
SOFTWARE ENGINEERING
;

C-124

t

!

Self Learning Material

//

i

Directorate of Distance Education \

SWAMI VIVEKANAND SUBHARTI UNIVERSITY
MEERUT-250005

UTTAR PRADESH

SIM Module Developed by : Bharat Bhushan Agarwal

Reviewed by the Study Material Assessment Committee Comprising:

1. Lt. (Gen.) B.S. Rathore, Vice-Chancellor
2. Dr. Sushmita Saxena, Pro-Vice-Chancellor

3. Dr. Mohan Gupta
4. Mr. Pushpendra
5. Mr. Rakesh Joshi

•Copyright © Laxmi Publications Pvt Ltd

No part of this publication which is material protected by this copyright notice may be
reproduced or transmitted or utilized or stored in any form or by any means now known
or hereinafter invented, electronic, digital or mechanical, including photocopying,
scanning, recording or by any information storage or retrieval system, without prior
written permission from the publisher.

Information contained in this book has been published by Laxmi Publications Pvt Ltd
and has been obtained by its authors from sources believed to be reliable and are correct
to the best of their knowledge. However, the publisher and its author shall in no event
be .liable for any errors, omissions or damages arising out of use of this information and
specifically disclaim any implied warranties or merchantability or fitness for any
particular use.

Published by: Laxmi Publications Pvt Ltd., 113, Golden House, Daryaganj, New Delhi-110 002.
Tel: 43532500, E-mail: info@laxmipublications.com
PEM-2232-62.00-SOFTWARE. ENGG 0124
Typeset at: Kalyani Computers, Delhi
Edition : 2017.

C-00256/04/19
Printed at: Ajit Printing Press, Delhi

\\

, *.■

CONTENTS
Page No.Units

I. Software Engineering

II. Requirements Analysis

III. Designing Software Solutionis

IV. Software Implementation

V. Software Maintenance

01-25

26-52

53-91

92-103

104-128

SYLLABUS

SOFTWARE ENGINEERING

C-124

Unit-I:

Software Engineering : Definition and paradigms, A generic view of software engineering.

Unit-II:
Requirements Analysis : Statement of system scope, isolation of top level processes and

entitles and their allocation to physical elements, refinement and review. Analyzing a problem,

creating a software specification document, review for correctness, consistency, and

completenes's.

Unit-Ill:

Designing Software Solutions: Refining the software Specifications; Application of

fundamental design concept for data, architectural and procedural designs using software blue

print methodology and object oriented design paradigm; creating design document: Review of

conformance to software requirements and quality.

Unit-IV:
Software Implementation: Relationship between design and implementation: Implementation

issues and programming support environment; Coding the procedural design. Good coding

style & review of correctness and readability.

Unit-V:

Software Maintenance : Maintenance as part of software evaluation, reasons for maintenance,

types of maintenance (Perceptive, adoptive, corrective), designing for maintainability,
t

techniques for maintenance. Comprehensive examples using available software platforms/case

tools.

Software Engineering

I SOFTWARE ENGINEERINGUNIT

NOTES★ STRUCTURE ★

1.0 Learning Objectives

1.1 Introduction

1.2 Introduction to Software Engineering

1.3 Software Components

1.4 Software Characteristics

1.5 Software. Crisis

1.6 Software Myths

1.7 Software Applications

1.8 Software Engineering Processes

1.9 Evolution of Software

1.10 Some Terminologies

1.11 Program Versus Software Products

1.12 A Generic View of Software Engineering

• Summary

• Review Questions

• Further Readings ,

1.0 LEARNING OBJECTIVES '-s

After studying this unit, you will be able to:

• explain software engineering and its various components,
characteristics and applications

• describe evolution of software

generic view of software engineering., * giv

Self-Instructional Material 1

Software Engineering 1.1 INTRODUCTION

Software is described by its capabilities. The capabilities relate to the

functions it executes, the. features it provides and the facilities it offers.
Software written for sales-order processing would have different functions

to process different types of sales orders from different market segments.
The features, for example, would be to handle multicurrency computing,
updating of product, sales and tax status in MIS reports and books of

accounts. The facilities could be printing of sales orders, e-mail to customers,
reports and advice to the stores department to dispatch the goods. The

facilities and features could be optional and based on customer choice.

The software is developed keeping in mind certain hardware and operating

system considerations, known as platform. Hence, software is described

along with its capabilities and the platform specifications that are required

to run it.

NOTES

)

Definition of Software

Software is a set of instructions to acquire inputs and to manipulate
them to. produce the desired output in terms of functions and performance
as determined by the user of the software. It also includes a set of

- *
documents, such as the software manual, meant for users to understand

the software system. Today’s software comprises the Source code, Executables,
Design documents, Operations and System manuals and Installation and

Implementation manuals.

Software is:

(i) Instructions (computer programs) that when executed provide desired

function and performance.

Hi) Data structures that enable the programs to adequately manipulate

information.

{Hi) Documents that describe the operation and use of the programs

Or

The term software refers to the set of computer programs, procedures,
and associated documents (flowcharts, manuals, etc.) that describe the

programs and how they are to be used. To be precise, software means a

collection of programs whose objective is to enhance the capabilities of
the hardware.

2 Self-Instructional Material

Software EngineeringOr

Definition of Software given by IEEE
i

“Software is the collection of computer programs, procedure rules and

associated documentation and data”. I
NOTES

Importance of Software

Computer software has become a driving force. ;
)

• It is engine that drives business decision-making.

• It serves as the basis for modern scientific irivestigation and
engineering problem solving. '

• It is embedded in all kinds of systems like transportation, medical,
telecommunications, military, industrial processes, entertainment,
office products etc.

It is important as it affects nearly every aspect of our lives and has
become pervasive in our commerce, our culture and our everyday activities.
Software impact on our society and culture is significant. As software
importance grows, the software community continually attempts to
develop technologies that'will make it easier, faster aiid less expensive

to build high-quality computer programs. i

\ •'

1
1.2 INTRODUCTION TO SOFTWARE

ENGINEERING

Few important definitions given by several authors and institutions
are as under: ,

IEEE Comprehensive Definition

“Software Engineering is the application of a systematic, disciplined,
quantifiable, approach to the development, operation and maintenance
of software, i.e., the application of engineering to software”.

According to Barry Boehm

“Software Engineering is the application of science and mathematics
'by which the capabilities of computer equipment are made useful to
man via computer programs, procedures and associated documentation”.

Self-Instructional Material 3

Software Engineering According to Fairley.

“Software Engineering is a methodological and managerial discipline
concerning the systematic production and maintenance of software products
that are / developed and maintained within anticipated and controlled
time and cost limits”.

NOTES

According to Fritz Bauer

“Software Engineering is the establishment and use of sound engineering
principles in order to‘obtain economically software that is reliable arid
works efficiently on real machines”.

According to Somerville

“Software Engineering is concerned with the theories, methods and tools
that are needed to develop the software products in a cost effective
way”.
According to Dennis: Software engineering is the application of principles,
skills and art to design and construction of programs and systems of
programs.
According to Morven Gentleman: Software engineering is the use of
methodologies, tools and techniques to resolve the practical problem that
arise in the construction, deployment, support and evolution of software.
According to Stephen Schach: Software engineering is a discipline
whose aim is the production of quality software, software that is delivered
bn time, within budget, and that satisfies its requirements.
According to Pomberger and Blaschck: Software engineering is the
practical'application of scientific knowledge for the economical production
and use of high quality software.
According to Rafael J. Barros: Software engineering is the application
of methods and scientific knowledge to create practical cost effective
solution for the design, construction, operation and maintenance of software
and associated products in the service of mankind.

/

Other Definitions

“Software Engineering deals with cost effective solutions to practical problems
by applying scientific knowledge in building software artifacts in the
service of mankind”.

4 Self-Instructional Material

Software EngineeringOr
“Software Engineering is the application of methods and scientific knowledge
to create practical cost-effective solutions for the design, construction,
operation and maintenance of software”.

NOTESOr
“Software Engineering is a discipline whose aim is the production of
fault free software that satisfies the user’s needs and that is delivered
on time and within budget”.

Or
“The term Software Engineering refers to a movement, methods and
techniques aimed at making software development more systematic”.
Software methodologies like the OMG’s UML and Software tools (CASE
tools) that help developer’s model application desigps and then generate
code are all closely associated with Software Engineering.

Or |

“Software Engineering is an engineering discipline which is concerned
with all aspects of software production”.

Software Engineering Principles

The principles deal with both the process of software engineering and
the final product. The right process will help produce the right product,
but the desired product will also affect the choice of which process to
use. A traditional problem in software engineering has been the emphasis
on either the process or the product to the exclusion of the other. Both
are important.
The principles we develop are general enough to be applicable throughout

, the process of software construction and management. Principles,
however, are not sufficient to drive software development. In fact,
they are general and abstract statements describing desirable properties
of software processes and products. But, to apply principles, the software
engineer should be equipped with appropriate methods and specific
techniques that help incorporate the desired properties into processes
and products. 1

. In principle, we should distinguish between methods and techniques.
Methods are general guidelines that govern the execution of some

. activity; they are rigorous, systematic, and disciplined approaches.
Techniques are more technical and mechanical than methods; often,
they also have more restricted applicability. In general, however, the
difference between the two is not sharp. We will-therefore use the two
terms interchangeably.

Sometimes, methods and techniques are packaged together to form a
methodology. The purpose of a methodology is to promote a certain

Self-Instructional Material 5

Software Engineering approach to solving a problem by preselecting the methods and techniques
to be used. Tools, in turn, are developed to support the application of
techniques, methods, and methodologies.
Figure 1 shows the relationship between principles, methods, methodologies,
and tools. Each layer in the figure is based on the layer(s) below it and
is more susceptible to change, due to passage of time. This figure shows
clearly that principles are the basis of all methods, techniques, methodologies,
and tools.

NOTES

Tools

Methodologies

Methods
and techniques

Principles

Fig. 1 Relationship between Principles, Techniques,
Methodologies, and Thais

1.3 SOFTWARE COMPONENTS

A software component is a system element offering a predefined service
and able to communicate with other components. Clemens Szyperski and"
David Messerschmitt give the following five criteria for what a software
component shall be to fulfill the definition:

• Multiple-use

• Non-context-specific

• 'Composable with other components

• Encapsulated i.e., non-investigable through its interfaces

• A unit of independent deployment and versioning
A simpler definition can be: A component is an object written to a specification.
It does not matter what the specification is: COM, Java Beans, etc., as
long as the object adheres to the specification. It is only by adhering to
the specification that the object becomes a component and gains features
like reusability and so forth.
Software components often take the form of objects or collections of
objects (from object-oriented programming), in some binary or textual
form, adhering to some Interface Description Language (IDL) so that the
component may exist autonomously from other components in a computer.

6 Self-Instructional Material .

Software EngineeringWfien a component is to be accessed or shared across execution contexts
or network links, some form of serialization (also known as marshalling)
is employed to turn the component or one of its; interfaces into a bit
stream.
It takes significant effort and awareness to write a s jftware component
that is effectively reusable. The component needs:

• to be fully documented; , | -

• more thorough testing;

• "robust input validity checking; ...

• to pass back useful error messages as appropriate;

• to be built with an awareness that it will be put to unforeseen
uses;

• a mechanism for compensating developers who invest the
(substantial) effort implied above.

NOTES

1.4 SOFTWARE CHARACTERISTICS

The key characteristics of software are as under:

1. Most Software is Custom-Built, Rather than being
Assembled from Existing Components

Most software continues to be custom built, although recent developments
tend to be component-based. Modern reusable components encapsulate
both data and the processing applied to data, enabling the software
engineer to create new applications from reusable part. For example,
today GUI is built using reusable components that enable the creation
of graphics windows, pull-down menus, and a wide valriety of interaction
mechanisms. The data structure and processing detail required to build
the interface are contained with a library of reusable components for

' r

interface construction.

2. Software is Developed or Engineered; it is not
Manufactured in the Classical Sense

Although some similarities exist between software development and
hardware manufacture, the two activities are fundamentally different.
In both activities, high quality is achieved through good design, but
the manufacturing phase for hardware can introduce quality problems
that are nonexistent’for software. Both activities-jdepend on people,

but the relationship between people applied and work accomplished is

Self-Instructional Material 7

Software Engineering entirely different. Both require the construction of a “product”. But the
approaches are different. Software costs are concentrated in engineering.
This means that software projects cannot be managed as if they were
manufacturing projects.

NOTES

3. Software is Flexible

We all feel that software is flexible. A program can be developed to do
almost anything. Sometimes, this characteristic may be the best and may
help us to accommodate any kind of change. Reuse of components from
the libraries help in reduction of effort Nowadays, we reuse not only
algorithms but also data structures.

4. Software doesn’t Wear Out

There is a well known “bath-tub curve” in reliability studies for the
hardware products. Figure 2 depicts failure intensity as a function of
time for hardware. The relationship, often called the “bath-tub curve”.
Note that, wear out means process of loosing the material.

Bum-in
phaset Wear out

phaseUseful life phase
£»
o
£
o

I
LL

Time --------------

Fig. 2 Bath-tub Curve

There are three phases for the life of a hardware product, Initial phase
is burn-in phase, where failure intensity is high. It is expected to test
the product in the industry before delivery. Due to testing and fixing
faults, failure intensity will come down initially and may stabilize after
certain time. The second phase is the useful life phase where failure
intensity is approximately constant and is called useful life of a product.
After few years, again failure intensity will increase due to wearing out
of components. This phase is called wear out phase. We do not have this
phase for the software, as it does not wear out. The curve for software
is given in Fig. 3

8 Self-Instructional Material

Software Engineering

t
£ NOTES.£
o

1
LL

Time ♦

Fig. 3 Software Curve

Important point-is. software becomes reliable overtime instead of wearing
out. It becomes obsolete, if the environment, for which it was developed,
changes. Hence, software may be retired due to environmental changes,
new requirements, new expectations, etc.

1.5 SOFTWARE CRISIS

The1 softjyaTe crisis has been with us since 1970s. As per the latest
IBM report, “31% of the projects get cancelled before, they are completed,
53% over-run their cost-estimates by an average of 189% and for every
100 projects, there are 94 restarts”.
When software was developing then during development many problems
are raised up, that set of problem is known as software crisis. When
software is developing then on the different steps of development,
problems are encountered associated with those steps. Now we will
discuss the problem, and causes of software crisis encountered on different
stages of software development.

Problems

Schedule and cost estimates are often grossly inaccurate.

The “Productivity” of software people hasn’t kept pace with the
demand for their services.

The quality of software is sometimes less than adequate.
With no solid indication of productivity, we can’t] accurately evaluate

the efficiency of new tools, methods or standards.

Communication between customer and software developer is
often poor.

1.

2.

3.

4.

5.

Self-Instructional Material 9

6. The software maintenance task devours the majority of all software
rupees.

Software Engineering

Causes
NOTES

1. Quality of software is not good because most of the developer use
the historical data to develop the software.

2. If there is delay in any process or stage (i.e., analysis, design,
coding and testing) then scheduling does not match with actual
timing.

3. Communication between managers and customers, software developers,
support staff etc., can breakdown because the special characteristics

^ of software and the problems associated with its development are
misunderstood.

• 4. The software people responsible for tapping that potential often;
change when it is discussed and resist change when it is introduced.

Software Crisis in the Programmer’s Point of View

1. Problem of compatibility.

2. Problem of portability.
i

3. Problem in documentation.

4. Problem of piracy of software.

5. Problem in coordination of work of different people.

6. Problem of maintenance in proper manner.

•y

\

Software Crisis in the User’s Point of View i

1. Software cost is very high.

2. Customers are moody or choosy.

3. Hardware goes very down.

4. Lack of specialization in development.

5. Problem of different versions of software.

6. Problem of views.

7. Problem of bugs.

10 Self-Instructional Material •

Software Engineering
1.6 SOFTWARE MYTHS

1. If we get behind schedule, we can add more programmers and

catch up.
2. If'I decide to outsource the software project to a third party, I

can just relax and let that firm build it.

3. Project requirement continuously changes, but changes can be
easily accommodated 'because software is flexible.

4. The only deliverable work product for a successful project is
the working program.

5. Software with more features is better software.

6. Once we write the program and get it to work, our job is done.

7. Until I get the program running, I have no way of assessing its
quality.

8. Software engineering will make us create voluminous and
unnecessary documentation and will invariably slow us down.

9. A general statement of objectives is sufficient to begin writing
programs.

10.' We already have a book that’s full of standards and procedures
for building software. Won’t that provide my people with everything

they need to know?

NOTES

:

1.7 SOFTWARE APPLICATIONS

- Software applications are grouped into eight areas for convenience as
shown in Figure 4.

i

System
Software

Real Time
Software.

Embedded
Software

' Engineering
and Scientific

Software

Business
v Software

Web based
Software

Personal
Computer
Software

/Artificial.
Intelligence
Software

Fig. 4 Software Applications

Self-Instructional Material 11

. Software Engineering 1. System Software

System software is a collection of programs used to run the system as an
assistance to use other software programs. The compilers, editors, utilities,
operating system components, drivers and interfaces, Assemblers, compilers,
linkers and loaders are examples of system software. This software resides
in the computer system and consumes its resources. A computer system
without system software cannot function.
System software directly interacts with the hardware, heavy usage by
multiple users, concurrent operations that requires scheduling, resource
sharing and sophisticated process management, complex data structures
and multiple external interfaces.

NOTES

//
■4.

. /
2. Real Time Software

Real time software, deals with changing environment. First it collects
the input and convert it from analog to digital, control component that .
responds to the external. environment, perform the action in'the last.

The software is used to monitor, control and analyze real world events
as they occur. Examples are Rocket launching, games etc.

3. Embedded Software

Software, when written to perform certain functions under control conditions
and further embedded into hardware as a part of large systems, is called
embedded software.
The software resides in Read-Only-Memory (ROM) and is used to control
the various functions of the resident products. The products could be
a car, washing machine, microwave oven, industrial processing products,
gas stations, satellites and a host of other products, where the need is
to acquire input, analyze, identify status, decide and take action that
allows the product to perform in a predetermined manner. Because of -
their role and performance, they are also termed intelligent software.

4. Business Software

Software designed to process business applications, is called business'
software. Business software could be a data-and information-processing
application. It could drive the business process through transaction processing
in online or in real-time mode.

This software is used for specific operations such as accounting package,
Management information system, payroll package, inventory management.
Business software restructures existing data in order to facilitate business

12 Self-Instructional Material

Software Engineeringoperations or management decision making. It also encompasses interactive
computing. It is an integrated software related to a particular field.

5. Personal Computer Software
NOTES

The personal computer software market has burgeoned over the past
two decades.
Word processing, spreadsheets, computer graphics, multimedia,
entertainment, database management, personal and business financial
applications, external network or database access are only a few of
hundreds of applications.

6. Artificial Intelligence Software

Artificial Intelligence Software uses non-numerical algorithms, which
use the data and information generated in the system, to solve the
complex problems. These problem scenarios are not generally amenable
to problem-solving procedures, and require specific analysis and
interpretation of the problem to solve it.
Application within this area include robotics, expert system, pattern
recognition (image and voice), artificial.neural networks, theorem proving

and game playing, signal processing software. !

• Expert Systems
• Learning Systems
• Fuzzy Logic
• GeheticAlgorithms
• Neural Networks
• Intelligent Agents

• Visual Perception
• Tactility
• Dexterity
• Locomotion
• Navigation

Cognitive Science
Applications

Artificial Intelligence ♦ Robotics Applications

• Natural Languages
• Speech Recognition
• Multisi nsory Interfaces
• Virtual Reality

Natural Interface
Applications

Fig. 5 Application Areas of Artificial Intelligence

7. Web-based Software

Web-based software is the browsers by which web pages are processed
i.e., HTML, Java,, CGI, Perl, DHTML etc. 4 ' '

: -\

Self-Instructional Material 13

8. Engineering and Scientific Software
i

Design, engineering of scientific software’s deal with processing requirements
in their specific fields. They are written for specific applications using
the principles and formulae of each field. In this type application areas

are:
Astronomy, volcanology, molecular biology, computer aided design (e.g.,
auto CAD Software) system simulations.
These software’s service the need of drawing, drafting, modeling, lead
calculations, specifications-building and so on. Dedicated software’s
are available for stress analysis or for analysis of engineering data,
statistical data for interpretation and decision-making. CAD/CAM/
CAE packages, SPSS, MATLAB, circuit analyzers are typical examples

of such software.

Software Engineering

NOTES

1.8 SOFTWARE ENGINEERING PROCESSES

Process

“A process is a series of steps involving activities, constraints and
resources that produce an intended output of some kind9*.
Any process has the following characteristics.

1. The process prescribes all of the major process activities.

2.. The process uses resources, subject to a set of constraints (such as
a schedule), and produces intermediate and final products.

3. The process may be composed of sub processes that are linked in
some way. The process may be defined as a hierarchy of processes,
organized so that each sub-process has its own process model.

4. Each process activity has entry and exit criteria, so that we know
! when the activity begins and ends.

5. The activities are organized in a sequence, so that it is clear when
one activity is performed relative to the other activities.

I

6. Every process has a set of guiding principles that explain the
goals of each activity.

7. Constraints or controls may apply to an activity, resource, or product.
For example, the budget or schedule may constrain the length of
time ah activity may take or a tool may limit the way in which a
resource may be used.

• V

. V ■.

14 Self-Instructional Material

Software EngineeringWhat is a Software Process?

“Software process is the related set of activities and processes'
that,are involved in developing and evolving a software system”.

Or NOTES

“A set of activities whose goal is the development or evolution of

software”. . '
Or

“A software process is a set of activities and associated results,
which produce a software product”.
These activities are mostly carried out by software engineers. There
are four fundamental process activities which are common to all software
processes. These activities are: f

1. Software specification: The functionality of the software and
constraints on its operation must be defined.

2. Software development: The software to meet the specification
must be produced.

3. Software validation: The software must be validated to ensure
that it does what the customer wants.

4. Software evolution: The software must evolve to meet changing
customer needs.. ' j

Different software processes organize these activities in different ways
and are described at different levels of detail. The timing of the activities
varies, as does the results of each activity. Different organizations may
use different processes to produce the same type of product: However, ‘
some processes are more suitable than others for some types of application.
If an inappropriate process is used, this will probably reduce the quality

or the usefulness of the software product to be developed.

Process Management Processes

Development
Process

Project Software Configuration
Management • Management Process

Process
r i

}•;■Fig. 6 The Software Process^ ■

Self-Instructional Material '15

Software Engineering a software process can be characterized as shown in Figure 6. A common
process framework is established by defining a small number of framework
activities that are applicable to all software projects, regardless of their
size or complexity. A number of task sets-each a collection of software
engineering work tasks, project milestones, software work products and
deliverables, and quality assurance points-enable the framework activities
to be adapted to the characteristics of the software project and the
requirements of the project team. Finally, umbrella activities-such as
software quality assurance, software configuration management and
measurement-overlay the process model. Umbrella activities are independent
of any one-framework activity and occur throughout the process.
Thus, the software industry considers software development as a process.
According to Booch and Rumbaugh, “A process defines who is doing what,
when and how to reach a certain goal”? Software engineering is a field,
which combines process, methods and tools for the development of software.
The concept of process is the main step in the software engineering
approach. Thus, a software process is a set of activities. When those
activities are performed in specific sequence in accordance with ordering

constraints, the desired results are produced.

NOTES \v

/ ,

1.9 EVOLUTION OF SOFTWARE

Software engineering principles have evolved over the past more than
fifty years from art to an engineering discipline. It can be shown with

the help of the following Figure 7. . A

Engineering

- 5 Unorganized usage
of past experiencesoo

Systematic usage of past
experiences and scientific basis

Craft
o \£

/
Esoteric use of

Art past experience >
Time

>

Fig. 7 Evolution of Art to an Engineering Discipline

Development in the field of software and hardware computing make a
significant change in the twentieth century. We can devide the software
development process into four eras: •/

16 Self-Instructional Material

Software snii'Ae\S?i'n^1. Early Era

During the early eras general-purpose hardware became common place.
Software, on the other hand, was custom-designed |for each application

and had a relatively limited distribution. Most software was developed
and ultimately used by the same person or organization.
In this era the software are mainly based on (1950-1960)

• Limited Distribution/
• Custom Software

• Batch Orientation

NOTES

2. Second Era

The second era to computer system evolution intrjoduced new concepts
of human machine interaction. Interactive techniques opened a new
world of application and new levels of hardware and software sophistication.
Real time software deals with the changing environment and one other
is multi-user in which many users can perform or work on a software

at a time. \
In this era the software are mainly based on (1£ 60-1972)

• Multi-user

• Database

• Real time

• Product Software

• Multiprogramming

3. Third Era

In the earlier age the software was custom designed and limited distribution
but in this era the software was consumer designed and the distribution
is also not limited. The cost of the hardware is also very low in this era.
In this era the software are mainly based on (1973—1985)

• Embedded Intelligence

• Consumer Impact

• Distributed Systems

• Low Cost Hardware

Self-Instructional Material 17

4. I' ourl'ii £;ra

The fourth era of computer system evolution moves us away from individual
computers and computer programs and toward the collective impact of

computers and software. As the fourth era progresses, new technologies

have begun to emerge. , '\ • . *
In this era the software are mainly based on (1987)

• Powerful Desktop Systems

• Expert Systems ,

• Artificial Intelligence

• Network Computers

• Parallel Computing

• Object Oriented Technology

At this time the concept of software making is object oriented technology

or network computing etc.

NOTES

1.10 SOME TERMINOLOGIES
Some terminologies are discussed in these sections which are frequently
used in the field of Software Engineering.

1. Deliverables and Milestones

Different deliverables are generated during software development. The
examples are source code, user manuals, operating procedure manuals
etc.

The milestones are the events that are used to ascertain the status of
the project. Finalization of specification is a milestone. Completion of
•design documentation is another milestone. The milestones- are essential
for project planning and management.

2. Product and Process

What is delivered to the customer is called a product. It may' include
source code specification, document, manuals, documentation etc. Basically,
it is nothing but a set of deliverables only.

Process is the way in which we produce software. It is the collection of
activity that leads to (a part of) a product. An efficient process is required
to produce good quality products.t .

Self-Instructional Material

If the process is weaK, t'fle enu a*
obsessive over reliance on process is also dangerous.;

3. Measures, Metrics and Indicators
NOTES

In software engineering measures provides a quantitative indication
of amount, dimension, capacity or size of given attribjute of a product.

The metrics is a quantitative measures of the degree to which a system,
component, or process possesses a given attribute of a product. An
indicator is a combination of metrics.
Measurement occurs as the result of the collection of one or more data
points e.g., a number of,module reviews are investigated to collect
measures of the number of errors in each module.

141 PROGRAM VERSUS SOFTWARE PRODUCTS

Program

A program is a' subset of software and it becomes software only if
documentation and operating procedure manuals are prepared. Program
is a combination of source code and object code.

Source .
Code

Object
Code

*

Fig. 8 Program = Source Code + Object Code

Software Products

A software product consists not only of the program code but also of
all the associated documents such as the requirements specification

documents, the design documents, the test document, the operating
procedures which includes user manuals and operational manuals.

Self-Instructional Material 19'

11 f 1* i

Programs j

NOTES Operating
ProceduresDocumentation! /

/

Fig. 9 Software = Program + Documentation + Operating Procedures

Difference between Program and Software Products7

The various differences between a program product and a software product
are given in the tabular form as follows:

Software ProductsPrograms

1. A software product is usually
developed by a group of engineers
working in a team

2. Usually large in size

3. Large number of users
4. Team of developers
5. Good documentation support
6. Systematic development
7. Good user interface
8. Exhibit more functionality

1. Programs are developed by

individuals for their personal use

2. Usually small in size
3. Single user
4. Single developer
5. Lacks proper documentation
6. Ad hoc development
7. Lack of user interface
8. Have limited functionality

1.12 A GENERIC VIEW OF SOFTWARE

ENGINEERING

Software Engineering as a Layered Technology

Process layer provides a farmework for effective use of software technologies'.
Forms a basis for management control and establishes context in' which
technical methods are applied, work products produced, milestones
established, quality is ensured and change is managed.

Process Framework
Identifies a small number of framework activities that are applicable to
all software projects.
In addition the framework encompasses umbrella activities that are applicable
across the software process.

20 Self-Instructional Material

Generic Process Framework Activities Software Engineering

Each framework activity is populated by a -set ofj software engineering
actions. An action, e.g., design is a collection of related tasks that
produce a major software engineering work product.
Communication—lots of communication and collaboration with customer.
Encompasses requirements gathering.
Planning—establishes plan for software engineering work that follows.
Describes technical tasks, likely risky, required resources, works products
and a work schedule.
Modeling—encompasses creation of models that allow the developer
and customer to better understand software requirements and- the
design that will achieve those requirements.
Construction—code generation and testing.
Deployment—software, partial or complete, is delivered to the customer

who evaluates it and provides feedback.

NOTES

r

Umbrella Activities

Framework is augmented by a number of umbrella activities. Typical
ones are:

. • Software project tracking and control—allows software team to
assess progress against project plan and take necessary action
to maintain schedule.

• Risk management—assess risk that may effect the outcome of
the project or the product quality.

• . formal technical reviews—assess software engineering work products.
to uncover arid remove errors before they are propagated to the
next action or. activity.

• Measurement—defines and collects process, project and product
- measures that assist team in developing software.

• Software configuration management—manages the effect of change
throughout the software process.

• Reusability management—defines criteria for work product reuse
and establishes mechanism to achieve ret sable components.

• Work product preparation and production - ir eluded work activities
required to create work products such as documents, logs, forms
and lists. 1

All processes can be described with the above framework. Intelligent
adaptation of any process model to the problem, team, project, and

organisational culture is essential.

Self-Instructional Material 21 fc

Software Engineering *

STUDENT ACTIVITY

1. What is software engineering?

2. What do you understand by software crisis?

3. Define software process.

4. Explain software components.

22 Self-Instructional Material

ASUMMARY

• “Software is the collection of computer programs, procedure

rules and associated documentation and data”.
i
i ^

• Application software sits a top of system software because it

needs help of system software to run.

• Operating system is a number of utilities* for managing disk

- 'printers, other devices.

• Word processors use a computer to create, edit, and print documents.

• A spreadsheet is a table of values arranged in rows and columns.

• Presentation graphics is often called business graphics.

• A DBMS is a collection of programs that enable you to store,
modify, and extract information from a database.

• A software component is a system element offering a predefined

service and able to communicate with other components.

• System software is a collection of programs used to run the

system as an assistance to use other software programs.

• Real time software deals with changing environment.

• Business software could be a data and information-processing

application.

• The personal computer software market has burgeoned over

the past two decades.

• Artificial Intelligence Software uses non-numerical algorithms,
which use the data and information generatejd in the system, to

solve the complex problems.

• Process is the way in which we produce software.
f

• Software is a set of instructions to acquire inputs and to manipulate
. i ■

them to produce the desired output in terms of functions and
i

performance as determined by the user of the software.

• “Software Engineering is the application of science and mathematics
by which the capabilities of computer equipment are made useful
to man via computer programs, procedures and associated
documentation”.

NOTES

Self-Instructional Material 23

Software Engineering • "The term Software Engineering refers to a movement, methods
and techniques aimed at making software development more

systematic”.

• A component is an object written to a specification.

• Software, when written to perform certain functions under control
conditions and further embedded into hardware as a part of large
systems, is called embedded software.

• Web-based software is the browsers by which web pages are processed.

NOTES

• A process is a series of steps involving activities, constraints and
resources that produce an intended output of some kind.

• A software process is a set of activities and associated results,
which produce a software product.

REVIEW QUESTIONS

1. Define software.

2. What do you mean by the term “Software Engineering”? Describe

the evolving role of software.

3. What are the different myths and realities about the software?

4. What is bath-tub curve?

5. Discuss the characteristics of the software.

6. What characteristics of software make it different from other

engineering products (for example hardware)?

7. Explain some characteristics of software?

8. Comment on the statement “software does not wear out”.

9. Discuss about the evolution of software engineering as a subject
in the last 50 years. x

10. What are the different software components?

11. What are the symptoms of the present software crisis? What factors

have contributed to the making of the present software crisis?

What are possible solutions to the present software crisis?

12. What is software crisis? Give the problems of software crisis.

24 Self-Instructional Material

Software Engineering13. What do you mean by software myths?

14. Explain in detail software engineering process.

15. Distinguish between a program and a software product.

16. Define the followings:

(a) Milestones

(c) Measures

17. Explain the importance of software.

18. Discuss about different software applications.

NOTES

(6) Product

(d) Metrics

FURTHER READINGS

1. Software Engineering, Bharat Bhushan Agarwal, Sumit Prakash

Tayal, Firewall Media.

2. Software Engineering, D. Sunder, University Science Press.

Self-Instructional Material 25

Software Engineering
II REQUIREMENTS ANALYSISUNIT

/

★ STRUCTURE ★NOTES

2.0 Learning Objectives
2.1 Introduction
2.2 Functional and Non-Functional Requirements

2.3 User, System and Domain Requirements

2.4 Requirements of Engineering Process

2.5 SRS Document
2.6 IEEE Standards for SRS

2.7 SRS Validation

2.8 Components of SRS

2.9 Characteristics of SRS

2.10 Goals of SRS Document

2.11 Benefits of Involving Technical Writers in SRS

2.12 SRS Document Template
• Summary
• Review Questions

• Further Readings

2.0 LEARNING OBJECTIVES

After studying this unit, you will be able to:
1. describe functional arid non-functional requirements
I'

2. explain requirements of engineering process.

3. Illustrate SRS document and its various components, characteristics
and goals.

2.1 INTRODUCTION

Requirements are defined as descriptions and specifications of a system.
It may range from a high-level abstract statement of a service or of a
system constraint to a detailed mathematical functional specification.

26 Self-Instructional Material

Requirements AnalysisSystem requirements may be either functional or non-functional requirements.
In addition, requirements are classified under user requirements, system
requirements and domain requirements.

NOTES
2.2 FUNCTIONAL AND NON-FUNCTIONAL

REQUIREMENTS i

Functional Requirements

(а) Describe functionality or system services.
• ' i

(б) Depend on the type of software, expected users and the type of
system where the software is used.

(c) Functional user requirements may be high-level statements of
what the system should do and functional system requirements
should describe the system services in detail.

Examples o£ Functional Requirements

• The user shall be able to search either all of the initial set of
databases or select a subset from it.

• The system shall provide appropriate viewers for the user to
read documents in the document store.

• Every order shall be allocated a unique jidentifier (ORDER_ID)
which the user shall be able to copy to the account’s permanent
storage area.

• Statements of services the system should provide, how the system
should react to particular inputs and how the system should
behave in particular situations.

Non-functional Requirements

Constraints on the services or functions offered by the system such
as timing constraints, constraints on the development process, standards,
etc.

(а) Define system properties and constraints e.g., reliability, response
time and storage requirements. Constraints are I/O device capability,
system representations, etc.

(б) Process requirements may also be specified mandating a particular
case system, programming language or development method.

(c) Non-functional requirements may be more critical than functional
requirements. If these are not met, the system is useless.

Self-Instructional Material 27

Software Engineering Non-functional Classifications

(а) Product requirements. Requirements, which specify that the
delivered product must behave in a particular way e.g., execution
speed, reliability, etc.

(б) Organisational requirements. Requirements, which are a
. consequence of organisational policies and procedures, e.g.,
process standards used, implementation requirements, etc.

(c) External requirements. Requirements which arise from factors
which are external to the system and its development process , .
e.g., interoperability requirements, legislative requirements,
etc.

NOTES

S'

,1
Non-functional
Requirements

V
Organizational
Requirements

External
Requirements

Product
Requirements

Ir I 1
Reliability PortabilityEfficiencyUsability

T
Performance Space Delivery Implemental Standards

X T 1\ Inter-Operability LegislativeEthical

r
SafetyPrivacy

Fig. 1 External Requirement Specification

Non-functional Requirements Example

• Product requirement. It shall be possible for all necessary
communication between the system and the user to be expressed
in the standard Ada character set.

• Organisational requirement. The system development process
and deliverable documents shall conform to the process and
deliverables defined in IEEE STANDARD-95 FORMAT.

• External requirement. The system shall not disclose any personal
information about customers apart from their name and reference
number to the operators of the system.

2.3 USER, SYSTEM AND DOMAIN

REQUIREMENTS
-\

User Requirements: Statements in natural language plus diagrams
of the services the system provides and its operational Constraints.

^8 Self-Instructional.Material

Requirements AnalysisSystem Requirements: A structured document setting out detailed
descriptions of the system services. Written as a contract between client
and contractor.
Software Specification: A detailed software description, which can serve
as a basis for a design or implementation. Written for developers. User
requirements should describe functional and non-functional requirements
so that they are understandable by system users who do not have detailed
techiiical knowledge. User requirements are defined using natural language,
tables and diagrams.
System Requirements: More detailed specifications of user requirements
serve as a basis for designing the system may be used as part of the
system contract system requirements may be expressed using system
models.
Domain Requirements: Derived from the application domain and describe
system characteristics and features that reflect the domain. May be new
functional requirements, constraints on existing requirements or define
specific computations. If domain requirements are not satisfied, the system
may be unworkable.

NOTES

2.4 REQUIREMENTS OF ENGINEERING

PROCESS

It involves the following tasks:
1. Requirements Elicitation and Analysis |
2. Requirements Definition and Specification Document
3. System Modeling
4. Requirements Validation and Management.

Requirement Elicitation
and Analysis

Requirements
Definition and -
Specification

DocumentationProblem
Description

Problem
Analysis

Prototyping
and testing * and

Validation

Capturing all
User Needs

Right tools and
Techniques

Whether.
Feasible?

Whether meeting
all requirements

\
Fig. 2 Requirement Specifications

Requirements Elicitation and Analysis

It is a critical process in software development. It is conducted with the
c m ■ ■following objectives in mind: ■Mm

Self-Instructional Material 29

Software Engineering 1. Identify the customer’s need;
2. Evaluate the, system concept for feasibility;
3. Perform economic and technical analysis;
4. Allocate functions to hardware, software,‘people, database and

other system elements.
5. Establish cost and schedule constraints.
6. Create a'system definition that forms the foundation for all

subsequent engineering work. A variety of techniques are used
to determine what the users and customers really want.

• Identification of need: The analyst (system engineer) meets
with the customer and the end user with the intent of
understanding the product’s objectives and to define goals required
meeting the objectives.
The analyst then gathers the supplementary, information likes
technology availability, resources required, and bounds placed
on costs and schedule etc. The overall information gathered
are specified in a system concept document. It demands intense
communication between the customer and the analyst.

• Feasibility study: Involves the study of economic feasibility,
technical feasibility, legal feasibility and alternatives.
Economic feasibility an evaluation of development cost weighted
against the ultimate income or benefit derived from the developed
system or product.
Technical feasibility is the study of function, performance and
constraints that may affect the ability to achieve an acceptable
system. The considerations that are normally associated with
technical feasibility include development risk, resource availability
and technology capabilities.

Legal feasibility encompasses a broad range of concerns that
includes contracts, liability, infringement and myriad other
traps frequently unknown to technical staff. Alternatives involve
an evaluation of alternative approaches to the development of
the system or product. The study is reviewed first by the project
management and then by the upper management. The study
may result in a ‘go’/ ‘no-go’ decision.

• Economic analysis: The most important information contained
in a feasibility study is the cost-benefit analysis—an assessment
of the economic justification for a computer based system project.
It delineates costs for project development and weights them

/ .against tangible land, intangible benefits of a system. .

• Technical analysis: T{ie analyst evaluates the technical merits

NOTES

30 Self-Instructional Material :

Requirements Analysisof the system concept at the same time collecting additional
information about performance, reliability, maintainability and
producibility. It assesses the technical viability of the proposed
system, technologies required to accomplish system function and

. performance, new material, methods, algorithms or processes
required etc. The results obtained form the basis for another ‘go’
or ‘no-go’ decision on the system.

• System specification: It is a document that serves as the foundation
for hardware engineering, software engineering, data base engineering
and human engineering. It describes the function and performance
of a computer based system and the constraints that will govern
its development. The system specification also describes the
information (data and control) that is input to and output from
the system.

NOTES

Requirement Definition and Specification Document

The requirement definition document contains a record of the requirements
in the customers’ terms and describes what the customer would like to

f

have. The document’s outline is given below:
• General purpose of the system—Outline.
• Background and objectives of system development.

Brief description of the approach along with constraints implied by customers
on the development. Detailed characteristics of the proposed system
along with system boundaries and interfaces across the various modules.
A complete, list of data elements, classes and their characteristics is
given. Then detailed relationships among data and functions, as well as
the input and output to each process and function are discussed. Finally,
the environment in which the system will operate is discussed and the
discussion includes the special requirements for support, security, privacy,
hardware and software.
Software requirement specification document is a technical specification
of requirements for the software product. The goal of software requirement
definition is to completely and consistently specify the technical requirements
for the software product in a concise and unambiguous manner. It is
based on the system definition document.
The format of the specification document is given below:

1. Product Overview and Summary
2. Development, Operating and Maintenance Environments

/•
3. External Interfaces and Data Flow i
4. Functional Requirements -. 1
5. Performance Requirements

•I *

Self-Instructional Material 31

Software Engineering 6. Exception Handling
7. Early Subsets and Implementation Priorities
8. Foreseeable Modification and Enhancements

9. Acceptance Criteria ^
10. Design hints and Guidelines

11. Cross Reference Index '
12. Glossary of Terms.

Sections 1 and 2 present an overview of product features and summarizes
the processing environments for development, operation and maintenance
of the product. -
Section 3 specifies the externally observable characteristics of the software
product. It includes user displays and report formats, a summary of
user commands and report options, data flow diagrams and a data
dictionary. High level data flow diagrams and a data dictionary are
derived in this section.
Section 4 specifies the functional requirements for the software product. *
Functional requirements are expressed in relational and state>oriented
notations that specify relationships among inputs, actions and outputs. 1
Performance characteristics such as response time for various activities,
processing time for various processes, throughput, primary and secondary
memory constraints, required telecommunication bandwidth and special
issues like security constraints, reliability requirements etc., are specified .
in section 5.
Exception handling, including actions to be taken and the messages to
be displayed in response to events are described in section 6. Categories
of exceptions include temporary resource failures, out of range-input
data, capacity overload etc.
The early subsets and implementation priorities for the system under,
development are discussed in section 7. Software products are developed
as a series of successive versions and the initial version may be the
prototype demonstrating basic functions and capabilities. Each successive

version can incorporate the capabilities of previous versions and provide
additional processing functions.
Foreseeable modifications and enhancements may be incorporated in :
section 8. i

The software product acceptance criteria are specified in section 9. !
Acceptance criteria specify functional and performance tests that must
be performed, the standards to be applied to source code, internal
documentation and external documents such as design specifications,
test plans, user manual, installation and maintenance procedures.

Section 10 contains design hints and guidelines. It is concerned with

NOTES

32 Seif-lnsCriictionaJ Material

Requirements Analysisinctional and performance aspects of the software product,
ection 11 relates to the sources of information used in deriving the

3quirements. Knowing the sources of specific requirements permits

erification and re-examination of requirements, constraints and assumptions.
ection 12 provides the definition of terms that may be unfamiliar to the
ustomer and the product developer. 1

NOTES

Desirable Properties of Software Requirements Specification

he requirement document should be Correct; Complete; Consistent;
Unambiguous; Functional; Verifiable; Traceable and Easily Changed. An
icorrect or incomplete set of requirements can result in a software
roduct, which does not satisfy the customer needs. An inconsistent
pacification states contradictory requirements in different parts of the
o'cument resulting in different interpretations by different people,
oftware requirements should be functional in nature; i.e., they should
escribe what is required without implying how the system will meet its

equirements. Requirements must be verifiable from two points of view;
must be possible to verify that the requirements satisfy the customer’s

eeds and it must be possible to verify that the subsequent workproducts
-atisfy the requirements. Finally, the requirements should be indexed,
■egmented and cross-referenced to permit easy use and easy modification.

System Modeling]
lodeling helps in gaining better understanding of the actual entity to be
uilt. The analyst creates models of the system (prototyping) in an effort'
d better understand data and control flow, functional processing and

ehavioral operation and information content. In software, one must be
apable of modeling the information that software transforms (information
lodel), the functions (and sub functions) that enable the transformation

■o occur (functional model) and the behavior of the system as f^e-
-ransformation is taking place (behavioral model).

Requirement Validation and Management

-Requirements Validation: Requirements Validation is the process of
determining that the specification is consistent with the requirements
efinition i.e., validations make sure that the requirements will meet
he customers’ needs. Validation usually involves two steps, each of which
-nsures trace ability between the two requirements document. First,

■nake sure that each specification can be traced to a requirement in the
llefinition document. Next, check the definition to validate that each
*equirement is traceable to the specification. The techniques that can be
adopted are given below:

Self-Instructional Material 33

Software Engineering
Requirement and Validation Techniques i

Reading Cross Referencing Interviews
Reviews Checklists Models to Check
Functions Scenarios Mathematical Proofs.

Automated Techniques Automated Cross-referencing Automated
Models to Enact Functions Prototypes.

Manual Techniques

NOTES

A simple way to check the requirements is to perform a requirements (1'
review. Review is to be conducted by both the software developer and
customer. As the specification forms the foundation for design and)Xr
subsequent software engineering activities, care need to be taken in ,
conducting the review. The review is conducted both at the 'macroscopic
and detailed levels. The reviewers attempt to ensure that the specification
is complete, consistent, and accurate. Once, the review is complete,
the software requirement specifications are signed-off by both the customer
and developer. '

Requirements Management: Requirements Management is a set of f
activities that help the software project team to identify, control and
track requirements and changes to requirements at any time as the -
project proceeds. Many of the activities are identical to ,the ‘Software *■
Configuration Management'.
(SCM)\ Like SCM, each requirement is assigned a unique identifier of fi
the form, <Requirement type> <Requirement #>
The requirement type takes value like F = functional requirement,
D = Data requirement, B = Behavioral requirement, I = Interface
requirement and P = Output requirement.

Once requirements have been identified, trace-ability tables like the
following are developed.

Features Trace-ability: Customer observable system/product features.
Source trace-ability: Source of each requirement. Dependency trace-
ability: Relationship among requirements. Subsystem, trace-ability:
Categorize as per the sub-systems identified. Interface trace-ability:
Relationship to internal and external system interfaces. Trace-ability
features are maintained as part of requirements database so that they
can be searched to understand how a requirement change will affect
different aspects of the system to be developed.

v>

.T

2.5 SRS DOCUMENT

This document is generated as output of requirement analysis. The
requirement analysis involves obtaining a clear and thorough understanding

? 3f4 Self-Instructional Material

f the product to be developed. Thus, SRS should be consistent, correct,
mambiguous and complete, document. The developer of the system can
•repare SRS after detailed communication with the customer. An SRS
learly defines the following:

• External Interfaces of the system: They identify the information
which is to flow ‘from and to’ to the system.

• Functional and non-functional requirement* of the system:
, They stand for the finding of run time requirements.

'he functional requirements of the system as documjehted in the SRS

ocument should clearly describe each function, which, the system would
uppiort along with the corresponding input and output data set.
'he non-functional requirements deal with the characteristics of the
ystem that cannot be expressed as functions; Examples of non-functional
■equirements include aspects concerning maintainability, portability, and

• ■ . i

sability. The non-functional requirements may also include reliability
ssues, accuracy of results, human-computer interface issues, and constraints

n the system implementation.
'here are many ways to structure a requirements document. There is no
ingle method that is suitable for all projects. IEEE and US Department
f Defense have proposed a candidate format for representing SRS. The
eneral outline of SRS is given below:
A

Organization of SRS

Requirements Analysis

NOTES

1. Introduction
• Purpose
• Scope
• Definitions, Acronyms, and Abbreviations
• References . „
• Overview

2. The Overall Description
• Product Perspective

- System Interfaces
- Interfaces
- Hardware Interfaces

— Software Interfaces
- Communications Interfaces
- Memory Constraints
- Operations
— Site Adaptation Requirements

Self-Instructional Material 35

Software Engineering • Product Functions
• User Characteristics
• Constraints
• Operating environment .
• User environment
• Assumptions and Dependencies
• Apportioning of Requirements

3. Specific Requirements
• External interfaces .

(i) User interface
(ii) Hardware Interfaces

{Hi) Software Interface
{iv) Communication Interface

• Functions
• Performance Requirements
• Logical Database Requirements
• Design Constraints

- Standards Compliance
• Software System Attribute

- Reliability
- Availability
- Security
— Maintainability
- Portability

• Organizing the Specific Requirements
- System Mode
- User Class

’ - Objects
- Feature
- Stimulus

c- Response
/ - Functional Hierarchy

• Additional Comments*
4. Supporting Information

• Table of contents and index
• Appendices

NOTES

36 Self-Instructional Material

Requirements AnalysisUses of SRS Document

The following are few major uses of SRS documents:

1. Project managers base their plans and estimates of schedule, effort
and resources on it.

2. Deyelopment team needs it to develop product.

3. The testing group needs it to generate test plans based on the
described exterhal behaviour.

4. The maintenance and product support staff need is to understand
what the software product is supposed tp do.

5. The publications group writes documents, manuals, etc., from it.

6. Customers rely on it to know what product they can expect.

7. Training personnel can use it to help develop educational material
for software product.

8. The maintenance and product support staff need is to understand
what the software product is supposed to do.

NOTES

!'2.6 IEEE STANDARDS FOR SRS

IEEE Standards documents are developed within 1 the. IEEE Societies
and the Standards Coordinating Committees of the IEEE Standards Association
(IEEE-SA) Standards Board. Members of the committees serve voluntarily
and without confpensation. They are not necessarily members of the
Institute. The standards developed within IEEE represent a consensus
of the broad expertise on the subject within the Institute as well as
those activities outside of IEEE that have expressed an interest in participating
in the development of the standard. Use of an IEEE Standard is wholly
voluntary. The existence of an IEEE Standard does hot imply that there
are no other ways to produce, test, measure, purchask, market, or provide
other goods and services related to the scope of tile IEEE Standard.

Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard.
Every IEEE Standard is subjected to review at least every five years for
revision. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still

. of some value, do not wholly reflect the present state of the art.
Users are cautioned to check to determine that they have the latest
edition of any IEEE Standard. Comments for revision of IEEE Standards

Self-Instructional Material 37

Software Engineering are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the
form of a proposed change of text, together with appropriate supporting
comments.

NOTES
IEEE Recommended Approaches for SRS

This recommended practice describes recommended approaches for
the specification of software requirements. It is based on a model in
which the result of the software requirements specification process is
an unambiguous and complete specification document. It should help

1. Software customers to accurately describe what they wish to
obtain;

2. Software suppliers to understand exactly what the customer
wants;

3. Individuals to accomplish the following goals:

(i) Develop a standard software requirements specification (SRS)
outline for their own organizations;

Hi) Define the format and content of their specific software
requirements specifications;

4. Develop additional local supporting items such as an SRS quality
checklist, or an SRS writer’s handbook.

Benefits of SRS

To the customers, suppliers, and other individuals, a good SRS should
provide several specific benefits, such as the following:

Establish the basis for agreement between the customers
and the suppliers on what the software product is to do.

The complete description of the functions to be performed by
the software specified in the SRS will assist the potential users
to determine if the software specified meets their needs or how
the software must be modified to meet their needs.
Reduce the development effort.
The preparation of the SRS forces the various concerned groups
in the customer’s organization to .consider rigorously all of the
requirements before design begins and reduces later redesign,
recoding, and retesting. Careful review of the requirements in
the SRS can reveal omissions, misunderstandings, and inconsistencies
early in the development cycle when these problems
to correct.

1.

2.

are easier

38 Self-Instructional Material

3. Provide a basis for estimating costs and schedules.
The description of the product to be developed as given in the
SRS is a realistic basis for estimating project costs and can be
used to obtain approval for bids or price estimates.

4. Provide a baseline for validation and verification.
Organizations can develop their validation and verification plans
much more productively from a good SRS. As a part of the development
contract, the SRS provides a baseline against which compliance

can be measured.
5. Facilitate transfer.

The SRS makes it easier to transfer the software product to new
users or new machines. Customers thus find it easier to transfer
the software to other parts of their organization, and suppliers
find, it easier to transfer it to new customers.

6. Serve as a basis for enhancement.
Because the SRS discusses the product but not the project that
developed it, the SRS serves ,as a basis for later enhancement of
the finished product. The SRS may need to be altered, but it does
provide a foundation for continued production evaluation.

Requirements Analysis

NOTES

TKTCK Recommended Practice for Software Requirements
Specifications i

1.. Overview- '
2. References
3. Definitions ,
4. Considerations for producing a good SRS
5. The parts of an SRS !

2.7 SRS VALIDATION

It is extremely important to detect errors in requirements document
before going to other phases of system development. The major objective
of SRS validation is to ensure , that user requirements are complete and
correctly recorded in the SRS and it is free from errors. It is also needed
to check that the SRS itself is of good quality. Some most common type
of errors in SRS is:

1. Omission. Some user requirement is not included in SRS. This
error directly affects the external completeness of the system.

2. Inconsistency. Is due to contradictions in requirements or
incompatibility of state requirements.

Self-Instructional Material 39

Software Engineering 3. Incorrect fact. Some facts recorded in SRS are not correct.

4. Ambiguity. Some requirements have multiple meanings.

Besides improving the quality of SRS, SRS validation should uncover
and rectify all possible types of errors.NOTES

2.8 COMPONENTS OF SRS

The following requirements are used in specification of SRS:

1. Functional requirements

2. Performance requirements

3. Design constraints

4. External interface requirements

Functional
Requirements

2
Performance

Requirements
Design

ConstraintsSRS Document

z
External

Interfaces

Fig. 3 Components of SRS

1. Functional Requirements

Functional requirements specify which outputs should be produced
from the given inputs. They describe the relationship between the
input and output of the system. For each functional requirement, a
detailed description of all the data inputs and their source, the units
of measure, and the range of valid inputs must be specified.
All the operations to be performed on the input data to obtain should
be specified. This includes specifying the validity checks on the input
and output data, parameters affected by the operation, and equations
or other logical operations that must be . used to transform the inputs
into corresponding outputs. For example, if there is a formula for
computing the output, it should be specified. Care must be taken not
to specify any algorithms that are not part of the system but that may
be needed to implement the system. These decisions should be left for
the designer. In addition some abnormal input, system behaviour for
invalid inputs must be specified.

40 Self-Instructional Material

Requirements Analysis2. Performance Requirements

This part of an SRS specifies the performance constraints on the software
system. All the requirements relating to the performance characteristics
of the system must be clearly specified. There are two types of performance
requirements: static and dynamic.
Static requirements are those that do not impose constraint on the
execution characteristics of the system. These include requirements like
the number of terminals to be supported, the number of simultaneous
users to be supported, and the number of files that the system has to
process and their sizes. These are also called capacity requirements of

the system. , j
Dynamic requirements specify constraints on the execution behaviour
of the system. These typically include response .time and throughput
constraints on the system. Response time is the expected time for the
completion of an operation under specified circumstances. Throughput
is the expected number of operations that can be performed in a unit
time. For example, the SRS may specify the number of transactions
that must be processed per unit time, or what the response time for a
particular command should be. Acceptable ranges of the different performance
parameters should be specified, as well as acceptable performance for
both normal and peak workload conditions.

NOTES

3. Design Constraints

There are a number of factors in the client’s environment 'that may restrict
the choices of a designer. Such factors include standards that must be
followed, resource limits, operating environment, reliability and security
requirements, and policies that may have an impact on the design of the
system. An SRS should identify and specify all such constraints.

(i) Standards Compliance. This specifies the requirements for the
standards the system must follow. The standards may include the
report format and accounting procedures. There may be audit­
tracing requirements, which require certain kinds of changes, or
operations that must be recorded in an audit file.

(ii) Hardware Limitations. The software may have to operate on
some existing or predetermined hardware, thus imposing restrictions
on the design. Hardware limitations can includje the type of machines

to be used, operating system, available on the system, languages
supported, and limits on primary and secondary storage.

(Hi) Reliability and Fault Tolerance. Fault tolerance requirements
can place a major constraint on how the system is to be designed.
Fault tolerance requirements often make the system more complex

Self-Instructional Material 41

Software Engineering and expensive. Recovery requirements must specify what the
system should do if some fault occurs. Recovery requirements
are often an integral part in the design constraints.
Security. Security requirements are particularly significant in
defense system and many database systems. Security requirements
place restrictions on the use of certain commands, control access
to data, provide different kinds of access requirements for different
people, require the use of passwords and cryptography techniques,
and maintain a log of activities in the system. Given the current
security needs even of common systems, they may also require
proper assessment of security threats, proper programming
techniques, and use of tools to detect flaws like buffer overflow.

4. External Interface Requirements

(iv)
NOTES

All the interactions of the software with people, hardware, and other
software should be clearly specified. For the user interface, the
characteristics of each user interface of the software product should
be specified. User interface is becoming increasingly important and
must be given proper attention. A preliminary user manual should be
created with all user commands, screen formats, an explanation of
how the system will appear to the user, and feedback and error messages.
Like other specifications these requirements should be precise and
verifiable. So, a statement like “the system should be user friendly”
should be avoided and statements like “commands should be no longer
than six characters” or “commands names should reflect the function

^ t

they perform” used.
For hardware interface requirements, the SRS should specify the logical
characteristics of each interface between the software product and the
hardware components. If the software is to execute bn existing hardware

•' or on predetermined hardware, all the characteristics of the hardware,
including memory restrictions, should be specified. In addition, the
current use and load characteristics of the hardware should be given.
The interface requirement should specify the interface with other software
the system will use or that will use the system. This includes the
interface with the operating system and other applications. The message
content and format of each interface should be specified.

2.9 CHARACTERISTICS OF SRS

A good SRS document has certain characteristics that must be present
to qualify as a good. The characteristics are:

42 Self-Instructional Material

nequirements Analysis1. Correctness

An SRS is correct if every requirement included in the SRS represents
something required in the final system.

2. Completeness NOTES

SRS is complete when it is documented after:

(i) The involvement of all types of concerned personnel.

(ii) Focusing on all problem, goals and objectives, and not only on
functions and features. s

(Hi) Correct definition of scope and boundaries of the software and
system.

3. Unambiguous

An SRS is unambiguous if and only if every requirement stated has one
and only one interpretation. Requirements are often written in natural
language, the SRS writer has to be especially Careful to ensure that
there are no ambiguities. One way to avoid ambiguities is to use some
formal requirements specification language. The major disadvantage of
using formal languages is the large effort required to write an SRS,
the high cost of doing so, and the increased difficulty reading and

requirements (particularly byunderstanding formally stated
and clients).

the users

4. Verifiable

An SRS is .verifiable if and only if there exists some cost-effective process
that can check whether the final product meets t ie requirement.

5. Modifiable

An SRS is modifiable if its structure and style are such that any necessary
change can be made easily while preserving completeness and consistency.
Presence of redundancy is a major hindrance to modifiability, as it can
easily lead to errors. For example, assume that a J-equirement is stated

in two places and that the requirement later needs to be changed. If
only one occurrence of the requirement is modified, the resulting SRS

will be inconsistent.

'/

6. Traceable

The SRS is traceable if the origin of each of the requirements is clear
and if it facilitates the referencing of each requirement in future development
or enhancement documentation. Two types of traceability are recommended.

Self-Instructional Material 43

(i) Backward traceability. This depends upon each requirement
explicitly referencing its source in earlier documents.

(if) Forward traceability. This depends upon each requirement in
the SRS having a unique name or reference number.

Software Engineering

NOTES

7. Consistency

Consistency in SRS is essential to achieve correct results across the
system. This is achieved by,

(i) Use of standard terms and definitions.
i

i {ii) Consistent application of business rules in all functionality.
{Hi) Use of data dictionary.
{iv) Lack of consistency results in incorrect SRS and failure in

deliverables to customer.

8. Testability

SRS should be written in such a way that it is possible to create a test
plan to confirm whether specifications can be met and requirements
can be delivered

(i) Considering functional and non-functional requirements.
Hi) Determining features and facilities required for each requirement.

HU) Ensuring that ‘users’ and ‘stakeholders’ freeze the requirement.

9. Clarity

An SRS is clear when it has a single interpretation for the author
(analysis), the user, the end user, the stakeholder, the developer, the
tester and the customer. This is possible if the language of the SRS is
unambiguous. Clarity ‘can be ascertained after reviewing the SRS, by a
third party. It can be enhanced if SRS includes diagrams, models and
charts.

10. Feasibility

RDD-SRS needs to be confirmed on technical and operational feasibility.
SRS many times assumes use of technology and tools based on the
information given by their vendors. It needs to be confirmed whether
the technology is capable enough to deliver what is expected in SRS.
The operational feasibility must be checked through environment checking.
It is assumed that sources of data, user capability, system culture,
work culture and such other aspects satisfy the expectation of the
developer. These must be confirmed before development launch.

44 Self-Instructional Material

Requirements Analysis
2.10 GOALS OF SRS DOCUMENT

A well designed, well written SRS document accomplishes the following
four, -major goals:
Feedback to Customer:

• SRS document provides a feedback to customer.
• It is the customer’s assurance that the development organization

understands the issues or problems to be solved and the software
behaviour necessary to address those problems.

• Therefore, the SRS should be written in natural language, in an
unambiguous manner that may also include charts, tables, data
flow diagrams, decision tables and so on.

Problem Decomposition
• SRS document decomposes the problem into component parts.
• The simple act of writing down software requirements in a well-

designed format organizes information, places borders around the
problem, solidifies ideas, and helps breakdown the problem into
its component parts in an orderly fashion. |

Input to Design Specification j
SRS document serves as an input to the design specification.

• The SRS also serves as the parent document to subsequent documents,
such as the software design specification and statement of work.

• Therefore, the SRS must contain sufficient detail in the functional
system requirements so that a design solution can be devised.

Production Validation Check:
• SRS document serves as a product validation check.
• The SRS also serves as the parent document for testing and validation

strategies that will be applied to the requirements for'verification.

NOTES

2.11 BENEFITS OF INVOLVING TECHNICAL

WRITERS IN SRS

Having technical writers involved throughout the entire SRS development
process can offer severaT benefits:

• Technical writers are skilled information gatherers, ideal for eliciting
and articulating customer requirements. The presence of a technical
writer on the requirements gathering team helps balance the type
and amount of information extracted from customers, which can
help improve the SRS.

• Technical writers can better access and plan dochmentation projects
and better meet customer document needs. Working on SRSs provides V

Self-Instructional Material 45
'

technical writers with an opportunity for learning about customer
needs firsthand—early in the product development process.

• Technical writers know how to determine the questions that
are of concern to the user or customer regarding ease of use
and usability. Technical writers can then take that knowledge
and apply it not only to. the specification and documentation
development, but also to user interface development.

• Technical writers involved early and often in the process, can
become an information resource throughout the process, rather
than an information gatherer at the end of the process.

Software Engineering

NOTES

2.12 SRS DOCUMENT TEMPLATE

The easiest way to writing an SRS document is to use SRS template.
Most of the software development organizations develop their own
SRS template, which can serve the purpose for all the software projects
undertaken for development.
SRS Document Template
One such SRS Document Template Structure is described in given
Table.
Document-Title:
Author(s)
Affiliation
Address
Date

Document version control information.
1. Introduction

• Purpose of this Document. Describe the purpose of document,
and the intended audience.

• Scope of this Document. Describe the scope of this
requirements definition effort. Introduces the requirements
elicitation team, including users, customers, system engineers,
and developers.
This section also details any constraint that were placed
upon the requirements elicitation process, such as schedules,
costs, or the software engineering environment used to develop
requirements.

• Overview. Provides a brief overview of the product defined
as a result of the requirements elicitation process.

• Business Context. Provides an overview of the business
organization sponsoring the development of this product.

46 Self-Instructional Material

Requirements AnalysisThis overview should include the business’s mission statement
and its organizational objectives or goals.

2. General Description
• Product Functions. Describes the genera, functionality of

the product, which will be discussed in mo:*e detail below.
• Similar System Information. Describes the relationship of

this product with any other products. Specifies if this product
is intended to be stand-alone, or else used as a component of
a larger product. If the latter, this section discusses the
relationship of this product to the larger product.

• User Characteristics. Describes the features of the user
community, including their expected expertise with software

systems and the application domain.
• User Problem Statement. This section describes the essential

problem(s) currently confronted by the use:* community.
• User Objectives. This section describes the set of objectives

and requirements for the system from the user's perspective.
It may include a “wish list” of desirable characteristics, along
with more feasible solutions that are in line with the business

objectives.
• General Constraints. Lists general constraints placed upon

the design team, including speed requirements industry protocols,
hardware platforms, and so forth.

3. Function Requirements. This section lis;s the functional
requirements in ranked order. Functional requirements describe
the possible effects of. a software system, in other words, what
the system must accomplish. Other kinds of rjequirements (such
as interface requirements, performance requirements, or reliability
requirements) describe how the system accomplishes its functional
requirements.

Each functional requirement should be specified in a format similar to
the following:

1. Short, imperative sentence stating highest i anked functional
requirement

• Description
A full description of the requirements.

• Criticality
Describes how essential this requirement is to the overall system.

• Technical issues
Describes any design or implementation issues involved in
satisfying this requirement. 1

• Cost and Schedule ’ i

NOTES

■Self-Instructional Material 47

Describes the relative or absolute costs associated with this
issue. • .

• Risks
Describes the circumstances under which this requirement
might not able to be satisfied, and what actions can be taken
to reduce the probability of this occurrence.

• Dependencies with other requirements

Describe interactions with the other requirements.
• others as appropriate

2. <Name of second highest ranked requirements>

And so forth....

3. Interface Requirements. This section describes how the software
interfaces with other, software products or users for input or
output. Examples of such interfaces include library routines,
token streams, shared memory, data streams, and so forth.

• User Interfaces. Describes how this product interfaces with
user.

— GUI. Describes the graphical user interface if present.
This section should include a set of screen dumps or mocks-

. ups to illustrate user interface features.

If the system is menu-driven, a description of all menus
and their components should be provided.

, - CLI. Describes the command line interface (or command
user interface, GUI, if present). For each command, a
description of all arguments and example values and
invocations should be provided.

- API. Describes the application programming interface, if
present. For each public interface function, the name,
arguments, return values, examples of invocation, and
interactions with other functions should be provided.

— Diagnostics or ROM. Describes how to obtain debugging
information or other diagnostic data.

• Hardware Interfaces. Describes interfaces to hardware
devices.

• Communications Interfaces. Describe network interfaces.

• Software Interfaces. Describes any remaining software
interfaces not included above.

4. Performance Requirements. Specifies speed and memory
requirements. ,,

Software Engineering

NOTES

/

48 Self-Instructional Material

Requirements Analysis5. Design Constraints. Specifies any constraints for the design.team
using this document.

• Standards Compliance

• Hardware Limitations

...others as appropriate.

6. Other Non-Functional Attrftufes. Specifies any other particular
non-functional attributes required by the system. Examples are
provided below: ^ *

• Security

• Binary compatibility

• Reliability

• Maintainability

• Portability

• Extensibility ■ ' ■

• Reusability

• Application Affinity/compatibility

• Resource utilization.

• Serviceability

...others as appropriate.

7. Preliminary Object Oriented Domain Analysis. This section
presents a list of the fundamental objects that must be modelled
within the system to satisfy its requirements. The purpose is to
provide an alternative, “structural” view on the requirements stated
above and how they might be satisfied in the system.

• Inheritance Relationships. This section should contain a
set of graphs that illustrate the primary inheritance hierarchy
(is kind-of) for the system, e.g.,

NOTES

> •

Vehicle

Truck'

Toyota Honda GMC . Volvo

• Class Descriptions. This section presents ,a more detailed

Self-Instructional Material 49

description of each class identified during the 00 domain
analysis. Each class description should conform to the following

structure:
- <class name>
■ Abstract or Concrete. Indicates whether this class is

abstract or concrete.
■ List of superclasses. Names all immediate superclasses.
■ List of subclasses. Names all immediate subclasses.
■ Purpose. States the basic purpose of the class.
■ Collaborations. Names each class with which this class

must interact in order to accomplish its purpose, & how.
■ Attributes. Lists each attribute (state variables) associated

with each instance of this class, and indicates examples
of possible values (or a range).

■ Operations. Lists each operations that can be invoked
upon instances of this class. For each operation, the arguments
(and their type), the return value (and its type), and any
side effects of the operation should be specified.

■ Constraints. Lists any restrictions upon the general state
or behaviour of instances of this class.

Operational Scenarios. This Section should describe a set of scenarios
that illustrate, from the user’s perspective, what will be experienced
when utilizing the system under various situations.
Preliminary Schedule. This section provides an initial version of the
project plan, including the major tasks to be accomplished, their
independencies, and their tentative start/stop dates. The plan also includes

information on hardware, software, and netware resource requirements.
The project plan should be accompanied by one or more PERT or GANTT
charts.
Preliminary Budget. This section provides an initial budget for the
project, itemized by cost factor.
Appendices: Specifies other useful information for understanding the

requirements. All SRS documents should include at least the following
two appendices:

• Definitions, Acronyms, Abbreviations. Provides definitions
of unfamiliar definitions, terms, and acronyms.

• References. Provides complete citations to all documents and
meetings referenced or used in the preparation of this document.

Software Engineering

NOTES

50 Self-Instructional Material

Requirements Analysis

STUDENT ACTIVITY

1. Write a short note on SRS document.

2. Describe in brief the components of SRS.

SUMMARY

• Functional requirements specify which outputs should be produced from .the given inputs.
• .Hardware limitations can include the type of machines to be used, operating system available

on the system, languages supported, and limits on primary and secondary storage.

• Security requirements are particularly significant in defense system and many database
systems.

• The interface requirement should specify .the interface with other software the system will
use or that will use the system.

• Requirements are defined as descriptions and specifications of a system. It may range from0
. a high-level abstract statement of a service or of a system constraint to a detailed mathematical

functional specification.

« The requirement document should be Correct; Complete; Consistent; Unambiguous; Functional;
Verifiable; Traceable and Easily Changed.

• Requirements Validation is the process of determining that the specification is consistent
with the requirements definition i.e., validations make sure that the requirements will meet
the customers’ needs. . • ! .

Self-Instructional Material 51

Software Engineering
REVIEW QUESTIONS

' / 1. What are the types of software requerement specifications?

2. Give an example for functional and non-functional requirement
for the software requirements.

3. What is the format of specification?

4. Discuss the major uses of SRS document.

5.. What are the benefits of a good SRS?

. 6. Explain various types of errors in SRS.

7. What are the characteristics of a good SRS document?

8. Explain the major goals of SRS document.

NOTES

FURTHER READINGS

1. Software Engineering, Bharat Bhushan Agarwal, Sumit Prakash
Tayal, Firewall Media.

2. Software Engineering, D. Sunder, University Science Press.

C

52 Self-Instructional Material

Designing Software
SolutionsIII DESIGNING SOFTWARE

SOLUTIONS
UNIT

NOTES
★ STRUCTURE ★

3.0 Learning Objectives

3.1 Introduction

3.2 Definition of Software Design

3.3 Architectural Design

3.4 Low-Level Design
•“'i . .

3.5 Structured Design Methodology

3.6 Aim of Structured Design

3.7 Relationship Between Coupling and Cohesion

3.8 Tools for Structured Design

3.9 Modules Identification and Specification Techniques

3.10 Module Specification Method

3.11 Object-Oriented Design Methods

3.12 Reuse-Based Design Method

3.13 Design Specification

3.14 Verification for Design

• Summary

• Review Questions

• Further Readings

3.0 LEARNING OBJECTIVES

After studying this unit, you will be able to:

• explain software design

• describe architectural design

• illustrate low-level design

Self-Instructional Material 53

Software Engineering
3.1 INTRODUCTION

Design is a meaningful representation of something that is to be built.
It can be traced to a customer’s requirements and at the same time
assessed for quality against a set of predefined criteria for “good” design.

A set of design concepts has evolved over the years. According to M.A.
Jackson, “The beginning of wisdom for a software engineer is to recognize
the difference between getting a program to work and getting it right,”
The various design concepts discussed as under provide the necessary

framework for “getting it right”.

NOTES

3.2 DEFINITION OF SOFTWARE DESIGN

The definitions of software design are as diverse as design methods.
Some important software design definitions are outlined below.

According to Coad and Yourdon

“Software Design is the practice of taking a specification of externally
observable behavior and adding details needed for actual computer
system implementation, including human interaction, task management,
and data management details”.

According to Webster

“In a sense,, design is representation of an object being created. A

design information base that describes aspects of this object, and the

design process can be viewed as successive elaboration of representations,
such as adding more information or even backtracking and exploring

alternatives”.

According to Stevens

“Software Design is the process of inventing and selecting programs

that meet the objectives for software systems”.

Input includes an understanding of the following

(i) Requirements

(ii) Environmental constraints

(Hi) Design criteria

64 Self-Instructional Material

Designing Software
SolutionsThe output of the design effort is composed of the following.

(i) Architecture design which shows how pieces are interrelated.

(ii) Specifications for any new pieces.

(Hi) Definitions for any new data”. ' ,
NOTES

Design Objectives/Properties

The various desirable properties or objectives of software design are:

1. Correctness

The design of a system is correct if a system built precisely according

to the design satisfies the requirements of that system. Clearly, the

goal during vthe design phase is to produce correct designs. However,
correctness is not the sole criterion during the design phase, as there

can be many correct designs. The goal of the'design process is not
simply to produce a design for the system. Instead, the goal is to find

the best possible design within the limitations imposed by the requirements

and the physical and social environment in which the system will
operate.

2, Verifiability

Design should be correct and it should be verified for correctness.
Verifiability is concerned with how easily the correctness of the design

can be checked. Various verification techniques should be easily applied

to design.

3. Completeness

Completeness requires that all the different co nponents of the design

should be verified i.e., all the relevant data structure; modules, external
interfaces’ and module interconnections are specified.

4. Traceability

Traceability is an important property that can get design verification.
It requires that the entire design element must be traceable" to the

requirements.

5. Efficiency

Efficiency of any system is concerned with the proper use of scarce
i

Self-Instructional Material 55

Software Engineering by the system. The need for efficiency arises due to cost
considerations. If some resources are scarce and expensive, it is desirable

that those resources be used efficiently. In computer systems, the resources

that are most often considered for efficiency are processor time and

memory. Two of the important such resources are processor time and

memory. An efficient system consumes less processor time and memory.

resources

NOTES

6. Simplicity

Simplicity is perhaps the most important quality criteria for software

systems. Maintenance of software system is usually quite expensive.
The design of the system is one of the most important factors affecting

the .maintainability of the system.

Design Principles

The three design principles are as follows:

(а) Problem partitioning.

(б) Abstraction.

(c) Top-down and Bottom-up design.

1. Problem Partitioning

When solving a small problem, the entire problem can be tackled at
once. For solving larger problems, the, basic principle is the time-

tested principle of “divide .and conquer”. This principle states that

divide into smaller pieces, so that each piece can be conquered separately.

For software design, therefore, the goal is to divide the problem into

manageably small pieces that can be solved separately. The basic rationale

behind this strategy is the belief that if the pieces of a problem

solvable separately, the cost of solving the entire problem is more than

the sum of the cost of solving all the pieces:

However, the different pieces cannot be entirely independent of each

other as they together form the system. The different pieces have to

cooperate and communicate to solve the larger problem. This communication

adds complexity, which arises due to partitioning and may not have

existed in the original problem. As the number of components increases,
the cost of partitioning, together with the cost of this added complexity,
may become more than the savings achieved by partitioning. It is at
this point that no further partitioning needs to be done. The designer

has to make the judgement 'about when to stop partitioning.

are

56 Self-Instructional Material

Designing Software
SolutionsProblem partitioning can be divided into two categories:

i

(i) Horizontal partitioning

(ii) Vertical partitioning
NOTES

(i) Horizontal Partitioning

Horizontal partitioning defines separate branches of modular hierarchy
for each major program function. The simplest approach to horizontal

partitioning defines three partitions—input, data transformation (often

called processing) and output. Partitioning their architecture horizontally

provides a number of distinct benefits:

• Software that is easier to test.

• Software that is easier to maintain.

• Software that is easier to extend. »

• Propagation of fewer side. effects.
On the negative part, horizontal partitioning often causes more data
to be passed across modules interfaces and can complicate the overall
control of program flow.

Function 1 Function 3

Function 2

Fig. 1 Horizontal Partitioning

(ii) Vertical Partitioning

Vertical partitioning, often called factoring, suggests that control and

work should be distributed from top-down in the programme structure.
Top level modules should perform control function and do actual processing

work. Modules that reside low in the structure should be the workers,
performing all input, compilation and output tasks.

Self-Instructional Material 57

Software Engineering
Decision
making
modules

NOTES

"Workers"
modules

Fig. 2. Vertical Partitioning

2, Abstraction

An abstraction of a component describes the external behaviour of
that component without bothering with the internal details that produce
the behaviour.
Abstraction is an indispensable part of the design process and it is
essential for problem partitioning. Partitioning essentially is the exercise
in determining the components of a system. However, these components
are not isolated from each other, but interacts with other components.
In order to allow the designer to concentrate on one component at a
time, abstraction of other component is used.
Abstraction is used for existing components as well as component that
are being designed. Abstraction of existing components plays an important
role in the maintenance phase.
During'the design process, abstractions are used in the reverse manner
than in the process of understanding a system. During design, the
components do not exist, and in the design the designer specifies only
the abstract specifications of the different components. The basic goal
of system design is to specify the modules in a system and their abstractions.
Once the different modules are specified, during the detailed design
the designer can concentrate on one module at a time. The task in
detailed design and implementation is essentially to implement the
modules so that the abstract specifications of each module are satisfied.
There are two common abstraction mechanisms for software systems:
Functional abstraction and data abstraction. In functional abstraction,
a module is specified by the function it performs. For example, a module
to sort an input array can be represented by the specification of sorting.
Functional abstraction is the basis of partitioning in function-oriented
approaches. That is when the problem is being partitioned; the overall
transformation function for the system is partitioned into smaller functions ,
that comprise' the system function.

The second unit for abstraction is data abstraction. There are certain
operations required from a data object, depending on the object and
the environment in which it is used. Data abstraction supports this

58 Self-Instructional Material

Designing Software
Solutionsview. Data is not treated simply as objects, but is treated as objects

with some predefined operations on them. The operations defined on
a data object are the only operations that can be performed on those
objects. From outside an object, the internals of the object are hidden;
only the operations on the object are visible. NOTES

3. Top-down and Bottom-up Design

A system consists of components, which have components of their own;
indeed a system is a hierarchy of components. The highest-level components

correspond to the total system.
To design such hierarchies there are two possible approaches: top-
down and bottom-up. The top-down approach starts from the highest-
level component of the hierarchy and proceeds thrcugh to lower levels.
By contrast, a bottom-up approach starts with the'lowest-level component
of the hierarchy and proceeds through progressively higher levels to
the top-level component.
A top-down design approach starts by identifying the major components
of the system, decomposing them into their lower-level components
and iterating until the desired level of detail is achieved. Top-down
design methods often result in some form of stepwise refinement. Starting
from an abstract design, in each step the design is refined to a more
concrete level, until we reach a level where no more refinement is
needed and the design can be implemented directly. The top-down
approach has been promulgated by many researchers and has been
found to be extremely useful for design. Most design methodologies
are based on the top-down approach.

MovementMain modules

•^Subordinate <
module

(Movement in top-down approach)

Fig. 3 Top-down Approach

A bottom-up design approach starts with designing, the most basic or
primitive components and proceeds to higher-lfevel components that
use these lower-level components. Bottom-up methods work with layers
of abstraction. Starting from the very bottom, operations that provide
a layer of abstraction are implemented. The operations of this layer
are then used to implement more powerful operations and a still higher

Self-Instructional Material 59

layer of abstraction, until the stage is reached where the operations

supported by the layer are those desired by the system.
Software Engineering

Main modules4

NOTES

Movement

+• Lower
Level

+. Module
(Movement in bottom-up approach)

Fig. 4 Bottom-up Approach

A top-down approach is suitable only if the specifications of the system
are clearly known and the system development is from scratch. However,
if a system is to be built from an existing system, a bottom-up approach
is more suitable, as it starts from some existing components. So, for
example, if an, iterative enhancement type of process is being followed,
in later iterations, the bottom-up approach could be more suitable (in

the first iteration a top-down approach can be used).

i

t

3.3 ARCHITECTURAL DESIGN

Large systems are always decomposed into subsystems that provide
some related set of services. The initial design process of identifying
these sub-systems and establishing a framework for subsystem control
and communication is called architectural design.
Architectural design represents the structure of data and program
components that are required to build a computer-based system. It
considers the architectural style that the system will take the structure
and properties of the components that constitute the system, and the
interrelationships that occur among all architectural components of a
system.
Architectural design methods have a look into various alternates’
architectural style of designing a system. These are:

1. Data centric architecture

2. Data flow architecture

3. Object oriented architecture

4. Layered architecture
60 Self-Instructional Material

Designing Software
Solutions

Data centric architecture approach involves the use of a central
database operations of inserting, updating it in he form of a table.
Data flow architecture is central round the pipe and filter mechanism.
This architecture is applied when input data takes the form of output

' after passing through various phases of transformations. These
transformations can be via manipulations or various computations

done on the data. In object oriented architecture the software design

moves aroundjhe clauses and object of the system. Tie class encapsulates

the data and methods. At least layered architecture defines a number
of layers and each layer performs tasks. The outermost layer handles
the functionality of the user interface and the innermost layer mainly

handles interaction with the hardware.

NOTES

Objectives of Architectural Design

The objective of architectural design is to develop a model of software
architecture, which gives a overall organization, oi program module in
the software product. Software architecture encompasses two aspects
of structure of the data and hierarchical structure of the software
components. Let us see how a single problem can be translated to a

collection of solution domains (refer to Fig. 5)

•v

S1 S2 S5
♦Problem

SI S2 S5
S3 S4 S6

$4S3

\
\S6

Fig. 5 Problems, Solutions and Architecture

Architectural design defines organization of program components. It

does not provide the details of each components and its implementation.
Figure 6 depicts the architecture of a Financial Accounting System.

The objective of architectural design is also to control relationship
between modules. One module may control another module or may be

controlled by another module. These characteristics are defined by

the fan-in and famout of a particular module. The organization of module

.■/(can be represented through a tree like structure. 1
. f... . ■ !

\

/
\

Self-Instructional Material 61

Software Engineering

Financial Accounting
Management System

NOTES

Fixed Asset
Management

System

Accounts
Receivable System

Sundry Debtors

Eig. Q Architecture of a Financial Accounting System

The number of level of component in the structure is called depth and

the number component across the horizontal section is called width.
The number of components, which controls a said component, is called

fan-in t.e., the number of incoming edges to a component. The number

of components that are controlled by the module is called fan-out i.e.,
the number of outgoing edges.

V

\
i

S5 •SiS0 •' £

S2S5Si S2

Fig. 7 Fan-in and Fan-out

S0 controls three components hence the fan-out is 3. S2 is controlled
by two components, namely, S1 anil S2; hence the fan-in is 2 (refer

to Fig. 7).

3.4 LOW-LEVEL DESIGN
)

Modularization

A system is considered modular if it consists of discrete components A
so that each component can be implemented separately, and a change
to one component has minimal impact on other components.

l

OR
“A system is modular if it is composed of well defined, conceptually
simple and independent units interacting through well defined interfaces”.
There are many definitions of the tdrm “module”. They range from “a
module is a FORTRAN subroutine to^“a module is an ADA package” to
“a module is a work assignment” for an individual programmer”. All of

62 Self-Instructionai Material

Designing Software
Solutions

these definitions are correct, in the sense that modular systems incorporate
collections of abstractions in which each functional abstraction, each
data abstraction, and each control abstraction handles a local aspect of
the problem being solved. Modular system consists of well-defined,
manageable units with well-defined interfaces among the units. Desirable
properties of a modular system include:

1. Each function in each abstraction has a single, well-defined purpose.

2. Each function manipulates no more than one major data structure.

3. Functions Share global data selectively. It is easy to identify all
routines that share a major data structure.

4. Functions that manipulate instances of abstract data types are
encapsulated with the data structure being manipulated.

Modularity enhances design clarity, which in turn eases implementation,
debugging, testing, documenting, and maintenance of the software product.

OR
“Modularity is probability of the single most important characteristics
of a well designed' software system”.

, 1
Modules may be created during program modularizations are:

j ■

• Process support modules: In it all the functiohs and data items
that are required to support a particular business process are
grouped together.

• Data abstraction: These are abstract types ttlat are created by
* k

associating data- with processing components.

• Functional modules: In it all the function that carries out similar
or closely related tasks is grouped together. 1

• Hardware modules: In it all the functions, which controls on

particular hardware- are grouped together.

NOTES

Classification of Modules

A module can be classified into three types depending on activatic

mechanism.

1. An incremental module is activated by an interruption and can
be interrupted by another interrupt during tile execution prior

to completion.

2. A sequential module is a module that is referenced by another

module and without interruption of any external software.

v3. Parallel, modules are executed in parallel with another modules.

The main purpose of modularity is that it allows the principle of separation ,
‘ ■ . '^,.^1!'\

Self-lnstructiorial 'Material

of concerns to be applied in two phases: when dealing with the details

of each module in isolation (and ignoring details of other modules) and
when dealing with the overall characteristics of all modules and their ‘
relationships in order to integrate them into a coherent system. If the
two phases are temporally executed in the order mentioned, then we
say that the system is designed bottom-up\ the converse denotes top-

down design.

Software Engineering

NOTES

Advantages of Modular Systems

1. Modular systems are easier to understand and explain because
their parts make are functionally independent. ’

2. Modular systems are easier to document because each part can

be documented as an independent unit.

3. Programming individual modules is easier because the programmer^
can focus on just one small, simple problem rather than a large
complex problem. .

4. Testing and debugging individual modules is easier because they
can be dealt within isolation from the rest of the program.

5. . Bugs are easier to isolate and understand, and they can be fixed
without fear of introducing problems- outside the module.

6. Well-composed modules are more reusable because they are more
likely to comprise part of a solution to many problems. Also a
good module should be easy to extract from one program and
insert into another. Example.

Modularity is an important property of most engineering processes
and products. For example, in the automobile industry, the construction

of cars proceeds by assembling building blocks that are designed and
built separately. Furthermore, parts are often reused from model to

model, perhaps after minor changes. Most industrial processes are essentially
modular, made out of work packages that are combined in simple ways
(sequentially or overlapping) to achieve the desired result.

/\

3.5 STRUCTURED DESIGN METHODOLOGY

Structured Design Methodology (SDM)'views every software system as'
having some inputs that are converted into the desired outputs by the
software system. The software is yiewed as a transformation function
that transforms the given inputs 'into the desired outputs, and the
central problem of designing software systems is considered to be properly

r/.

\
64 Self-Instructional Material

ilesigning this transformation tunction. utie lu wnS ui
he structured design methodology is primarily function oriented and
•elies heavily on functional abstraction and functional decomposition.
The concept of the structure of a program lies at tile heart of the
■structured design method.
During design, Structured Design Methodology aims to control and
nfluence the structure of the final program. The aim is to design a

■system so that programs implementing the design would have a hierarchical
structure, with functionally cohesive modules and as few interconnections
between modules as possible.

Solutions

NOTES

3.6 AIM OF STRUCTURED DESIGN

The aim of structured design is to specify modules that can be developed,
■written, tested, modified, and reused independently, and combined to
iform the final program. Good modularization is thus a primary goal.
Module quality depends mainly on two factors:

• Coupling, and

• Cohesion

Coupling

“Coupling is a measure of interconnection among modules in a software

structure.”

The coupling between two modules indicates the degree of
interdependence between them. If two modules interchange large
amount of data, then they are highly interdependent. The degree of
coupling between two modules depends on their interface complexity.
The interface complexity is basically determined bjj the number of
types of parameters that are interchanged while invoking the functions
of the module.
Highly coupled: When the modules are highly dependent on each
other then they are called highly coupled.
Loosely coupled: When the modules are dependent on each other
but the interconnection among them is weak then they are called
loosely coupled.

Uncoupled Modules:
No Dependencies

j
Self-Instructional Material 65

Software Engineering
♦

\

i♦
NOTES 4

Highly Coupled:
Many Dependencies

Loosely Coupled:
Some Dependencies

Fig. 8 Coupling

Uncoupled: When the different modules have no interconnection among

them then it is called uncoupled module.

Factors Affecting Coupling between Modules

The various factors which affect the coupling between the modules are

/ depicted in the tabular form below:

Table 1 Factors Affecting Coupling

Type of
Communication

Interface
Complexity

Type of
Connection

Low Simple
. Obvious

Complicated
Obscure

To module
by name

Data

To internal
elements

High Control
Hybrid

Itypes of Coupling

Different types of coupling are content, common, external, control,
stamp and data. The strength of coupling from lowest coupling (best)

to highest coupling (worst) is given in Fig. 9..

Data coupling Best

Stamp coupling

Control coupling

External coupling

Common coupling

Content coupling Worst

Fig. 9 The Types of Module Coupling

2. Data Coupling

Two modules are data coupled, if they communicate using an elementary

data item that is passed as a parameter between the two, for example,

O'} Self-Instructional Material ■

1|

Designing Software
Solutionsan integer, a float, a character, etc. This data item should be problem

related and not used for the control purpose.

A
Data

variables
NOTES

i.CB I

Fig. 10 Data Coupling

When non-global variable is passed to a module, modules are called

data coupled. It is- the lowest form of coupling. For example, passing

int variable from one module in C and receiving the variable by value

{i.e., call by value).

2, Stamp Coupling

Two modules are stamp coupled, if they communicate using a composite

data item such as a record, structure, object etc. When module passes

non-global data structure or entire structure to another module, they

are said to be stamp coupled. For example, passing a record in PASCAL

or structure variable in C or object in C++ language to a module.

3. Control Coupling

Control coupling exists between two modules, if dita from one module

is used to direct the order of instruction execution in another. An example

of control coupling is a flag set in one module and tested in another module.

A
Control

flag

B C

Fig. 11 Control Coupling

The sending module must know a great deal about the inner working
of the receiving module. A variable that controls dekisions in subordinate

module C is set in super ordinate module A and then passed to C.

4. External Coupling

It occurs when modules are tried to an environment external to software.
External coupling is essential but should be limitled to

of modules with structure.

j
a small number

Self-Instructional Material 67

5. Common CouplingSoftware Engineering

Two modules are common coupled, if they share some global data items

e.g., Global variables. Diagnosing problems in structures with considerable

common coupling is time-consuming and difficult. However, this does

not mean that the use of global data is necessarily “bad”. It does mean

that a software designer must be aware of potential consequences of

common coupling and take special care to guard against them.

NOTES

6. Content Coupling

Content coupling exists between two modules, if their code is shared,
' for example, a branch from one module into another module. It means

when one module directly refer to the inner workings of another module.
Modules are highly interdependent to each other. It is the highest
form of coupling. It is least desirable coupling as one component actually

J modifies another and thereby the modified component is completely

dependent on the modifying one.
No direct coupling Stamp coupling

Data coupling

\

External Content coupling
Common couplingControl coupling

Coupling spectrum HighLow

Fig. 12 Coupling

High coupling among modules not only makes a design difficult to understand

and maintain, but it also increases development effort as the modules

having high coupling cannot be developed independently by different
team members. Modules having high coupling are difficult to implement:
and debug. ("

Cohesion

“Cohesion is a natural extension of information hiding concept.”

Cohesion is a measure of the relative functional strength of a module.
The cohesion of a component is a measure of the closeness of the

relationships between its components. A cohesive module performs a

single task within a software procedure, requiring little interaction

with procedures being performed in other parts of a program.

A strongly cohesive module implements functionality that is related to

one feature of the solution and requires little or no interaction with

68 Self-Instructional Material

Designing Software
Solutionsother modules. This is shown in Fig. 13. Cohesion may be viewed as

glue that keeps the module together. It is a measure of the mutual
officity of the components of a module.

W NOTES

Module
^ strength ^ ^

Fig. 13 Cohesion-Strength of Relation Within Modules

Thus, we want to maximize the interaction within a module. Hence, an

important design objective is to maximize the module cohesion and
minimize the module coupling. I

Types of Cohesion

There are seven levels of cohesion in decreasing order to desirability

which are as follows:

Best (high)Functional Cohesion

Sequential Cohesion

Communicational Cohesion

Procedural Cohesion

Temporal Cohesion

Logical Cohesion

Worst (low)Coincidental Cohesion

Fig. 14 The T^pes of Module Cohesion^

1. Functional Cohesion

Functional cohesion is said to exist'if different elements of a module

cooperate to achieve a single^ function, e.g., managing an employee’s

payroll. When a module displays functional cohesion, and if we are
asked to describe what the module does we canj describe it using a

single sentence. I

Self-Instructional Material 69

Software Engineering
FUNCTION APart 1

FUNCTION A Part 2

FUNCTION A Part 3
NOTES

Fig. 15 Functional Cohesion: Sequential with Complete, Related Functions

2, Sequential Cohesion

A module is said to possess sequential cohesion, if the elements of a

module form the parts of a sequence, where the output from one element
of the sequence is input to the next. ,

FUNCTION A

i FUNCTION B

tFUNCTION C

Fig. 16 Sequential Cohesion: Output of one Part is Input to Next

3. Communicational Cohesion

A module is said to have communicational cohesion, if all the functions

of the module refer to or update the same data structure, for example,
the set of functions defined on an array or a stack. All the modules in

communicational cohesion are bound tightly because they operate on

same input or output data. For example the set of functions defined on

an array or a stack.

Data

FUNCTION A

FUNCTION B
/.

FUNCTION Ct

Fig. 17 Communicational Cohesion: Access Same Data

4, Procedural Cohesion

A module is said to possess procedural cohesion, if the set of functions

of the module are all part of a procedure (algorithm) in which certain

sequence of steps has to be. carried out for achieving an objective, for

example, the algorithm for decoding a message.

>

70 Self-Instructional Material

Designing Software
SolutionsFUNCTION A

FUNCTION B

FUNCTION C
NOTES

Fig. 18 Procedural Cohesion Related by Order < / Function

5. Temporal Cohesion

When a module contains functions that are relatejd by the fact that all
' ♦

■ the functions must be executed in the same time span, the module is

said to exhibit temporal cohesion. The set of functions responsible for

initialization, start-up, shutdown of some process, etc., exhibit temporal
cohesion.

TIME TO

TIMETO+A .

TIME TO+2A

Fig. 19 Temporal Cohesion Related by Time

6. Logical Cohesion

A module is said to be logically cohesive, if all elements of the module

perform similar operations, for example, error handling, data input,
data output, etc. An example of logical cohesion is the case where a set
of print functions generating different output reports are arranged

into a. single , module.

FUNCTION A

logic FUNCTION A'

FUNCTION A"

Fig. 20 Logical Cohesion Similar Functions

7. Coincidental Cohesion

A module is said to have coincidental cohesion, if it performs a set of

tasks that relate to each other very loosely. In this case, the module

contains a random collection of functions. It means that the functions

have been put in the module out of pure coincidence without any

thought or design. It is the worst type of cohesion.

Self-Instructional Material 71

Software Engineering FUNCTION I

FUNCTION . FUNCTION

FUNCTIONFUNCTION
VIVNOTES

Fig. 21 Coincidental Cohesion Parts Unrelated

Communicational
Procedural Sequential

Coincidental
Logical Temporal Functional

HighCohesion spectrumLow

Scattered-brained Single-minded

Fig. 22 Cohesion

3.7 RELATIONSHIP BETWEEN COUPLING AND

COHESION

A software engineer must design the modules with goal of high cohesion
and low coupling.

A good example of a system that has high cohesion and low coupling is
the ‘plug and play* feature of the computer system. Various slots in the
mother board of the system simply facilitate to add or remove the various
services/functionalities without affecting the entire system. This is because
the add on components provide the services in highly cohesive^njanner.
Fig. 23 provides a graphical review of cohesion and coupling.

High coupling

Fig. 23 View of Cohesion and Coupling

Module design with high cohesion and low coupling characterizes a
module as black box when the entire structure of the system is described.
Each module can be dealt separately when the module functionality
is described.

Low coupling

72 Self-Instructional Material

Designing Software
Solutions3.8 TOOLS FOR STRUCTURED DESIGN

The following are the key tools used for the structured design:

• Structure charts NOTES

• Modules identification and specification techniques.

These key tools are discussed below.

Structure chart

The Structure chart is one of the most commonly used methods for

system design. Structure charts are used during architectural design
to document hierarchical structure, parameterJ, and interconnections

in a system.

It partitions a system into black boxes. A black box: rieans that functionality

is known to the user without the knowledge of internal design. Inputs

are given to black box and appropriate outputs are generated by the

black box. This concept reduces the complexity because details are

hidden from those who Have no need or desire to know. Thus systems

are easy to construct and easy to maintain. Here, black boxes are

arranged in hierarchical format as shown in Fig. 24 (a) & (6)

Rectangular
Boxes A

+> Indicates Selection
1

2 \ Control-flow
Arrows

38

B C D
Indicates

»^^Repejition
4

Data-flow
Arrows y*

E F G H

Fig. 24 (a) Hierarchical Format of a Structure Chart

In Out

1
2
3
4 Input

'Data
Output
Data5

6
7
8

Fig. 24 (6) Format of a Structure Chart

Self-Instructional Material 73*

Software Engineering Modules at the top-level call the modules at the lower level. The connections

between modules are represented by lines between the rectangular

boxes. The components are generally read from top to bottom, left to

right. Modules are numbered in hierarchical numbering scheme. In

any structure chart there is one and only one module at the top called

the root.

NOTES

Basic Building Blocks of Structure Chart

The basic building blocks'of structure chart are the following:

1, Rectangular Boxes

A rectangular box represents a module. Usually a rectangular box is

annotated with the name of the module it represents.
t

i

A
t

2. Arrows

An arrow connecting two modules implies that during program execution,
control is passed from one module to the other in the direction of the

connecting arrow.

/ 3. Data Flow Arrows
■ 'U

Data flow arrow represents that the named data passes from one module

to the other in the direction of the arrow.

4. Library Modules

Library comprises the frequently called modules and is usually represented

by a rectangle with double edges. Usually when a module is invoked

by many other modules, it is made into a library module.

A

74 Self-Instructional Material •

Designing Software
Solutions5. Selection

The diamond symbol represents that one module out of several modules
connected with the diamond symbol, are invoked depending on the

condition satisfied, which is written in the diamond symbol. NOTES

6. Repetitions

A loop around the control, flow arrows denotes that the respective

modules are invoked repeatedly.

X \
\ ,\

Example. A software system called RMS calculating software reads
three integral numbers from the user in the range between -1000 and
+1000 and determines the root mean square (rmsi) of the three input

. numbers and then displays it.

Main
Valid-data it rms

Valid-data

Compute-rmsGet-good-data Write-result

Data-items Valid-data
Data-items

Validate-inputRead-input

Fig. 25 Structure Chart for Exampl i

Difference between Flowchart and Structt re Chart

A structure chart differs from a flow chart in following ways:
1. It is usually difficult to identify different mLdules of the software

from its flow chart representation.

2. Data interchange among different modules is not represented

in a flow chart.
/

Self-Instructional Material 75

Software Engineering 3. Sequential ordering of tasks inherent in a flowchart is suppressed

in a structure chart.

4. A structure chart has no decision boxes.

Unlike flow charts, structure charts show how different modules within

program interact and data that is passed between them.
NOTES

3.9 MODULES IDENTIFICATION AND

SPECIFICATION TECHNIQUES

When developing the implementation model, and specifically the structure
charts, arguably the largest task is the identification and specification
of the modules within the system. As with most methodologies and
techniques there are a few guidelines to be used when developing

individual modules as well as when considering the relationships between

modules.

/

/
/ '

3.10 MODULE SPECIFICATION METHOD

There are several methods that can be used to specify a module. Two

possible methods are:

• Interface/Functional

* Pseudocode
'/ ■

Interface/Functional

Interface/functional specification provides a good balance of specification

detail* and is in line with the “black box” spirit of SASD. (System

Analysis and System Design).

The interface, or rather, the input and output of the module, provides

the detail of what the module needs and produces, while the functional
specification provides good documentation as to what, exactly, the module

is supposed to do.

'v

. /

Pseudocode

“Pseudo” means imitation or false and “Code” refers to the instructions

written in a programming language. Pseudocode notation can be used

76 Self-Instructional Material

Designing Software
Solutionsin both the preliminary and detailed design phases. Using pseudocode,

the designer describes system characteristics using short, concise, English

language phrases that are structured by keywordsl such as If-Then-

Else, While-Do, and End. Keywords and indentation describe the flow

of control, while the Ehglish'phrases describe processing actions. Pseudocode

is also known as program design language or structured English. A

program design language should have the following characteristics:

1. A fixed syntax of keywords that provide for all structured constructs,
data declarations and modularity characteristics.

2. A free syntax of natural language that describes processing feature.

3. A data declaration facility.
>

4. Subprogram definition and calling techniques.

NOTES

Advantages of Pseudocodes
i(.

The various advantages of pseudo-codes are as follows:

■ 1. Converting a pseudo-code to a programming language is much

easier as compared to converting a flowchart or decision table.

2. As compared to a flow chart, it is easier to modify the pseudo­
code of program logic whenever program modifications are necessary.

3. Writing of pseudocode involves much less tfrae and effort than

equivalent flow chart.

4. Pseudocode is easier to write- than writiAg a program in a
programming language because pseudocodejmethod has only a

few rules to follow.

Disadvantages of Pseudocodes

The various disadvantages of pseudocodes are as follows:

1. In case of pseudocode, a graphic representation of program logic

is not available as in flow charts.

2. There are no standard rules to follow in using pseudocode. Different
programmers use their own style of writing pseudocode and

hence communication problems occur due to lack of standardization.

3. For a beginner, it is more difficult to follow the logic or write

the pseudocode, as compared to flowcharting.

Example. Pseudocode consists of English-like statements describing an

algorithm. It is written using simple phrases and avoids cryptic symbols.

V

Self-Instructional Material 77

Software Engineering It is independent of high-level languages and is a very goods means of

expressing an algorithm. It is written in structured manner and indentation

• is used to increase clarity. As an example, the use of pseudocode for

detailed design specification is illustrated in fig 26;
NOTES

INITIALIZE tables and counters; OPEN files
READ the first text record
WHILE there are more text records^DO
WHILE there are more words in the text record DO
EXTRACT the next word
SEARCH wordjable for the extracted word
IF the extracted-word is found THEN

INCREMENT the extracted word’s .occurrence count
ELSE

INSERT the extracted word into the word_table
ENDIF
INCREMENT the words_processed counter
ENDWHILE at the end of the text record
ENDWHILE when all text records have been processed

' PRINT the word_table and the words_processed counter
CLOSE files

TERMINATE the program

. Fig. 26 An Example of a Pseudocode Design Specification

Pseudocode consists of English—like statements describing an algorithm.
It is written using simple phrases and avoids cryptic symbols. It is

written in structured manner and identification is used to increase

clarity. - ■ - ,

3.11 OBJECT-ORIENTED DESIGN METHODS

Object-oriented , technology is one of the latest approaches to SAV

development, and it shows much promise in solving the problems associated

with building modern software systems (Shlaer 1988, Meyers .1988,
Rambaugh et.al 1991, Rubin 1992, Agha 1990).
Object Oriented Design (OOD) is the result of focusing attention not
on the function performed by the program, but instead on the data

that are to be manipulated by the program. Thus, object-oriented design

is orthogonal to function-oriented design.

True object-oriented design occurs then ADTs are designed for flexibility

and reuse, are encapsulated by excluding all implementation detail
from the publicly visible interface, and are -carefully organized in an
architecture that is given shape by the relationship of visibility. Visibility

\ '
78 Self-Instructional Material

Designing Software
Solutionsexists between two objects when one can request services of another

by invoking an operation that is part of the second object’s interface.

Object-oriented technology contains these three key aspects:

Objects. Software packages designed and developed to correspond

with real-world entities and containing all the data and services required

to function as their associated entities.

Messages. Communication mechanisms are established that provide

the means by which objects work together.

Methods. Methods are services that objects perform to satisfy the

functional requirements of the problem domain. Objects request services

of other objects through messages.

Classes. Templates for defining families of objects and all the data

and services that are common to them and providing for the concept
of inheritance that makes 0-0 software easier to modify and maintain

than conventional software.

NOTES

Benefits of OOD

The benefits of object-oriented development as claimed by its proponents

are many:

Objects are inherently reusable.
i

The concept of objects performing services is a more natural
way of thinking.

Emphasis is on understanding the problem domain.

Internal consistency of systems is improved because attributes
and services can be viewed as an intrinsic whole.

The characteristic of inheritance capitalizes on the commonalty
of attributes and services.

The object-oriented development process is consistent from analysis,
through design to coding.

Types of OOD Methods

The following are popular object-oriented design methods:

• Booch’s Object-Oriented Design >

• Yourdon and Goad’s Object-Oriented Design
f ,

^The above methods are discussed below.

Self-Instructionh Material 79

\

Hooch's Object-Oriented Design

Grady Booch’s Object-Oriented Design (OOD), also known as Object-

Oriented Analysis and Design (OOAD), is a precursor to the Unified

Modeling Language (UML). The Booch method (Booch 1994) includes

6 types of diagrams:

• Class,

• Object,

• State transition,

• Interaction,

• Module, and

• Process.

Software Engineering

NOTES

Booch9s Static Diagrams

Booch’s class and object diagrams differentiate this methodology (at
least in notation) from similar object oriented systems.

C NameName L
C' attributes has v., attributes

{"y'k
////

Instantiates . InheritsUses/////

(Name
attributes y

N.
Namec f attributes \..J

Name <.
attributes ^V .5"

Fig. 27 A Booch Class Diagram

. Booch’s Class and Object Diagram Notations

' Classes. Illustrate classes using a cloud shape with a dashed border.

(Object name/
Attributes *>
operations <*!

\
Fig. 27 (a) Class

Object. Draw objects using a cloud shape with a solid border.

■80 Self-Instructional Material

Designing Software
SolutionsObject name

Attributes
operations

NOTESFig. 27 (b) Object

Class Adornments. Use adornments to provide additional information

about a class. Adornment can be created using the basic triangle shape.

n
J. Class name »

, (x'\/ Attributes
'■•"7 operations

Fig. 27 (c) Class Adornment

A letter is placed inside the triangle to represent the following:
• A-Abstract. An abstract class cannot be instantiated because it

represents a wide variety of object classes and does not represent
any one of them fully. For example, mammal |could be thought of

as an abstract class. j .
• F-Friend. A friend class allows access to the non-public functions

of other classes.
• S-Static. A static class provides data.
• V-Virtual. A virtual class is a shared base class, the most generalized

class in a system.
Metaclass. A metaclass is a class whose instance’s are also classes.

Metaclass
Name

Fig. 27 (d) Metaclass

Class Categories. A class category represents a cluster of similar

classes. Illustrate a class category by drawing a rectangle with two

compartments. 1

Class Category Name
Classes

Fig.‘ 27 (e) Class Category

Class Templates. Draw a template using the standard class symbol
attached to a box with a dashed outline. List template parameters or

formal arguments in this box. When you draw a class created from a

template, replace the dashed border with a solid one.

Self-Instructional Material 81

Software Engineering ‘
Formal

Arguments
Formal

Arguments
i

ij
\\ Class

Class actualized
from a template

Template
__ ;\ r-

NOTES
Template

Fig. 27 (/) Class Template

Class Utilities. Class utilities describe a group of non-member functions

or subprograms. Illustrate a class utility with a shadowed cloud.

Class Utility
Attributes
operations

Fig. 27 (g) Class Utility

. Class Visibility. Visibility markers signify who can access the information
contained within a class. Public visibility allows an attribute or an operation
to be viewed.by any other class. Private visibility means that the attribute
or the operation is only accessible by the class itself and its friends.
Protected Visibility makes an attribute or operation visible only to friend
classes and classes that inherit it. Implementation restricts the accessibility
of an attribute to the class only (not even friends have access to these
attributes).

Place visibility markers next to the attribute they refer to.

| private

|| protected

HI implementation

Fig. 9.20(A) Class Visibility Markers

Object Visibility. Draw a visibility
marker on a link to signify the

relationship between the connected
objects. These markers can be:.

• G - Global
• P - Parameter
• F - Field
• L - Local.

» Relationships. Relationships between
objects are indicated using lines and
arrows. The meaning and the

relationships are outlined in Table 2.

82 Self-Instructional Material

Designing Software
SolutionsTable 2. Relationship Symbols

RelationshipMeaning

— Label -
— Label -
— Label -
— Label -
— • Label • -

Label..
— Label —
— Label —
— Label —

— Label —

Aggregation (has)

Aggregation by value

Aggregation by reference

Uses .
Instantiates-compatible type

Instantiates-New type

Inherits-Compatible type

Inherits-New type

Metaclass

Undefined

NOTES

o—

------►

>

*

—►

Booch’s Dynamic Diagrams

State transition and interaction diagrams are used to , illustrate the

dynamic nature of an application (Booch 1991). Below is a table-that
lists what each of the dynamic Booch diagrams corresponds^ to in UML.

Unified Modeling Language (UML)Booch (OVD)

State chart diagram

Sequence Diagram

State transition diagram

Interaction diagram

Booch’s Dynamic Diagram Notations

States represent situations during the life of an object. A Booch state

symbol is drawn using a rectangle with rounded corners and two

compartments. The oval-shaped H symbol is used to indicate the most
recently visited state. It is illustrated in Fig. 28.

HistoryState

l Adornment

Name

CD
Actions

• /Fig. 28 Booch’s Dynamic Diagram

Self-Instructional Material 83

Yourdon and Coad’s Object-Oriented DesignSoftware Engineering

Yourdon and Coad’s design method (Goad 1991) is an object-oriented
design method. There are mainly five steps for developing Yourdon

and Coad diagrams.
• Find classes and objects
• Identify the structures
• Define subjects
• Define attributes
• Define services

The notations used by Yourdon and Coad are described below in Fig.
29 (a) to 29 (d).
Class and Object
Objects and classes are abstractions of entities with exclusive services

and attributes.

NOTES

Name

Attributes

Services

Fig. 29 (o)
Whole-part Relationships
Whole-part relationship refer to objects that contain one or more objects.
There are several types of whole-part relationships including: assembly-
parts (airplane-wings), container-contents (cabinet-files), and collection- ■
members (organization-members).

Name

Attributes

Services

Name Name

Attributes Attributes

Services Services
. v.

Fig. 29 (6)
Generalization-Specialization (Gen-spec) Relationships.
Generalization-specialization relationships refer to classes that inherit

. attributes and services from other classes. One class can inherit from

84 Self-Instructional Material

Designing Software
Solutionsmultiple superclasses.

"N
Name

Attributes

NOTESServices

NameName
i

AttributesAttributes

ServicesServices

Fig. 29 (c)

Connections

Connections illustrate the dependency of one object on the services or

processing of another object.

Instance Connection

Message Connection

Fig. 29 (d)

Yourdon and Goad diagram is illustrated in Fig. 30

Name Name

AttributesAttributes

ServicesServices

r
Namer '\Name ftame

i
Attributes AttributesAttributes

t

Services ServicesServices

Name

Attributes

Services
______/

7T
NameName

Attributes Attributes

Services Services

Fig. 30 Yourdon and Goad Class Diagram

Self-Instructional Material 85I

Software Engineering 3.12 REUSE-BASED DESIGN METHOD

Reuse-based design accepts an existing partition of reusable modules,
functions, or designs, but crafts an interface that ties them together in

order to provide the specified software function.

For a module to be reusable, however, we must require that it should

be used by several other modules as in design-reusable-structure as

shown in Fig. 31.

NOTES

(

r)
Fig. 31 Design-Reusable structure

It is of course, not necessary to create a program top-down, even though '
its structure is function-oriented. However, if we want to delay the

decision of what the system is'supposed to do as long as possible, a

better choice is to structure the program around the data rather than

around the actions taken by the program.

The Unix filter provides a good example of reuse-based design by means

of a toolkit. Unix filters represent highly encapsulated functions, or

tools, which accept input and provide output in a standard format.

Each such function is designed to be both useful and primitive; The

individual functions can then be assembled by gluing them together

with pipes, using a shell language. If these tools are sufficiently varied

and general, most of the tasks can be rapidly implemented. In case

performance isn’t as high, any individual tool can be rewritten for

optimization, without modifying anything else.

Toolkit reuse generally. depends on heavy encapsulation, a standard

interface between tools, and a late-binding, interpretive language to

tie the tools together. Encapsulation'allows for re-implementation to

achieve optimization, fault-tolerance, customisation etc.

/3.13 DESIGN SPECIFICATION

The Design Specification addresses different aspects, of the design

model and is completed as the designer refines his representation of,

86 Self-Instructional Material

Designing Software
Solutionsthe software. First, the overall scope of the design effort is described,

which is derived from system specification and the analysis model
(Software Requirements Specification)
Then, Data Design is specified, which includes datsi structures, any

external file structures, internal data structures, and a cross reference

that connects data objects to specific files are all deined.

Then Architectural Design indicates how the program architecture

has been derived from the analysis model. Structure charts are used

to represent the module hierarchy

Interface Design indicates the design of external and internal program

interfaces along with a detailed design of the human/machine interface

is described. A detailed prototype of a GUI may be represented.

Procedural Design specifies components-separately addressable elements

of software such as subroutines, functions or procedures in form of

English language processing narratives. This narrative explains the

procedural function of a component (module).

Design specification contains a requirements cross-reference. The

purpose of this cross-reference is:

(i) To establish that all requirements are satisfied :>y the software

design.
■

(ii) To indicate which components are critical to the implementation

of specific requirements?

The final section of the Design specification contains supplementary

data like algorithm descriptions, alternative procedures, tabular data,
excerpts from other documents and other relevant informktion presented

as a special note or a. separate appendix.

Design specification format is as under.

NOTES

System objective Human-machine interface specification
and design.

Major Software requirements
Design constraints, limitations

, Data Design

Data Objects and resultant data
structure

External interface design.
Interfaces to external/systems.

Internal design rules.

Processing narrative.

File and database structures Interface description.
i

Design language description.

Modules used. |

External file structure

Logical structure
i

Self-Instructional Material 87
I

Software Engineering Data structures used

Comments
Requirements cross-reference

Test provisions

Test guidelines

Integration strategy

Special considerations

Appendices.

Access method
Global data
File and data cross-reference

Architectural Design

Review of data and control flow

Derived program structure

NOTES

/

3.14 VERIFICATION FOR DESIGN

The output of the system design phase, like the output of other phases

in the development process, should be verified before proceeding with

the activities of the next phase. If the design is expressed in some

formal notation for which analysis tools are available; then through

tools it can be checked for internal consistency (e.g., those modules

used by another are defined, the interface of a module is consistent
with the way others use it, data usage is consistent with declaration,
etc.) If the design is not specified in a formal, executable language, it

. cannot be processed through tools, and other means for verification
i

have to be used.

There are two fundamental approaches to verification. The first
consists of experimenting with the behaviour of a product to see

whether the product performs as expected (i.e., testing the product.)

The other consists of analyzing the product-or any design

documentation related to it-to deduce its correct operation as a logical
consequence of the design decisions. The two categories of verification

techniques are also classified as dynamic or static, since the former

requires-by definition executing the system to be verified, while the

latter does not. Not surprisingly, the two techniques turn out to be

nicely complementary.

88 Self-Instructional Material

Designing Software
SolutionsSTUDENT ACTIVITY

1. Define software design.

2. Write short notes on the following:

(a) Horizontal partitioning (b) Vertical partitioning.

SUMMARY

• Simplicity is perhaps the most important qua ity criteria for software systems.
• Horizontal partitioning defines Separate brandies of modular hierarchy for each major

program function.
• Vertical partitioning, often called factoring, suggests that control and work should be

distributed from top-down in the programme structure.
• An abstraction of a component describes the external behaviour of that component without

bothering with the internal details that produce the behaviour.

• Architectural design represents the structure of data and program components that are
required to build a computer-based system.

• The objective of architectural design is to develop a model of software architecture,
which gives a overall organization of program | module in the software product.

• Structured Design Methodology (SDM) views every software system as having some inputs
that are converted into the desired outputs by the software system.

• Control coupling exists between two modules, if data from one module is used to direct the

order of instruction execution in another. ; •

Self-Instructional Material 89

Software Engineering • External coupling is essential but should be limited to a small
number of modules with structure.

• Content coupling exists between two modules, if their code is

shared, for example, a branch from one module into another

module.
• The Structure chart is one of the most commonly used methods

for system design.
• Relationships between objects are indicated using lines and arrows.
• Whole-part relationship refer to objects that contain one or more

objects.
• Generalization-specialization relationships refer to classes that

inherit attributes and services from other classes.
• Connections illustrate the dependency of one object on the services

or processing of another object.
• The Design Specification addresses different aspects of the design

model and is completed as the designer refines his representation

of the software.

NOTES

REVIEW QUESTIONS

1. What are the various design objectives of software design?
\

, 2. What do you mean by‘problem partitioning? 1
| i ' • .
3. Write a short note, on abstraction. ~

4. What do you mean by architectural design? Discuss its objectives.

5. What are the desirable properties of a modular system?

6. What are the advantages of a modular systems?

7. What are the different types of coupling? Explain;

8. Explain the different types of cohesion.

9. Describe the various building blocks of structure chart.

10. What is the difference between flow chart and structure chart?

11. What do you mean by pseudo code? Discuss advantages and

disadvantages of pseudo code.

12. What are the various benefits of object-oriented development?

. 13. Define the following:

(a) Abstract class

90 Self-Instructional Material

Designing Software
Solutions(b) Friend class

(c) Virtual class

(d) Metaclass
V

(c) Whole-port relationship

if) Generalization-specialization relationship

14. What are the two fundamental approaches of verification for

design?

NOTES

FURTHER READINGS

1. Software Engineering, Bharat Bhushan Agarwal, Sumit Prakash

Tayal, Firewall Media.

2. Software Engineering, D. Sunder, University Science Press.

>

Self-Instructional Material 91

>Software Engineering
unit IV SOFTWARE IMPLEMENTATION

★ STRUCTURE ★NOTES

4.0 Learning Objectives
4.1 Introduction
4.2 Software Implementation Guidelines
4.3 Relation Between Design and Implementation
4.4 doding

4.5 Coding Standards and Guidelines
4.6 Code Review
4.7 Clean Room Testing
4.8 Software Documentation

• Summary

• Review Questions

• Further Readings

4.0 LEARNING OBJECTIVES
/

After studying the unit, you will he able to:
.s'

• explain guidelines for software implementation

• describe relation between design and implementation

• describe coding and code review

J

/ /'

4.1 INTRODUCTION

Implementation is the process of first ensuring that the information
system is operational and then allowing users to take over its operation
for use and evaluation. This involves training the users to handle the
system. The analyst needs to plan for a smooth conversion from the
old system to the new one. This includes converting files old formats
to new ones or building new databases etc.

Once the Information System has ^been developed and acceptance
testing is completed, the implementation process starts. Users must . }t
be trained on the use of the new system, focusing on its requirements) ,'

92 Self-Instructional Material

and its capabilities. Many organisations combine testing and training . Software Implementation

in the same stage. This works well because users can become familiar

with the new IS as well as ensure that it can handle errors at the
same time. Training, like testing and documentation, is ultimately a

management responsibility. NOTES

4.2 SOFTWARE IMPLEMENTATION

GUIDELINES

Software implementation should be done with proper planning, hasty
decisions lead to problems and delays. The process of implementation
of software should be consistent with least amount of disturbance.

Following are the some of the basic considerations that should be kept
in mind for smooth implementation of software.

Proper Equipment

The hardware and software requirements should be first re-examined

with the software supplier. The equipments for general-purpose applications

should be delivered several weeks before the installation of an application.
Thes Helps to have a basic idea about, the hardware before major

implementation of the applications. Sufficient time for networking should
be given, if the system uses the network resources. Goojd quality wiring

and the fastest hubs should be used to gain best performance from the

system. Proper connectivity devices such as wiring, hubs and routers

should be used to reduce bottleneck arising in system performance.

Conversion

Conversion methodology ensures a professional result in line with
expectations and within budgeted time period and cost.l The conversion

methodology clearly improves communication between the project team

and management by providing a readily understandable, structured
approach.

Training

Formal training about the functioning of software should be provided

to the employees for the successful use of the application software.
Hardly ever, one reads a manual and implements the application in a

smooth manner. Application trairiihg should be designed to teach users

how to use the software. ' v;0

Self-InstructionalMaterial

Implementing Applications

Follow a definite sequence to install all the inter-related applications.
For example, an application consists of general accounting, payroll
and utility billing. In the application, accounting will come first because

9 v

the other systems require its availability.

Software Engineering

NOTES

Backups.

Regular system backups should be taken so that the users can revert
to an older copy of the data files when they commit any mistake. The

backup procedure can be performed during the free hours of at the

end of the day. You can take the take the backup of only the critical
points in an application. Backups are stored in the removable disk or

in high capacity tapes. You can also store backups in another folder of

the hard disk drive of your system. >

4.3 RELATION BETWEEN DESIGN AND

IMPLEMENTATION

System Design

. Design is the most creative and challenging phase of the system development
life cycle. The term design describes the final system and process by

which it is developed. Different stages of design phase are shown in

Figl. This phase is very important phase of life cycle. This is a creative

as well as a technical activity including the following tasks:

• Appraising the terms of reference

• Appraising the analysis of the existing system, particularly

regarding problem areas

• Defining precisely the required system output

• Determining data required to produce the output

• Deciding the medium and open the files

• Devising processing methods and use of software to handle

files and to produce output

• Determining methods of data capture and data input

• Designing the output forms

• Difining detailed critical procedures
0 l v

• Calculating timings of processing and data movements
i ,

•. Documenting all aspects of design

;
94 Self-Instructional Material

Software Implementation
>

Detailed system
documentationFrom analysis

1

NOTESr Cost justification'
and candidate
system design

Design submitted
to management

for approval
Output design

Inputdesign

No' Design^
accepted^

I Abandon
* projectFile design

Yes
Processing design

Test programs \

I go to implementation

Fig. 1. Cycle of Design Phase

Implementation

Implementation, phase is less creative than system design. It is mainly
concerned with user training, site selection preparation and file conversion.
Once the system has been designed, it is ready foi implementation.

Implemention is concerned with those tasks leading immediately to a

fully operational system. It involves programmers, users and operations
management, but it's planning and timing is a prime function of system's
analyst. It includes the final testing of complete system to user satisfaction,
and supervision of initial operation of the system. Implementation of
the system includes providing security to the system, also so that
some person may not misuse it.

Types of Implementation

There are three types of implementation: -
• Implementation of a computer system to replace a manual

system^
• Implementation of a hew computer system to replace an existing

one.
• Implementation of a modified application (software) to replace

an existing one using the same computer.]

i

4:4 CODING
\ .

Good sdftware development organizations normally require their
programmers to adhere to some wen-defined' and standard style of

Selflnstriictional Material 95

coding called coding standards. Most software development organizations
formulate their own coding standards that suit them most, and require
their engineers to follow these standards rigorously. The purpose of
requiring all engineers of an organization to adhere to a standard
style of coding is the following: \

• A coding standard gives a uniform appearance to the codes
written by different engineers.

• It enhances code understanding.
• It encourages good programming practices.

A coding standard lists several rules to .be followed during coding,
such as the way variables are to be named, the way the code is to be
laid out, error return conventions, etc.

Software Engineering

NOTES

4.5 CODING STANDARDS AND GUIDELINES

Good software development organizations usually develop their own
coding standards and guidelines depending on what best suits their
organization and the type of products they develop.
The following are some representative coding standards.
Rules for limiting the use of global: These rules list what types of
data can be declared global and what cannot.

Contents of the headers preceding codes for different modules:
The information contained in the headers of different modules should\
be standard for an organization. The exact format in which the header
information is organized in the header can also be specified. The following
are some standard header data:

• Name of the module.
• Date on which the module was created.
• Author’s name.
• Modification history.
• Synopsis of the module. ’

• Different functions supported, along with their input/output
parameters.

• Global variables accessed/modified by the module.
Naming conventions for global variables, local variables, and
constant identifiers: A possible naming convention can be that global
variable names always start with a capital letter, local variable names
are made of small letters, and constant names are always capital letters.

Error return conventions and exception handling mechanisms:
The way error conditions are reported by different functions in a program

S
96 Self-Instructional Material

Software Implementationare handled should be standard within an organization. For example,
different functions while encountering an error condition should either
return a 0 or 1 consistently. !

The following are some representative coding guidelines recommended

by many software development organizations.
Do not use a coding style that is too clever or too difficult to
understand: Code should be easy to understand. Many inexperienced
engineers actually take pride in writing cryptic and incomprehensible
code. Clever coding can obscure meaning of the code and hamper
understanding. It also makes maintenance difficult.
Avoid obscure side effects: The side effects of a function call include
modification of parameters passed by reference, modification of global
variables, and I/O operations. An obscure side effect is one that is not
obvious from a casual examination of the code. Obscure side effects make
it difficult to understand a piece of code. For example, if a global variable
is changed obscurely in a called module or some file I/O is performed
which is difficult to infer from the function’s name and header information,
it becomes difficult for anybody trying to understand the code.
Do not use an identifier for multiple purposes: Programmers often

use the same identifier to denote several temporary entities. For example,
some programmers use a temporary loop variable for computing and
a storing the final result. The rationale that is usually given by these
programmers for such multiple uses of variables is memory efficiency,
e.g., three variables use up three memory locations, whereas the same
variable used in three different ways uses just one niemory location.
However, there are several things wrong with this approach and hence
should be avoided. Some of the problems caused by use of variables for
multiple purposes as follows:

• Each variable should be given a descriptive name indicating
its purpose. This is not possible if an identifier is used for
multiple purposes. Use of a variable for multiple purposes can
lead to confusion and make it difficult for somebody trying to
read and understand the code. j

• Use of variables for multiple purposes usually makes future
enhancements more difficult.

The code should be well-documented: As a rule of thumb, there
must be at least one comment line on the average for every three-
source line. I
The length of any function should not exceed 10 source lines: A
function that is very lengthy is usually very difficult to understand as
it probably carries out many different functions. For the same reason,
lengthy functions are likely to have disproportionately, larger number
of bugs.

NOTES

Self-Instructional Material 97

Do not use go to statements: Use of go to statements makes a program
unstructured and makes it very difficult to understand.

Software Engineering

4.6 CODE REVIEWNOTES

Code review for a model is carried out after the module is successfully

compiled and the all the syntax errors have been eliminated. Code reviews

are extremely cost-effective strategies for reduction in coding errors

and to produce high quality code. Normally, two types of reviews are

carried out on the code of a module. . -

These two types code review- techniques are code inspection and code

walk through.

Code Walk Through

Code walk through is an informal code analysis technique. In this technique,
after a module has been coded,, successfully compiled and all syntax

errors eliminated. A few members of the development team are given

the code few days before the walk through meeting to read and understand

code. Each member selects .some test cases and simulates execution of

the code by hand (i.e., trace execution through each statement and function

execution). The main objectives of the walk through are to discover the

algorithmic and logical errors in the code. The members note down

their findings to discuss these in a walk through meeting where the
coder of the module is present.

Even though a code walk through is an informal analysis technique,
several guidelines have evolved over the years for making.this naive but
useful analysis technique more effective. Of course, these guidelines are

based on personal experience, common sense, and several subjective factors.
Therefore, these guidelines should be considered as examples rather

than accepted as rules to be applied dogmatically. Some of these guidelines-
are the following.

• The team performing code walk through should not be either
too big or too small. Ideally, it should consist of between three
to seven members. -

• Discussion should focus on discovery of errors and not on how

to fix the discovered errors.

• In order to foster cooperation and to avoid the feeling among

engineers that they are being evaluated in the code walk through

meeting, managers should not attend the walk through .meetings.,

98 Self-Instructional Material'

Software ImplementationCode Inspection

In contrast to code walk through, the aim of code inspection is to
discover some common types of errors caused due to oversight and.
improper programming. In other words, during code inspection the
code is examined .for the presence of certain kinds of errors, in contrast
to the. hand simulation of code execution done in codJ walk throughs.
For instance, consider the classical error of writing a procedure that
modifies a formal parameter while the calling routine calls that procedure

with a constant actual parameter. It is more likely that such an error
will be discovered by looking for these kinds of mistakes in the code,
rather than by simply hand simulating execution of the procedure. In
addition to the commonly made errors, adherence to coding standards
is also checked during code inspection. Good software development
companies collect statistics regarding different types of errors commonly
committed by their engineers and identify the type of errors most
frequently committed. Such a list 'of commonly committed errors can
be used during code inspection to look out for possible errors.
Following is a list of some classical programming errors which can be
checked during code inspection:

1. Use of uninitialized variables.
2. Jumps into loops.. I
3. Nonterminating loops.
4. Incompatible assignments.
5. Array indices out of bounds.
6. Improper storage allocation and deallocation.
7. Mismatches between actual and formal parameter in procedure

calls.
8. Use of incorrect logical operators or incorrect precedence among

operators.
9. • Improper modification of loop variables.

10. Comparison of equally of floating point variables, etc.

NOTES

4.7 CLEAN ROOM TESTING

Clean room testing was pioneered by IBM. This type of testing relies
heavily on walk throughs, inspection, and formal verification. The
programmers are not allowed to test any of their code by executing
the code other than doing some syntax testing using!a compiler. The

software development philosophy is based on avoiding software defects
by using a rigorous inspection process. The objective of this software
is zero-defect software.

Self-Instructional Material 99

Software Engineering The name ‘clean room’ was derived from the analogy with semiconductor
fabrication units. In these units (clean rooms), defects are avoided by'
manufacturing in ultra-clean atmosphere. In this kind of development,
in-spections to check the consistency of the components with their
specifications has replaced unit-testing.

This technique reportedly produces documentation and code that is
more reliable and maintainable than other development methods relying
heavily on code execution-based testing.

.The clean room approach to software development is based on five

characteristics:
• Formal specification: The software to be developed is formally

specified. A state-transition model which shows system responses
to stimuli is used to express the specification.

• Incremental development: The software is partitioned into

increments which are developed and validated separately using
the clean room process. These increments are specified, with
customer input, at an early stage in the process.

• Structured programming: Only a limited number of control
and data abstraction constructs are used. The program development
process is process of stepwise refinement of the specification

• Static verification: The developed software is statically verified
using rigorous software inspections. There is no unit or module
testing process for code components.

• Statistical testing of the. system: The integrated software
increment is tested statistically to determine its reliability.
These statistical tests are based on the operational profile
which is developed in parallel with the system specification.

The main problem with this approach is that testing effort is increased

as walk through, inspection, and verification are time-consuming.

NOTES

4.8 SOFTWARE DOCUMENTATION

When various kinds of software products are developed then not only
the executable files and the source code are developed but also various
kinds of documents such as users’ manual, Software Requirements
Specification (SRS) documents, design documents, test documents,
installation manual, etc., are also developed as part of any software
engineering process. All these documents are a vital part of good software

development practice. Good documents are very useful and server the
following purposes:

100 Self-Instructional Material

Software Implementation* Good documents enhance understandability and maintainability

of a software product. They reduce the effort and time required

for maintenance.

• Use documents help the users in effectively using the system.

* Good documents help in effectively handling the manpower

turnover problem. Even when an engineer leaves the organization,
and a new engineer comes in, he can build up the required

knowledge easily.

• Production of good documents helps the manager in effectively

tracking the progress of the project. The project manager knows

that measurable progress is achieved if a piece of work is done

and the required documents have been produced and reviewed.

Different types of software documents can broadly be classified into

the following: ' j

• Internal documentation |

* External documentation

Internal documentation: is the code comprehension features provided
f

as part of the source code itself. Internal documentation is provided

through appropriate module headers and comments embedded in the

source code. Internal documentation is also provided through the useful
variable names, module and function headers, code indentation, code

structuring, use of enumerated types and constant identifiers, use of

user-defined data types, etc. Careful experiments.

Suggest that out of all types of internal documentation meaningful variable

names is most useful in understanding the code. This is of course in

contrast to the common expectation that code commenting would be the

most useful. The research finding is obviously true when comments are

written without thought. For example, the following style of code commenting

does not in any way help in understanding the codfe.

a = 10;/* a made 10*1

But even when code is carefully commented, meaningful variable names
still are more helpful in understanding a piece of code. Good software

development organizations usually ensure good internal documentation

by appropriately formulating their coding standards ahd coding guidelines.

External documentation: is provided through various types of supporting

documents such as users’ manual, software requirements specification

document, design document, ;test documents, etc. A systematic software

development style ensures that all these documents are produced in

an orderly fashion.

NOTES

Self-Instructional Material 101

Software Engineering

STUDENT ACTIVITY

1. What is meant by Implementation?

2. Describe the relation between system design and Implementation.

SUMMARY

Implementation is the process of first ensuring that the information system is operational
and then allowing users to take over its operation for use and evaluation.
Software implementation should be done with proper planning, hsty decisions lead to
problems and delays.
Design is the most creative and challenging please of the system development life
cycle. The term design describe the final system and process by which it is developed.
Implementation phase is less creative than system design. It is mainly concerned with
user training, site selection and prep-aration and file conversion.
Generally almost all Software Engineers will used to formulate their own coding standards
and expect their tea should implement it. The coding standard will give guidelines for
the good programming style, but the implementation of the guidelines is left to the
discretion of the individual engineers.
Code reviewing is a more efficient "way of removing errors compared to testing because
code review identifies errors whereas testing identifies failures. Therefore, after identifying
the failures efforts may be taken to locate and fix the errors.

102 Self-Instructional Material

Software Implementation
REVIEW QUESTIONS

1. Explain the software Implementation Guidelines.
2. What are the good coding guidelines?
3. Define code review.
4. What is a code analysis technique?
5. With help walk through and inspection explain code analysis

technique.
6. How the code can inspect? ,
7. What are the different approaches available for clean, room

testing?
8. Describe the relation between system design and Implementation.
9. What are the different approaches available for clean room

testing?

NOTES

FURTHER READINGS

1. Software Engineering, Bharat Bhushan Agarwal, Sumit Prakash
Tayal, Firewall Media.

2. Software Engineering, D. Sunder, University Science Press.

Self-Instructional Material 103

Software Engineering
unit V SOFTWARE MAINTENANCE

★ STRUCTURE ★NOTES

5.0 Learning Objectives
5.1 Introduction

5.2 Necessity of software Maintenance

5.3 Types of software Maintenance

5.4 Problems Associated With Software Maintenance

5.5 Software Reverse Engineering

5.6 Legacy software Products

5.7. Factors on which Software Maintenance Activities Depend

5.8 Software Maintenace Process Models

5.9 Software-Re-Engineering

5.10 Estimation of Approximate Maintenance Cost

5.11 Documentation
5.12 Case and its scope

5.13 Levels of CASE

5.14 Architecture of CASE Environment

5.15 Building Blocks for CASE

5.16 CASE Support in Software Life Cycle

5.17 Objective of CASE

5.18 CASE Repository

.5.19 Characteristics of CASE Tools

5.20 CASE Classification

5.21 Categories of CASE Tools

5.22 Advantages of CASE Tools
i

5.23 Disadvantages of CASE Tools

5.24 Limitations of CASE Tools

5.25 CASE for Future

• Summary
• Review Questions

• Further Readings

104 Self-Instructional Material

Software Maintenance
5.0 LEARNING OBJECTIVES

After studying the unit, you will he able to:

• explain necessity and types of software maintenance

• describe software reverse engineering.

• illustrate architecture of CASE environment and documentation.
* i

• explain characteristics, classification, categories, advantage,
disadvantages and limitations of CASE tools1.

• give a presentation on CASE for future. \

NOTES

5.1 INTRODUCTION
It is a task that every development team has to face when the software
is delivered to the customer’s site, installed and is operational. In general,
it means fixing things that breaks out or wear out. In software, nothing
wears out it is either wrong from the beginning or we decide later that
we want to do something different.

It is a very broad activity that includes error corrections, enhancements
of capabilities, deletion of obsolete capabilities and optimization. Because
change is inevitable, mechanisms, must be developed for evaluating, controlling
and making modifications. So any work done to change the software
after it is in operation is considered to be maintenance work.

5.2 NECESSITY OF SOFTWARE MAINTENANCE

Software maintenance is becoming an important activity of a large number

of software organizations. This is no surprise, given the rate of hardware
obsolescence, the immortality of a software product and the demand of

the user community to see the existing software products run on newer
platforms, run in newer environments, and/or with enhanced features.
When the hardware platform is changed, and a software product performs
some low-level functions, maintenance is necessary. Also, whenever the
support environment of a software product changes, tile software product
requires rework to cope up with the newer interface. For instance, a

i \

software product may need to be maintained when the operating system

changes. Thus, every software product continues to evolve after its development
through maintenance efforts.. Therefore, it can be stated that software

maintenance is needed to correct errors, enhance features, port the software
to new platforms, etc. ,

Self-Instructional Material 105

Software Engineering 5.3 TYPES OF SOFTWARE MAINTENANCE

There are basically three types of software maintenance. These are:
• Corrective: Corrective maintenance of a software product is .

necessary to rectify the bugs observed while the system is in
use.

i

• Adaptive: A software product might need maintenance when
the customers need the product to run on new platforms, on
new operating systems, or when they need the product to interface
with new hardware or software.

• Perfective: A software product needs maintenance to support
the new features that users want it to support, to change different
functionalities of the system according to customer demands,
or to enhance the performance of the system.

NOTES

5.4 PROBLEMS ASSOCIATED WITH SOFTWARE
I MAINTENANCE

Software maintenance work typically is. much more expensive than
what it should be and takes more time than required. In software
organizations, maintenance work is mostly carried out using ad hoc
techniques. The primary reason being that software maintenance is
one of the most neglected areas of software engineering. Even though
software maintenance is fast becoming an important area of work for
many companies, as the software products of yester years age, still
software maintenance is mostly being carried out as fire-fighting operations,
rather than through systematic and planned activities. Sjoftware maintenance
haS'^very poor image in industry. Therefore, an organization often
cannot employ, bright engineers to carry out maintenance work. Even •
though maintenance suffers from a poor image, the work involved is
often more challenging than development work. During maintenance
it is necessary to thoroughly understand someone else’s work and then
carry out the required modifications and extensions.
Another problem associated with maintenance work is that the majority
of software products needing maintenance are legacy products.

5.5 SOFTWARE REVERSE ENGINEERING/ .

Software reverse engineering is the process of recovering the design
and the requirements specification of a product from an analysis of its
code. The-purpose of reverse engineering is to facilitate maintenance
work by improving the understandability of a system and to produce

106 Self-Instructional Material

the necessary documents for a legacy system. Reverse engineering is
becoming important, .since, legacy software products lack proper
documentation, and are highly unstructured. Even well-designed,products
become legacy software as their structure degrades through a series of
maintenance efforts. ,

i ■ ■

The first stage of reverse engineering usually focuses on carrying out
cosmetic changes to the code to improve its readability, structure, and
understandability, without changing of its functionalities. A process model
for reverse engineering has been shown in Fig. l(a). A program can be
reformatted using any of the several available pretty printer programs
which layout the program neatly. Many legacy software products with
complex control structure and un thoughtful variable names are difficult
to comprehend. Assigning meaningful variable names jis important because

meaningful variable names are the most helpful thing in code documentation.
All variables, data structures, and functions should bei assigned meaningful
names wherever possible. Complex nested conditionals in the program
can be replaced by simpler conditional statements or whenever appropriate
by case statements.

Software Maintenance

NOTES

LRequirimeng

Design

7
Module

Specification

Code

Fig .1 (a) A process model for reverse engineering

System
Specification

Existing
System

Underst-y
anding J{ Design

New
System

'Re-en- ’
.gineered

Fig. 1 (6) New software development (c) Re-engineering

Self-Instructional Material 107

Software Engineering After the cosmetic changes have been carried out on a legacy software,
the process of extracting the code, design, and the requirements specification

can begin. These activities are schematically shown' in Fig.2. In order
to extract the design, a full understanding of the code is needed. Some'
automatic tools can be used to derive the data flow and control flow
diagram from the code. The structure chart (module invocation sequence
and data interchange among modules) should also be extracted. The
SRS document can be written once the full code has been thoroughly

understood and the design extracted.

NOTES

Assign
Meaningful

Names

Reformat
Program

Simplify
Conditions •

Simplify .
Processing

Remove
GOTOs

Fig. 2 Cosmetic changes carried out before reverse engineering

5.6 LEGACY SOFTWARE PRODUCTS

It is prudent to define a legacy system as any software system that is
hard to maintain. The typical problems associated with legacy systems

are poor documentation, unstructured (spaghetti code with ugly control
structure), and lack of personnel knowledgeable in the product. Many
of the legacy systems were developed long time back. But, it is possible
that a recently developed system having poor design and documentation
can be considered to be a legacy system.

5.7 FACTORS ON WHICH SOFTWARE

MAINTENANCE ACTIVITIES DEPEND
The activities involved in a software maintenance project are not unique
and depend on several factors such as:

• the extent of modification to the product required,
• the resources available to the maintenance team
• the conditions of the existing product (e.g., how structured it

is, how well documented it is, etc.)
• the expected project risks, etc.

108 Self-Instructional Material

Software MaintenanceWhen the changes needed to a software product are minor and straightforward,
the code can be directly modified and the changes appropriately reflected
in all the documents. But more elaborate activities are required when „
the required changes are not so trivial. Usually, for complex maintenance
projects for legacy systems, the software process can.be represented by
a reverse engineering cycle followed by a forward engineering cycle with
an emphasis on as much reuse as possible from the existing code and
other documents.

NOTES

5.8 SOFTWARE MAINTENANCE PROCESS

MODELS

Two broad categories of process models for software maintenance can be
proposed. The first model is preferred for projects involving small reworks
where the code is. changed directly and the changes are reflected in the
relevant documents later. This maintenance process is graphically presented
in Fig.3.
In this approach, the project starts by gathering the requirements for
changes. The requirements are next analyzed to formulate the strategies
to be adopted for code change. At this stage, the association of at least
a few members of the original development team goJs a long way in

reducing the cycle team, especially for projects involving unstructured
and inadequately documented code. The availability of a working old
system to the maintenance engineers at the maintenince site greatly
facilitates the task of the maintenance team as they^ g^t a good insight
into the working of the old system and also can comparje the working of

their modified system with the old system. Also, debugging.of the re­
engineered system becomes easier as the program traces of both the
systems can be compared to localize the bugs..

Gather Change Requirements

Analyze Change Requirements

Devise Code Change Strategies

Apply Code Change Strategies
to the Old Code

Update Documents Integrate and Test ■'•'I'j

Fig. 3 Maintenance process model 1
Self-Instructional Material 109

The second process model for software maintenance is preferred for
projects where the amount of rework required is significant. This approach

can be represented by a reverse engineering cycle followed by a forward

engineering cycle. Such an approach is also known as software re­
engineering. This process model is depicted in Fig. 4. The reverse
engineering cycle is required for legacy products. During the reverse
engineering, the old code is analyzed (abstracted) to extract the module
specifications. The module specifications are then analyzed to produce

the design. The design is analyzed (abstracted) to produce the original
requirements specification. The change requests are then applied to
this requirements specification to arrive at the new requirements

specification. At the design, module specification, and coding a substantial
' reuse is made from the reverse engineered products. An important
advantage of this approach is that it produces a more structured design
compared to what the original product had, produces good documentation,
and very often results in increased efficiency. The efficiency improvements
are brought about by a more efficient design. However, this approach

is more costly than the first approach.
An empirical study indicates that process 1 is preferable when the

amount of rework is no more than 15% (as shown in Fig.5). Besides the
amount of rework, several other factors might affect the decision regarding
using process model 1 over process model 2:

• Re-engineering might be preferable for products which exhibit
a high failure rate. ,

• Re-engineering might also be preferable for legacy products
having poor design and code structure. *

Software Engineering

NOTES

■Change Requirements

Requirements
Specification

Requirements
Specification>

Reverse
Engineering

Forward
Engineering

Design Design

7 \
Module'

Specification
Module

Specification

7
Code Code

Fig. 4 Maintenance process, model 2
;• v* • ■ .

\\

110 Self-Instructional Material >

Software Maintenance

NOTES
Cost

>
20 3010 40

Percentage of Rework

Fig. 5 Empirical estimation of maintenance cost versus percentage rework

5.9 SOFTWARE RE-ENGINEERING

Software re-engineering is a combination of two consecutive processes
i.e., Software reverse engineering and software forward engineering as
shown in the Fig. 4. . •

5.10 ESTIMATION OF APPROXIMATE

MAINTENANCE COST

. It is well known that maintenance efforts require about 60% of the total
life cycle cost for a typical software product. However, maintenance costs
vary widely from one application domain to another. For embedded systems,
the maintenance cost can be as much as 2 to 4 times the development
cost. Boehm [1981] proposed a formula for estimating maintenance costs
as part of his COCOMO cost estimation model. Boehm’s maintenance
cost estimation is made in terms of a quantity called the Annual Change
Traffic (ACT).

Boehm defined ACT as the fraction of a software product’s source instructions
which undergo change during a typical year either through addition or
deletion^

KLOC + KLOCadded deletedACT =
KLOC total

Where, KLOC added is the total kilo lines of source code added during
maintenance. KLOC deleted is the total KLOC deleted diiring maintenance.
Thus, the code that is changed, should be counted in both the code added
and the code deleted. The Annual Change Traffic (a!cT) is multiplied
with the total development cost to arrive at the maintenancle cost: maintenance
cost = ACT x development cost. ! 7

1 Most maintenance cost estimation models, however, yield only approximate
results because they do not take into account several factors such as $

■ .

-i ••; v \ ,
Self-Instructional Ill

experience level of the engineers, and familiarity. of the engineers
with the product, hardware requirements, software complexity, etc.

Software Engineering

5.11 DOCUMENTATIONNOTES

Software documentation is the written of facts about a software system
recorded with the intent to convey purpose, content and clarity. The
recording process usually begins when the need for the system is conceived
and continues until the system is no longer in use.

User Documentation

It refers to those documents, containing descriptions of the functions ♦
of a system without reference to how these functions are implemented.
A list of user documentation is given in the following table:

Table 1

•*

S.No. FunctionDocument

About general description of system’s
functions.

It explains how to start the system.

Provides depth description of each
system facility and how it can be used.

Summary of features. ;

Servers as a factual lookup.

It provides system informations like
networking, security and upgrading.

System overview1

2 Beginners guide .

Reference guide3

Enhancement4

5 Quick reference

System administration6

System Documentation

It refers to those documentation containing all facets of system including
analysis, specifications, design, implementation testing, security, error
diagnosis and recovery.' \

5.12 CASE AND ITS SCOPE

CASE stands for Computer Aided Software Engineering.

“CASE is a tool which aids a software engineer to maintain and develop
software”. The workshop for software engineering is called an
Integrated Project Support Environment (IPSE) and the tool set
that fills the workshop is called CASE.■ y

112 Self-Instructional Material

Software Maintenance.CASE is a computer aided software engineering technology. CASE is
an automated support tool for the software engineers in any software
engineering process.
Software engineering mainly includes the following processes:

(i) Translation of user needs into software requirements

(ii) Transaction of software requirements into design specification

(Hi) Implementation of design into code

(iv) Testing of the code

(v) Documentation.
3ASE technology provides software process support by automating some
process activities and by providing information about the software, which
s being developed. Examples of activities, which can be automated using
3ASE, include:

1. The development of graphical system models as part of ;he requirements
specification or the software design.

2. Understanding a design using a data dictionary, which holds information
about the entities and relations in a design.

3. The generation of user interfaces from a graphical interface description,
which is created interactively by the user.

4. Program debugging through the provision,/6f information about an
executing program.

nAe automated translation of programs from an old version of a programming
-anguage such as COBOL to a more recent version. The use of Computer
-sided Software Engineering (CASE) tool reduce the effort! of development

*f achieving quality goals and managing change and configuration throughout
he product life cycle, it also help the project manager, the software
.eveloper and other key personnel to improve their productivity in the
evelopment team. A

NOTES

».13 LEVELS OF CASE

"’here are three different levels of CASE technology:

1. Production process support technology

This includes support for process activities such as specification,
design, implementation, testing and so on.

2. Process management and technology

This include tool to support process modeling and process management.
These tools are used for specific support activities.

Self-Instructional Material 113

Software Engineering 3. Meta-CASE technology

Meta-CASE tools are generators, which are used to create
production process management support tools.

NOTES

5.14 ARCHITECTURE OF CASE ENVIRONMENT

The architecture of CASE environment is illustrated in the Fig 6.

User Interface
Tools layer

Tool Management Services
(Tool Set)

CASE Tools
Layertool

Object Management System
(OMS)

Repository

Fig. 6 Architecture of CASE Environment

The important components of a modern CASE environment are the
user interface, the Tools Management System (Tools set), the Object.
Management System (OMS) and the repository. These various components
are discussed as under:

1. User Interface

It provides a consistent framework for accessing different tools; thus
making it easier for the user to interact with different tools and reduces
learning time of how the different tools are used.

2. Tools Management Services (Tools Set)

The tools set section holds the different types of improved quality
tools. The tools layer incorporates a set of tools management services
with the CASE tool themselves. Tools Management Service (TMS) control
the behaviour of tools within the environment. If multitasking is used
during the execution of one or more tools, TMS performs multitask

114 Self-Instructional Material

Software Maintenancesynchronization and communication, coordinates the flow of information
from the repository and object management system into the tools, accomplishes
security and auditing functions, and collects metrics on1 tool usage.

3. Object Management System (OMS)
The object management system maps these (specification design, text
data, project plan etc.) logical entities into the underlying storage management
system i.e., repository.
Working in conjunction with the CASE repository, the OML provides
integration services a set of standard modules that coup'le tools with the
repository. In addition, the OML- provides configuration management
services by enabling the identification of all configuration objects performing
version control, and providing support for change, control, audits and
status accounting.

NOTES

4. Repository

It is the CASE database and the access control functions that enable the
OMS to interact with the database. The word CASE repository is referred
in different ways such as project database, IPSE databass, data dictionary
CASE database and so on.

5.15 BUILDING BLOCKS FOR CASE

The building blocks for CASE are illustrated in Fig. 7

CASE tools

Integration framework

Portability services

Operating System

!Hardware platform

Environment architecture

Fig. 7 CASE Building Blocks

1. Environment Architecture

The environment architecture, composed , of the hardware platform and
operating system support including networking and database management
software, lays the groundwork for CASE but the pASE environment
itself demands other building blocks.

Self-Instructional Material 115
I

Software Engineering 2. Portability Services

A set of portability service provides a bridge between CASE tools and
their integration framework and the environment architecture. These
portability services allow the CASE tools and their.integration framework
to migrate across different hardware platforms and operating systems
without significant adaptive maintenance.

NOTES

3. Integration. Framework

It is a collection of specialized programs that enables individual CASE
tools to communicate with one another, to create a project database.

4. CASE Tools

CASE Tools are used to assist software engineering activities (like analysis
modeling, code generation etc.) either communicating with other tools,
project database (integrated CASE environment) or as point solutions.

5.16 CASE SUPPORT IN SOFTWARE LIFE CYCLE
There are various types of support that CASE provides during the
different phases of a software life cycle.

1. Prototyping Support

The prototyping is useful to understand the requirements of complex
software products, to market new ideas and so on. The prototyping
CASE tools requirements are as follows:

(i) Define user interaction

{ii) Define the system control flow
(iii) Store and retrieve data required by the system
(iv) Incorporate some processing logic.

Few features, which are supported by prototyping tools, are:

• Main use of prototyping CASE tool is developing Graphical User
Interface (GUI) development. The user should be allowed to
define all data entry forms, menus and control.

• Integrate well with the data dictionary of a CASE environment. _
• It should be able to integrate with the external user-defined

modules written in high-level languages.

• The user should be able to define the sequence of states through
which a created prototype can run.

• The prototype should support mock up run of the actual system
and management of the input and output data.

116 Self-Jnstructional Material

Software Maintenance2. Structured Analysis and Design (
i

A CASE tool should support one or more of the structured analysis and
design techniques. It should also support making of the fairly complex
diagrams and preferably through a hierarchy of levels. The tool must
also check the incompleteness, inconsistencies and anomalies across the
design and analysis through all levels of analysis hierarchy.
Analysis and design tools enable a software engineer- to jcreate models of
the system to be built. The models contain a representation of data,
function, and behaviour (at the analysis level) and characterizations of
data, architectural, component level, and interface design. By performing
consistency and validity checking on the models, analysis and design
tools provide a software engineer with some degree of insight into the
analysis representation and help to eliminate errors before they propagate
into the design, or worse, into implementation itself.

NOTES

3. Code Generation

A support expected from a CASE tool during the code generation phase
comprises the following:

• The CASE tool should support generation of module skeletons or
templates in one or more popular programming languages.

• The tool should generate records, structures, class definitions
automatically from the contents of the data dictionary in one or
more popular programming languages.

• It should be able to generate database tables for relational database
management system.

• The tools should generate code for user interface from prototype
definitions for X-Windows and MS Window based applications.

4. Test CASE Generator

The CASE tool for test case generator should have following features:

• It should support both design and requirement testing.

• It should generate test set reports in ASCII format, which can be
directly, imported into the test plan document.

Under testing phase, test'management tools are used to control and
coordinate software testing for each of the major testing steps. Testing
tools .manage and coordinate regression testing, perform comparisons
that ascertain differences between actual and expected oiitput, and conduct
batch testing of programs with interactive human/computer interfaces.
In addition to the functions noted, many test management tools also
serve as generic test drivers. A test driver reads one or more test cases

Self-Instructional Material 117

from a testing file, formats the test data to conform to the needs of the
software under test, and then invokes the software to be tested.

Software Engineering

5.17 OBJECTIVE OF CASENOTES

1. Improve Productivity

Most organizations use CASE to increase the speeds with which systems
are designed and developed. Imagine the difficulties; the carpenters
would face without hammers and saws. Tools increase the analysts’
productivity by reducing the time needed to document, analyze, and
construct information system.

2. Improve Information System Quality

When tools improve processes, they usually improve the results as

well.
• Ease and improve the testing process through the use of automated

checking.
• Improve the integration of development activities via common

methodologies.
• Improve the quality and completeness of documentation.
• Help standardize the development process.
• Improve the management of the project.
• Simplify program maintenance. '
• Promote reversibility of modules and documentation.
• Shortens the overall construction process.
• Improve software portability across environments.
• Through reverse engineering and re-engineering, CASE products

extend the file of existing systems.

Despite the various driving forces (objectives) for the adoption of CASE,
there are many resisting forces also that preclude many organizations
from making investment in CASE.

3. Improve Effectiveness

Effectiveness means doing the right task (i.e., deciding the best task
to perform to achieve the desired result). Tools can suggest procedures
(the right way) to approach a task. Identifying user requirements,
stating them in an understandable form, and communicating them to
all interested parties can be an effective development process compared
to moving quickly into coding.

118 Self-Instructional Material

4, Organizations Reject CASE

• The start-up cost of purchasing and using CASE
• The high cost of training personnel
• The big benefits of using CASE come in the late stages of the

SDLC
• CASE often lengthens the duration of early stage of the project
• CASE tools cannot easily share information between tools
• Lack of methodology standards within organizations, CASE products

forces analysts to follow a specific methodology for system development
• Lack of confidence in CASE products
• IS personnel view CASE as a threat to their job security.

Despite these issues, in long-term, CASE is very good. The functionality
of CASE tools is increasing and the costs are coming down. During the
next several years, CASE technologies and the market for CASE will
begin to -mature.

Software Maintenance

NOTES

5.18 CASE REPOSITORY

A CASE repository is a system developer database. Synonyms include
dictionary and encyclopedia. It is a place where developers can store
system models, detailed descriptions and specifications, and other products
of system development.
Analysts use CASE repositories for five important reasons:

• To manage the details in large systems
• To communicate a common meaning for all system elements
• To document the features of the system
• Tb facilitate analysis of the details in order to evaluate characteristics

and determine where system changes should be made.
• To locate errors and omissions in the systemj

To limit the amount of narrative needed to describe relationships between
show the structural relationship

clearly, analysts often use formal notation in data dictionary, a component
of CASE repository.
Data dictionary can be developed manually or using automated systems.
Automated systems offer the advantage of automatically producing data
element, data structure, and process listings; they also perform cross-reference
checking and error detection. The data dictionary is a repository of all data
definitions for all organizational applications and is used to manage and
control access to the information repository, another component of CASE
repository. Information repository provides automated jtools used to manage

and control access to business information and application portfolio.

data items and at the same time to

Self-Instructional Material 119

Software Engineering
CASE

Workstation
and Software

ma t=3
ininiBiiiiiiaiiiiiii

NOTES
PrinterSystems Analysis

Diagramming ■ Description 1 Prototyping
. Toots- 1 Tools ■ .Tools '

5JB iE
iiiil

t tT project and design model
system and program

' documentation code
systemsystem quality

reports
system . . . 4.
models descriptions prototypes

and specifi­
cations

> ♦
♦

CASE repositories are
usually stored on servers
so that they may be shared
by multiple projects and
participants

■sfiiHi].
Repository Server

Fig. 8 CASE Repository
r

CASE repository is an idea central to I-CASE. Integrated-CASE tools
rely on common terminology, notations and methods for systems development
across all tools. Within an I-CASE environment, all diagrams, forms,
reports and programs can-be automatically updated by the single change
to the data-dictionary definition. Besides specific tool integration, there
are two additional advantages of using a comprehensive CASE repository
that relate to project management and reusability. The CASE repository
provides a wealth of information to the project manager and allows
the manager to exert an appropriate amount of control on the project.
If all organizational systems were created using CASE technology with
a common repository, it would be possible to reuse significant portions
of prior systems in the development of new ones.

5.19 CHARACTERISTICS OF CASE TOOLS
All CASE tools have the following characteristics:

1. A graphic interface to draw diagrams, charts, models (upper
case, middle case, lower case)

2. An information repository, a data dictionary for efficient information
management .selection, usage, application and storage

3. Common user interface for integration of multiple tools used in
various phase

4. Automatic code generators
5. Automatic testing tools.

■0 Self-Instructional Material

Software Maintenance5.20 CASE CLASSIFICATION
i

CASE classifications help us understand the different types of CASE
tools and their role in supporting software process activities. There are
various different, ways of classifying CASE tools, each of which gives us
a different perspective on these tools. In this section, I discuss CASE
tools from three of these perspectives, namely:

1. A functional perspective where CASE tools are classified according
to their specific function.

2. A process perspective where tools are classified according to the
process activities which they support.

3. An integration perspective where CASE tools are classified according
to how they are organized into integrated units which provide
support for one or more process activities.

NOTES

List of CASE Tools

Application Case Tool Purpose of Tool

Funbtional Application:
Planning, scheduling,
control

1. Planning Excel spreadsheet, MS-
Project, PERT/CPM
Network, Estimation
tools

2. Editing Diagram editors, Text
editors, Word Processors

Test Data Generators,
File Comparators

High level Modeling
language, User Interface
Generators

Report Generators, Publishing
imaging, PPT presentation

Speed and Efficiency

3. Testing Spebd and Efficiency

4. Prototyping. Confirmation and
Certification of RDD and
SRS

5. Documentation Faster structural documen-
tatiim with quality of
presentation

Programming of high quality
with no errors, System
Integration

6. Programming
and Language
Processing
Integration

Program Generators, Code
Generators, Compilers,
Interpreters Interface,
connectivity

7. Templates Guided Systematic
development

Reverse-engineering to find
stn cture, design and design
information

Analyses risks, functions,
features

8. Re-engineering
tools

Cross reference systems,
program re-structuring
systems

Cross reference generators
Static analyzers, dynamic
analyzers

9. Program
analysis tool

/

Self-Instructional Material 121

Software Engineering. 5.21 CATEGORIES OF CASE TOOLS

The schematic diagram of CASE tools is drawn bdlow in Fig. 9.

NOTES Phase in development

Horizontal Tools

Fig. 9 Categories of CASE Tools

Smith and Oman have defined CASE tools which are divided into the
following two categories.

1. Vertical CASE tools 2. Horizontal CASE tools

1. Vertical CASE Tools

Vertical CASE tools provide support for certain activities within a
single phase of the software life cycle.
There are two subcategories of vertical CASE tools:

(i) First Category. It is the set of tools that are within one phase
of life-cycle. These tools are important so that development in
each phase can be as quick as possible.

(li) Second Category. It is a tool that is used in more than one
phase, but does not support moving from one phase to the next.
These tools ensure that the developer does move on the next
phase as appropriate.

2. Horizontal CASE Tools

These tools support automated transfer of information between the
phases of a life cycle. These tools include project management, configuration
management tools .'and integration services.

/
The above two categories of CASE tools can further be broken down
into the following:

122 Self-Instructional Material

Software Maintenance1. Upper CASE Tools/Front-End CASE Tools

CASE tools are designed to support the analysis and design phases of

SDLC. All the analysis, design and specification tools ;ire front-end tools.
These tools also include computer-aided diagramming tools oriented towards

a particular programming design methodology, more recently including

object-oriented design.
The general types of upper CASE tools are listed below:

• Diagramming Tools: Diagramming tools enaole system process,
data and control structures to be represented graphically. They
strongly support analysis and documentation of application

requirements.

• Form and Report Generator Tools: They support the creation

of system forms and reports in order to show how systems will
“look and feel” to users.

• Analysis Tools: Analysis tools enable automatic checking for

incomplete, inconsistent, or incorrect specifications in diagrams,
forms and reports.

2. Lower CASE or Back-End Tools

NOTES

CASE tools designed to support the implementation and maintenance

phases of SDLC. All' the generator, translation ana testing tools are

back-fend tools.
The general types of Lower CASE tools are:

• Code Generators: Code generators automate the preparation of

computer software. Code generation is not yei; perfect. Thus, the

best generator will produce approximately 75 percent of the source

code for an application. Hand coding is still necessary.

3. Cross Life Cycle CASE or Integrated Tools

CASE tools used to support activities that occur across multiple phases

of the SDLC. While such tools include both front-end and jack-end capabilities,
they also facilitate design, management, and maintenance of code. In

addition, they provide an efficient environment for the creation, storage,
manipulation, and documentation of systems.

4. Reverse Engineering Tools

These tools build bridges from lower CASE tools to upper CASE tools.
They help in the process of analyzing existing applications, performa
and database code to create higher level representations of the code.

Self-Instructional Material 123

Software Engineering 5.22 ADVANTAGES OF CASE TOOLS

The major benefits of using CASE tools include the following:,

Improved productivity

Better documentation

1.NOTES

2.

Improved accuracy

Intangible benefits

Improved quality

Reduced lifetime maintenance

3.

4.

5.

6.

Opportunity to non-programmers

Reduced cost of software

7.

8.

9. Produce high quality and consistent documents

10. Impact on the style of a working of company

11. Reduce the drudgery in a software engineer’s work

12. Increase speed of processing

13. Easy to program software

14. Improved coordination among staff members who are working
on a,large software project

15. An increase in project control through better planning, monitoring

and communication.

5.23 DISADVANTAGES OF CASE TOOLS

Purchasing of CASE tools is not an easy task. Its cost is

very high. Due to this reason small software development firm
do not invest in case tools.

Learning Curve: In general cases programmer productivity

may fall in initial phase of implementation as user need time to
learn this technology.

Tool Mix: It is important to make proper selection of case tools

to(get maximum benefit from the case tools, so wrong selection
may lead to wrong result.

1.

2.

3.

124 Self-Instructional Material

Software Maintenance
5.24 LIMITATIONS OF CASE TOOLS

The major limitations of using CASE toolk include:

• Cost

• Learning Curve

• Tool Mix ~~"

\
NOTES

Cost

Using CASE tools is a very costly affair. In fact, most firms engaged in

software development on a small scale do not invest in CASE tools because

they think that the benefits of CASE are justifiable only in the development
of large systems.
The cost of outfitting every system developer with a preferred CASE

tool kit can be quite high. Hardware and systems, software, training and
consulting are all factors in the total cost equation of using CASE tools.

Learning Curve

In most CASES, programmer productivity may fall in the initial phase
of implementation, because users need time to leaijn the technology.

In fact, a CASE consulting industry has evolved ti support uses of-

CASE tools.

The consultants offer training and on-site services that can be crucial to

accelerate the learning curve and to the development and use of the tools.

\
/

/

- / -
\

/
\

Tool Mix

It is most important to make an appropriate selection of tool mix to get
cost advantage. CASE integration and data integration across all platforms

is also very important. The ability to share the results of work done on
one CASE tool with another CASE tool is perhaps tiie most important

type of CASE integratio.

N :5.25 CASE FOR FUTURE f

CASE is not the only new technology that promises to eliminate problems

of software development productivity. Object-oriented languages, artificial
intelligence tools, and gther newly popular development tools can also

help achieve this goal.

Self-Instructional Material 125

Software Engineering In fact, CASE might soon become the pivot around all, which all these '
technologies turn. CASE is promised to be the foundation technology

for development approaches. 1
CASE transcends programming languages i.e., it is a tool framework
while languages are the material the tools operate on. Here is a-good
example:

NOTES

I
CASE is the tool bench, holding saws and drills and hammers; -
programming languages are the wood from which you carve
the model.

CASE tools can potentially automate any kind of software development.
They can be tailored to fit almost any existing development environment.
However, only a few environments are popular enough to ensure substantial
sales of CASE products. ^/ • - • i.
For the next few years, until it is fully coupled to methodologies,
CASE will target fairly standard system types and development platforms.

\ -

\

\

126 Self-Instructional Material

-Software Maintenance

STUDENT ACTIVITY

/1. What are the different levels of CASE? •/

/

2. Explain the components of CASE architecture

./

/

SUMMARY

• Software maintenance is becoming an important activity of a large number of software
organizations. This is no surprise, given the rai;e of hardware obsolescence, the immortality
of a software product and the demand of the user community to see the existing software
products run on newer platforms, run in newer environments, and/or with enhanced features.

v • •

• Software reverse engineering is the process of recovering the design and the requirements
specification of a product from an analysis of its code.

• Software re-engineering is a combination of two consecutive processes t.e., Software reverse
engineering and software forward engineering

• CASE is a computer aided software engineering technology.

• A set of portability service provides a bridge between CASE tools and their integration
framework and the _ environment architecture. '

• Analysis and design tools enable a software er gineer to create models of the system to'be
built.

• A CASE repository is a ^system developer dats base.

• CASE classifications help us understand the different types of CASE tools and their role in
supporting software process activities'

Selffnstructional Material 127

• Code generators automate the preparation of computer software.

• The cost of outfitting every system developer with a preferred

CASE tool kit can be quite high.

Software Engineering

NOTES

REVIEW QUESTIONS

1. What for software products are required to maintain? j ,
2. What are the different types of maintenance that a software i

product might need? Why are these maintenance required?
3. What are the disadvantages associated with software maintenance?
4. What do you mean by the term software reverse engineering?

Why is it required? Explain the different activities undertaken
during reverse engineering.

5. What is legacy, software product? Explain the problems one
would encounter—while maintaining a legacy product.

6. What are the different factors upon which software maintenance
activities depend?

7. What do you mean by the term software re-engineering? Why
is it required?

8. If the development cost of a software product is Rs. 10,000,000/-,
compute the annual maintenance cost given that every year
approximately 5% of the code needs modification. Identify the
factors which render the maintenance cost estimation inaccurate.

9. Legacy software products are very difficult to maintain.
10. Legacy products are those products which have been developed

long time back. , .
11. In the process of reverse engineering; we change ,the functionalities

of,an existing code.
12. Put documentation and ^also explains their purpose."
137^ Discuss Building blocks for CASE.
14. What do you understand by OMS?
15. Explain some characteristics of CASE Tools.
16. Name the different Categories of CASE Tools. Also show it

diagrammatically.
17. Why analysts use CASE repositories? Give some reasons.
18. What are the advantages and disadvantages of CASE Tools?

• /

• • / n'i

// FURTHER READINGS'■ /s

•\
1. Software Engineering, Bharat Bhushan Agarwal, Sumit Prakash

Tayal, Firewall Media.
2. Softy^are^ Engineering, D. Sunder, University Science Press.■'i.

128 Self-Instructional Material

