (b) touches
each member of the family :

(c) is perpendicula to (d)None of these 
The envelope of the family of curves xm - 2ym +<3 = 0, m being the parameter is : 
(a) y2 = 4ax (b) y2 = 2ax

2.
(c) yz = ax

The locus of the centre of curvature for a curve is : 
(a) envelope (b) evolute

(d) .x2 = ay
3.

(c) radius of curvature (d) none of these

ANSWERS
Fill in the Blanks :

1. B2 - 4AC = 0
True or False :

1. T 2. F 
Multiple Choice Questions :

1. (b) 2. (c) 3. (b).

3- y22. Touches 4. Evolute= ax

3. T

□□□ /
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Maxima and Minima Functions of 
Two and Three VariablesUNIT

7
MAXIMA AND MINIMA OF FUNCTIONS OF 

TWO AND THREE VARIABLES

Maxima and Minima of a function of Single Independent Variable 
Maxima and Minima of a function of Several Independent Variables 
Necessary Condition for the Existence of Maxima or Minima 
Sufficient condition for Maxima or Minima : The Lagrange's Condition
□ Test Yourself
Maxima and Minima of the function of Three Independent Variables
Maxima and Minima for a function of Three independent Variables : The Lagrange’s
Condition
□ Test Yourself
Lagrange’s Method of undetermined Multipliers 
a Summary
□ Student Activity 
n Test Yourself

S^tftM^ir^LEARNING OBJECTIVES i>'2

After going through this unit you will learn :
• How to find the maximum and minimum values of a function of two or more than two 

independent variables ?
• What are Lagrange’s multipliers and using these multiplies how to find the maximum 

and minimum valups 7•

• 7.1. MAXIMA AND MINIMA OF A FUNCTION OF SINGLE INDEPENDENT 
VARIABLES

Let/(a.)’) be a function of two independent variables x and v. If/(A.y) is continuous and 
finite for all values of x and y in the neighbourhood of their values x = a and y = b respectively, 
lhenj[a.b) is said to have a maixmum or a minimum values of^A.y) according asj{a + h.b + k) 
is less than or greater than/fa, b) for all values of h and k (where h and k are sufficiently small may 
be positive or negative), provided both are not equal to zero.

• 7.2. MAXIMA AND MINIMA OF A FUNCTION OF SEVERAL 
INDEPENDENT VARIABLES

Let J{x, y, z,...) be a function of several independent variables x, y,z.......If/ is continuous
and finite for all values of*, y. z,... in the neighbourhoodof x = a,y = 6, z~c,... respectively, then 
the value of /a, b.c, ...) is said to be a maximum or minimum if J[a + h, b + k,c +1,...) is less 
than or greater than/rt, b, c, ...) for all values of It, k,l, ... (where h, k. I, ...) are sufficiently small, 
may be positive or negative) provided they are not all zero.

Or
In other words we can say, the value of j{a, b, c,...) is said to be a maximum or minimum if 

f{a + h. b + k.c +1...) -f[a, b, c,...) maintain an invariant sign (may be positive or negative) for 
all values of /t, k.l...... positive or negative provided they are taken sufficiently small and finite.
Stationary and Extreme Points.

A point («i, fl2......an) is called a stationary point, if all the first order partial derivative of the
function/.vi, *?......*„) vanish at the point. A stationary point, if it is maximum or minimum is
known as extreme point and the value of the function at an extreme point is known as an extreme 
value.
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Analysis REMARK
A stationary point may be a maximum or minimum or neither of these two.

• 7.3. NECESSARY CONDITION FOR THE EXISTENCE OF MAXIMA OR 
MINIMA

Let^.v,y, s, ...) be a function of several independent variable x, y. z ... . Jt is clear from the 
definition of maxima and minima that maximum or minimum off{x, y,z, • ••) will occur for those 
values of x, y, z, .... for which the expression

j{x + h,y + k,z + l...) z. ■■■)
maintain an invariant sign for all sufficiently small and finite values of positive or
negative.

Now, expanding ./fa + /i, y + &, z + /, ...) by Taylor’s theorem, we have

# + jki!£ + /#
dx dy dz/fa + h,y + k.z + l ...) =/fa,y, ...)•+ h

+ terms of second and higher order.
=» Ax + h,y + k,z + l, ...)-fl.x,y,z,...) = .h& + k& + t&

V
+ terms of second and higher orders. ...fl) • 

Now, since /i, k, /,-... are sufficiently small, the first degree expression

+ ...

h dx + ...
dy dz

of the equation (1) can be made to govern the sign of right hand side and hence,.of the left hand 
side as well. Thus, by changing the sign of the left hand side of the equation (1) will also change. :

Since, left hand side is to preserve an invariable sign for maxima or minima, therefore, as a 
necessary condition for maximum and minimum values, we must have :i

'•¥+k¥+i¥ ox ay oz
+ ... =0.

i
Now, since /?, k, l, ... are arbitrary and independent of each other, we must have

^ = 0.. ...(3) ■. etc.
dx

If the number of independent variables be /z. We shall get n simultaneous equations in these n . 
variables, which will give the values a.h.c, ... of the /z variables x,y, z, ... respectively for which If 
/fa, y, z, ...) will have a maximum or a minimum value.
REMARKS r

> The necessary condition for a function/fa, y, z,...) of the independent variables 
x,y, z, ... to be maximum or minimum is given by

^=o.|f = o.|f=o....
dy dz

The conditions given aoove is only a necessary condition for the maxima and minima i 
of the funtion/fa,y, z, •••)• These conditions are not sufficient. ' :

Maxima and Minima for a Function of Two Independent Variables.
(1) To find the condition which governs the sign of a quadratic expression.
Let us suppose, there is a binary expression

/ = ax1 + 2/zxy + by1
of two variables x and y. Then / can be written as |

/ = ax2 + 2/zxy + by2

dx

►

- [lax + hy)2 + {ab - h2) v2]. 
a

If (ab - h2) is positive, the sign of I will be the same as that of a.
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But if (a/; - h2) is negative, then, the expression within the brackets may be positive or negative 
and so therefore we can not say anything about the sign of expression /.

Stationary and Extreme Points (For the Function of Two Independent Variables). 
Lc{j[x, y) be a function of two independent variables x and y. A point (n, /;) is cal led a stationary

point, if both the fust order partial derivatives

Maxima and Minima Functions of 
Two and Three Variables

(K of the function/(x, y) at (a,b) vanish.andda db

A stationary point which is either a maximum or minimum is called an extreme point.
REMARKS

A stationary point is not necessarily an extreme point, hence a stationary point may be 
a maximum or a minimum or neither of these two.
The value of the function at extreme point is called extreme value.

A point at which function is neither maximum nor minimum, is known as saddle points.
>
>

Necessary Condition for Maxima or Minima.
Lct.flx. y) be a function of two independent variables x and y.
Then, it is clear that, we have the maximum or minimum of J[x,y) at x-a and x = b if the

expression
J{a + h,b + k) -/{a, b)

is of invariable sign for all sufficiently small independent variables h and k provided both of them 
arc not equal to zero.

We observe that,
(i) If the sign of J[a + II b + k)-f(a, b) is negative, then we have a maximum of 

J[x, y) at x = a, y = />.
(ii) If the sign of/(a + h,b + k) -/fa, b) is positive, we have a minimum of/fx, y) at x~at

v = b.
Expand/fa + /j, b + k) by Taylor's theorem, we have 

M + A. fc + *) =M. I>)+ I'lfx + l:! L„ + ii 1,1 U + 2M at dy + ...
dy2 }x = (t

y=b y = b

(tt)=> /fa + /i, + k) -/fa. b) = h + k
dx x~n 
' Jy = b

dy x=a

+ term of the second and higher orders in h and k.

Now. since h and k are sufficiently small, the expression
df)

^I3x x=a 
\ Jy = b

of the equation (1) can be made to govern the sign of right hand side and hence of the left hand 
side as well. Thus by changing the sign of h and k. the sign of the left hand side of the equation 
(1) with also change.

Since L.H.S. is to preserve an invariable sign for maximum or minimum, therefore, as a 
necessary condition for maximum and minimum values, we must have

*ff£l

+ k
dy x~n 

Jv = b

& ...(2)= 0.+ k
By \x = a

_V = b
= a

'y=b

■^1 *0, the R.H.S. of (2) changes sign when h changes sign.If k = 0, we find that if dx X-tl

'y = b

Therefore/(x, y) can not have a maximum or minimum at x = m y = b if ^ 0.
dx x=a 
' 'y = b
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Analysis Similarly, taking h = 0, we see that/(x, y) can not have a maximum or a minimum at x = «.

y = b\i * 0.
dy x = a

y = b

Thus, a set of necessary conditions that/(x, y) should have a maximum or minimum at 
x = a, y = is that

if = 0 and = 0.dy *=«
'y = b

dx x = a 
'y=b

• 7.4. SUFFICIENT CONDITION FOR MAXIMA OR MINIMA : THE 
LAGRANGE’S CONDITION

Let/(x, y) be a function of two variables x and y.
a2/ , .—— at x ~ a and y = b-
3y

As a set of necessary conditions for a maximum or minimum, at (a, b) we have

Let r = »t =’ s =
3x2 dx dy

if if= 0 and = 0 at {a, b)dx dy
1f{a + h, 6 + k) -f{a, b) = — [r/i2 + 2shk + tk2} + Rthen

2 !
where R consists of terms of third and higher order of small quantities h and k.

Now, by taking h and./t sufficiently small, the second degree terms in R.H.S. of (1) may be 
made to govern the sign of R.H.S. and therefore of the L.H.S. also i.e. for sufficiently small values 
of h and k, the sign of ; •

| (rh2 + 2shk + tk2) + R

is same as that of
rh2 + 2shk + tk2.

If the sign is negative, then the function is maximum at (a, b) and if the sign is positive, then 
the function is minimum at (n, 6).

Now, there are following three cases :
Case (i) If {rt - s2) > 0.
Here, neither r nor t can be zero. Hence, we can write

rh2 + 2shk + tk2 = ~ [r2h2 + 2rshk + rtk2] 
r

= -■ [(rh + sk)2 + (rt - s2) k2]

since rt - s2 > 0, therefore
(rh + sk)2 + (rt - s2) k2 > 0

for all values of h and k except when rh + sk = 0,k = 0 i.e. at h = 0, k = 0, which is not possible.
Hence in this case the expression rh2 + 2shk + tk2 will have the same sign for all values of 

h and &, and the sign is determined by the sign of r.
Thus, the function y(x, y) will have a maximum or minimum at x = ci and y-b. If 

rt-s2>0. Further, the function/(x, y) is maximum or minimum according as r is negative or 
positive.

Case (ii) (rt - s2) < 0.
If rt - s2 is negative, we are not sure about the sign of second degree term of R.H.S. of (1) 

and hence there is neither a maximum nor a minimum value.
Case (iii) /t-s,2 = 0.
If rt - j', then quadratic expression

rh2 + 2shk + tk2
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Maxima and Minima Functions of 
Two and Three Variables~ (hr + Ics)2.

So that, the quadratic expression will be of the same sign as that of r or / unless

becomes

h ^ = a (say)
k

rh +sk = 0.
If this condition is satisfied, then the second degree expression in R.H.S. of (1) vanishes and 

hence, the sign of the R.H.S. of (1) depends upon third degree expression in h and which change 
sign with the change of sign of h and k and hence, the sign of L.H.S. of (1) will also change and 
hence, there will be neither maximum nor minimum. Thus, the necessary condition for the existence 
of maxima and minima now is that the cubic terms must vanish collectively in R.H.S. of (1) when

- = a; and then the biquadratic terms of R.H.S. of (1) must collectively of the same sign as

r and t, when

t.e..

h
k

h s- = a
k r

hr + ks = 0.t.e.,
Hence, the case is doubtful.
Thus, if rr - s2 = 0, the case is doubtful and further, investigation is needed to determine the 

maxima and minima off(x, y) at (a, b).
Working procedure. To discuss the maxima and minima a\x = a,y = b, we must find

aV d~u
dy x = a 

y Jy=b

d2u
, t -dx2 x=<t,S |3x8y|jf = rt 

x = b

r -
y = b

Then, calculated - s2.
Now following cases arise :
(i) If rf - s2 > 0, then
(A) If ris negative then.^x.y) is maximum aix = a,y = b..
(B) If r is positive then,/fa, y) is minimum at x = a, y - b.
(ii) If rt - s2 < 0, J(x, y) is neither maximum nor minimum at x = a, y = b.
(iii) If rf - s2 = 0 the case is doubtful, and further investigation will be required.
An important identity. While solving problems, we frequently used the identity, given by

Lagrange
{(a2 + b2 + c2) (p2 + q~ + r~) ~ (ap + bq + cr)2}

= {(br-cq)2 + (cp-ar)2 + (aq-bp)2}.

SOLVED EXAMPLES
2 2 AExample 1. Find all maxima or minima values of the function f(x, y) = y + x y +x . 

Solution. Since we have
A** y) = y2 +x2y + xi

~ = 2xy + ^ 
ox

fr2j,+^
For a maximum or minimum of/(x, y), we must have

^ = 0 or !£,0

and

dx dy

= 0 => 2rv + 4a3 = 0 
ox

=> 2x (y + *2) = 0 
-^ = 0=>2y + jf2 = 0

•••0)
... (2)

dy
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Aiuilyxis Solving (1) and (2), we get
* = 0, >’ = 0

Thus (0, 0) is the only point o maximum or minimum.

rj£t = [2y+12x2](0>0) = 0Now
3a-2 >-d)

'd2f )
dxdy j(0.o) - [2A]o.n) - 0s -

- f2](o.o) -2a>'2 J(0.o)
rt - s2 = 0 (2) - 02 = 0. .

Thyus. the case is doubtful and further investigation will.be required. 
Example 2. Find the maximum or minimum values of the.function .r3)’2 (1

u — A'3)2 (1 - a- - y) .
a - y)

Solution. Let
du = 3x2y2(l~x-y)-x\r=>
3a

^ = 2^V(l-.v-v) 3 :2and x y'■ dy
For a maximum or minimum of u, we must have 

V 0 and 1^ = 0
• • v>’.

. 3A2y2. (1 - a - y) - a\'2 - 0 ' 
Zv3y (1 - a - _v) - A3y2 = 0. 

Now, subtracting (2) from (1), we have

A2y (1 -.v-y) (3y-2A) = 0

du
dx

,-(l)
and

2 •which gives 3-3*.

Putting the value of y in (1). we get
l

A = T
2

so|!<{ be the point of maxima or minima.

d2 u
= 6av2- 12a2v2-6a73Now /• -

dx2

1 P
9,at^2’3 

—r - 2a3

1

- 2a4 - 6a2>’t =
dy2

3 I 1
8 ’ at ■ 2 ’ 3

. \ 3
= - 6A2y - 8a3y - 9a2v

d2u
5 dxdv

1 1 1
12 at 2*3’

Now, rt - s2 = positive.

Also, r is negative, hence the function u has a maximum at * =: 2 * •'’= 3’
3. s 2

1 1 1 _1 1 
2 3 " 432

The maximum value is = —
2 3

V y V
Example 3. Find the maximum and minimum values of xy (rt - a - y). 

11 = Ay (rt - a - y)

i

Solution. Let
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du Maximo and Minima Functions at 
Two and Three Variables

,2Then

du
' - 2xvand ax ~ x

oy
For a maximum or minimum of u. we have

du du— 0 and = 0.
3a* 3v

Thus, we have

rtv - 2xy - y' = 0 =$ v (a - 2x - y) - 0 
ax - x2 - 2.v v ~ 0 —> x (a - x - 2 v) = 0.

...(0
-(2)

Solving (1) and (2), we get the following pairs of values x and y which makes the function
stationary

(0, 0), (0, a), («, 0), ^ ■

dru = ~2y, .Here /• =
3a*

_ d2u
s dxdy a~ 

d2u
T - —- - - 2x.

2x r 2y

and
3>'2

/• = 0, s - <7. r = 0. 
rt - s~ is negative.

We have neither a maximum nor a minimum of u at (0,0). 
r = - 2a, s =- a. t = 0 

rt — s' is negative.
We have, neither a maximum nor a minimum.of it at (0, a). 

Similarly, we have, neither a maximum nor a minimum of it at (a, 0).

For (0,0).

=>

For (0, a).

=s

1

2 J 2
r = - — a, s = — — a, t = — 3°33

rt - j’2 is positive. 
rt - s1 > 0.

it has an extreme value at ^ a> 3 n ■

V /
^ it has a maximum if r is negative, i.e. if a is positive and it has a minimum if r is positive, 

i.e. if a is negative.
(A f 3N

Example 4. Show that the minimum value of u = xy + — + — is 3a2.

Since,

yx
J \

Solution. Here, we have
3^a a+u = xy +

x \ /
3du a=>

X
3du a

and 3y J 23
For a maximum or minimum of tt, we must have

3/j 3m
= 0 and = 03a- 3y
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Analysis 3
0W A a A ..-(1)

n ^ n
-r- = 0 => .f- — = 0. 
dy v- -.(2)

Solving (1) and (2), we get ^ = m, y = a
52m 2a3 d2uNow = 1r Bx2 x3 ’ 5 a<5y

a2(( 2«3and
ay2 • 3

y
\t x=y = a. We have

r = 2,s=l,f = 2 
/•/ - i-2 = 3 > 0.

2 |Thus, at (a, a), rt- s >0 and r > 0. Therefore u is minimum dix = a,y = a.
'A ■3ClThe minimum value of! u = a . a + +; a

, =3fl2
^ 3 ^

Examples. Determine the points where a function x +y - 3a.ry has a maximum or minimum. 
Solution. Here, we have

u=x3 + y3 - 3axy 

= 3x2 - 3ay

3“=3/-W.
t

For a maximum or minimum of m; we must have

=>
dx

dy

du Bu— = 0 and = 0 dydx
x2 - ay = 0 
y2-ax = 0. 

Solving (1) and (2), we get

which gives. ...(1)
and •'•(2)

.t = 0,y = 0;* = a,y = a.
Thus (0, 0) and (a, a) are the stationary points of u.

d2d2 u d2 u n . 0 u t= -3a, t = —r = 6y.Now r = —- = 6x, s =
dy2dx2 dx dy

For x = 0, y = 0. r = 0, s = - 3m and t = 0
rt- s2 = - 9a2 < 0, for all values of a. 

u is neither maximum nor minimum at x = 0, y = 0. 
For x = a, y = a.
=3

r = 6a, s = - 3a and t - 6a 
rt- s2 = 21a2 > 0, for all values of a.=>

Also r=6a, which is positive if « > 0.
Thus (i) u is maximum at x = a, y = m if a < 0 
and(ii) u is minimum at x = a, y = a \f a > 0.
Example 6. Discuss the maxima and minima of the function u is given by 

u = sin x sin y sin (x + y).
Solution. Here, we have

m = sin x sin y sin (x + y)
du•r- = sin y [sin x cos (x + y) + cos x sin (x +y)]=> 3x
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dlt
and — = sinx [sin>'cos (x + y) + cosy sin (x + y)].dy

For a maxima and minima of u. we must have
du du
t— = 0 and t- = 0.dx dy

sin y (sin A'cos (x + y) + cos x sin (x + y)] = 0 
sin x [sin y cos (x + y) + cosy sin (x + y)] = 0. 

Equation (1) and (2) gives 
tan (x + y) = - tan x 
tan (x + y) = - tan y 

From (1) and (2), we have

and

=> tanx = tany 
x = yand ...(2) =>

tan 2x = - tan x - tan (n - x) 
2v = 7t - x 
3x = n

n
X=3=y-

duMoreover,-r-= 0. gives siny = 0 => y = 0
dx

du
— = 0 gives sinx = 0 => x = 0. 
dy

Thus, we get the following pair of values, which makes the function u stationary.
/ \ rt n

’ 3 * 3 ‘

and

(0, 0)

d2u
r = —- - 2 sin y cos (2x + y).Now

dx2
d2u

= sin 2 (x + y).1 d.xdy 

t - — = 2 sin x cos (2y + x).and
9y2

/• = 0, J = 0; / - 0 
s2=0.

.-.this case is doubtful and need further investigation.

For (0,0).
=s> it -

_ n n 
For “ ’

3 3 '
1 -V3.r = 2 sin — 7t. cos n =

. (47t'' . 71
= - sin — =s - sin

3 23
J/ = 2 sin — 7t cos 7E = - ■'/if. 

positive.

and

rt-s2

-VT.Also r =
n n 
3 ’ 3 '

Example 7. Find the maximum value of x2 + y2 + s2 when ax + by + cz = p. 
Solution. Here, we have

Hence, u has a maximum value at

l( = x2 + y2 + z ...(1)
ax 4- by + cz = pgiven that

p-ax- byz-
c
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Aiuilys'is Put this value of z in equation (.1), we get
(p-ax -by?1 2U-X +y +

2c
du 2afo = 2x- — (p-ax-by) ■ 

du - 2b^2y- —ip-ax-by).

For a maxima and minima of u, we must have = 0 and ^ = 0
dx ay

- and y~

=>

and

bpap=> x =
2 . i 2 ,a + b +c 2 , .2 , 2 a + b +c

d2 u 2a2
Now, r =—- = 2 + —r- >

dx2 2
_ d2u _ 2ab 

3x dy ^2

c

d2 u 2b2and ' = 7T = 2 + -^ ay c
f •_

2 t , a rt-s =4 1 + —
2^ f

,1 + c2 "
4a2b2

4
C c

( 2 ,2N1. , a b
~4 1 + 2 + 2c c 

V
= positive.

Since r is positive and rt- s >0, therefore u is minimum for the above values of x and y.
• 2PThe minimum value is =

«2 + fr2 + c2

• TEST YOURSELF-1
1. Find the points (.x, y) where the function^, y) =.xy (1 -.x - y) is maximum or minimum. Also 

find the maximum value of^(x,y).
2. Discuss the maxima and minima of the function-

/(x, y) - x:2 + y2 + “ +

'X 4 2 2 2Discuss the maxima and minima of the function^** y)11* +2xy-x +3y.
a 2 2Examine for maximum and minimum values of the function/(x,y) = x - 3xy + y + 2x.
g 2 2•5* Examine the function f(x, y) = x y - y x - x + y for maxima and minima.
6. Discuss the maxima and minima of the function

f(x, y) - 2 sin ^ (x + y) cos | (x - y) + cos (x + y).

Find points on z2 = xy + 1 nearest to the origin.7.

ANSWERS

(ill 11. f(x, y) is maximum at the point — > — ; maximum value = —•

2. /(x, y) is minimum at (1, 1).

2 ’ 4 ’
J

4 64. Stationary point is.x = —>y = j- The function^x,y) is neither maximum 

4 b'l
I’? '

VI -13. fix, y) is minimum for — * — and

nor minimum at
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Maxima and Minima Functions of 
Two and Three Variables

'5. At (1, 1) and (-1,-1) function is neither maximum nor minimum.
6. * = v = 2/m ± tu/2

a- = v = nn + (- 1)” u/6.
7. (0,6,1) and (0.0,-1).

• 7.5. MAXIMA AND MINIMA OF THE FUNCTION OF THREE 
INDEPENDENT VARIABLES

(1) To find the condition, which governs the sign of the quadratic equation of three 
independent variables.

Let / be the expression of three independent variables x, y and z given by 
/ = ax2 + by2 + cz2 + 2fyz + 2gz.x + 2hxy

I can be written as

/ = — [a2x2 + aby2 -f acz~ + 2afyz + 2agzx + 
a

= — [a2x2 + 2ax (gz + by) + aby2 + acz2 + 2a/yz] 
a

= — [(aa: + by + gz)~ + aby2 + acz2 + 2afyz - (52 + by)2] 
a

= - [(ax + by + gz)2 + (ab - h2) y2 + 2yz (af- gh) * (ac - g2) z2] 
a

Here, we observe, that / be of the same sign as a provided the expression within the square 
brackets is positive which will of course be so if

ab-h' and {(ab - h) (ac - g ) - (af-gbY) are positive i.e., if 
ab - It2 and a [abc + 2fgb - af2 - bg2 - ch~] are both positive.

Hence, / will be positive if

a h 
h b '

a h g
h b f
$ f c

be all positive and will be negative if these three expression are alternately negative and positive.

♦ 7.6. MAXIMA AND MINIMA FOR A FUNCTION OF THREE INDEPENDENT 
VARIABLES : THE LAGRANGE’S CONDITION

Lety(^ y, z) be a given function of three independent variables x, y and z.
a2/ a2/ a2/ a2/ ay a2/
a.v2 dy2 dz~ ay dz dz dx a* dy 

Let a set of the values of x, y, z obtained by solving the equations
SC-M = M-n 
dx a.v dz

Let A, B,C, F, G, H stand for respectively.

be a. b, c.
By Taylor’s theorem, we have

f(a + /1,6 + A', c + /), -fla, b, c)

= T7 [Ah2 + Bk2 + CI+ 2Fkl + 2Glb + 2Hhk) + R
2 !

where, remainder term R consist of third and higher order of same quantity (i.e., b. k, l).
Now. by taking h,k,l sufficiently small the second term of R.H.S. of (1) can be made to 

govern the sign of R.H.S. and therefore of L.H.S. also.
If for all such values of b, k and /, these terms be of permanent sign, then we shall have a 

maximum or minimum oij(x.y, z) according as that sign is negative or positive.
Hence, the function will be minimum if the expression

A H G
H B F be all positive.
G F C

. A H 
A' H B '
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Analysis The function will have a maximum value, if the above three quantities are alternately negative 
and positive If these conditions are not satisfied, we have neither a maximum nor a minimum. 

Working Procedure. Let us suppose/(x, y, z) be a function of three independent variables

dx dy 'a\ y and z. Find the values of triads (a, 6. c) of the value x, y and z by putting

& = 0. The values of triads (a, b, c) will give the stationary values of f(x, y, z).

Now, to discuss maximum and minimum values, at (a, b, c) we find the following six partial 
derivatives of second order

dz

£land H =’ G = dx dydy2 dz2dx2 dy dz dz dx
Now, we have the following cases :
Case (i) The function/(x, y, z) will be minimum at («, b, c) if the expressions 

A H G
H B F bt all positive at («, b, c).
G F C

A A H 
' H B '

Case (ii) The function./(x, y, z) will be maximum at (a. b, c) if the expressions
A H G
H B F
G F C

a A H
A- H B'

be alternately negative and positive.
Case (Hi) If the expression, using in case (i) and (ii) neither be all positive nor having 

alternately negative and positive sign at (a, b, c). Then./(x, y, z) is neither maximum nor minimum 
at (a, b, c).
REMARK

> To find the maximum and minimum of the function at stationary point, it is sufficient 
to find the value of a second order partial derivative of function with respect to any of 
the independent variables. Then, the value of the function is maximum or minimum 
according as the value of this second order partial derivative at the stationary point under 
consideration is negative or positive.

SOLVED EXAMPLES
Example 1. Find the maximum value of«. where

xyz
U (a+x)(x + y)(y + z)(z + b)

Solution. Here, we have
xvz

u (a+x)(x + y)(y + z)(z + b)
Taking, log of both the sides, we have

log « = log x + log y + log z - log (a + x) - log (x + y) - log (y + z) - log (z + b). 
Differentiating w.r.t. x. we have

1 _ i __!____I
u dx x « + x x + y x (cr + x) (x + y)

du _ (ay ~ x2) u 
. dx x (a + x) (x + y)

2 -ay-x

(xz ~ y2) uduSimilarly dy y(x + y)(y+-z)
du _ (by ~ z) u 
dz z (y + z) (z + b)

For, a maxima and minima of «, we must have

and

^ = 0 =» ay-x2 = 0
dx

86 Self-Instructional Material



du Maxima and Minima Func tions of 
Two and Three VariablesT--0 => xz-y2 = 0a.v

| = 0 =» by - z = 0.

2 2 9
Here, we observe that x = ay,y =xz, z = by which implies that a, x, y, z and b are in G.P. 

Let r be the common ratio of this G.P.

and

r*V/44 /ar - b orThen r -
a

2 'x = ar, y = ar , z = ar\Also
Hence, we have

2 3ar. ar .ar
u -

a (l + r) ar (l + r) ar2 (l + r) ar3 (1 + r)
1 1 1

a (1 + r)4 f^Y/JT (a'/4 + bW4)
« 1 + —

a
which gives a stationary value of u. Now, to decide whether this value of w is a maximum or a 
minimum, we proceed to find the second order partial derivative of u such that

- 2ux
dx2 x(a+x) (x + y)
d\i xt 2, a 

+ (ny - *) v
u

dx x (a + x) (x + y)

/. When x = ar, y = ar2, z = ar3, we have

A=^ 2u, ,, ^<°- 
a“r(l + r)

Hence, the above stationary value of u is maximum.
Example 2. Find the maxima and minima value of the function

dx2

u = sin x sin y sin z
where x, y and z are the vertex angles of a triangle. 

Solution. Here, we have
-(i)it = sin x sin y sin i .

where x + y + Z = 7t
y = sin x sin y sin [n - (x + y)] 

= sin x sin y sin (x + y)
du = cos x sin y sin (x + y) + sin x sin y cos (x + y)
dx

...(2)= sin y sin (2x d-y)
du . . .■z— = sin x sin (2y + x). -(3)Similarly 9y

For a maxima and minima, we must have
du q du

dy °dx
du
— = 0 =* sin y sin (2x + y) = 0dx

^siny = 0 or sin(2x + y) = 0
=> y = 0 or sin(x+x + y)=0
=> y = 0 or sin x cos (x +y) + cos x sin (x + y) = 0
^ tan (x + y) = - tan x
=> tan (x + y) = tan (- x) = tan (7t - x)
=^x + y = 7t-x 
=^> 2y + y = Tt.

...(4)

-(5)
Similarly, from (3)
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.Ajifl/vvis y = 0 or tan (x + y) = - tan ■•■(6)

Now, by (4) and (6), we have
tan x = tan y =» x = y.

Hence, by (5), we have
- n , nJy = tc => y = j and x = y

TI 71Here, the stationary points are and (0,0).

For (0, 0).
u = 0

T? ^ 71FQr 3’3
02
—- = 2 sin y cos (2x + y)
3x2
- . TZ 12TZ 71 PT n

= 2 sin y cos + ^ = - V3 < 0,

. ^ . 271 27t

, = &a; = sin(2l + 2y) sin T+T
. fin) -ft '

3^ =”T<0

d2u
—- = 2 sin x cos (x + 2y)
Sy"
-I - n - 2'sin y

r -

d2 u

- sin

and t =

- ^<0.COS 71 =

Now

Vat 3 n 
7 =2>aj2 = (-V3)(-V3)- ^r/ -

rt- s2>0 and r < 0.

Hence, the function it will be maximum at -r

Thus
71 71 7t
3’3’3 ‘

• TEST YOURSELF-2
O ' - • • (2

+ x - 2z~xy is minimum at _ ^ ’ 1Prove that the function u = x2 + y2 + z2 

Find the maximum and minimum values of u=y2 + 2z2 -5x4 + 4x5.

1.

ANSWER

2. Minimum at (1, 0. 0). neither maximum nor minimum at (0, 0, 0).

• 7.7. LAGRANGE’S METHOD OF UNDETERMINED MULTIPLIERS
Let u =/(xi,x2, ...,x,,) be a function of n variables xj,x2, x„.
Let us suppose, these, variables xj, x2,..., xn are connected by k equations

8\ (x\,X2> = 0
£2(*hX2, ...,x„) =0

so that there are n - k independent variables out of these n variables. 
For the maxima and minima of u, we find

*1
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du du Bndu -- ~— dx[ + r— dx2 + •. - + — dx,, ~ 0 -(l)3a-(Idx dx2i

^'ii
dg] - — dx| + 3— dx2 + ■■■ + t— dx„ - 0

OXj uXfl
...(2)Also 3a'j

dg2, Bg2 , ±dS2 , ^ ^
dg2 - g— dx\ + ~— dx-, + ... + dx,, = 0 ...(3)3a-2 Bx„i

dgkBgfc Bgk ...(k + 1)dgk ~ ~— + 5— dx2 + ... + r— dx„ = 0.
dv-i " dx,.dx i

Multiplying equation (1), (2), (3) ...(k -t- 1) by 1, l\, l2, .... 4 respectively and adding, we get 
the result, which can be written as

P | dx[ + P2 dx2 + Py dx2 + ... + P„ dx„ = 0 ...(4)
dgkdg dgidu ! + h + ... + 4 . •where n = v- + /i 8a-a.dxk ~ dxk

Now we have at our choice k multiple viz l\,li, ■■■> 4- and can be chosen such that 
P|=0, P2 = 0, ...,PA = 0.

dxk

Then, the equation (4) reduces to
Pk + 1 dxk + i + PA + 2 dxk + 2 + ... + P/j dxn - 0. ...(5)

Now, let us suppose that out of a variables, the following (n ~ k) variables xk+\,xk + 2 “•>xn 
are independent.

Then, since n - k quantities dxk 
separately zero. Hence, we have

\, dxk +2... dx„ are independent so their coefficients must be

^•+I=0.PA+2 = 0,...,P„ = 0.
Thus, we k + n equations

/»1 = 0fP2 = 0,.„,/»„ = 0

= g2 = 0, ...,.gA = 0.and

Hence, we get (n +k) equations which determine the k multipliers l}, l2, .... 4 and get the 
possible value of u.
REMARKS

> The Lagrange's method of undetermined multipliers is very convenient to apply.
It gives the maximum and minimum values of the function without actually determining 
the values of the multipliers /j,/2> •••,4.

It docs not determine the nature of stationary point, which is the only drawback of this 
method.

>

Application of the Method of Undetermined Multipliers.
The Lagrange's method of undetermined multipliers can be applied to determine the extreme 

values of the given functions, it does not detemine the nature of stationary point. Now, it is more 
convenient to find out the extreme values of a function F with the help of new function, given by

y = £ + 4 /i + 4A + ■ ■ ■ + lmfm
and use the following method. Here, we give the method for four variables x,y, u, v connected 
by the following two relations.

Let F = g(x, y, u. v) be subjected to the conditions 
/!(a, y, u, v) — 0 
/2(.v,y, u, v) = 0.

For the maxima and minima of F, we have

...(1)

...(2)and
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Analysis dsdF = ^ dx + zf- dy + du + t?*- dv = 0.ox oy ou ov
Now, from (1) and (2), we have

df d/[ 3/. df)
df}=^idx + ^Ldy + -^i du + ~Ldv = 0 

ox

<k_ <k .43)

-(4)dy du 3v
3/2 3/2 BA BA

dfi = -r— r/x + -r— r/v + ■r-= tfw + = 0.z Bx B>> ' B« Bv
Multiplying (4) by /]5 (5) by /2 and adding their sum to (3), we get

B/i B/t')
3^+,‘&+/24

and •45)

B/t B/t)3y+l-i + l4<k
3/i B/4 ,

+ /] "T + /■) "T^1 ifw + dw “ du
df • B/4

+ /j dv = 0.OV *■ Bv
<k ...(6)+

Bi< Bv

Here, we have A and A are arbitrary, therefore we can choose them to satisfy the two linear
equations

, 3/] BA
Bx+ 1 3x + /2a^0<k •• ,-(7)

Bf d/23,+''i + ^ = a
Using (7) and (8), equation (6) reduces to

&and .48)

3/i 3/2 3/j BA+ /, ^ + /2 rfv = 0. 
ov dv

di+ /1 + A — du +OU OU ■ Oil Bv

Since, the given function contains four variables (namely x, y, u and v) and we are given two 
equations of conditions, so therefore, only two of the variables are independent and it is immaterial 
which two of the four variables are regarded as independent. Let them be it and v then du and dv 
are also independent, therefore, their coefficients must separately zero. Thus

df2
a +^1 3 +^2 TT*-^Ou on Ou

df
•49)

df dhis. + /| - + A — 0. dv ...(10)Bv Bv
Now, we have six equations namely (1), (2), (7), (8), (9) and (10) to determine the two 

multipliers Zj, /2 and values of the four variables x, y, u and v for which maximum and minimum 
values of F are possible.

Now, defined a new function V(x,y, u, v) such that
V(x, y, u, v) = g(x, y, u, v) + A f (x, y, u, v) + l2f2 (x, y, u, v).

Assuming thatx,y, u, v are now all independent variables. Hence, for the maxima and minima 
of V, we must have

|^ = |s + /1^ + /a|2 = o
Bx Bx Bx i ox

dv = <k . I > , M = 0dy dy ‘By 2BV °

Equations (11), (12), (13) and (14) are exactly the same as the equations (7), (8), (9) and (10). 
Hence, the maxima and minima of V(x, y, u, v) are same as those of F(x, y, u, v) assuming 

that V(x, y, iu v) the variables x, y, u, v are now all independent.
Now, we proceed to find whether the values of F obtained with the help of above equations 

are maximum or minimum. For this, adopt the procedure, which is discussed below.

-(H)

...(12)

-(13)

and -(14)

* •
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From (3), we get

'f*A + f*d2v + f1rf!., + tVv
dx ay ' au dv

{* , w u. 8
T/IX^Tydy + ^

ar/2F = ...(15)du + r- dv g +
Bv

Also

a , a , a , f .2 ^/t ,1 8/i .2 ^/i ,2 n■r- rfy + — di/ + t- rfv /. + — r/ x + — d y + -r- d « + -r— d v = 0 
By Bit dv I dx . dy du dv

B i') f .dfi 2 5/2 2 3/2 ,2
■r— dv A + t- d x + ~ d y + d u + dv J~ dx oy du /

Mutiplying (16) by /j and (17) by /2 and adding their sum to (15) and using the result (11), 
(12). (13) and (14), we have

rBd2f\ = t- dx + ...(16)ax
aif. Fr (d , b J a 

and d~f2= ^^-^dy + - d2v = 0. ...(17)du + dv

a V
a» ^ + ai^ ^^ + + /2^

d2F = f^-dv + ^-dy + v-
3x By

x2
= dx +-^ dy +du + ~- dv V 

ox oy ou ov 
\ y

= dV.
Hence d2F is equal to d2l/. where d2V is obtained by assuming all the variables x, y, u and v 

as independent. Therefore, it is clear that dV and d2F have the same sign. Hence, F will be 
minimum or maximum according as V is minimum or maximum.
REMARK

> This method has the advantage over the Lagrange’s methods that it enables us 
to decide whether the values are maximum or minimum.

SOLVED EXAMPLES
T 0 9Example 1. Find the maxima and minima ofx" +y" + z" subject to the conditions : 

ax2 + by2 + cz2 = i 
lx + my + nz = 0.and

Solution. Here, we have
„ = ,v2 + y2 + z2

where, the relations between the variables x, y and z are given by
ax2 + by2 + cz2~ l 

lx + my + nz ~ 0.
For the maxima and minima of u, we must have

du =■ 0
2x dx + 2y dy + 2z dz- 0 

x dx + y dy + z dz = 0

-.(I)

...(2)

.••(3)and

...(4)=>
From (2) and (3), we get

(LX dx + by dy + czdz~0 
l dx + m dy + /i dz = 0.

Now, multiplying (4) by 1, (5) by /| and (6) by /2 and adding, we get
(x dx + y dy + z dz) + /, {ax dx + by dy + cz dz) + /2 (/ dx + m dy + n dz) = 0 

=> (x + o/|X + //2) dx + (y + W| y + w/2) dy + (z + c/jZ + «/2) dz = 0.
Now equating the coefficient of dx, dy, dz to zero, we get 

x + l\(ix + /2/ = 0 
y + l\by + /2m = 0 
z + i\cy + /2/t =0.

Multiplying the equations (7), (8) and (9) by x\ y and z respectively, and adding we get

...(5)
...(6)and

...(7)

/..•(8)
..(9)and
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Analysis x~ + y2 + z2 + l] (ax2 + by2 + cz“) +12 (lx + my + nz) = 0
M + /[ . 1 +/2.0=:0 

/| = - M.

Substituting for /, in the equations (7), (8) and (9), we get

[by using (1), (2) and (3)]or

hi hm l2n
...(10)x =

cu - Ian
Now from (10) and (3), we get

hi2 /im2 hnT 
au- 1 bu - l = 0cu - 1

I2 2 2'

~JL1 = 0 
CU ~ 1

which gives the maximum and minimum of w = ;t2 + y2 + z2.

Example 2. Find the maxima and minima ofx~ + y" + <; , where 
ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy = 1.

Solution. Here, we have

m
...(H)+ +or

au~\ bu - \

u~x2+y2 + z2
where the relation between the variables x, y and z is

" ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy - 1. 
For a maximum or minima of u, we must have

du = 0
xdx+ydyJrzdz = §.

...(1)

...(2)

...(3)=>
From (2), we have

2ax dx + 2by dy + 2cz dz + 2fy dz + 2fz dy + 2gz dx + 2gx dz + 2hx dy + 2hy dx = Q 
=> (ax + hy + gz) dx + (hx +by + fz) dy + (gx + fy + cz) dz = 0.
Now, multiplying (3) by 1 and (4) by /], and adding, and then equating the coefficient of 

dx, dy, dz to zero, we have

• •.(4)

.t + /[ (ax + hy + gz) = 0 
y + /[ (hx + by + fz) — 0 
2 +A (gx+^ + czJ-O

Multiplying (5) by a:, (6) by y, (7) by z and adding, we get 
x1 + y2 + z2 + l\ (ax2 + by2 + cz2 + 2fyz + 2gz.r + 2hxy) = 0 

w + /[ . 1=0

h='U-

...(5)

...(6)
-.(7)and

[From (1) and (2)]

Hence, from (5), we have
x - u (ax + /»y + gz) = 0

l)
- jc + /iy + gz = 0. ...(8)a -

Similarly from (6) and (7), we get
1/ix+ b-~ y+fz = 0 .-(9)
u

1 ...(10)and gx +fy + c z = 0
V J

Eliminating jc,y, z from (8), (9) and (10), we get
1 ha- — Su

1 ...(IDh b-~ f = 0
u

1
/ c - —S u
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Hence, the maximum or minimum values of u are the roots of the equation (11).
2 2Example 3. Find the maximum and minima of u= x + y subject to the condition. 

ax1 + 2hxy + by2 = 1.
Solution. Here, we have

2 2 « = x + y
where the relation between the variables a* and y is

ax1 + 2/uy + by~ = 1.
For the maxima and minima of w, we must have

du = 0 
2.v clx + 2y dy = 0 

a dx + y dy = 0.

...(1)

...(2)

•••(3)=>
Now, from (2), we get

lax dx + 2hx dy + 2/iy dx + 2by rfy = 0 
(ax + hy) dx + (hx + by) dy = 0.

Now, multiplying (3) and (1), (4) by /| and adding, then equating the coefficients of dx. dy to 
zero, we have

...(4)=>

...(5)a + /] (ax + hy) = 0 
y + /| (hx + by) = 0.

Multiplying (5) by a, (6) by y and adding, we get 
a2 + y2 + il (ax2 + 2/ixy + by2) = 0 

w + /, . 1=0
u = -/,.

...(6)and

[Using (1) and (2)1

Therefore, from (5). we have
a - u (ax + hy) = 0
( A . .a-— x + hy = 0. ..'•(7)=>

u

Similarly from (6), we have
A

•••(8)hx + b - ~ y = 0.
u

Eliminating a and y from (7) and (8), we get
1 ha - —
it ...(9)= 0.

h
u

Hence, the maximum or minimum values of u are the roots of the equation (9). 
Example 4. Show (hat the maximum and minimum values of

u - ax2 + by1 + cz2 + Ifyz + Igzx + 2hxy
subject to the conditions

lx + my + nz = 0 
a2 + y2 + z2 = 1and

are given by the equation
a - u h l8

h b - u f m = 0.
/ c - u n8

l 0m n

Solution. Here, we have
u = ax2 + by2 + cz2 + Ifyz + Igzx + 2/uy. 

The variables a, y and z are connected by the relation 
lx + my + /is = 0

...(1)

•••(2)
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Analysis 2,2,2 ,X + y + Z = 1.
Differentiating (1), (2) and (3), we get
clu =2 (ax + gz + hy) dx + 2 (by +fz + hx) dy + 2 (cz +/y + gx) dz 

l dx + m dy + n dz = Q 
x dxA- m dy + ndz = 0,

For the maxima and minima of u we must have
du = 0

=> (ax + hy + gs) dx + (by+fz + hx) dy + (cz +fy + gx) dz = 0.
Now multiplying (7) by 1, (5) by l: and (6) by /2, and adding then equating the coefficients 

of dx, dy and dz to zero, we get

-.(3)

-(4)
••■(5)

and ...(6)

.47)

(ax + hy + gz) + //, + l2x ~ 0 
(hx + by +fz) +1 + ky = 0

(g-x +fy + cz) + l[n + l2z = 0.
Now, multiplying (8), (9) and (10) by x, y and z respectively then adding and using (1), (2) 

and (3), we get

.48)

.49)
and ...(10)

M + /j . 0 + It . 1 — 0 
l2 = - u

Now putting [2 = - u in (8), (9) and (10), we get 
(a - u)x + hy + gz + l]I = 0 
la + (b- u) y +fz + l^n ~ 0 
gx+fy+(c-u)z + lin=Q.

Now eliminating x,y, z and /j from (2), (11), (12) and (13), we get 
a - u h

h b-u f in
c - u n

=>

•411)
..•(12)
■ 413)

l8
= 0f8

l 0m n

which gives the required maximum and minimum value of u.
Example 5. In a plane triangle ABC, find the maximum value of 

u = cos A cos B cos C.
Solution. Here, we have

u = cos A cos B cos C.
Since, we know that the sum of the angles of a triangle is always 180°. 
/. The variables A. B and C are connected by the relation 

A + f? + C = 7t.

...(1)

-42)
From (1), we get

log u = log cos A + log cos B + log cos C
1— du = - tan A dA- tan B dB - tan C dC.u

For the maxima and minima of u, we must have
du = 0

tan A dA Jr tan B dB + tan C dC = 0. • 43)
Also from (2),

dA + dB + dC = 0.
Now, multiply (3) by 1, (4) by / and adding, equating the coefficients of dA, dB and dC to 

zero, we get

• 44)

tan A + / = 0 
tan 0 + / - 0 
tan C + / = 0

/ = - tan A = - tan 5 = - tan C
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=>

Now from (2), A=B = C = ^ i.e. the triangle is equilateral.

Now to show that the stationary value of u given by 

A = B - C = ^ maximum.

Now, let C be a function of A and regarding A and B as independent variables. 
From (1),

log u = log cos A + log cos B + log cos C
i. d}L
u dA

Now, differentiating (2), partially w.r.t. A, we get

dC= - tan 4 - tan C t--
dA

ac aci+—=o =>3j=-idA
i du = - tan + tan Cu dA

i d2u i fa«^ 
« d2A

- - sec2 A + sec2 C. tt=>
it2'** dA

- - (sec2 A + sec2 C).
dû  = 0.At stationary point dA

d2u = - u (sec2 A + sec2 C)

= - ve for A = B = C = y

71Hence, u is maximum atA = B = C = ~ and the maximum value is given by

fiY

d2A

1ncos —u = 3 2 8\ /
• SUMMARY
• Let f(x,y) = 0 be a functon of two variables. For maxima or minima off{x,y) = 0,- we must 

have
|^ = 0, |^ = 0. 
at oy
^ = 0.^ = 0, then we calculateSuppose at the point (n, 6), dy

i -3^2 L b)' s l dy L. b) dy2 [a, b)

We have following cases :
Case I : If /-/ - s2 >0, then
(i) fix, y) is maximum at (a, b) if r< 0.
(ii) f{x,y) is minimum at {a. b) if r > 0.
Case II :\f rt - s2 < 0, then
fix.y) is neither maximum nor minimum at (a, b).
Case III : If /? - s2 = 0, then this case is doubtful and further investigation will be required. 

• Let fix.y, z) =0 be a function of three variables :
-^ = 0 = -^ = ^, then we calculate the values at {a. b. c): 

dy az
a2/ ■

Suppose at (n, b. c)
dx

A-if a2/
dy2’ B dy2 dz2
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Analysis & £lF = G = H =
0)' dz '

We have following cases :
Case I :f(x,y, z) will be minimum at (a, b, c) if

dz dx ’ dx dv

1 A H G
H B F are all positive at (a,/;, c).
GFC

Case II : /(*, v, z) will be maximum at (a, b, c) if
' A H G 

H B F 
GFC

Case III :f(x,y, z) is neither maximum nor minimum if
A H G

, H B F are neither all positive norfitted with alternative signs. 
GFC

• If m =/(*!, jr2,.....x„) be a function of n variables A-h x2,and suppose that
-Vi,.y2, x-3.......,Xi are connected by k equations :

8\ (^1.-^2.......-0 = 0
82 ....,0 = 0
Sk (-^"b -^2.........0 = 0

so that there are n - k independent variables.
For the maxima and minima of «, we define

A H 
H B ’A,

A H 
H B 'A, are alternately negative and positive.

A H 
H BA,

du du dudu - -— dx i + dx-> + .... -— dx., = 0 
dxndx dx2

$8 dgi=~O.Vi + dx2 + .... +Ox 3x2 3x„1

3s* dgk dgk3x, + -— dx2 + .... +dgk = dx„ = 03xi 3x2 3x„

• STUDENT ACTIVITY

1. Find the maximum and minimum values of xy (a - x-y).

2. 2 2 2Find the maxima and minima of x +y +z subject to the condilons :
ax2 + by2 + cz2 = l 

lx + my + nz = 0.and
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Maxima ami Minima Functions of 
Two and Three Variables• TEST YOURSELF-3

Using Lagrange’s method of undetermined multipliers :
Find the maximum and minimum values of1.

2X \
4 + , 4 + '4

a b c
2 _2

where lx + my + nz = 0 and ^ + ^~ + -^7 = 1.
a b~ c~

2. Find the maximum and minimum values of
/= a2x2 + b2y2 + cz

where x~ + + s2 = 1 and lx + my + nz = 0.
3. Show that the maximum and minimum values of

« = jc2 + y2 + z2
subject to the conditions

2 2
px + r/v + rz = 0 and — ^ + ^=1 

2T 2 1c
are given by

22 iia'p +
2 ,2

it- bu - a
Find the minimum value of4.

u - x + y + z
subject to the condition

a b — + —
x y z

9 ^ ^Find the minimum value of n = x~ + y~ + z~, subject to the condition 
ax + by + cz= p.

5.
1

ANSWERS

The maximum and minimum values of the given function is given by the 
equation

1.

,2 4 / a m b 2 4n c
- 0.+

+ “2 b2u - 1a~u - l
The maximum and minimum values of the given function is given by

c n - 1
2.

I2 2 2m "--0.
2 + 2 +u - bu - a u - c

4. Stationary points are
a- = Vo" (■'/rT + Vt* + 4c), y = 4b (4a + 4b 4b + 4c)

value is (4a +4b + 4c)2minimum
2PMinimum value is5.

(a2 + b2 + c2)

OBJECTIVE EVALUATION
Fill in the Blanks :

For a function J(x, y, z)- to be a maximum or minimum, it is that = 0 and1. dx dy
^0
dz ./

2. In any triangle ABC, the maximum value of cos A cos B cos C is............
If the Lagrange's condition rt - s2 >0 and r > 0 are satisfied then function is 

4* If the Lagrange’s condition rt - s2 >0 and /• < 0 are satisfied then function is
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Analysis True or False :
Write T for true and F for false :

1. The value of the function at extreme-point is always called maximum value. -
2. The value of the function at extreme point is always called minimum value.
3. The value of the function at extreme point is always called extreme value.
4. The stationary value may be a maximum or minimum.
5. The stationary point can be obtained by solving the simultaneous equations

(T/F)
(T/F)
(T/F)
(T/F)

&3y 0’3z = 0.dx (T/F)

Multiple Choice Questions :
Choose the most appropriate one :

If the Lagrange’s condition rt -s2 <0 is satisfied, then the function is :
(b) minimum

1.
(a) maximum
(c) neither maximum nor minimum (d) none of these.

For the maxima and minima of a function u it is necessary that : 
(a)-rf« = 0

The value of the function at extreme point is called :
(b) maximum value 
(d) none of these.

2.
. (c) du>0(b) (d)du < 0.

3.
(a) extreme value 
(c) minimum value 

The stationary value is :
(a) always maximum 
(c) either maximum or minimum 

In any triangle ABC, the maximum value of cos A cos B cos C is equal to :

4.
(c) always minimum
(d) neither maximum nor minimum.

5.
I(a) 1 (b) n (C) 7 (d)0.8

ANSWERS

Fill in the Blanks :
2.41. Necessary 3. Minimu 4. Maximum8

True or False :
1. F

Multiple Choice Questions :
1. (c) 2. (a) 3. (a)

2. F 3. T 4. T 5. T

4. (c) 5. (c):

□□□
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Beta and Gamma FunctionsUNIT

8
BETA AND GAMMA FUNCTIONS

• Gamma Function
• Properties of Gamma Functions
• Some Transformation of Gamma Functions
• Beta Function
• Properties of Beta Function
• Transformation of Beta Function
• Relation between Beta and Gamma Functions 

o Test Yourself
• Duplication Formula 

q Summary
□ Student Activity
□ Test Yourself

»gi^^Mii^ABNiriiG»ipBiUEcnyESlig^sgiM^
After going through this unit you will learn :

• What are Gamma and Beta functions ?
• How to find the relation btween Beta and Gamma functions.
• How to find the solutions of the concerned problems using Beta and Gamma functions^

• 8.1. GAMMA FUNCTION
(1) The definite integral

lo -1 dx. for /i > 0

is known as the gamma function and is denoted by r(/i) [‘read as Gamma /»’]. Gamma function 
is also called the Eulerian integral of second kind.
REMARK

> The integral is valid only for /i > 0 because it is for just those values of m and n that 
the above integral are convergent.

• 8.2. PROPERTIES OF GAMMA FUNCTIONS
(\)To show that F(l) = 1. 
Solution. We have

f -1 dx, n > 0.roo =
Pul n = 1 in equation of gamma function

f. '-'dx~xxro) =

['•■•I’1 dx = = 1

ir(0=i.
(2) To show that r(tt + 1) = /t r(/i), n > 0. 
Solution. We have
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Analvsis i: -1- X IIe xH'O = dx, n>0

replacing n by (n + 1), we have r ,+1 ■1 a“ X fe xr(n+l) =

r — x n je x dx

. (- e J)T - J0 (nxn ') (- e ') dx [on integrating by parts]

/;X* - \<fV'F(n+1) = - lim — + 0 + n 
~ ex

dx .-(1)

v Lim xne 'r = 0asn>0
x^>Q

But Lim — = lim
. _x_ 2l-
1+l! + 2!+/j! + (n+l)!

+ !
-T —>

1= Lim
1 1 1 xX—>®o

x"+'l lx" + ... + — + +...-1 («+l)n !
= 0. -.(2)

Also, by definition, we haver e Xxn 1 dx.m= ...(3)

Using (2) and (3), (1) reduces to 
r(/t + 1.) - n T(n)

(3) If n is a non-negative integer, then F(/t + 1) = n !. 
Solution. We know that for n > 0,

F(n+l)=/i F(n)
= u F(n- 1 + 1)
= /!(/(- l)F(/i-1)
= n (n — 1) (n - 2) F(/i - 2)
= «(n- l)(«-2) ... 3.2.1 . F(I)

= n\.
(4) To show that F(l/2) =
Solution. By definition, we have

[by property 2] 
fby (1)]

[v r(l) = l]

Jo e-'f-Utn>0.n«) = ...(1)

Replacing n by 1/2 in equation (1), we get

Jo e '* 1/2 ^ = 2 Jo e M dttF(l/2) = -(2)

[Putting t ~ n2, so that dr = 2n du]

J0 e x dx and F(l/2) = 2 JoF(l/2) = 2 dy. -(3)

(limits remaining same)
Multiplying the corresponding sides of two equations of (3), we get
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Bela and Gamma Functions2 Jo ^ 2 Jo ^IW/2)f =

oo

-(*1 + vW/y4 c

Now, changing the variables to polar co-ordinates (/•, 0) where x-rcosQ, y = rsin0 
=> ,v2 + y2 = r2 and dx dy = r dB dr we have

.n/2 ,~
4Je = 0 Jr=0 e r rdQdr-

The area of integration in the positive quadrant of plane is given by

j.71/2 p
= 2Jo Jo 2e'r r.dr dB.

Putting r2 = v, so that 2r dr = dv
r n/i4. [--r dB

rt/2

2 Jo 71/2
rf0 = 2 ( 0 ] = 7t

0

these fr(l/2)J2 = it so that r(l/2) = <n.
/:

(log l/y)n"1 dy.x (5)To j/wvv that r(/t) =

Solution. By definition of gamma function, we have

j;. -1"V dx,n>Q.r(n) =

Putting x = log (1/y) in gamma function we getr i

.
-1 (log l/y)n~l dy.(log l/y)n dy =V(n) = -

• 8.3. SOME TRANSFORMATION OF GAMMA FUNCTIONS
Gamma function is given by

rJo xn'le'xdx.r(n) =

n,ii= f e-ayvn-1an u e y dy.(i) Show that

Solution. We have

xn~]e~jrdx,n>0.r(n)

Put x - ay, so that dx = a dy.
When ^ = 0, y = 0 and when x —> », y —)

■f. -1ray(ayr . a dy.r(n)

Jo m.Hence, dy =
an

(ii) Show that
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Aiialvsis if _ w"r(«) = -J0 e~X dx,n>0.

Solution. We have

'V1 1 dx, n > 0.roo =
jc" = t.

So that nxtt 1 dx = dt, then (1) gives
Put

I f l/Nr<'0 = ^Jo dt
i f l/"r(") = -Jo .*'* [By the property of definite integral]

lo dx, n > 0.(iii) Show that r(n) = 2

j;.Solution. We have T(n) =

Put jc = r2 so that dx ~ 2t dt r {rf ~l2tdtr(/0 =

]dt-1r(/0 = 2or

r e-*x2',-x dx.roo = 2=>

SOLVED EXAMPLES
Example 1. Evaluate :

E>f. -Iv—.t 4 jx dx dx. '(ii)(/)

f.-.v 4 j 
jc n.rSolution, (i) We have

f -a 5-1
Jo e x [by definition of gamma function]dx.

= r(5)
= (4) ! = 24.r 2v ••.(I)r/jc.(ii) Let / =

Pul 2a- = r, so that dx = 1/2 dt then

2? Jo c1 P-'dt- I- t
■2d‘-1 =

1 [by definition of gamma function]= ^r(7)
27

1 ^ ,x 45^x<6!)=t
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Bela and Gamma Functions1

.
dx i—= \n.

'l(-logx)
Example 2. Show that

Solution. We know that
1i -i(-logx)" dx.r(«) =

Putting n = 1/2, we have
1L (I/2)~ldxr(i/2) = (- log x)

^=f0 (-logx)~l/2dxor

1
dxor

y(-logxj
Example 3. Prove that

j;-- a2 - p2cos $x dx = ' q> 0(«) (a2 + (32):

Jo -te 2ap ’ a > 0.(b) (a2 + p2)
Solution. We know that

f. n>0,k>0.
kn

Putting /c = a - j‘P and « = 2 in (1), we getr r(2)e-(«-V)*xdx =
(a - iP)2

(« + i&)2-“'e^dx^ 2 as r(2) = 1or
(q - iP)2 (q + ip)

Jo A C q2 - P2 + 2iqp- a* i'P.v je* dx-
[(« + if!) (a - iP)]2

r xe~ at (cos Px + i sin Pt) dx

a2 - P2 + 2iqP
(q2 + p2):

J0 xe ar cos Px rfx +1J0 q-P2 2qpxe ar sin px rfx =or
(q2 + p2)2 (q2 + p2)

Equating real and imaginary parts of both sides, we get

Lxe q2-P2
^ cos pcdx =

(q2 + p2):r 2qpxe a* sin Px =and (a2 + P2)r c r(c +1) c> 0.Example 4. Show that -<£x = V + I(log c)
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Analvsix f rxr
xlc x dxSolution. — dx =

cx r / [e]^rxdx c - eog'c if c > 0]

r
/;Hc+l) Tin)- l - Lxx e dx - n>0, k>0<■+1(log, c) k"

• 8.4. BETA FUNCTION
Definition. The definite integral

j> -1 -1(l-x)n dx, for in >0, n>0

is known as the Beta function and denoted by B(m,n) which is read as “Beta in,n", where 
in, n are positive number or integers. Thus

fI mJo * - I / i \n (1 -x) - 1B(m. n) = dx.

Beta function is also called the Eulerian integral of first kind.

• 8.5. PROPERTIES OF BETA FUNCTION
(i) Symmetry of beta function i.e., B(my n) = B(ny m). 
By the definition of beta function, we have

Jo-" - ] -1{\-x)nB{m, n) = dx

1

,

/•a /•a

Jo-ZW^Jo- ] dx f{a - x) dx

l

{\-x)m~[ xn~x dx

1i xn 1 (1 - x)m 1 dx

= B{n, in) [By the definition of beta function]
B(m, n) = B(n, m)

i.e., the interchange of position of m and n does not change the value of beta function. This is 
the fundamental property of beta function and also called symmetry property of beta function.

(ii) Beta function B(my n) can be evaluated in an explicit form if m or n is a positive
integer.

Case I. When V is a positive integer.
If n = 1, then by definition of beta function

lx -1B(m, n) = dx -d)

fI mJo x -1 (1 - .r)1 ^ dxB{m, 1) =
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Beta and Gamma FunctionslIL S" 1y""‘rfr= — ...(2)//! HIJo
Now, let h > 1, then from (1), we have

1

■LBOn, n)

1 m
(«- l)(I l) — dx.=d-A-r-'.

/M

Integrating by parts taking /” 1 as second function, we have

m Jo= o + - Am(l-A)n"2rtU- [v «>1]

in
-I Xsince Urn (l-jt)"

s-*0
— = 0
m

n-l f m Jo *(m+ 1)- 1 (l - A)

= l,n- 1).m

B(w, ti) = -—- B(rn + 1, /i - 1).

Now replacing m by m + 1 and n by n - l in (3) then we get
- 1 - 1 
m + 1

Using equation (4), the equation (3) becomes
e\

iL—TB(m + 2,/i-2). 
m + 1 v ’

After applying the above process successively, we get
- I /i-2 /r-3

m +1 m + 2 /» + /i - 2

...(3)Thus

B{m + 1, ;i - 1) = — ...(4)B (m + 2, ;i - 2).

5(m,«) = —1 
m

•••(5)

1
B{m, n) - — B(m + » - 1, 1) ••.(6)

m

n- 1 n-2 »^ 3 1 f ^
m + 1 /?? + 2 " /» + /i - 2 Jo X

1 (1-a)° dxm+n-2

Im + n — I/I - 1 « - 2 /l - 3 1 A

m + 2 m + n-2 m + n- 1m + 1 Jo
1h- I n-2 n — 3

m + 1 m + 2 * ’ ” m + « - 2 + n - 1 
n-2 n-2
m + 1 m+ 2'” m + n- 2 m + n - 1

1
m

1B{m, n) = ~—^ 
in

1

(«-!)! ...(7)B(m, n) =
m (m + l) (m + 2) ... (m + n-2) (m + » - 1)

Case II. When m is a positive integer.
Since the beta function is symmetrical in in and n /.e., B(m, n) = B(n, in) therefore by case 1 

interchanging m and n in case I equation and we get
(«-!)!B(m, n) =

n (n +.1) (n + 2) ... (n + in -2)(n + in - 1) 
Case III. When both m and ft are positive integers.
We have, by case 1

B{in, n) =
in (in +1) (in + 2) - (in + n - 2) (in + » - 1)
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Analysis [1 . 2.3 ... (m - 1)1 (/»-!)!
1 . 2.3 ... w (m + 1) (m + 2) ... (m + n-2) (m + n- l) 

Multiplying both numerator and denominator by 1 . 2.3 ... (m - 1) !, we get
(f«-l) !(«-!)!

(m + n - 1) !B(m, n) =

• 8.6. TRANSFORMATION OF BETA FUNCTION
The Beta function

Jo ~]dxB(m, n) = •••(A)

can be transformed into many forms given below :

rJo r
r6 (i+x)

-ix" ~1 dx xm(I) B{m,n) = dx.m + n i/i +nd+X)
1 dySolution. Put x = and dx = - and [v —> 0 when x= 1, y —> when x = 0].

d + y)2(i +y)

C(- \m - I - 1
-dy1 1B (m, n) = 1 -

(i+y)2i+y i +y
-1-i /Ml i .dy .

1 + y' ■m +1
(1 +y)

rJo
II- Iy dym + nd+y)

j a;'1 1 dxB (m, n) = -d)or m + n’ (i+x)
Since m and n are interchangeable in beta function by symmetry property therefore (1) gives

-1xT-B(m, n) = dxm + n(l+x)

/;
Jo n

xn x dx m-ldx
B(m, n) =thus m + nm + n(l+x) (l+x)

n/2I. 2m-1 2n -1 e</e.(II) B(m, n) = 2 6 sincos

Solution. Put x = sin2 0 and dh: = 2 sin 0 cos 0 dQ 
and when jc = 0. 0 = 0,. 0 = n/2 when * = 1.

n/2JJo
• .2m- I 2n - lB(m, a) = 2 0 cos 0 dQsm

jl/2

*
2m - 1 2n-\0 sin 0 d%cos

[by symmetry property of beta function]

1 n -1.71-1 («-*) dx.(HI) B{m,n) = m + n — la
1Solution. Put x = y/a, i.e. dx = — dy
a

and when jc —> 0, then y —> 0, when * = 1 then y —> a.
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Beta and Gnnuna Functions'y,- fa y* n. v
■ynh\ (a%y)"»y 1 dy

<■ ju

So B(m, n) = +»»- 1 JO

I ___r.
+ 1 Jo ^ .

' U'n*'1^ * rfi 9-v 11 '■* moit pif,';/.
%: i *!t ’1 ftif..1 r.j- • /.

1 j„-\
.0 ■

1B(m, n) f 
a" (1 + a)m Jo

x'n~lg -x)ni)dx
4 (IV) i(x+«)!"+5: • •

,(t-i Lv, * *tx
Solution. Let 1 + <7 r + a

Sts dtdx = o (J + a)i. 'ti (t + a)2
then we have i

iI i• ’ .s.111 7 I

.
I *

‘'if i.v
0 -/ n (a + 1)t -1 31*:flrt
a + t (r + a)

.‘'-i

dt.m + n
{t + o)

;
r Amfi=«"(i+arj0 i

’ ^ AX3^+a aaa

-1(?-W dx

f>
Jo.^'(A-•+«)"'+ ', ';

-I -1(l-*)n«) r dxHence. . J.4 I li.j■•j

■r/n + ;i - 1
(V) //(m,«) (fl - *) f

f - bSolution. Put i f r'i .Ol.5 ^ U *tx = Ia-\b
dtdx =so that 1a - b

Put all these values in the formula of Beta function, we get
t

. ■* *
srt - It(sn? di--1

B(m. n) = « 7:

l"m + »j - I Jb

'.in1 (dzt)n~]dx-1(t-bf:St

(a-b) >

; tr(a-b)VrlJh
i (a-x)""1 At 

« , - r;- v * '

-1.(x-b)m
* T f i' f .I ,

j; (n -x)n~l dx 
\l. I r

-1HI + M - I (x-A)'"
n .. ?
it1 /

(1 -x)n'\dx

B(nt. n) (n - b)
I I

fV
Jo

\-11 .s .x ,!qn:u/ ta„6™ *'">«>= 

Solution. Wc put

J-(VI) •• V'
m + n{a + (& -fl)x} t <\

4 ^ j

a b— -a-b.v x
a + (b-a)y- = - + (/,- rt) = 

x y ( ^

by ...(2)a: -
o + (6 - o) y
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*- r
.Analysis. , . u) xdiJcIo?-J. >~-Y-|e-<^>'*.

Inicgraiing both sides with respect to x within^Iimits^: = 0 to x = «, we have'1

-1i~ ml n .x

»rrJo Jo
u

111-1 +' ni - 11 / rf.r =r b - >a tl ...(3)

fJo
; if(/i + /») i^{/i + hiJ^I c~{y+l)xdx^ iBut m + n(!+>')

Hence with the help of this result and (2), we get from (3)

y-'i:r(i.)r(ra) = J i
'dyT(n + m) n + m0+v) II

f-iJo 0+y)?= r(/i + in) dy = r(/i + m) /J(/», /i) y« + m

1row) m •0(»t. n) =or r(» + m)
Cor. i. r(/or(i-/t) = -^ ■ ■1• where 0 < /t < 1.

sin /tTt i .
. • t

Proof. We know that =rJo
t 1B(«i, /t) *, ,m >0/7t>0.m + it(1+Jf)

Therefore the relation between beta and gamma functions becomes

l» , ' rj
Jo (J+jr)

Taking m + /t = I, so that /» = I - /j. wc get

/"'r/x ' - I«<* 4'* .v r(m) r(/>) *
r(/» + /j)m + /i

I"Jo l+.r
-1 ro-;i) roo

‘HD-* is.

dx = • 0 < /» < 1.

«i > 0 => 1 - /t > 0 /i < l Also n > 0]

i

But we know that

-Jo l+.t

- Iy .,,71^.c:: and r(l) — 1. <*dx -
sin /m—

rv 1
sin an

Cor. 2. To show that r(!/2) = VrT. . 
Proof. We have just proved that

i»r(a-i.) = -^L-
sin nn

.i

Putting n= 1/2 in (1). we obtain

r(l/2) P(1 - 1/2) =
. v ; ; sin n/2

[r(i/2)]2 = 7t 
w r(i/2) = V7T.

- u, «•

1• *•
L

yt 0 ...d)
i ?*rsi a .7.. .T»'n4\

^ dV
or

-t .1’i tt.'.
r«i T/iAlitcr. Wc know B(m, n) = • 

Putting m =/i = 1/2 in it. we get 1 „r(/H 4- n)
. i

W .

ni/2) qi/2)_ {r(i/2)}2. 
r(i/2 + i/2) r(i) *5(1/2, 1/2) =
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1 Bern and Gamma Functions4{r(l/2))2 = 0(l/2,1/2)or

■O-^dx- 1/2

11 dx.
V7 Vi -x

■ .11/2 

'r Jo
r^/2

= 2Jo
= {(r(i/2)}2=H r(i/2) = ^.

2 sin 0 cos ddQ putting x = sin2 0
in 0 V(i - sin2 0)■\

n/2
= 2 (n/2) = n^0 = 210]

o

2
Cor. 3. To show that

. \\ \J. 4. e > . rfy , putting .t2 = y,2x dx = dy1 fixProof.
2Vy

1/ ‘ * »= lf
2 JO c "

- 1/2

j-4,
f.1 fx.xn ax = rn= 2r<1/2) 

-ivsr
-x fijr = ^Vn.

[•.• r(i/2) = ^n)

i-
Cor. 4. To prove that

■ rMrfen/2IJo cosm 0 sinn 0 dQ =
rn + n + 2*1 > •»

For all values of m and n such that m> — l,n> ~ l. . 
Proof. We put

sin2 0 = x, 
2 sin G cos Q dQ ~ dx

2 sin 0 . ^(1 - sin2 0) dB = dx 

2x,/2 Vl^TdQ = dx

=>

=i>

dx
^0 = —iH2xl/2 (I -x)A1/2

V *

when 0 = ti/2, x - I and 0 = 0, x = 0.
Putting these values in L.H.S. of the given equatibnV we get

rt/2
cos'” 0 sin" 0 d6

»Mn(W/
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Analysis
!*. •, '» I . t ;

, I -5/6 , (tx = -.y^ _dy.

/=4
So that Jifli>t I"6 Jo

1/6
y ■ y 4y il,+ y*

Ita) tin)5 \ I l;I"6J0 i+>,
• .•>

- 2/3 f 11
dy avid v.V (i) .iioiltilo?

i■i i.

6 Jo
1 - • t) “•i.

^ = 75(1/3,2/3) ^
1 1.

2/3+ 1/3 6(1+/);
^ ' _ r rg/3) m/3)1; i rg/3) ni -1/3) 1 n

6 r(l/2 + 2/3) 6 ’ FI 6 . TI
.. sin

I

r i

3l,1 'i -‘

' n• •.• r«ni-/i) = -
::

' , f^fto Vti = r<. taJ .bodi l/ tal
sin nn■ ■ Hu.: iv

1-271•71 ,'1.

6 (^/2) 6 Vf 3VI
^■ir, •

(8--i3j-,/3 iJf2Example 2. S/ioiv that J0
►

2ftdx = 3VT 4 . • »>
Solution. Let x3 = 8r, then a: = 2r!/3.

cix=3t

and when x = 0 tc * = 2,7 = 0 to 7 = i. U '1 i 

\(&-x3yl?dx =

I "v(t 7
C r

i) ^i >

.. iI -2/3 dt.i
J

ol r

i I j(8-80"'1/3.-I^^
Jo. '' \v i. f:/ ifi i" 

3 Jo ‘

‘.a
i - Sv'

9,7“ rt .l -/■ , bnli* r. r-

(i -./) dt
i .

*b jIw 01 .* 8 r.oD « x if 'j it .

rA.1 M-'dtt
~iS 1 • l X 7/ '/

• :*rx*;
* .

p-»i . 3
ij

>
i 1 2

= tSi I3 ’ 3 .33 <S -£, r. . > -* ^ ^1. /HH)
. i -J -■.« w v: • • U, iriir'-i)-i

. 1
;3'-'v-Lr ihdi

i

(LM 4 !/i —
sin.? (!

/ - t A.3^3 r
v \»- f

3-v- .-M
V '-‘M K '• TEST YOURSELF-1 ^

! ■ i • n
1. - . Show that

'SVrf ' '' 
• 128.'

-i*xi/2dx =

■ •- f 'i;

Show that

»vr

L< x2 2 , VtT 
.xdx = —

* ■■

2. 14 - -
/ <rhf1 :;/in . ' • •-%

# * tdx .% i.
3. Show that

V(- log ^:) '
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I Beta and Gamma Functions-11 iT Hm)-14. Show that log-
X

dx = m >0, n> 0.
nm

1/4

i(i-) dx = B (5/4, 3/4) = —r5. Show that
2^2

• 8.8. DUPLICATION FORMULA

To prove that r(«) T(n +^) = - 

Proof. We know that

F(2«), rt>0.2/r-l

r(«i) Un)B(m, n) = where m >0. n> 0. •••(I)f(m + /i)
Now putting m = n in equation (1), we get

frwi2
B(n, n) = •••(2)r(2n)

By definition of beta function, we get
l-i l”-'(l-x)"-'dx.B(n, n)

Putting x = sin2 0 so that dx = 2 sin 0 cos Q dQ in (1), we get
71/2I (sin2 O)"*1 (1 - sin2©)"-1 . 2 sin 0 cos 0 dQfl(/i, /i) =

/•w/2

2 Jo (sin 0 cos O)2'1 ’1 dQ

\2n - I<• 71/ l / v2 Jo fr5 dQ

.n/2 

2^-2 JO
1 •2/1- I 20 dQsin

f22n-2 JO
1

v 2
By putting 20 = 0, ^sin2""

r
22/i-i Jo

/1 • 2«- t 0 C/0sin

71/2
1 •2/1-1 0 t/0sin22n-2J0

2a 1°Jov J0 j[x) dx = 2 J{x) dx when/(2fl -x) =fx)

71/2f
22/'-2 JO

1 • 2n- I 0 (COS 0)° (f0sin

1
22n - 2

2/i — 1 +0 + 2
2
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• ^ as r(l/2) = V7T.
22',“l r(n+^)

rAnalysi.s- 1
B(«, n) =

Equating two values of n) given by (2) and (3), we obtain

[I»]2___1 H/Q Vn
r(2«) "a2” -1 ir(n + ^)

Vit"IF(/0 r(»+^)-- r(2n) . -(4)or • it2/t-l

SOLVED EXAMPLES
Example 1. Express F(l/6) in terms q/T(l/3). 
Solution. By duplication formula, we have

VjTr(«) r(/t +1/2) = - 
2

Putting « = 1/6 in (1), we get 

r(i/6)r(2/3) =

r(2«) ...d)2tJ- 1

ylnr(\/3) >firr(i/3)=> r(i/6) = ...(2)2/3 2" 2/3 r(2/3)2"

Also, we know that

roo r(i-«) = —
sin mi

...(3)
'i

Putting n = 1/3 in (3), we get

T(l/3) F(2/3)= . 271/^3. .
sin (7t/3)

271
F(2/3) =

>/3 F(l/3)
Substituting the value of F(2/3) given by (4) in (2), we get

Vn.r(i/3) VTr(i/3) . V3 r[F(l/3)]2F(l/6) =
2tc2/3 21/3 VtT2“

r. 7t o .cos — x~dx =

1 2 ,— Ttx ax.
2

1 2Since cos — 7tx is an.even function therefore (1) gives

1 2 iCOS —7tt ax. 

and dx = (1/2) r

Example 2. Prove r/iat 1.

\ r̂ — do
Solution. Let ,/ = cos

fJo •••(2)/= 2

Putting *2 = f so that x = t - 1/21/2 rfrthen equation (2) reduces to

£ 1 1 - 1/2 dt1 = 2 cos - TO . - r

i: F(l/2)1 1 711/2- 1(0 cos —.nt(/t = cos1/2 2 2(7t/2)

Jo •... F(m) 1W7T 7t
cosHere m=—,b= —cos bx dx =

bm

Vti"F(l/2) . fl n\ 1
cos1/2 2 ■ 2 VtT/VT Vf(ti/2)
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Bern and Gamma FunctionsfJO
_ r(/» h- i-Kj^/iTn

r. : r¥\
COS (bx]',’') fix ^r.Example 2. Prove that ‘ •> ut t i,K bn

. iirn'1' >t rr' 'l' vrI'qiXl

- * h(n, i-r cos>{bxUn)dx: ■ ,«ifn , -kSolution. Let -(l)I

Putting jr = /^ so that dx = «/"“ rfr the (1) gives YTJVITOA TM3;aUT8

-T n ro«) Ml n it v/oYlcos (/?/). P~] dt =/ = /! .« cosT
1. * 45- •

*
c Vr,• <

roi + i) Ml
COS —-

2/;n t

lJ Icoj (/^l/") r/t ~ -7 r (/«+1) co^ «7t/i.Aliter.
b2

l/nSolution. Put 
So that

1-xz
b

dz - nx" ” 1 dx.

, r* Jo rJo
cos (bzl/n) dz - cos (/>x). /lv" ~1 dx

n xn ~ \ cos (bx) dx
Jo

l
s

pJo
- fc.ri xn~idx’ '= real part of «

-r(/Q. 
(W)fl 

«r(w)

= real part of h t

1

(cos V2 + / sin n/2)~n ■= real part of
it ;rpi+o «7t U71= real part of cos —ir/sin —

bn
> ft 1

i= — r(/i + 1) cos (mi/2).
bn

• SUMMARY
Gamma function :

PJo
1

-■'xn''dx, n>0?(/;) =
t

Also, (i) f(i)= 1
(ii) r(n + 1)=: n ~
(iii) f(/t + 1) = n ! « is a non-negative integer

(iv)
►Beta function :

PJo
-1m- 1 (l-x)n dx, m > 0, /t > 0B (in, n) = 4

t

Also (i) B (m, 11) = B (n. in) 
60 jf-'t/x 1-1

Jo (J+.r)
A*"

dx(ii) B (m, n) = hi + n m + n0 (1 +x)
71/2rJo

2;i-l2hi - I G sin 0rf0(iii) B (m. n) = 2. cos
1
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Analysis ANSWER

Fill in the Blanks :
.. i. i

True or False :
1. T : 2; f 3. T -

3.2. n ■. ■ - j^~r” fT (k)' I wof!2 .1
/

Multiple Choice Questions :
: l. (b)

i

-■'V r-

■2, (a) • lr :h .S* . i . c —
- 7*rv-n*i □□□1xbr

’c^.J '"r.;d2' -'J
'S -1)/

:"f^on‘A.UiAV' r^To-? .
J ;i« ni

.............-(in
...... »Vi'i

.1
;,f<^ /v,ri

i;

: v n
v ♦

r r :. * “I 10 c'ijiT
: <dr^^r.:*.:7 :cl rV bne sinT i, V*V* • *»/

.oni:r Jci'i‘1 ! j wii'r.-t0! ./'“TloHca 6^.“ r.i • , .1c '.V'
rwt)

•6‘ X ’f';•! •r- ~ T -’fi.

F\y.l. <<
i..:ss.T3i.vJ* ‘ :j 1 *

'd *-“oi ,*.»*

: onoltsouO co'odO c'qilluM
• ; t?om srt, v >c.'3

n t.) 3u! ;v iiir
Jb)

Jt> Id;

J-
if .

.1

i>•
I
f
»

• <«

s.ri-M v ’ ■:

- ‘.U) 
•. i ‘^ «

'■■r;: : d 'i u 

tn .di

’: *"..Lri. (i -i : i ':r.yr:: ■■■■ nidi ';,' .1• r- r .

i\t + u). ♦

. I
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Multiple IntegralsUNIT

9
MULTIPLE INTEGRALS

Double integrals 
Properties of a double integral 
Evaluation of double integrals 
Applications of double integration 
Triple integral
Dirichelet's theorem for three variables 
Change of order of integration
□ Summary
□ Student Activity
□ Test Yourself

After going through this unit you will learn :
• What are double and triple integrals ?
• How can we use these integrals in the application of concerned fields such as areas; 

surfaces and volumes
• How to change the variable to other variables ?
• How to change the order of integration ?

• 9.1. DOUBLE INTEGRALS
Double integral is an extension of a definite integral in Y 

two-dimensional space. Let/(a-, y) be a single valued function of 
x and y, bounded and defined in the region R of XT-plane. Let A 
be the area of region R and let R be divided in any manner into 
n-sub regions «[, a2, . ., ct„ whose areas are 8ji, •••» 5jn 
respectively. Let pr(£r, T|r) be any point inside the region

Let Bn= Z jar) 8sr then the limits of Bn which is
r= ]

assumed to be existed as n —»^ such that every ar —> 0 in all its 
dimensions is known as double integral off(x, y) over the region 
R and is denoted by

vYO

Fig. 1

J Kx,y)ds
R

JJ j{x,y)dxdy.
R

or

Hence, the area R is called the region or field of integration for the double integral and ds is 
called element of area.

• 9.2. PROPERTIES OF A DOUBLE INTEGRAL
(I) When the region R is partitioned into two parts say R\ and /?2 then

JJ fb,y)dxdy=\\ /(x,y) rfy + JJ f{x,y)dxdy.
R /?) Ri

Similarly,\we divide the region into three or more parts.
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Analysis (II) The double integral of a algebraic sum of a fixed number of functions is equal to the 
algebraic sum of double integrals taken for each term separately. Thus

II y) +fz(x, y) +fj(x, y)+ - ■■] dx dy
R

= JI /i(^ y) dx dy + JJ f2{x, y) dxdy+\\ /3(j, y) dx dy+ ... .
R R R

(III) A constant factor may be taken outside the integral sign. Thus
II y)dxdy = m JJ j{x, y) dx dy

R R

where m is a constant.

• 9.3. EVALUATION OF DOUBLE INTEGRALS
(i) Over a rectangular region R. If the region R be given by the inequalities a<x<b, 

c<y<d, then the double integral
pb pd fib fid
U,: fix,y)dxdy=}a J,IL f{x, y)dxdy = Ax, y) dy dx. ...d)

rWe first evaluate f{x, y) dy i.e., integrate Ax’ y) with respect to y regarding x as constant

and then resulting function of* is to be integrated with respect to * between the limits a and b
dfib bIL ITAx, y) dxdy = Ax, y) dx dy. ...(2)Ax, y) dxdy =or

f J[x, y) dx and then integrate with respect to y.Here, we integrate

(ii) Over the regions which are not rectangular. Let the region R be described by 
a<x<b and 4>i(x) <y < so that y = (^(x) and y = ^(x) respectively, the boundary of R then

\lf{x,y)dxdy = \a J( h(x)
Ax,}’) dy dx.<M*)

h(x)
Here, the inner integral Ax, y) dy is integrated first

di (-v)

and in this integral the result of integration is a function of x, say 
(j)j(x), then <j)i(x) is integrated with respect to x between the limits 
a and b to obtain the value of double integral.

In a similar way, if R can be described by
c<y<d, (j)3 (y) < * < <t>4 (y)

•A"

then we get
\ $4 0)Hff. Ax, y) dx dy = dy.Ax, y) dx

Here, the result of integration 
^4 O’)i Ax, y) dx. •A"daCv) O

which is evaluated first, is a function of y say 02 (y), then 02 Cv) is integrat«ig.\8ith respect to y 
between the limits c to d.
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Multiple IntegralsWorking Procedure. While evaluating double integrals, first integrate with respect to variable 
having variable limits and treating the other variable as constant and then integrate with respect to 
variable with constant limits. In case the limits of integration of both the variables are constants.

; 1SOLVED EXAMPLES iK

f2ry/2
Jl Jo )Example 1. Evaluate

’d \J „

Solution. We have
riey/i

Jt Jo

ydydx. * t-•r. K*

r2'V, \2ydydx=h*.y [x)y/2dy = "■ i T ,|)u'ri .

0

i f 2if'-2 Jt
f * 1 4(23'i3)

= •7/6.-

]Example 2. Evaluate ^ dx dy.
. * .. ' ‘-.I..Solution. We have

i* 2 exf f dxdy
Jt Jo ^ +

x
. 1 ,r '■dy dx;«

l• l.;
* ■

« 1

j — (tan" 1 V- tan-1 0) dx

ft'og^

[log 2 - log 1] = I Tt log 2. 
4 ' T 41>

xdxdy.

— tan lov
I ^ '

2

I
c

fl
n I ,7t 
4 Jl x

[■

*2 ex/2

Jl Jo
y/2

Example 3. Show that
\ .f» ‘qr: t J 1

y dy dx =
7 ■»

• Solution. • We have j r-

Jl Jo

' b'-.. rr: • i

-t-r- J '■ •.

ydydx - t j-
if: ■; -•• * n ?:• ‘1.1

ijV
i'j; j;y [x)>/2 dy = >> [y/2 - 0) dy

o

j: 1 71
=2

j.2 "|.x/2

Jl ^ Jo

6
*2 ex/2

JiJo dx +xdxdy-Again

r x/2
x [y] dx

o

p2

=li ^[f-0 *
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Analysis

6 14 24 56

• TEST YOURSELF-1

L (x2 + 3y2)dy-i. Evaluate

2fi^4+x2

f fJo Jo
dx dy2. Evaluate

(4 + a:2 + y2)
[K/2 (>k

Jo Jn/3. Evaluate cos (* + .y) dxdy.

2^2x-xnJo Jo4. Evaluate x dx dy..

1 PXIT
Jo Jo ef/x dx dy.5. Evaluate

f fJo Jo
dxdy6. Evaluate

Vo-r) (1 -y2)
Evaluate JJ e2* dxdy over the triangle bounded by x = 0, y - 0 and j+y = 1.

Evaluate {} sin (x + y) dx dy, where p is a rectangle [6 <x< ti, 0 <y <ti/2]. 
p

(xy + e*) dy dx.

7.

8.

9. Show that 1

10. Evaluate J{ x2y2 dx dy over the region bounded by x = 0, y - 0 and x2 + y2

x2 y2
Find the area of the ellipse — + ^ - 1 by double integration.

12. Show that by double integration that the area between the parabolas y2 = 4ax and x2 = 4by is 
(16/3) ab.

= 1.

11.

ANSWERS

22 2.-^log(l+V2) 4!1. 3.-23

6‘ 4
1 ?• g (e _ l)2 (2e + 1)5*2

21 4 3+ e - e8. ti-2 9-t 10.71/96 11. nab

• 9.4. APPLICATIONS OF DOUBLE INTEGRATION
Double integration is generally used in area of curves, y 

volume and surface of solids of revolution.
(a) Area of curves. Let AD be an arc of curve y =f[x).
Let area ABCD be divided into sub-area by drawing lines 

parallel to X and Y axis respectively such that distance between 
two adjoining lines drawn parallel to /-axis be Sx and those drawn 
parallel to X-axis be 5y.

Let P(x, y) and Q(x + 8x, y + 8y) be two neighbouring 
points on the curve AD. PN and QM are the co-ordinates at P 
and Q respectively. Then the area of element shown by shadded 0 
lines is 8x 8y.

D

A

x = b
x = a

•XB N M C

Fig. 5
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Multipit IntegralsTherefore, the area of strip PN
fo)

dx dy where y - f{x).
>- = 0

The required area
r/> pAx) 
Jx = a Jy = 0 dx dy.ABCD -

(ii) We can find the area bounded by the two curves 
y = /, (j:) and y = f2 (-c) and the ordinates x = a and x = b

/i (x)
B=f 1 dx dy.y =h M

dydz(b) Volume of a solid. Consider the area dy dz on the 
plane* = 0 through each point on the boundary of this small 
area. Draw the lines parallel to X-axis and thus construct a 
small cylinder whose base is area to X-axis. This cylinder 
cuts the given surface, and volume of this cylinder

= xdy dz-
Volume of solid ~\\xdydz.

REMARKS

•A'AO

Z
;■

Fig. 6

By considering area dx dy on plane z = 0 the volume of solid = J| z d* dy.

By considering area dx dz on plane y - 0 the volume of solid = y dx dz.

(c) Area of surface of a solid. Let the equation of surface be z =/(*, y)- Consider a point 
P{x, y, z) on this surface surrounding this point P. Consider 
an element of area 85 of the surface. Let 5* Sy be the projection 
of this area 8s on the plane z = 0, then we have

Sx 8y = 8s cos a

where a is the angle between the tangent plane to the 
given surface at P(x, y, z) and the plane z = 0 then by 
co-ordinate geometry, we have___________

>

>

Z

Pix.y.z)
hC

•X

VyiiHil2-
....(2)sec a =

Y
Fig. 7From (1) we have 5^ = 8* 8y sec a

4-iiHt)2-
= 8x 8y [From (2)]

/.the required area of surface

-JN \2 \2~dzdz dx dy.1 + +3* 3y

SOLVED EXAMPLES
2 2

XExample 1. Find the area of ellipse — + ,
a* b~

2L = 1.

Solution. Required area of ellipse
= 4 (area of quadrants OABO of ellipse)

Ax)4r 1Jjc = 0 Jy = 0
where y ^ V(a2 - *2)dx dy,
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Afirt/v.sis
4j [yf'dx = A

•'U Q fJo
BKx)dx

A
ra 0

- x2) (Lx

/ \-y74/; 1 
- * 2 A

= — [0 + n2 sin~ 1 (J)] - — a2 . f = a/^Ti 
a ' a 2

Example 2. E/'/jrf the whole area of curve a2x2 = _v3 (2a - y). 
Solution. The shape of curve is shown in fig. 9. The required area 

= 2 x area OAB
r2a *f(y)

2L.=o'L=oclydx

Fig. 8
a 0 •v y-1

V2a 2.3/2• where x=J(y)-i.e., x = y 

/. the required area

is equation of curve.
a

2a21 ,Vr t^v) J [x] dy O
v = 0 0

2a '= 2l Ay) dy Fig. 9

2/7 . 3/22 Jo v2a-y Via - y.V 3/2— <•(> ••• Av) = -v = ya a

y = 2a sin2 0 
dy = 4a sin 0 cos 0 d0 

_v ^ 0, 0 = 0 
y = 2a, 0 - 7t/2 

l> n/2

-a Jo

Put

at

1;

(2a sin2 0)3/2 v(2a - 2a sin2 0) 4a sin 0 cos 0 d0Required area

71/22 fJo sin40cos20d0= 32a

32a2 F(5/2) r(3/2) '
1. 2 T4IT

32a2.3/2 . J/2 VtT 1/2 VtT
= Tta2.

2 . 3.2 . 1
3* and 4v = .v2.Example 3. Find by double integration the area between y =r

(xZ + 2)
Solution. We have

4y = a-2. 3x
y = (x2 + 2) 

4y = x2
t

12.r=> 4y =
(x2+ 2)

12a-2 => a4 + 2a2 - 1 2a = 0

=> a (a3 + 2x - 12) - 0 
x = 0. 2.

=> A
(A2+ 2)

’i
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f 2 p 3x/(x2 + 2)

J.v = C Jv = .r2/4
Multiple Inh'f’rnls

Required area = fZx dy

f [v] <iv

f 23at .v
4 ^

a-2 + 2

3 j _2a dx 
o Jo -.2 4 1 -v2*1

A +2

f[.og^ + 2)J-|^T
Jo

I [log (6)-log (2)J-i(8-0) 

3 9 1
2,0»3“f-

Example 4. Fmrf the volume bounded by co-ordinates planes and the plane — + - 1.
a b c

Solution. The plane cuts X, Y and Z-axis at point {a, 0.0). (0. b. 0) and (0, 0. c) respectively. 
The surface ABCD of co-ordinates planes will be equal to c (1 - x/a -y/b)

pa f b ( \ - .x/a) pc (\ - x/a - y/b)

Jo Jo Jo dx dy dz

p a p b { \ - x/a)

Jo Jo ---r dvdx 
a b

pa pb( \ - x/a)

c Jo Jo dydx
a b

1

^ -^(I -x/a)
A' V

dxy-/-y-u
jo

jcV 1-.b 1 - - -4rb2 l-~ dx = — abc. 
62ba a

• TEST YOURSELF-2
1. Find by double integration, the area of the region enclosed by curves

2
(a) v = 4a- — a , y = x
(b) (a2 + 4a2) y = So3, 2y = a and a - 0

- 4y = a2.

2. Find by double integration the area included between the parabola x2 = 4ay and the curve

3a
(c) y =

(a2+ 2)

8«3
y •-

(a2 + 4a2)

ANSWERS

(a) =| fc)|log3-| 2. \2nrf\a2(b) (n-l)a21.
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■Analysis • 9.5. TRIPLE INTEGRAL
Definition. Let f(x. y, z) be a single-valued function of the independent variables x, y, z in 

finite region v. Divide the region v into n subregions 8v|, 8v2, 8v3,.... Let P be any point on the 
boundary or inside.

Take a point in each part and form the sum
= s* =Axl,yl, zi) 8vj +ftx2, y2, z2) 5v2 + ... +f{xn, yn. zn) 8v„.

= 2 far,ynZr)&vr -(I)
r= ]

when n tends to infinity. The limit of sum (1) tends to zero is called the triple integral of function 
fix, y, z) over the region v and is denoted by

Jlf M y. z) dv
V

the triple integral can be utilised in evaluating a number of physical quantities like,/(^, y, z) = 1. 
We find the volume, V = JJJ dV, and putting^, v, z) = p

V

JJJ pdV.
V

we get, mass =

Evaluation of Triple Integrals :
The region v divide into elementary cuboids by drawing 

parallel co-ordinate planes. The volume V can then be considered 
as the sum of a number of columns parallel to z-axis extending from 
the lower surface of V say z = Z| (*, y) to the upper surface of V say 
^ (^, y) the bases of these as column (only one column has been
shown in fig. 10) are the elementary area 6sr Which cover a certain 
area S in x-y plane i.e., plane z = 0.

Summing up over the elementary cuboids in the same 
column first and then taking the sum of all such columns we can 
write

Z = Z2 (x.y)

i!i!
i! i!
'! '! ?~Z](x,y)>•
i!

• i!

i!
ii

i!
i'

'tJS'l2 fixn yn zr) as S [X/fo, yr, zm) 8z] 5^r
r = 1 m

where (xn yr, zr) is a point in the mth cuboid.
When 8Sr and 8z tend to zero this becomes equal to

fp rz2(x,y)
JJs Jc = Zj(j:,y)

Fig. 10

I

Ax, y, z) dz ds.

(a) If the region Vbe specified by inequalities 
a < x < b, c < y < d, e < z 
then triple integral i

Ja Jc Je

:■E f(x, y, z) dx dy dz = Ax* y* z) dx dy dz

*b fid fif

Jfl ^J(: dy]eAx,y*z)dz.
\.

Here we integrate first with respect to z keeping .t and y constant and then the remaining 
integration is done as in the case of double integrals. \

(b) If the limits of z are function of x and y and y as function of x and x takes the constant 
values say from x = a to x- b then

!■

pb ry2 M |*

l, dxSy,(x} dyl
Z2 (X, y)E Ax* y> z) dz.Ax, y, z) dx dy dz = (x, y)

The integration with respect to z is performed first regarding x and y as constant then integration 
w.r. to y regarding a- as a constant and then integrate w.r. to a. 1
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SOLVED EXAMPLES VViltliy■I i Multiple Integrals
*f'f'f'y,

JoJ/Jo X(lydxdz. I I •IIExample 1. Evaluate •*

Solution. We have •'1 n * *

' ‘-U; w 5.
?(z) x dy dx[

o
irr •.*./ *■ Vfil-

v2lx(l “ ^) dy dx

l
J [isJO. 2 ■

ii• -ip
• 3 i

j (x - .v2) dy dx • dy
'-Jv2

<• J i_n
Jp 112 3 IJ/ - 3-v''il'y v '2

/j

lr\t( i1 1 ^ i &L (g-JV+JV «.= ■i« J£L. 5;, _L 7
6ri0^!21'U-' ■ ^lq - •' I

i__L _L = A6 10 + 21 "35 ■ .hmlu'or.

1 ]Example 2. Evaluate
Vi 2 v. 2I' f " f 'J.v = 0Jv = 0 Jj

' 2- y
■ryz dx dy dz. -c = 0

i

lSolution. The given integral
Vi 2vl -jr V, 2 »2\^l -.r -ylv = 0 io f\ l r/.r r/y±r21 = xy 2"

/J
"l Vi 1 r2 /» V1 T-T

y = 0
J • *,

f J2 J.t = 0 J'
( ! . , , | |

‘ .ry (1 - a- - y') dx dy ’1.

•
'W.. I ’

,v [>’ (i -j^j-yV^rfyif’ J
2Jx = o Jjy = 0

1 i ' _______ i
’ • v7 2• - Vl'-jr •

= 5Lo'' 1 /I 2\ 2 t '42 0 - *

1 .I I.1I•J 1

= ilo 'r i (!_/) (!_/-)-I (1-.VY dx
r

.if2J0 'l|^2 4J (1 — A’2)2 dx
*» 1

r

g Jo ^'V 2 v + ^'V " gi -a-2--V + -v6 
8 2 2 6

1
JO

1• * ,_i JJ

gl 2 48
\ is ~ "j”

Jo Jo Jo
fc,t

dzdxdy.Example 3. Evaluate

Self-lnslructional Material 131



;0j,yAnalysis 'r<m‘dr g3-tSAIHAV ^0 3aMArfn .\/« •
iqfciRtfiity'pdftW* fOiy™ J >'4SW'y(i agncrfa aw arm) 3mo2 JnxnaW

jJ bagntriD yta /Yiiii <V J* ^ Ji 1 - jT-Y a^T .2!ngaiiii alduob arfj bnrl oi <cw immovno'j

mni bannolzncu ei kisaJrii Stlub'b'jA'vi*it i-f/J^A.iV^^Vnoilclyi arf^'lo znsai yd 'i,« 
i *. x” dx m ii ..^Flfn 11#^VI '«) ^11

-L,.» . . Itfi

jJVl
IT/,

r.Mn 9

fftom

= {&} •f - J° l212'^JI Similarly y*' 1 rfy * 6A(l/«, * Jv
prti ni ft noigsi oj l ^ f- ^ J1!^ I51 »dJ 2i 'ft bnc

Hence subject io the cc^ ouion A v + vV^ l, th^pven ik?' tJ

x6
v6 ' m6 - V aTsriwsiv62
t6 ’ vi6

Example 3. By using the transformation x + y = u* y = v’». show that
-1,1-v — ’ III w ^ iUJvd*f f ’ e>-/(xTy)d^^=}_(e_ ^ : otubooci^ QnljhoW

<6 vbTLb j>5W»\o uVO Jo, aftf Afl»i nf{4^2^iQWV^lpiu^ nsrtl y«S y.x a^<v»ft (\j
c . *. W-;-at'A h7»pv» ft aA\bnu <V> >i\> (\)
Solution. We have dxdy = ududvr!, 7 3. .oq nv-•,„,, .-.-aori • : i. l,{ toi* u- - v *^J »?nsnooT ^atssUne-d*}iBloq olsgoen j
Theregion pf imegranonjs bounded bythe lines ; , ;ir /J^0 ^ e

^ y = 0. y = 1-x..v = 0 and -t=l. ^

Changing these equations to new variables it and v by using.the relation

the volume of the ^7 *
= m (1 - v) 06 sb

ind^m-?we have !S “,cndcd 40 til ***&'* xdlaes <* V'r‘ ' *'*- ,
| Putx/o u.y/b = J

C " ^
« (1 v) r J4 ^ ^ ^ nf2 ^ .0aoo*)ft ^

W v = 0tOv=l,« = 0ton=l.Vl

I Therefore for the given region v varies*from 0 to 1 and u varies from 0 to 1 
Jdj-mthe reqifiied vclume^v1
| Changing the"variab(e? to 7/,rv the given rnlegral beebmes ^11 im<1^tnTn^

t^nl^iwiJ V|. i^^bna u = x+t-n^cd pW jioituloS
ev u du dv = ev [«</«.-»* 1 -fby DtnehVaT nte •/. r

■, xfi * - 1 * r

.amdq-v-i

-*■ >.

qpfIT

and
». . giving

Jq-Jo Jo(,>l).. / =

4 ^ *rTR 0v' *1 
(e - e ) u du

jSfb
S 6 r
r' »

a6; i*.*36 
r-2l ~1f n-Jo 

*r («” 0- 
.-JOsr -/nyt'(n/^

1 f.=1Jo,
u6irf-

= (<? -1)

► TEST YOU

VJo
w _' 1. SVw iv~t if du = (e - 1) —~2'

fff 1 r.■ -» j.. j. 
i TEST YOURSELF-5 <w toil j)**ru uu vf?^u

»rwrc ir.j -_ - l xarwroj^-. •> .c pcjrcrtne emp*. t
Avi-

Transform / |rt-') ,/(.r, y) dx dy, by the substitution x + y := w, y = uv.
yu juji £" •'0 vU — , , vur.^. u-ui*m ■>..- To»..fW;,

■ * !»«-•.* J»*^1 ^ ^^ .1 I » — -• • *k* >1* ^ . - +*',*■ ;*itenor
2.-' By using the transformation x + y = «,'y = «v show that *v*,v,

four pljr: , ^ 1/2 dx’dy • • vaftioft ft® ipw '

iy* +V/tjVS^ ,

1.
<. .1 sfqzn&i^T

• v. ;d by

.tsa *n\l

1
3-t. Transfotm thejmeeral.^^. ^ ^

, 1 Y «tol’Vx +>'• .^'<>'^^3
.ritai"- ^ rmol * ■• *. . -ajd? voU

by changing to polar co-ordinates and hence solve it. n 
^ 1 \i*j Jj1 if ' 111

f: 0 moil amv 6 fttT$ bru I 1 - - I V S oini nrj-’

I-17Jo Jo
= Imsafctf ttpvtO ,

1
/ •

+ ‘jlona irfi 
fmspini . . , r; "T

r
j
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