~ SOFTWARE ENGINEERING
c-124 J

Self Learning Material

- L]
) Sfed wrue g geREe .

1 .

" Directorate of Distance Education
SWAMI VIVEKANAND SUBHARTI UNIVERSITY '
 MEERUT-250005-- -
UTTAR PRADESH

SIM Module Developed by : Bharat Bhushan Agarwal

" Reviewed by the Study Material Assessment Committee Comprising:

Lt. (Gen.) B.S. Rathore, Vice-Chancellor
Dr. Sushmita Saxena, Pro-Vice-Chancellor-
Dr. Mohaﬁ Gupta

Mr. Pushpendra

Mr. Rakesh Joshi

n b W N =

-Copyright © Laxmi Publications Pvt Ltd

No part of this publication which is material protected by this copyright notice may be
| reproduced or transmitted or utilized or stored in any form or by any means now known
‘or hereinafter invented, electronic, digital or mechanical, including photocopying, _ h
scanning, recording or by any information storage or retrleval system, without prior !
written permission from the publisher. o o -

Information contained in this book has been published by Laxmi Publications Pvt Ltd
and has been obtained by its authors from sources believed to bé reliable and are correct
to the best of their knowledge. However, the publisher and its author shall in no event
be liable for any errors, omissions or damages arising out of use of this information and
spec;ﬁcally disclaim -any implied warranties or merchantability or fitness for- any
I particular use.

_Published by : Laxmi Publications Pvt Ltd., 113, Golden House, Daryaganj, New Delhi-110 002.
Tel: 43532500, E-mail: info@laxmipublications.com . g
DEM-2232-62.00-SOFTWARE £NGG C-124 o - C-00256/04/19

Typeset at: Kalyani Computers, Delhi) _ ;: Printed at: Ajit Printing Press, Delhi
Edition : 2017, : '

s

CONTENTS

Units , : L Page No.
I. . Software Engineering - . ’ 01-25

. Requir.ementsAnaIA\‘(sis S : : 26-52 -
Ill. Designing Software Solutions - - . . 5391 . I
IV. Software Implementation o _ _ - | 92-103

V Software Maintenance o ‘ 104-128

SYLLABUS

SOFTWARE ENGINEERING
Cc124

Unit-1:

Software Engineering : Definition and paradigms, A geneﬁc view of software engineering.

Unit-1I: | .

Requirements Analysis': Statement of system scope, isolation of top level processes and
entltles and their allocation to physical elements, refinement and review. Analyzing a problem,
creatmg a software spec1ﬁcanon document review for. correctness, consistency, and -

completeness.

Unit-III:

Desngmng Software Solutnons' Refining the software Spec1ﬁcat10ns, Appllcatlon of .
- fundamental design concept for data, architectural and procedural designs using soﬁware blue

. print methcciology and object oriented design paradigm; creating design document : Review of

conformance to software requirements and quality.

Unit-IV: _ »
Software Implementatlon Relatlonshlp between de51gn and 1mp1ementatlon Implementanon
issues and programming support environment; Codmg the procedural des1gn, Good codmg

style & review of correctness and readabllity

Unit-V:

Software Maintenance : Maintenance as part of software evaluation, reasons for maintenance,

types of maintenance (Perceptive, adoptlve, corrective), designing for maintainability,
techniques for mamtenance Comprehenswe examples using available software platforms/case

\

~ tools.

a

Software Engineering .

wir I_SOFTWARE ENGINEERING

~

~

1.0 Learning Objectives
1. 1 Introduction
1.2 Introduction to Software Engine.erin.g
1.3 Software Components - |
14 Softw;a\re Characteristics |
15 Software Crisis : ,l
16 Software Myths | |
1.7 Software Apphcattons
18 Software. Englneerlng Processes o _ o
19 Evolution of Software I L
' 1.10 Some Terminologies | |
"1.11 Program Versus Softwére Products
1.12 A Generic View of Software Enéine_ering
. Sumhvary C L
. Reéview Questions l

* Further Readings. .

1.0 LEARNING OBJECTIVES 1o .

After studying this unit, you will be able to:

* explain software englneermg and 1ts various components,
characterlstlcs and apphcatlons

* describe evolution of software

, * g generic view of software engineering.

Self-Instructional Material 1

Software Engineering

NOTES

"2 Self-Instructional Material

1.1 INTRODUCTION

Software is described by its capabilities. The capabilities'relate to the

functions it executes, the. features it provides and the facilities it offers.

‘Software written for sales- order processing would have different functions -

to process different types of sales orders from different market segments

AThe features, for example, would be to handle multicurrency computing,

updating of product, sales and tax status in MIS reports and books of
accounts. The facilities could be printing of sales orders, e-mail to customers,
reports and advice to the stores department to dispatch the goods. The
facilities and features could be optional and based on customer choice.

The software is developed keeping in mind certain hardware and operating
system considerations, known as platform. Hence, software is described
along with its capabilities and the platform specifications that are required
to run it.

Definition of Software

Software is a set of instructions to acquire inputs and to manipulate
them to. produce the desired output in terms of functions and performance
as determined by the user of the software. It also includes a set of
documents, such as the software manual, meant for users to understand
the software system. Today’s software comprises the Source code, Executables,
Design documents Operations and System manuals and Installatlon and
Implementatlon manuals

Software is:

() Instructions (computer programs) that when executed provade des1red .
function and performance.

(i) Data structures that enable the programs to adequately mampulate -
" information. ‘

(zii) Documents that describe the operation and use of the programs

Or

Thé.term software refers to the set of computer programs, procedures‘,
and associated documents (flowcharts, manuals, etc.) that describe the
programs and how they are to be used. To be precise, software means a

collection of programs whose obJectlve is to enhance the capabilities of*
the hardware.

Or
Definition of Software given by IEEE

“Software is the collection of computer programs, procedure rules and
associated documentation and data”. |

Importance of Software

: !
Computer software has become a driving force. - |

e It is engine that drives business decision-making.
e It serves as the basis for modern scientific i'lxlvestigatioﬁ and
engineering problem solving.

i .

¢ It is embedded in all kinds of systems like transportation, medical,
telecommunications, military, industrial processes, entertainment,
office products ete.

It is important as it affects nearly every aspect of our lives and has |

become pervasive in our commerce, our culture and our everyday activities.
Software impact on our society and culture is significant. As softwaré
importance grows, the software community continually attempts to
develop technologies that will make it easier, faster and less expensive
‘to build high-quality computer programs. R

1.2 INTRODUCTION TO SOFTWARE;'
ENGINEERING -

Few important definitions given by several authors and institutions
are as under: : ' .

.

\

IEEE Comprehensive Definition

“Software Engineering is the application of a éystematic, discipliﬁed,
quantifiable approach to the development, operation and maintenance
of software, i.e., the application of engineering to software”.

. -

4

According to Barry Boehm

“Software Engineering is the application of science and matherﬁatiCS

‘by which the capabilities of computer equipment are made useful to ! -

man via computer programs, procedures and associated documenitation”.

Software Engineering -

NOTES -

Self-Instructional Material 3

Software Engineering

NOTES

4 Self-Instructional Material

way’.

According to Fairley’

“Software Engineerihg is a methodological and mandgerial discipline -
concerning the systematic production and maintenance of software products

‘that are.developed and maintained within anticipated and controlled

. o b
time and cost limits”.

According to Fritz Bauer:

“Sof_'tware Engineering is the establishment and use of sound engineering.
principles in order to*obtain economically software that is reliable and
works efficiently on real machines”.

According to Somerville
“Software Engineering is concerned with the theofies, methods and tools

that are needed to develop the software products in a cost effective

»

According to Dennis: Software engineering is the application of principles,

‘skills and.art to design and construction of programs .and systems of

programs.

According to Morven Gentleman: ‘Software engineering is the use of '
methodologies, tools and techniques to resolve the practical problem that
arise in the construction, deployment, support and evolution of software.

According to Stephen Schach: Software engineering is a discipline

whose aim is the production of quality software, software that is delivered
on time, within budget, and that satisfies its requirements.

| According to Pomberger and Blaschck: Software engineeriﬁg is the

practical application of scientific knowledge for the econom1cal production -
and use of high. quality software

According to Rafael J. Barros: Software englneerlng is the application
of methods and scientific knowledge to create practical cost effective
solution for th?, design, construction, operation and maintenance of software
and associated products in the service of mankind.

Other Definitions

“Software Engineering deals with cost effective solutions to practical problems

| by applying scientific knowledge in building software artzfacts in tre

service -of mankind”.

- Or

“Software Engineering is-the appliédtion of methods and scientific knowledge

to create practical cost-effective solutions for the deszgn, construction, -

operation and maintenance of software”.
i

Or
“Software Engineering is a discipline whose aim ;is the production of
fault free software that satisfies the user’s needs and that is delivered
on time and within budget”. '
. o Or

“The term Software Engineering i’efers to a movement, methods and
techniques aimed at making software development more systemcitic”.
Software methodologies like the OMG’s UML and s:oftware tools (CASE
tools) that help developer’s model application desigps and then generate
code are all closely associated with Software Engineering.

Or . : : !
“Software Engineering is an engineering discipline; which is concerned
with all aspects of software production”. o

Software Engineei'ing Principles

. The principles deal with both the process of sdftw1aré engineering and
the final product. The right process will help produce the right product,
but the desired product will also affect the choice of which process to
use. A traditional problem in software engineering has been the emphasis
on either the process or the product to the exclusmn of the other Both
are important. ' - | '

" The principles we deveIop are general enough fo be applicable throughout
.- the process of software ‘construction and management. Principles,
however, are not sufficient to drive software development. In fact,

' theyare general and abstract statements describing desirable properties |

" of software processes and products. But, to apply principles; the software
engineer should be equipped with appropriafe methods and specific
techn1ques that help 1ncorporate the desired propertles into processes

~and products. : ' :

L In prmc;ple, we should disﬁinguish between methods and techniques.

"Methods are general guidelines that govern the execution of some
.activity; they are rigorous, 'systematic, and disciplined approaches.

- Techniques are more techinical and mechanical than methods; often,

_ they also have more restricted applicability. In general, however, the
difference between the two is not sharp. We will therefore use the two
terms interchangeably. :

Sometimes, methods and techniques are packaged together to forrh a
methodology.” The purpose of a methodology is to pi'omote a certain

e

Softwdre Engineering

NOTES

Self-Instructional Material §

Software Engineering

NOTES

8 Self-Instructional Material

approach to solving a problem by preselecting the methods and fechniqlies
to be used. Tools, in turn, are developed to support the application of
techniques, methods, and methodologies.

Figure 1 shows the relationship between principles, methods, methodologies,
and tools. Each layer in the figure is based on the layer(s) below it and
is more susceptible to change, due to passage of time. This figure shows

| clearly that principles are the basxs of all- methods, techniques, methodologies,

and tools.

Methodologies

Methods
-and techniques

Fig, lhRelatioﬁship between Principles, Techniques,
Methodologies, and Tbols

1.3 SOFTWARE COMPONENTS

A software component is a system element offering a predefined service
and able to communicate with other components. Clemens Szyperski and”
David Messerschmitt give the following five criteria for what a software
component shall be to fulfill the deﬁmtmn

. Mulnple use
. Non-contextfspeciﬁc
* Composable with other components

* Encapsulated i.e., non-investigable through its interfaces

A unit of independent deployment and versioning

A simpler definition can be: A coinponent is an object written to a specification.

It does not matter what_the specification is: COM, Java Beans, etc., as
long as the object adheres to the specification. It is only by adhering to

| the spemﬁcatwn that the object becomes a component and gains features

like reus\blhty and -so ‘forth.

Software components often take the.'form of objects or qbllecti’ons of
objects (from object-oriented programming), in some binary or textual

.form, adhering to some Interface Description Language (IDL) so that the

component may exist autonomously from other components in a computer.

When a component is to be accessed or shared across|execution contexts’

or network links, some form of serialization (also known as marshalling)

is employed to turn the component or one of its 1nlterfaces into a bit

stream.

It takes significant effort and awareness to write a software component
that is effectively reusable. The component needs:

* to be fully documentedé
*. more thorough testing;.
. robust input vahdlty checkmg,
. to pass back useful error messages as apprcpriaﬁe;

e to be built with an awareness that it will be put to unforeseen
uses; ' ’

¢ a mechamsm for compensatmg developers who invest the
(substantial) effort implied above.

1.4 SOFTWARE CHARACTERISTICS

The key characteristics of software are as under:

1. Most Softwaré is Custom-Built, Rather than being
- Assembled from Existing Components = | -

Most software continues to be custom built, although recent developments
‘ tend to be component-based. Modern reusable comptlments encapsulate

both data and the processing apphed to data, enabling the software
engineer to create new applications from reusable part. For example,
today GUI is built using reusable compdnents that énable the creation
of graphics windows, pull-down menus, and a wide valriety,of interaction
mechanisms. The data structure and processing detail required to build
the interface are contained with a library of reusable components for
interface construction.

2. Software is Developed or Engineered; it is not
Manufactured in the Classical Sense

Although some similarities exist between software development and
hardware manufacture, the two activities are fiindamentally different.
In both activities, h1gh quality is- achieved through' good des1gn but

the manufacturmg phase for hardware can introduce quality problems

that are nonexistent for software. Both activities- depend on people,
but the relationship between people applied and work accomplished is

' : ‘ |

.

I

Software Engineering .

NOTES

Self-Instructional Material 7

Software Engineering .

NOTES

8 Self-Instructional Material

entirely different. Both require the construction of a “product”. But the
approaches are different. Software costs are concentrated in engineering.
This meané_ that software projects cannot be managed as if they were
manufacturing projects.’

3. Software is Flexible

We all feel that software is flexible. A program can be developed to do
almost anything. Sometimes, this characteristic may be the best and may
help us to accommodate any kind of change. Reuse of components from
the libraries help in reduction of effort. Nowadays we reuse not only
algorithms but also data structures.

4, Software doesn’t Wear Out

There is a well known “bath-tub curve” in reliability studies for the
hardware products. Figure 2 depicts failure intensity as a function of
time for hardware. The relationship, often called the “bath-tub curve”.
Note that, wear out means process of loosing the material.

Burn-in :
phase .
—l l
N— Useful life phase —N

I Wear out
phase

Failure intensity —p

l
|
1
|
I
1
)
1
!
1
1
i

Timg ——»p
Fig. 2 Bath-tub Curve -

There are three phases for the life of a hardware product, Initial phase
is burn-in phase, where failure intensity is high. It is expected to test
the product in the industry before delivery. Due to f.esting and fixing
faults, failure intensity will come down initially and may stabilize after
certain time. The second phase is the useful life phase where failure
intensity is approximately constant and is called useful life of a product.
After few years, again failure intensity will ingrea/se due to wearing out
of components. This phase is called wear out phase. We do not have this
phase for the software, as 1t; does not wear out. The curve for software
18 given in Fig. 3 '

Failure intensity —p

! Time —»

Fig. 8 Software Curve

Important pointis_»sdft\'vare becomes reliable overtime instead of wearing
out. It becomes obsolete, if the environment, for which it was developed,

changes. Hence, software may-be retired due to envi
_ new requirements, new expectations, etc.

ronmental changes,

1.5 SOFTWARE CRISIS
‘The' sofp/ﬂjéfe-'crisi-s has been with us since 1970s
IBM report, “31% of the projects get cancelled before
53% over-run their cost-estimates by an average of

100 projects, there are 94 restarts”.

| As per i;_he latest
they are completed,
189% and for every

When software was developing then during deilelopment many problems
are raised up, that set of problem is known as software crisis. When
software is developing then on the different steps of development,
problems are encountered associated with those steps. Now we will
~ discuss the problem, and causes of software crisis encountered on different

stages of software development.

Problems

1. Schedule and cost estimates are often grossly inaccurate.

2. The “Product1v1ty” of software people hasn’t
- demand for their services.

kept pace with the

3. The quality of software is sometimes-lees than adequate.

4. With no solid indication of product1v1ty, we can’t) accurately evaluate
the efficiency of new tools, methods or standards

- 5. Communication between customer and software developer is

often poor.

Software Engineering

NOTES

* Self-Instructional Material 9

Software Engineering 6. - The software maintenance task devours the majorit5; of all software
' rupees. . . '

Causes
NOTES .

1. Quality of software is not good because most of the de\}eloper use
the historical data to develop the software.

2. If there is delay in any process or stage (i.e.,.'analysi,s,‘ design,
coding and testing) then scheduling does not match with actual’
timing. "

3. Communication between managers and customers, software developers,

support staff etc., can breakdown because the special characteristics

of software and the problems associated with its development are
misunderstood.

4. The software people responsible for tapping that potential often,
change when it is discussed and resist change when it is introduced.

Software Crisis in the Programmer’s Point of View

Problem of compatibility.
Problem of porta'flyﬂity. .
Problerﬁ in dbcurﬁentatio.n..
Problem of piracy of software.

Problem in coordination of work of different people.

== T O R

Problem of maintenance in proper manner.

Software Crisis in the User’s Point of View i .

lSoftwaré cost is very high. : | " n
Customers are ~r_noody or choosy.

Hardware goes \rery down.

Lack of specializetion in development.

Problem of differe;it versions of software. :

Problem of Views.

N < A T R N ol

Problem of bugs.

10 Self-Instructional Material -

-

i o~

1.6 SOFTWARE MYTHS

Software Engineering

1 If we get behind schedule, we can add more programmers and |
‘catch up.) © NOTES

2. If'I decide to outsource the software project to a third party, I '
‘can just relax and let that firm build it.

3. Project requirement contmuously changes, but changes can .be
easily accommodated ‘because software is flexible.

4. The only deliverable work product for a successful project is
the working program.
Software with more features is better software.
Once we write the _program and get it to work, our Job is done.
Until I get the program running, I have no way of assessing its
quality. ' ,
8. Software éngi_neering will make us create voluminous and - i
unnecessary documentation and will invariably_ slow us down.
9. A general statement of objectives is sufficient to begin writ_;irig
programs. oo _
10.” We already have' a book that’s full of standar;is and procedures
for building software. Won't that provide my p}eople with éverything

they need to know? :

1.7 SOFTWARE APPLICATIONS

Software applications are grouped into eight areas for convenience as
shown in Figure 4.

Real Time
Software

Embedded
Software

Engineei'ing
and Scientific
Software

1
Business -
. Software

Web based
Software

. Personal
./ Artificial. Computer
/ Intelligence Softw.

Software are.

Flg 4 Software Applications

Self-Instructional Material 11

. Software Engineering 1, System Software

System software is a collection of programs used to run the system as an _

assistance to use other software programs. The compilers, editors, utilities,
NOTES operating system components, drivers and interfaces, Assemblers, compilers,
linkers and loaders are examples of system software. This software resides
in the computer system and consumes its resources. A computer system.
without system software cannot function.

x ., | System Software dlrectly interacts with the hardware, heavy usage by
Y ' multiple users, concurrent operations that requires scheduling, resource
' sharing and sophisticated process management complex data structures
and multlple external interfaces.

2. Real Time Software -

Real time software. deals with changing environment. First it collects
the input and convert it from analog to digital, control component that .
responds to the external. environment, perform the action in-the last.

The software is used to monitor, control and analyze real world events
as they occur. Examples are Rocket launching, games etc.

'3._Embedded Software

Software, wHen {avritten to perform certain functions under control conditions
'and further embedded into hardware as a part of large systems, is called
embedded software

The software resides in Read-Only-Memory (ROM) and is used to control
the various functions of the resident products. The products could be
a car, washing machine, microwave oven, industrial processing products,
gas stations, satellites and a host of other products, where the need is
to acquire input, analyze, identify status, decide and take action that
allows the product to perform in a predetermined manner. Because of -
their role and performance, they are also termed intelligent software.

4. Business Software

Software -designed to process business applications. is called business-
software. Business software could be a data-and information-processing
application. It could drive the business process through transaction processing
in online or in real- time mode.

This software is used for specific operations such as accountmg package,
Management information system, payroll package, inventory management.
Busmess software restructures existing data in order to facilitate busmess :

12 Self-Instructional Material

operations or management decision making. It also enconipasses interactive
computing. It is an integrated software related to a particular field.

5. Personal Computer Software

The personal computer software market has burgeoned over the past
two decades.

Word processing, spreadsheets, computer graphics, multimedia,

entertainment, database management, personal and business financial .

applications, external network or database access are only a few of
hundreds of applications.

6. Artificial Intelligence Software

Artificial Intelligence Software uses non-numerical algorithms, which
use the data and information generated in the system, to solve the
complex problems. These problem scenarios are not generally amenable
to problem-solving procedures, and require specific’ analysis and
1nterpretat10n of the problem to solve it. :

Application within this area include robotlcs expert system pattern
recognition (image and v01ce), artificial.neural networks, theorem proving

and game playing, signal processing software. ;
Exgert Systems
Learning Systems
Fuzzy Logic
GenetscAlgonthms
Neural Networks
IntelllgentAgents

Cognitive Science
Applications

® 6 0 & 8 o

Vnsual Perception
Tactlllty
Dextenty
Locomotton
Navigation

i .

Attificial Intelligence » Robotics Applications

* '8 » 0

Natural Languages
Speech Recognition
Multis« nsory Interfaces
Virtual Reality

Natural Interface
Applications

e 5 o 0

Fig. 5 Application Areas of Artificial Intelligence

7. Web-based Software

Web-based software is the browsers by which web pages are processed

i.e., HTML, Java, CGI, Perl, DHTML etc.

Software Engineering

" NOTES

o Wy
K \'V\L\‘\"v
"‘. ,\‘, g
N

- Self- Instrucuonal)llatenal 13

Software Engineering

NOTES

1]

14 Self-Instructional Material

8. 'Engineéring and Scientific Software

Design, engineering of scientific software’s deal with processmg requirements

- in their specific fields. They are written for speclﬁc applications using

-\

the pr1nc1ples and formulae of each field. In this type application areas .
are:

Astronomy, volcanology, molecular biology, computer dided design (e.g.,
auto CAD software) system simulations. '

These software’s service the need of drawing, drafting, modeling, lead
calculations, specifications-building and so on: Dedicated software’s
are available for stress analysis or for analys1s of engineering data,
statlstmal data for interpretation and decision-making. CAD/CAM/
CAE packages, SPSS, MATLAB, circuit analyzers are typical examples

of such software.

1.8 SOFTWARE ENGINEERING PROCESSES

Process

“A process is a series of steps involving activities, constraints and
resources that produce an intended output of some kind”.

Any process has the following characteristics.
1. The process prescribes all of the major process activities.

. 2. The process uses resources, subject to a set of constraints (such as
_a schedule), and produces intermediate -and final pfoducts.

3. The process may be composed of sub processes that are linked in
some way. The process may be defined as a hierarchy of processes,
organized so that each sub-process has its bwn process model.

4. Each process activity has entry and exit criteria, so that we know
i .. when the activity begins and ends. :

5. The activities are organized in a sequence, so that it is clear when
one activity is performed relative to the other activities.

6. Every process has a set of guiding principles that explaln the
goals of each activity. :

7. Constraints or controls may apply to an activity, resource, or product.
For example, the budget or schedule may constrain the length of
time an activity may take or a tool may limit the way in which a
‘Tesource may be used.

s

: f .) , _\‘(: "

What is a Software Process?

“Software process is the related set of activities and processes’
that are involved in developing and evolving a software system”.
| . Or . -

“;4 set of activities ~whpse goal is the develppr:nént or evolution of
software”. - . . ‘ N

. ‘ ’ or [) -
“A software process is a set of aetivities and associated r;s_ults,
“which produce a software product”.

These activities are mostly carried out by software engineers. There
are four fundamental process activities which are common to all software

. 1 .
processes. These activities are: -

i
}

1. Software specification: The functlonahty of the software and
- constraints on its operation must be deﬁned

2. Software development: The software to meet the specification -

must be produced.. i

3. Software validation: The software must-be validated to ensure

that ‘it does what the customer wants. 1

4. Software evolutlon The software must- ex(olve to meet changmg
customer needs.. ' : .

Different software processes organize these activities in d1fferent ways: |

" and are described at different levels of detail. The timing of the activities
'varies, as does the results of each activity. Different organizations may

use different processes to produce the same type of product. However,

some processes are more suitable than others for some types of application.

If an inappropriate process is used, this will prob?bly reduce the quality
or the usefulness of the software product to be developed.

. | | .
Software Process '
/\ | j

Product Engg. Processes Process Mariagement Processes

Development Project Software Configuration

Process ". Management : . Management Process
Process

Lol

R Flg 6The‘Software ‘Process

l|

Software Engiﬁeerihg

NOTES

Self-Instructional Mat {m

‘15

)

Software Engineering

NOTES |

e

: i
" 16 Self-Instructional Material

1.9 EVOLUTION OF SOFTWARE!

development process into four eras:) .‘;/-

A software process can be characterized as shown in Figure 6. A common

process framework is established by defining a small number of framework
activities that are applicable to all software projects, regardless of their

- gize or complexity. A number of task sets-each -a .collection of software

engineering work tasks, project milestones, software work products and
deliverables, and quality assurance points-enable the framework activities.
to be adapted to the characteristics of the software project and the
requirements of the project team.~Finally, umbrella activities-such as
software quality assurance, software configuration management and
measurement- overlay the process model. Umbrella activities are independent
of any one-framework activity and occur throughout the process.

Thus, the software industry considers software development as a process.
According to Booch and Rumbaugh, “A process defines who is doing what,
when and how to reach a certain goal”? Software engineering is a field,
which combines process, methods and tools for the development of software.
The concep. of process is the main step in the software engineering
approach. Thus, a software process is a set of activities. When those
activities are performed in specific sequence in accordance with ordering

| constraints, the desired results are produced.

Software engineering principles have. evolved over the past more than
fifty years from art to an engineering discipline. It can be shown with

the help of the following Figure 7.. A
- \

A .
Engineering

Unorganized usage
of past experiences

N

Systematic usage of past
experiences and scientific basis

Craft

Technology

Esoteric use of
Art past experience

A 4

Time ’
—
Fig. 7 Evolution of Art to an Engineering Discipline

Derelopment in the field of software and hardware computing make a
significant change in- the twentieth century. We can devide the software.

1

N . . \

1. Early Erﬁ

‘During the early eras general-purpose hardware became common place.
- Software, on the other hand, was custom-designed |[for each application
and had a relatively limited distribution. Most software was developed
and ultimately used by the same person or organizatioh.

In this era the software"*é.m 'mainly based on (1950-1960)
. Lim/ited Distribution
e (Custom Software

¢ Batch Orientation

2. Second Era

The second era to computer system evolution introduced new concepts

 of human machine interaction. Interactive techniiques opened a new
- world of application and new levels of hardware and software sophistication.
Real time software deals with the changing enviro’nment and one other
is multi-user in which-many users can perform or work on a software
at a time. '

In this era the software are mainly based on (1960—1972\) '
. Multi-qser V
¢ Database
* Real time
* Product Software

¢ Multiprogramming

3. Third Era

In the earlier age the software was custom designed and limited distribution
but in this era the software was consumer designed and the distribution
-is also not limited. The cost of the hardware is also very low in this era.

“In this era the\software are mainly based on (1973-1985)
* Embedded Intelligence

e Consumer Impact

* Distributed Systems

¢ Low Cost Hardware

Software mngifedPiy

NOTES

Self-Instructional Material 17

uU[bwu«l v .uugwk(:r (213

+ NOTES

Self-Instructionol Material

1. Deliverables and Milestones

4. Fourtn f:}_l"a :

The fourth era of computer system evolution moves us away from individual
computers and computer programs and toward the collectlve impact of
computers and software. As the fourth era progresses, new technologies
have ‘begun to emerge. ' ' '

In thls era the software are mainly based on (1987)
* Powerful Desktop Systems
e Expert Systems : . -
. Attificial Intelligence\
¢ Network Computers
¢ Parallel Computing
¢ Object Oriented Technology

At thls time the concept of software making is object orlented technology
or network computing ete.

»

1.10 SOME TERMINOLOGIES

Some terminologies are discussed in these sections which are frequently
used in the field of Software Engineering.

Dlﬁ"erent delwerables are generated during software development. The
examples are source code, user manuals, operating procedure manuals
etc.

The ‘milestones are the events that are used to ascertain .‘the status of
the project. Finalization of specification is' a milestone. Completion of

design documentation is another mllestone The milestones- are essential

for project planning and management.

‘2. Product and Process

What is delivered to the customer is called a product. Tt may include
source code specification, document, manuals, documentation etc. Basically,
it is nothing but a set of deliverables only. '

Process is the way in which we produce software. It is the collection of

| activity that leads to (a part of) a product. An efficient process is required

to produce good quality products.

If the process is weax, the €uu prutuce s

obsessive over reliance on process is also dangerous;

‘ . : .
}
3

3. Measures, Metrics and Indicators

In software engineering medsures provides a quantitative indication

of amount, dimension, capacity or size of g1ven attribute of a product. -

The metrics is a quantitative measures of the degree to wh1ch a system,
component, or process possesses a given attribute of a product. An
indicator is a combination of metrics.

Measurement occurs as the result of the collection of jone or more data

pdints e.g., a number of module reviews are investigated to collect |

measures of the number of errors in each module.

1.11 PROGRAM VERSUS SOFTWARE PRODUCTS

Program

A program is a subset of software and it becomé* software ‘only if
documentatlon and operating procedure manuals are prepared Program
-is a combination of source code and object code.

- Object

Code’

Fig. 8 Program = Source Code + -Object Co[dé

Software Products

A software product consists notﬂonly of the program code but also-of |

all the associated documents such as the requirements specification
documents, the design documents, the test document, the operating
proced_ures which includes user manuals and operational manuals.

e o e e e

NOTES

Self-Instructional Material 18

20 Self-Instructional Material

Operating -
- Procedures

/) Documentation

Fig. 9 Software = Program + Dotumentation + Operating Procedures
Difference between Program and Software Products

The various differences between a program product and a software produc
are given in the tabular form as follows: '

Programs) Software Products
1. Programs are developed by 1. A software product is usuall
. developed by a group of engmeers
individuals for their personal use . working in a team

Usﬁally small in size . Usually large in size

Single user Large numbef‘ of users
Single developer . Team of develbpers
Lacks proper documentatlon . Good documentation support
Ad hoc development . Systematic development

Lack of user interface . Good user interface

L A ol
® T T A W N

Have limited functionality . Exhibit more functionality

1.12 A GENERIC VIEW OF SOFTWARE
ENGINEERING

Software Engineering as a Layered Technology

Process layer provides a farmework for effective use of software technologie:
Forms a basis for management control and establishes context in' whic
technical methods are applied, work products produced, milestone
established, quality is ensured and change is managed.

Process Framework

Identifies a small number of framework activities that are applicable t
all software projects.

In addition the framework encompasses umbrella actmtles that are applicabl]
across the software process.)

‘Modeling—encompasses creation of models that]

Umbrella Activities

Generic Process Framework Activities

Each framework activity is populated by a -set of

software engineering

actions. An action, e.g., design is a collection of related tasks that

produce a major software engineering work pro

|
duct.

Communication—lots of communication and collaboration with customer.

Encompasses requirements gathering.

Plaﬂning—establishes plan for software engineering work that follows.
Describes technical tasks, likely risky, required-resources, works products

and a work schedule.

and customer to better understand softwaré re
design that will achieve those requirements.

Construction—code generation and testing.

Deployment—-software, partial or complete, is deli
who evaluates it and provides feedback.

allow the developér
equirements and. the

vered to the customer

Framework is -aﬁgmented by a number of umbrella activities. Typical

ones are:

. * Software project tracking and control—'alhl)ws software team to
- assess progress against project plan and take necessary actlon

to maintain schedule.

* Risk management—assess risk that may
the project or the product quality.

effect the outcom’e' of

¢ formal technical reviews—assess software engineering work products.
to uncover and remove errors before they are propagated to the

' next actlon or. activity.

. Measurement—deﬁnes and collects process, project and }foducf

- measures that assist team in developing

software.

¢ Software configuration management—manages the eﬁ‘ect of change

throughout the software process.

. Reusablhty management—defines criteria for work product reuse
and establishes mechanism to achieve reusable components.

* Work product preparatmn and production — included work activities
required to create work products such as documents, logs, forms

and lists.

All processes can be ‘described with the above framework: Intelligent
adaptation of any process model to the problem, team, project, and

organisational culture is essential.

Software Engmeenng

NOTES

Self-Instructional Material 21
. . .

Software Engineering -+

 STUDENT ACTIVITY

1. ‘What is software engineering?

2. What do you understand by software crisis? g

3. Define _softw?re process.

4. Explain software components.

»

22 Selﬂlnstrl{ctiondl Material

1

 SUMMARY

“Software is the collection of computer programs, proéedure

rules and associated documentation and data”. 1

Application software sits a top of system software because it
needs help of system software to run. '

Operating system is a number of atilities for managing disk
~printers, other devices. .

Word processors use a'compﬁter' to create, edit, andf print documents.
A spreadsheet is a table of values arranged in rows and columns.
Presentation graphics is often called business graphics.

A DBMS is a collection of programs that enable you to store,
modify, and extract information from a database.

A software component is a system element offering a predefined
service and able to communicate with other components,

System spftware is a collection of programs used to run the
system as an assistance to use other software programs.

Real time software deals with changing environment.

Business software could be a data and mformatlon-processmg
application.

The p_ersdnal computer software market has burgeoned over
the past two decades. ’

Artificial Intelligence Software uses non—numerieal algorithms,
which use the data and information generate:d in the system, to
solve the complex problems. o

) . {
. . . R ln -
Process. is the way in which we produce software.

Software is a set of instructions to acquire 1nputs and to manipulate
them to produce the desired output in terms of functions and
performance as determined by the user of ‘the software.

“Software Engineering is the application of science and mathematics
by which the capabilities of computer equipment are made useful
to man via computer programs, procedures and assoc1ated
documentation”.

NTUVE VT RN O SRR)

NOTES

A Self-Instructional Material 28

- Software Engineering

 NOTES

24 Self-Instructional Material

l.

2‘

30

‘50

6.

8.

10.
11.

12,

“The term Software Engineering refers to a move,nient,l bmethods ’
and techniques aimed at making software development more

- gystematic”.

A component is an object written to a specification.

Software, when written to perform certain functions under control
conditions and further embedded into hardware as a part of large
systems, is called embedded software.

Web-based software is the browsers by which web pages are processed.

A process is a series of steps involving activities, constraints and
resources that produce an intended output of some kind.

A software prdcess is a set of activities and associated results,
which produce a software product. '

REVIEW QUESTIONS

Define software.

What do you mean by the term “Software Engineefing”_‘? Describe
the evolving role of software.

What are the different myths‘ and realities about the software?
What is bath-tub curve?
Discuss the characteristics of the software.

What characteristics of software make it different from other
engineering products (for example hardware)?

Explain some characteristics of software?

Comment on the statement “software does not wear out”.

Discuss about the evolution of software engineering as a subject
in the last 50 years. : : ’

What are the different software components?

What are the symptoms of the present software crisis? What factors -
have contributed to the making of the present software crisis?

~ What are possible solutions to the present software crisis?

What is software crisis? Give the problems of software crisis.

s

18. What do you mean by software mjths? | , Software Engineering
14. Explain in detail software engineering process.
~ 15. Distinguish between a program and a software product. -
_ . ' NOTES
"~ 16. Define the followings:

(a) Milestones ‘ (&) Product
* (c) Measures . (d) Metrics

17. Explain thé importance of software. |

18. Discuss about different software applicatidns.

" FURTHER READINGS

1. Software Engineering, Bharat Bhushan Agarwal, Sumit Prakash
Tayal, Firewall Media. . I ‘ \

2. Software Engineering, D. Sunder, University Science Press.

_ Self-Instructional Material 25

Software Engineering

NOTES

28 Self-Instructional Material

‘ontr II REQUIREMENTS ANALYSIS

20
21
2.2

2.4
25
2.6
2.7
28
2.9
210
2.1
212

23

/

Learning Objectives

Introduction

Functional and Non-Functional Requi:rements
User, System and Domain Requirements - -
‘Requirements of Engineering Process '
SRS Document

IEEE Standards for SRS

SRS Validation

Component; of SRS

Clharacteristics of SRS

Goals of SRS Document

Benefits: of Invoiwng Technical Writers in SRS
SRS Document Template

Summary

Review Questions

", Further Readings

2.0 LEARNING OBJECTIVES

After studying this unit, you will be able to:

w N

describe functional and non-functional requirements

explain requirements of engmeerlng process.

IMustrate SRS document and its various components, characterlsncs
and goals.

2.1 . INTRODUCTION

Requlrements are defined as descriptions and spec1ﬁcat10ns of a system -
It may range from a high-level abstract statement of a service or of a
system constraint to a detailed mathematical functional specification.

. i’p

System requirements may be either functional or non-functional requirements. ~ Requirements Analysis
In addition, requirements are classified under user requirements, system
requirements and domain requirements.

NOTES

2.2 FUNCTIONAL AND NON-FUNCTIONAL
REQUIREMENTS

i
Functional Requirements |

(a) Describe functidnality or system services

(b) Depend on the type of software, expected users and the type of
system where the software is used. :

() Functional user requirements may be h‘igh-level statements of
what the system should do and functional system requlrements
should describe the system services in detail.

Examples of F unctional Requirements

¢ The user shall be able to search -either all of the initial set of
) . databases or select a' subset from it. .
. * The system shall provide appropriate v'ieWe_rs for the user to
. read documents in the document store.
* Every order shall be. allocated a unique ‘identifier (ORDER_ID)

which the user shall be able to copy to the account’s permanent,
storage area.

* Statements of services the system should provide, how the system
should react to particular inputs and How the system should
behave in particular situations. |

- |
Non-functional Requirements i

Constraints on the services or functions offered by the system such
as timing constraints, constraints on the development. process, standards,
etc. ' :

(q) Define system properties and constraints e.g., reliability, respbnse
time and storage requlrements Constraints are I/O device capablhty,, .
system representations, etc. . , , , ' v

(b) Proceéss requirements may also be specified mandating a parficular
case system, programming language or development method.

(¢} Non-functional requirements may be more critical than functlonal
requirements. If these are not met the system is useless.

Self-Instructional Material 27

Software Engineering

NOTES

=8 Selﬁ!ﬁstructional.Maten’al

Non-functionail Classificatiops

@)
B

(c)

Product requirements. Requirements, which specify that the
delivered product must behave in a particular way e.g., execution
speed, reliability, etc.. '

Orgamsatwnal requirements. Requ1rements, which are a

. consequence of organisational policies and procedures, e.g.,

process standards used, implementation requirements, etc.

External requirements. Requiré‘ments_which arise from factors
‘which are external to the system and its development process

e.g., interoperability requirements, legislative requirements,
etc. . ‘ '

Non-functional
Requirements
,' Product Organizational . External
Regquirements | Requirements Requirements
T .
| .
I Usabmty | l Efficiency l | RehablhtyJ Iﬁmab ity . .

l
rarfon'nancei lipaca J @wd Implementall I ndards
, ‘ I]ter Operabllﬂ Fthxcal I [LeglslatlveJ

Privacy Safety

Fig. 1 External Requirement Spetification

"

Non-funétibnal Requirements Example

* - Product requirement. It shall be possible for all necessary

communication between the system and the user to be expressed
in the standard Ada character set.

‘Organisatiorial requirement. The system development process

and deliverable documents shall conform to the process and

.deliverables defined in IEEE STANDARD-95 FORMAT.

* External requirement. The system shall not disclose any personal

information about customers apart from their name and reference
number to the operators of the system.

2.3 'USER, SYSTEM AND DOMAIN
REQUIREMENTS ‘

N

User Requirements: Statements in natural language plus diagrams
of the services the system provides and. its operatlonal J:onstramts

Sysfem Requirements: A structured document setting out detailed

descriptions of the system services. ertten as a contract between client

and contractor.

Software Spemficatlon A detailed software description, which can serve
as a basis for a de31gn or implementation. Written for developers User
requirements should describe functional and non-functional réquirements
so that they are understandable by system users who do not have detailed
technical knowledge. User requlrements are defined using natural language,
tables and diagrams.

System Requlrements: More detailed'specjﬁcations of user requirements
serve as a basis for designing the system may be used as part of the
system contract system requirements may be expressed usmg system
models.

Domain Requirements: Derived from the application domain and describe
system characteristics and features that reflect the domain. May be new
functional requirements, constraints on existing requirements or define
specific computations. If domain requirements are not satisfied, the system
may. be unworkable. ' '

24 REQUIREMENTS OF ENGINEERING
PROCESS

|
It 1nvolves the following tasks: !

1. Requirements Elicitation and Analys1s !

2. Requirements Definition and Specification Document
3. System Modeling
4

Requirements Validation and Management.

Requirement Elicitation Requirements .
and Analysis Definition,and -
) . - Spedification
Problem | | Problem | | Prototyping Ijobur::gtation
Analysis Description and testing Validation
Capturing all Right tools and Whether. " Whether meeting
User Needs Technigues Feasible? all requirements

Fig. 2 Requirement Specifications

Requiremeﬁts Elicifation and Analysis : -

It is a critical process in software development It i is conducted Wlth the

following. ob;;ectwes in mind: , . [
o o . ' I,/.‘,. IS

P

(
{
i

Requirements Analysis

NOTES -

IS

Self-Instructional Material 29

Software Engineering

NOTES

30 Self-lnstrwcti;onal Material . .

A

4

Identify the customer’s need; .
Evaluate the system concept for feasibility;
Perform economic and technical analysis;

Allocate functions te hardware, software,-people, database and
other system elements. . R

Establish cost and schedule constraints.

Create a’ system'deﬁnitionjth-at forms the foundation for all
subsequent engineering work. A variety of techniques are used
to determine what the users and customers really want.

Identification of need: The analyst (system eng‘ineer‘) meets
with the customer and the end user with the intent of
understanding the prqdﬁct’s objectives and to define goals required
meeting the objectives.

The analyst then gathers the supplementary. infermation likes
technology a,vailabili'ty,- resources requifed, and bounds placed

-on costs and schedule etc. The overall information gathered

are specified in a system concept document. It demands intense
communication between the customer and the analyst.

Feasibility study: Involves the study of economic feasibility,
technical feasibility, legal feasibility and alternatives.

~ Economic feasibility an evaluation of development cost weighted

against the ultimate income or beneﬁt derived from the developed
system or product

Technical fe381b111ty is the study of function, performance and
constraints that may affect the ability to achieve an acceptable
system. The considerations that are normally associated with
technical feasibility include development risk, resource availability
and technology capabilities. :

Legal feasibility encompasses a broad range of concerns that

“includes contracts, liability, infringement and myriad other

traps frequently unknown to technical staff. Alternatives involve

an evaluation of alternative approaches to the development of
- the system or product. The study is reviewed first by the project

management and then by the ‘upper management. The study
may result in a ‘go’/ ‘no-go’ decision. ‘ |

Economic analysis: The most important information contalned |
in a feasibility study is the cost-benefit analysis—an assessment
of the economic justification for a computer based system project.
It delineates costs “for project development and weights them

,"5 against tang‘ible'rafnd:intangible benefits of a éystem.

¢ Technical analysis: Thel'anal'jfst evaluates the technical merits

of the system concept at the same time collecting additional
" information about performance, reliability, maintainability and

producibility. It assesses the technical viability of the proposed

system, technologies required to accomplish system function and
. performance, new material, methods, algorithms or processes
. required etc.-The results obtalned form the basis for another go’
or no-go decision on the system.

* System specification: Itis a document that serves as the foundation

for hardware engineering, software engineering, data base engineering -

and human engineering. It describes the function and performance
of a computer based system and the constraints that will govern
its development. The system specification also describes the
information (data and control) that is input to and output from
the system. :

Requirement Definition and Specification Document

The requirement definition document contains a record of the requirements
in the customers’ terms and describes what the customer would like to
have The document’s outline is g1ven below:

¢ General purpose of the system—Outhne
¢ Background and objectives of system development.

Brief description of the approach along with constraints implied by customers
on the development. Detailed characteristics of the proposed system
along with system boundaries and interfaces across the various modules.
A complete list of data elements, classes and their characteristics is
‘given. Then detailed relationships among data and functions, as well as
the input and output to each process and function are discussed. Finally,
the environment in which the system will operate is discussed ‘and the
discussion includes the special requirements for support security, prlvacy,
hardware and software.

Software requirement specification document is a technical specification

of requirements for the software product. The goal of software requirement -
definition is to completely and consistently specify the technical requirements -

for the software product in a concise and unambiguous manner. It is
based on the system definition document.

The format of the specification document is given below:

1. Product Overview and Summary :
Development, Operatmg and Ma1ntenance Env1ronments
External Interfaces and Data Flow ‘|

Functional Requirements o '

A

Performance Requirements

Requirements Analysis

. NOTES

L Self-]ns'tructiom'zl .Mq.teriall l31

Software Engineering

NOTES

32 Self-Instructional Material

Exception Handling
Early Subsets and Implementation Priorities

. Foreseeable Modification and Enhancements

© ® N o

Acceptance Criteria

10. Design hints and Guidelines
11. Cross Reference Index

12. Glossary of Terms.

Sections 1 and 2 present ar overview of product features and summarizes
the processing environments for development, operation and maintenance
of the product. : R .

Section 3 specifies the externally observable characteristics of the software
product. It includes user displays and report formats, a summary of

user commands and report options, data flow diagrams and a data

_d1ct10nary High level data flow diagrams and a data dlctlonary are

derived in this section.

Section 4 specifies the functional requirements for the software product.
Functional requirements are expressed in relational and state-oriented

.

-

notations that specify relationéhips among inputs, actions and outputs'. 5

Performance characteristics such as response time for various activities,
processing time for various processes, throughiput, primary and secondary
memory constraints, required telecommunication bandwidth and special

issues like security constraints, reliability requirements etc., are specified .

in section 5.

Exception handling, including actions to be taken and the messages to

be displayed in response to events are described in section 6. Categories

of exceptlons include temporary resource failures, out of range-input

data, capac1ty overload etc.

The early subsets and implementation priorities for the system under_

development are discussed in section 7. Software products are develbped
as a series of successive versions and the initial version may be the
prototype demonstrating basic functions and capabilities. Each successive

version can incorporate the capabilities of previous versions and provide

additional processing functions.

Foreseeable modifications and enhancements may be incorporated in

section 8.

The software product acceptance criteria are specified . in sectioh 9.
Acceptance criteria specify. functional and performance tests that must

be performed, the standards to be applied ‘to source code, internal °

documentation and external documents such as design specifications,
test plans, user ma_nual, installation and maintenance procedures.:

‘Section 10 contains design hints and guidelines. It is concerned with

1nct1onal and performance aspects of the software product

ection 11 relates to the sources of information used in deriving the
zquirements. Knowing the sources of specific requirements permits
erification and re-examination of requirements, constraints and assumptions.

ection 12 ‘provides the definition of terms that may be unfamiliar to the

astomer and the product developer: 4

Besirable Properties of Software Requirements .ISpeciﬁcation

he requirement document should be Correct; Complete; Consistent;
Tnambiguous; Functional; Verifiable; Traceable and Easily Changed. An
1correct or incomplete set of requirements can res@lt in a software
roduct, which does not satisfy the customer needs. An inconsistent
pecification states contradictory requirements in different parts of the
ocument resulting in different interpretatiohs by different people.

oftware requirements should be functional in neture; i.e., they should.
escribe what is required without implying how the system will meet its
squirements. Requirements must be verifiable from two points of view;
5 must be possible to verify that the requirements satisfy the customer’s
eeds and it must be possible to verify that the subsequent work products
-atisfy the requirements. Finally, the requirements should be indexed,

.egmented and cross-referenced to permlt easy use and easy modlﬁcatlon ~|.

l
Bystem Modeling i
Todeling helps in gaining better understanding of the actual entity to be
uilt. The analyst creates models of the system (prototyping) in an effort -
3 better understand data and control flow, functional processing and
ehavioral operation and information content. In software, one must be
apable of modeling the information that software transforms (information
10del), the functions (and sub functions) that enable the transformation
0 occur (functional model) and the behavior of the system as the-
ransformation is taking place (beﬁaviéral model).

Requirement Validation and Management

Requirements Validation: Requirements Validation is the process of
letermining that the specification is consistent with the requirements
efinition i.e.,, validations make sure that the requirements will meet
he customers’ needs. Validation usually involves two steps, each of which
msures trace ability between the two requirements document. First,
make sure that each specification can be traced to a requirement in the
Hefinition document. Next, check the definition to validate that each
‘equirement is traceable to the specification. The fechniqﬁes that can be

ndopted are given below:

Requirements Analysis

NOTES

Self-Instructional Material 33 -

%

Software Engineering

NOTES

94 Self-Instructional Material

Requirement and Validation Techniques

Manual Techniques Reading Cross Referencing Interviews
: Reviews .Checklists Models to Check
Furnctions Scenarios Mathematical Proofs.

Automated Techniques Automated Cross-referencing Automated
Models to Enact Functions Prototypes.

A simple way to check the requirements is to perform a requirements
review. Review is to be conducted by both the software developer and

customer. As the specification forms the foundation for design and

subsequent software engineéring activities, care need to be takeén in

conducting the review. The review is conducted both at the macroscopic |

and detailed levels. The reviewers attempt to ensure that the specification
is complete, consistent. and accurate. Once, the review is complete,

the software requirement specifications are signed-off by both the customer

and developer. ’

Requirements Managefnentg Requirements Management is a set of :
activities that help the software project team to identify, control and :

track requirements and changes to requirements at any time as the
project proceeds. Many of the activities are identical to the ‘Software
Configuration Management’.

(SCMY. Like SCM, each requlrement is a331gned a unique 1dent1ﬁer of
the form, <Requirement type> <Requirement #>

The requ1rement type takes value like F = functional requ1rement
D = Data requirement, B = Behavwral requirement, I = Interface
requlrement and P = Output requirement. '

Once requlrements have been identified, trace- ability tables like the
followmg are devéloped.

" Features Trace-ability: Customer observable sysﬁem/produ_ct features.

Source trace-ability: Source of each requi'rement. Dependency trace-

ability: Relationship among requirements. Subsystem trace-abi_lity:'

Categorize as per the sub-systems identified. Interface trace-ability:
Relationship to internal and external system interfaces. Trace-ability
features are maintained as part of requirements database so that they
can be searched to understand how a requirement change will affect
different aspects of the system to be developed.

\

2.5 SRS DOCUMENT

This document is generated as output of requirement analysis. The
reqpiremerit analysis involves obtaining a clear and thorough understanding

\

n

f the product to be develqped. Thus, SRS should be consistent, correct,
mambiguous and complete, document. The developer of the system can

repare SRS after detailed communication with the ¢
learly defines the following:

ustomer. An SRS

« External Interfaces of the system: They identify the information

which is to flow ‘from and to’ to the system.

« Functional and non-functional requir_‘eme'nts. of the system: .

They stand for the finding of run time requirements.

‘he functional requirements of the system as documehted in the SRS

ocument should clearly describe each function, which,

%:he system would

upport along with the corresponding input and output data set.

‘he non-functional requirements deal with the characteristics of the

ystem that cannot bé expressed as functions: Examples!

of non-functional

-equlrements include aspects concerning mamtamablhty, portability, and
sability. The non-functional requirements may also include reliability

ssues, accuracy of results, human-computer 1nterface issu
n the system 1mplementat1on

‘here are many ways to structure a requlrements docu
ingle method that is suitable for all projects. IEEE an
f Defense have proposed a candidate format for repre
eneral outline of SRS is given below

?rganlzatlon of SRS

1. Introdhctloq
¢ Purpose ’
* Scope
¢ Definitions, Acfonym‘s, and Abbreviations |
* References A | N
¢ QOverview

" 2. The Overall Description
. Product Perspective
| —-System Interfaces
— Interfaces

Hardware Interfaces’

Software Interfaces

— Communications Interfaces

Memory Constraints
-~ Operations

= Site. Adaptatidn Requirements

s, and constraints
ment. There is no

s_er;tjng SRS. The

d US Department

" Requirements Analysis

NOTES

Self-Instructional Material 385

Software Engineering

NOTES

36 Self-Instructional Material

* Product Functions
* User Char_'acféristics
¢ Constraints -
* Operating environment .
 User environment
. Assumptions and Dependencies
* Apportioning of Reqﬁikements
3. ‘Specific Requirements |
. Exﬁerhai interfaces .
(i) User interface
| (ii) Hardware Interfaces -
(ii1) Software Interface
(iv) Communication Interface
* Functions
" » Performance Requirements
° Logical Database Requirements
* Design Constraints '
~'Standards Complianée
s Software System Attribute
— Reliability '
— Availability
- Securit)f
' — Maintainability
— Portability
* Organizing the Specific Requirements
— System Mode -
— User Claés
— Objects
— Feature
— Stimulus)
‘'~ Response _
. — Functional Hierarchy

. .A.dditional Commén{:s .

. 4. Supporting Information

¢ Table of contents and index

* Appendices

Uses of SRS Document

The followmg are few major uses of SRS documents

. 1. Project managers base their plans and estimates of schedule effort
' and resources on it.

2. Development team needs it to develop product.

3. The testing group needs it to generate test plans based on the-

descrlbed external behaviour.

4. The maintenance and product support staff need is to understand
what the software product is supposed to do.

5. The publications group writes documents, manuals, etc., from it.
6. Customers rely on it to know what product they can expect.

7. ’I‘ramlng personnel can use it to help develop educatmnal material
- for software product. :

8. The maintenance and product support staff ne,ied is to understand
what the software product is supposed to do:

2.6 IEEE STANDARDS FOR SRS , |

IEEE Standards documents are developed within the IEEE Societies -
and the Standards Coordinating Committees of the IEEE Standards Association

(IEEE-SA) Standards Board. Members of the committees serve voluntarily
and without compensation. They are not necessarily members of the
Institute. The standards developed within IEEE represent a consensus
-of the broad expertise on the subject within the Institute as well as
those activities outside of IEEE that have expressed an interest in participating

in the development of the standard. Use of an IEEE Standard is wholly -

voluntary The existence of an IEEE Standard does hot imply that there
are no other ways to produce, test, measure, purchasle, market, or provide
other goods and services related to the scope of t]e IEEE Standard.

Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for-

revision. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still
. of some value, do not wholly reflect the present state of the art.

Users are cautioned to check to determine that they have the latest
edition of any IEEE Standard. Comments for revision of IEEE Standards

Requirements Analysis

NOTES

_Self-Iﬁstructional Material 87

Software Engineering

NOTES

/

38 Self-Instrulctiona_[Material

are welcome from any interested 'party, fegardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the

~ form of a proposed change of text, together with appropriate supporting

comments.

IEEE Recommended Approaches for SRS

This recommended pr.actice describes recommended approaches for
the specification of software requirements. It is based on a model in
which the result of the software requirements specification process is
an unambiguous and complete specification document. It should help

1.

2.

Software customers to accurately describe what they wish to
obtain; C

Soft'ware‘suppliers to understand eXactly what the customer
wants; ' ‘ ' :

Individuals to accomplish the following goals: .

(i) Develop a standard software requirements specification (SRS)
outline for their own.organizations;

* (ii) Define the format and content of their specific software

requirements specifications;

Develop additional local supporting items such as an SRS quality
checklist, or an SRS writer’s handbook.

!

Benefits of SRS

To the customers, suppliers, ahd other individuals, a good SRS should
provide several specific benefits, such as the following:

1.

2.

Establish the basis for agreement between the customers
and the suppliers on what the software product is to do.

The complete description of the functions to be performed by
the software specified in the SRS will assist the potential users
to determine if the software specified meets their needs or how
the software must be modified to meet ‘their needs. ’
Reduce the development effort.. |

The preparation of the SRS forces the various concerned groups
in the customer’s organization to consider rigorously all of the
requirements before design begins and reduces later redesign,
recoding, and retésting. Careful review of the requirements in
the SRS can reveal omissions, misunderstandings, and inconsistencies
early in the development cycle when these problems are easier
to correct. B

Provide a basis for estimating costs ‘and schedules.

The " description of the product to be developed as given in the-

SRS is a realistic basis for estimating project costs and can'be
used to obtain approval for bids or price estimates.

Provide a baseline for validation and veriﬁcqtioh.
Organizations can develop their validation and verification plans

- much more productively from a good SRS. As a part of the development

contract, the SRS provides a baseline against which'compliance
can be measured.

Facilitate transfer. '
The SRS makes it easier to transfer'thgsoftwafi*e product to new

users or new machines. Customers thus find it easier to transfer

the software to other parts of their organization, and suppliers
find it easier to transfer it to new customers.

Serve as a basis for enhancement.

Because the SRS discusses the product but not the project that
developed it, the SRS serves as a basis for later enhancement of

the finished product. The SRS may need to be altered, but it does

provide a foundation for continued production| evaluation.

IEEE Recommended Practice for Software Requirements

Specifications

. Overview.

Considerations for producing a good SRS

oUW

j

References

" Definitions

The parts of an SRS !

2.7

SRS VALIDATION 1

It is extremely important to detect errors in reqliireﬁlents document

before going to other phases of system development. |The major objective

of SRS validation is to ensure that user requirements are complete and
correctly recorded in the SRS and it is free from errors. It is also needed
to check that the SRS itself is of good quality. Some most common type
of errors in SRS is:

1.

20

Omission. Some us'ér requirement is not included in.SRS. This
error -directly affects the external completeness of the system.

Inconsistency. Is due to contradictions in requlrements or
incompatibility of state requirements.

Requirements Analysis

NOTES.

Self-Instructional Material 39

Software Engineering

NOTES

40 Self.Instructional Material

3. Incorrect fact Some facts recorded in SRS are not correct.

4. Amblguxty Some requirements have multiple meamngs

_ Besides improving the quahty of SRS, SRS validation should uncover

and rectify all poss1ble types of errors.

2.8 COMPONENTS OF SRS

The following requirements ‘\are used in specification of SRS: .
1. Functioeal requirements :
2 Perfo_rmance i’equirements ~
3. Design constraints B
i

External interface requirements

" Functional
Requirements

i

gscﬁ:?n?ggtes 77— SRS Document A Design

Constraints

External
Interfaces -

Fig. 3 Components of SRS

1. Functional Requirements

Functional requirements specify which outputs should be produced
from the given inputs. They describe the relationship between the -
input and output of the system. For each functional requirement, a
detailed description of all the data inputs and their source, the units
of measure, and the range of valid inputs must be specified.

All the operations to be performed on the input data to obtain should
be specified. This includes specifying the validity checks on the input
and output data parameters affected by the operation, and equations
or other logical operations that must be used to transform the inputs
into corresponding outputs. For example, if there is a formula for
computing the output, it should be specified. Care must be taken not
to specify any algorithms that are not part of the system but that may
be needed to implement the system. These decisions should be left for
the desagner In addition some abnormal mput system behaviour for
invalid inputs must be specified.

2. Performance Requirements

This part of an SRS specifies the performance constraints on the software
system. All the requirements relating to the performance characteristics
of the system must be clearly specified. There are two types of performance
requirements: static and dynamic.

Static requirements are those that do not impose constraint on the
execution characteristics of the system. These include requirements like

the number of terminals to be supported, the number of simultaneous

users to be supported, and the number of files that the system has to
process and their sizes. These are also called capacity requirements of

the system. C

Dynamic requirements specify constraints on thef execution behaviour
of the system. These typically include response time and throughput
constraints on the system. Response time is the expected time for the
completion of an operation under- specified circumstances. Throughput
is the expected number of operations that can be performed in a unit
time. For example, the SRS may specify the number of transactions
that must be processed per unit time, or what the response time for a

particular command should be. Acceptable ranges of the different performance -

parameters should be specified, as well as acceptable performance for
both normal and peak workload conditions.

3. Design Constraints

There are a number of factors in the client’s environn;len_t that may restrict
the choices of a designer. . Such factors include standards that must be
followed, resource limits, operating environment, reliability and security
requirements, and policies that may have an impact on the design of the
system. An SRS should identify and specify all such constraints.

(i) Standards Compliance. This specifies the requirements for the
standards the system must follow. The standards may include the
report format and accounting procedures. There may be audit-
tracing requireinents, which require certain kinds of changes, or
operatigns that must be recorded in an audit file.

(ii) Hardware Limitations. The software may! have to .operate on
some existing or predetermined hardware, thus imposing restrictions
~ on the design. Hardware limitations can inc]ud;a the type of machines

to be used, operating system. available on the system, languages

supported, and limits on primary and secoﬁdary storage.

(iii) Reliability and Fault Tolerance. Fault tolerance requirements
can place a major constraint on how the system is to be designed.
Fault tolerance requirements coften make the system more complex

Requirements Analysis

NOTES

Selflus_tructional Material 41

Softwdre Engineering

- " NOTES

42 Self-Instructional Material

and expensive. Recovery requirements must specify what the
system should do if some fault occurs. Recovery requirements
are often an integral part in the design constraints.

(iv) Security. Security requirements are particularly s1gmﬁcant 1n
defense system and many database systems. Security requ1rements
place restrictions on the use of certain commands, control access
to data, provide different kinds of access requirements for different
people, require the use of passwords and cryptography techniques,
and maintain a log of activities in the system. Given the current
security needs even of common systems, they may also require
proper assessment of security threats, proper programming
techniques, and use of tools to detect flaws like buffer overflow.

’

4. External Interface Requirements

All the interactions of the software with peopie, hardware, and other
software should be clearly specified. For the user interface, the
characteristics of each user ‘interfacé of the software product should
be specified. User interface is becoming increasingly important and
must be given proper attention. A preliminary user manual should be
created with.all user commands, screen formats, an explanation of
how the system will appear to the user,_and.'feedback and error messages.

- Like other specifications these requirements should be precise and

verifiable. So, a statement like “the system should be user friendly”
should be avoided and statements like “commands should be no longer
than six characters or “commands names should reﬂect the function

- they perform used.

- For hardware interface require'ments, the SRS should specify the logical

characteristics of each interface between the software product and the

3 hardware components. If the software is to execute on existing hardware
" or on predetermined hardware, all the characteristics of the hardware,

including memory restrictions, should be specified.- In addition, the
current use and load characteristics of the hardware should be given.

The interface requirement should specify the interface with other software
the system will use or that will use the system.. This includes the’

interface with the operating system and other applications. The message

content and format of each interface should be specified.

2.9 CHARACTERISTICS OF SRS

A good SRS document has certain characterlstlcs that must be present.
to quahfy as a good. The characteristics are:

1. Correctness

An SRS is correct if every requirement included 1n the SRS repfesents) |

something required in the final system.

2. Completeness

SRS is complete when it is documented after:

1

(i) The involvement of all types of concerned personnei

(#1) Focusing on- all problem, goals and obJectlves, and not only on
~ functions and features.

(zii) Correct definition of scope and . boundarles of the software and.

system

3. Unambiguous

" An SRS is unambiguous if and only if every requirement stated has one
and only one interpretation. Requirements are often written in natural
language, the SRS writer has to be especially c‘alreful to ensure that
there are no ambiguities. One way to avoid ambiguities is to use some
formal requirements specification language. The major disadvantage of
using formal languages is the large effort required to write an SRS,

the high cost of doing so, and the increased.difficulty reading and -

" understanding formally stated requlrements (particularly by the users
and chents)

4. Verifiable -

An SRS is verifiable if and only if there exists some] cost-effective process
that can check whether the ﬁnal product meets the requirement.

5. Modifiable

An SRS is modifiable if its structure and style are such that any necessary
change can be made easily while preserving completeness and consistency.
Presence of redundancy is a major hindrance to modifiability, as it can
easily lead to errors. For example, assume that a equirement is stated
. in two places and that the requirement later needs to be changed. If

only one occurrence of the requirement is modiﬁe'd,_ the resulting SRS |

will be inconsistent.

6. Traceable

The SRS is traceable if the origin of each of the requirements is clear |

and if it facilitates the referencing of each requirement; in future development:
or enhancement document_ation. Two types of tx_'aceabihity are recommended.

‘\,
1 . ’

HRequirements Analysis

_ NOTES

',

Self-Instructional Material 43

Software Engineering

 NOTES

_ " 44 Self-Instructional Material -

)

@) Backward traceability. This depends upon each requirement
expliciﬂy referencing ‘its source in earlier documents.

(ii) Forward traceability. This depends upon each requirement in
the SRS having a.unique name or reference number.

7. Consistency

Consistency in SRS is essential to achieve correct results across the
system. This is achieved by, '

() Use of standard terms and deﬁnltlons _
(ii) Consistent application of business rules in all functlonahty
(zit) Use of data dictionary. . '
(iu) Lack of consistency results in incorrect SRS and fallure in

deliverables to customer.

8. Testability

SRS should be written in such a way that it is possible to create a test
plan to confirm whether specifications can be met and requlrements’
can-be delivered :

(i) Considering functional and non-functional requirements.
(#7) Determining features and facilities requlred for each requirement.
(z77) Ensuring that ‘users’ and ‘stakeholders’ freeze .the requirement.

9. Clarity \
An SRS is clear when it has a single interpretation for the author
(analysis), the user, the end user, the stakeholder, the developer, the
tester and the customer. This is possible if the language of the SRS is
unambiguous. Clarity ‘can be ascertained after reviewing the SRS, by a
third party. It can be enhanced if SRS includes diagrams, models and
charts.’

'10. Feasibility .

RDD-SRS needs to be confirmed on technical and operational feasibility.
SRS many times assumes use of technology and tools based on the
information given by their vendors. It needs to be confirmed whether -
the technology is capable enough to deliver what is expected in SRS.
The operational feasibility must be checked through environment checking.
It is .assumed that sources of data, user capability, system culture,
work culture and such other aspects satisfy the expectation of the
developer. These must be confirmed before development launch.

2.10 GOALS OF SRS DOCUMENT

A well- designed, well written’ SRS document accomp
four. major goals:

Feedback to Customer:

* SRS document prowdes a feedback to customer.

hshes the following

e It is the customer’s assurance that the develckpment organization

understands the issues or problems te be solv
behaviour necessary to address those proble

* Therefore, the SRS should be written in natu
unambiguous manner that may also include
flow diagrams, decision tables and so on.

Problem Decomposition - i
¢ SRS document decomposes the problem 1nto
. ¢ The simple act of wntmg down software requ
designed format organizes information, places
problem, solidifies ideas, and helps breakdow,
its component parts in an orderly fashion.

Input to Design Specification

ed and the software
ns.

ral language, in an
charts, tables, data

component parts.

irements in a well-
borders around the
n the problem into

)
!
.

*~ SRS document serves as an input to the design specification.

» The SRS also serves as the parent document to subsequent documents,’

such as the software design specification and
* Therefore, the SRS must contain sufficient det

statement of work.

ail in the functional

system requirements so that a des1gn solution can be devised.

Production Validation Check:

. SRS document serves as a product valldatlon] check.

. The ‘SRS also serves as the parent document for testing and validation
strategies that will be applied to the requlrem,ents for verification.

2.11 BENEFITS OF INVOLVING TECHNICAL -

WRITERS IN SRS

Having technical writers involved throughout'the entire SRS development

process can offer several benefits:

- ® Technical writers are skilled mformatlon gatherers,‘ ideal for elilcitin'g

and articulating customer requirements. The pr

sence of a technical

‘writer on the requirements gathering team helps balance the type
and amount of information extracted from cujs,tomers which can

help improve the SRS.

* Technical writers can better access and plan dochmentatwn projects
and better meet customer decument needs. Working on SRSg provides

[

Requirements Analysis

NOTES

Cat

RN T

BN .
Self-Instructional Material 45

- Software Engineering

NOTES

46 Self-Instructional Material

technical writers with an dpportunity for learning about customer
needs firsthand—early in the product development process.
* Technical writers know how to determine the questlons that
~are of concern to the user or customer regardmg ease - of use
and usability. Technical writers can then take that knowledge.
and apply it not only to.the specification and documentation
development, but also to user interface developmeht '
* Technical writers involved early and often in the process, can
become an information resource throughout the process, rather
than an information gatherer at the end of the process.

 2.12 SRS DOCUMENT TEMPLATE

The easiest way to writing an SRS document is to use SRS template.
Most of the software development organizations develop their own

SRS template which can serve the purpose for all the software projects

undertaken for development
SRS Document Template -

One such SRS Document Template Structure is descrlbed in given
Table.

Document Title:
Author(s)
Affiliation

: . Address
Date

Document version control information.
1. Introduction

¢ Purpose of this Document. Descrlbe the purpose of document

and the intended audience.

* Scope of this Document. Describe the scope of thi-s
requirements definition effort. Introduces the requirements
elicitation team, including users, customers, system engineers,
and developers. ‘ o
This section also details any constraint that were placed
upon the requirements elicitation process, such as schedules,
costs, or the software engineering environment used to develop
requirements. '

* Overview. Provides a brief overview of the product defined
as a result of the requirements elicitation process.

. Business Context. Provides an overview of the businéss
organization s'pons.oring the development of this product.

This overview should include the business’s mission statement Requirements Analysis
and -its organizational objectives or goals. .
2, General Description
e Product Functions. Describes the general functionality of
the product, which will be discussed in more detail below. NOTES

e Similar System Information. Describes the relationship of
this product with any other products. Spe'ciflles if this product
is intended to be stand-alone, or else used as a component of
a larger product. If the latter, this section discusses the
relationship of this product to the larger product. o

o User Characteristics. Describes the feaéures of the user
community, including their expected expertise with software
systems and the application domain. '

¢ User Problem Statement. This section describes the essential
problem(s) currently confronted by the usel éommun'ity.

» User Objectives. This section describes’ the set of objectives
and requirements for the system from the user's perspective.

- It-may include a “wish list” of desirable characteristics, along
with more feasible solutions that are in line|with the business
objectives. ' ' o

¢ General Constraints. Lists géneral constraints piaced upon -

... the design team, including speed requirements| industry protocols,
. hardwére platforms, and so forth.
3. Function Requirements. This section lists the .functional
* requirements in ranked order. Functional requirements describe
the possible effects of a software system, in other words, what
the system must accomplish. Other kinds of requirements (such
as interface requirements, performance requirements, or reliability
requiremerlits) describe how the system accomplishes its functional
requiremeénts. - - '
Each functional requirement,should‘be specified in a format similar to
the following: , . N 1
1.- Short, imperative sentence stating highest ranked functional

, réquirement

* Description
A full description of the requirements. - - ’ ' ,

¢ Criticality _ |

- Describes how essential this fequireme’nt is to the overall system.

* Technical issues
Describes any design or implementation |issues involr.'ved' in -
satisfying this requirement. o

* Cost and Schedule C | ' ‘

«Self-lnstructiclmal Material 47

Softwofe Engineering =~

NOTES

48 Self-Instructional Material

Describes the relative or absolute costs ‘associated with this -
issue. '

Risks ‘ :

Describes the circumstances under which this fequirement

might not able to be satisfied, and what actions can be taken

to reduce the probability of this occurrence.

Dependencies with other requirements

- Describe interactions with the other requlrements

..... others as approprlate

<Name of second htghest ranked requzrements>
And so forth..... '

Interface Requirements. This section descr_ibes how the software
interfaces with other. software products or users for input or

“output. Examples of such interfaces include library routines,

token streams, shared memory, data streams, and so forth.

* User Interfaces. Describes how this product interfaces with

user.

- — GUI. Describes the graphical user interface if present.

This section should include a set of screen dumps or mocks-
. ups to illustrate user interface features. :

If the system is menu- driven, a description of all menus
and thelr components should be provided.

— CLI. Describes the command line interface (or command
user interface, CUI, if present). For each command, a
description of all arguments and example values and
invocations - should be provided.

— APL Describes the application programming interface, if
present.- For each public interface function, the name,
arguments, return values, examples of invocation, and
interactions with other functions should be provided.

- Diagnostics or ROM. Describes how to obtain debugglng .
information or other diagnostic data.

Hardware Interfaces. Descrlbes interfaces to hardware
devices. C

Communications Interfaces. Describe network interfaces.

Software Interfaces. Describes any remaining software
interfaces not 1nc1uded above

4 Performance Requzrements Spec1f1es speed and memory
requirements. . : : S ‘

5. Design Constraints. Specifies any constraints for the design.team

using this document.
¢ Standards Compliance
. Hardwar'e Limitations

...others as appropnate

Other Non-Functional Attnbutes. Specifies any other part1cu1ar
non- functlonal attrlbutes required by the system. Examples are

provided below

¢ Security

e Binary- .compaﬁibility
* Reliability
"« Maintainability
o -Portability |
e Extensibility
. Re.usability
« Application Affinity/compatibility

¢ Resource utilization.

- » Serviceability

...others as appropfiate.

7. Preliminary Object Oriented Domain Analysis. This section

above and how they might be satisfied in the

¢ Inheritance Relationships. This section should contain a

presents a list of the fundamental objects that must be modelled
within the system to satisfy its requirements.
provide an alternative, “structural” view on the

The purpose is to

requirements stated

system.

[
set of graphs that illustrate the primary 1nlher1tance hierarchy

(is kind-of) for the system e.g.,

"Vehicle

Car .

o

Toyota Honda

. Volvo '

. & Class Descriptions. This section preselglts a more detailed-

Requirements Analysis

'NOTES

Self-Instructional Material 49

Software Engineering

NOTES

80 Self-Instructional M a&eriql

description of each class identified during the OO domain
analysis. Each class description should conform to the followmg
structure: '

- <class name>

» Abstract or Concrete. Indicates whether this class is
abstract or concrete. ‘ '

« List of superclasses. Names all immediate superclasses.
= List of subclasses. Names all immediate subclasses.
» Purpose. States the basic purpose of the class.

» Collaborations. Names each class with which this class

~ must interact in order to accomplish its purpose, & how.’

« Attributes. Lists each attribute (state variables) associated
with each instance of this class, and indicates examples
of possible values (or a range). .

» Operations. Lists each operations that can be invoked
upon instances of this class. For each operation, the arguments
(and their type), the return value (and its type), ahd any

- side effects of the operation should be specified.

« Constraints. Lists any restrictions upon the general state
or behaviour of instances of this class.

Operational Scenarios. This section should describe a set of scenarios
that illustrate, from the user’s perspective, what will be experienced
when utilizing the system under various situations.

Preliminary Schedule. This section provides an initial version of the
project plan, including the major tasks to be accomplished, their
independencies, and their tentative start/stop dates. The plan also includes
information on hardware, software, and netware resource requirements.
The project plan shouild be accompamed by one or more PERT or GANTT
charts.

' Preliminary Budget ‘This section provides an 1n1t1a1 budget for the

project, itemized by cost factor.

Appendxces: Specifies other useful information for ﬁnderstaﬁding the
requlrements All SRS documents should include at least the followmg
two appendlces .

e Definitions, Acronyms, Abbreviations. Prov1des definitions
" of unfamiliar definitions, terms, and acronyms.

* References. Provides 'complete citations to all documents and
meetings referenced or used in the preparation of this document.

Requirements Analysis

 STUDENT ACTIVITY

1. Writ;e a short note on SRS document.

2. Describe in brief the components of SRS.

SUMMARY

Functional requirements specify which outputs|should be produced from the given inputs.

.Hardware limitations can include the type of ma"Hlnes to be used; operating. sjrsi:em available
on the system, languages supported, and limits on’ primary and secon ary ‘storage.

Security requlrements are particularly significant in defense system and many database
systems. : :

The interface requirement should specify the 1ﬁterface with other software the system will
use or that will use the system.

Requirements are defined as descriptions and s pemﬁcatlons of a system It may range from°
. a high-level abstract statement of a service or of a system constraint to a detalled mathematical
functional specification. '

The requirement document should be Correct; Complete; Consistent; Unambiguous; Functional;
Verifiable; Traceable and Easily Changed. : s

Requirements Validation is the process of determining that the specification is 60nsisteht _
with the requirements deﬁnltmn i.e., vahdatlons make sure that the requirements will meet
“the customers’ needs.. . ' ‘ f

l Self-Instructional Material 51

i

Softwaré Engineering

"~ NOTES

52 - Self-Instructioni! Material

® N> .; s

REVIEW QUESTIONS

What are the types of software req{lerement specifications?

Give an example for functional and non- functmnal requlrement
for the software requlrements

What is the format of spemflcatl_on?
Discuss the major uses of SRS document.
What are the benefits of a good SRS?
Explain various types of errors in SRS:

—
What are the characterlstlcs of a good SRS document"

. Explam the major goals of SRS document

FURTHER READINGS

Software Engmeermg, Bharat Bhushan Agarwal Surit Prakash
Tayal Firewall Media. ,

Software Engineering, D. Sunder, University Séieﬂce Press.

wwar III DESIGNING SOFTWARE
SOLUTIONS 1
UTIO. -

3.0 Learning Objectivesy .
3.1 Introduction

3.2 . Definition of Software Design
3.3 Architectural Design |
34 Low—Level Design

3.5 Structured DeS|gn Methodology
36 Aim of Structured Design
37 Relatlonshlp Between Couplmg and Cohesnon
3.8 Tools for Structured Desugn -
3.9 Modules Identification and .Specificatiojn Techniques
3.10 'Module Speciﬁeation Method |
3.11 Object-Oriented -Design Methods
A 312 Reuse-Based Design Metﬁod :
3.13 Design Specification |
3.14 Verification for Desi_gn
« Summary A
. Review Questions

« Further Readings

— .r

3.0 LEARNING OBJECTIVES |

After studying this unit, you will be able to:
* explain software design
¢ describe architectural design O

* illustrate .low-level desigh

Designing ‘Software

Solutions

NOTES

Self-Instructional Material b3

Software Engineering

’

NOTES

64 Self-Instructional Material =~

3.1 INTRODUCTION

Design is a meaningful representation of something that is to be built.
It can- be traced to a customer’s requirements and at the same time
assessed. for-quality against a set of predefined criteria for “good” design.

A set of design concepts has evolved over the years. According to M.A.
Jackson, “The beginning of wisdom for a software engineer is to récognize
the difference between getting a program to work and getting it right,”
The various design concepts discussed as under provide the necessary

' -framework for gettmg it rlght”

3.2 DEFINITION OF SOFTWARE DESIGN

The definitions of software design.are as diverse as design methods.
Some important software design definitions are outlined below.

Accordin\g, to Coad and Yourdon

“Software Design is the practice of taking a specification of externally -
observable behavior and adding- details needed for actual computer
system implementation, including human interaction, task management,
and data management details”. ‘

| Accordin'g' to Webster

“In a sense, design is representation of an object being created. A
design 1nformatlon base that descrlbes aspects of this object, and the
des1gn process can be viewed as successwe elaboration of representatlons
such as adding more information or even backtracking and exploring

alternatives”. . o

According to Stevens

“Software Désign is the process of inventing and selecting programs
that meet the objectives for software systems”. '

Input includes an understandmg of the followmg

@) Requlrements
(iz) Environmental constraints

(zif) Design criteria

The output of the des1gn effort 1s composed of the following.
(i) Architecture design Whlch shows how piecés are interrelated.
(ii) Specifications for any new pieces.

(iii) Definitions for any new data”. - ‘ .

‘Design Objectives/Properties

The various- desirable properties or objectives of software design are:

1. Correctness

g .The design of a system is correct if a system bullt'precisely according
to the design satisfies the requ1rements of that system. Clearly, the

goal during- the design phase is to produce correct designs. However,
correctness is not the sole criterion during the des:gn phase, as there
can be many correct designs. The goal of the‘design process is not
simply to produce a design for the system. Instead, the goal is to find
" the best possible design within the limitatioﬁs imposed by the requirements
and the physical and social environment in which the system will
operate.

2. Verifiability

Design should be correct and it should be verified for correctness.
Verifiability is concerned with how easily the correctness of the design
can be checked. Various verification techniques should be easily applied
to design. .

3. Completeness

Completeness requires that all the different components of the demgn
should be verified i.e., all the relevant data structure; modules, external
interfaces’ and module- 1nterconnect10ns are specified.-

4. Traceability

Traceability is an imporﬁant properﬁy that can|get design verification. |

It requires that the entire design element must be traceable to the
requirements. ' L -

5. Eﬁ"iciéncy

Efficiency of any systexh is concerned with tllle proper use of scarce
|

)

Designing Software

- Solutions

" NOTES

Sélf-Instrudional Material 65

Software Engineering

NOTES

568 Self-Instructional Material

resources by the system. The need for efficiency arises due to cost
considerations. If some resources are scarce and expensive, it is des'izjable
that those resources be used efficiently. In computer systems, the resources
that are most often considered for efficiency are processor time and
memory. Two of the imp'ortant such resources are processor time and
memory. An efficient system consumes less processor time and memory.

6. Simplicity

Simplicity is perhaps the most important quality criteria for software

- systems. Maintenance of software system is ﬁsually quite expensive.

The design of the system is one of the most important factors affeéting
the maintainability of the system.

Design 'Prinéiples
The three design principles are as follows:
. (a) Problem partitioning.

(b) Abstraction.

(¢) Top-down and Bottom-up design.

r

1. Problem Partitioning

When solving a small problem, the entire problem can: be tackled at
once. For solving larger problems, the basic principle is the time-
tested principle of “divide .and conquer”. This principle states that

~ divide into smaller pieces, so that each piece can be conquered separately.

For software design, therefore, the goal is to divide the problem into
manageably small pieces that can be solved separately. The basic rationale
behind this strategy is the belief that if the pieces of a problem are
solvable separately, the cost of solving the entire problem is more than
the sum of the cost of solving all the pieces: .

However, the different pieces cannot be entirely independent of each
other as they together form the system. The different pieces have to
cooperate and communicate to solve the larger problem. This communication
adds complexity, which arises due to partitioning and may not have
existed in .the original problem. As the number of comp'oilents increases,
the cost of partitioning, together with the cost of this added complexity,
may become more than the savings achieved by partitioning. It is at
this point that no further partitioning needs to be done. The demgner
has to make the judgement "about when to stop partitioning.

Problem partitioning can be divided into two
() - Horizontal partitioning
‘(i) Vertical partitioning

() Horizbntal Partitioning

categories:
!

Horizontal partltlomng deﬁnes separate branches of modular h1erarchy

for each major program function. The s1mplest
partitioning defines three partltlons——mput, dat

approach to horizontal
4 transformation (often

~ called processing) and output. Partitioning their architecture .horizontally'

provides a number of distinct benefits:
. Software that is easier to test. ‘

* Software tHat is easier fo maintain.

"o Software that is easier to extend.

e Propagation of fewer side. effects.

y

- On the negative part, horizontal partitioning often causes more data
to be passed across modules interfaces and can complicate the overall

control of program flow.

Function 1

[ﬁ]. ~ Function 2

' Fig. 1 Horizontal Partitioning

(i) Vertical Partitioning

Vertical partitioning, often called factoring, suég'ests that control and

work should be distributed from top-down in th
Top level modules should perform control function
work. Modules that reside low-in the structure
performing all input, éompilation ‘and output

Function 3

and do actual processing

tasks.

e programme. structure.

should be the workers,

Designing Software
Solutions -

NOTES

Self-Instructional Material 57

Software Enginegring :

NOTES

58 Self-Instructional Material

Decision
making
modules

l

"Workers"
~ modules

B

Fig. 2 Vertical Partitioning

2. Abstraction

.

An abstraction of a coﬁlponent describes the external behaviour of
that component without bothering with the internal details that produce

‘the behaviour.

Abstraction is an indispensable part of the design process and it is
essential for problem partitioning. Partitioning essentially is the exercise -
in determining the components of a system. However, these components
are not isolated from each other, but interacts with other components.
In order to allow the designer to concentrate on one component at a
time, abstraction of other component is used.

" Abstraction is used for existing components as well as component that

are being designed. Abstraction of existing components plays an important
role in the maintenance phase.

Durlng\the design process, abstractions are used in the reverse manner
than in the process of understanding a system. During design, the
components do not exist, and in the design the designer specifies only
the abstract specifications of the different components. The basic goal
of 'sy§tem design is to specify the modules in a system and their abstractions.
Once the different modules are specified, during the detailed design -
the designer can concentrate on one module at a time. The task in
detailed design and implementation is essentially to implement the

modules so that the abstract specifications of each module are satisfied.

There are two common abstraction mechanisms for software systems:
Functional abstraction'and data abstraction. In functional abstraction,
a module is specified by the function it performs. For example, a module
to sort an input array can be represented by the specification of sorting.
Functional abstraction is the basis of part1t1on1ng in function-oriented
approaches. That is when the problem is being partitioned; the overall

- transformation function for the system is partitioned into smaller functions .
~ that comprise the system function.

The second unit for abstraction is data abstraction. There are certain
operations required from a data object, depending on-the object and
the environment in which it is used. Data abstraction supports this

view. Data is not treated simply as objects, but is|treated as objects
with some predefined operations on them. The opérations defined on
a data object are the only operations that -can be performed on those
objects. From outside an object, the internals of the object are hidden;
only the operations on the object are visible.

3. po-down and Bottom-up Design

A system consists of components, which have componehts of their own;
indeed a system is a hierarchy of components. The highest-level components
correspond to the total system.

To design such hierarchies there are two possible approaches: top-
down and bottom-up. The top-down approach starts from the highest-
level component of the hierarchy and proceeds through to lower levels.
By contrast, a bottom-up approach starts with the lo F est-level component
of the hierarchy and proceeds through progressively higher levels to
the top-level component. : r ‘

A top-down design approach starts by identifying the major components
- of the system, decomposing them into their lower-level components
and iterating until the desired -level of detail is|achieved. Top-down
design methods often result in some form of stepwise refinement. Starting
from an abstract design, in each step the design lis refined to a more

concrete level, until we reach a level where no| more refinement is |-

needed and the design can be implemented directly.. The top-down

approach has been promulgated by many reseallrchers and has been |

found to be extremely useful for design. Most design methodologies

are based on the top-down approach. J} ‘
dules Moverment

[—Mainm

[

Subordinate
module

]

{(Movement in top-down approach)
Fig. 8 Top-down Approach

A bottom-up design approach starts with deéigning.the most basic or
primitive components and proceeds to higher-level components that
use these lower-level components. Bottom-up met!hods work with layers
- of abstraction. Starting from the very bottom, operations that provide
a layer of abstraction are implemented. The operations of this layer
~are then used to implement more powerful operations and a still higher

Designing Software
Solutions

NOTES

Self-Instructional Maierial 59

Software Engineering

NOTES

60 Self-Instructional Material

layer of abstractlon until the stage is reached where the operatlons
supported by the layer are those des1red by the system

e—— Main modules 4

C] .

Movement

——> |{ower

» Level
—» Module

~ (Movement in bottom-up approach)

Fig. 4 Bottom-up Approach T

A top-down approach is suitable only if the specifications of the system
are clearly known and the system development is from scratch. However,
if a system is to be built from an existing system, a bottom-up approach
is more suitable, as it starts from some existing components. So, for
example, if an iterative enhancement type of process is being followed,

in later iterations, the bottom-up approach could be more suitable (in

the first iteration a top-down approach can be used).

3.3 ARCHITECTURAL DESIGN

Large systems are always decomposed into subsystems that provide
some related set of services. The initial design process of identifying
these sub-systems and establishing a framework for subsystem control
and communication is called architectural design.

Architectural design represents the structure of data 'and program
components that are required to build a computer-based system. It
considers the archltectural style that the system will take the structure
and properties of the components that constitute the system, and the
intérrelationships that occur among all arch1tectural components of a
system. :

Architectural design methods have a look into various alternates’
architectural style of designing a system. These are:
‘1. Data centric aré'hitecture
2. Data flow. architecture
3. Obje¢t orieﬁted ‘architecture
4

Layered architecture

. f -
Data centric architecture approach involves the use of a central

- database operations of inserting, updating it in the foi'm of a table. .

Data flow architecture is central round the pipe and filter mechanism.

This architecture is applied when input data takes the form of output.

after passing through various phases of transformatlons These
transformations can be via manipulations or varlous computations
done .on the data. In object oriented architecture the software design
moves around the clauses and object of the system. The class encapsulates
the data and methods. At least layered archttecture defines a number
of layers and each layer performs tasks. The oute ’rmost layer handles
the functionality of the user interface and the innermost layer mainly
“handles interaction with the hardware.

Objectives of Architéctural Design

The objective of architectural design is to develop a model of software
architecture, which gives a overall organization o% program module in
the software product. Software architecture encompasses two aspects
of structure of the data and hierarchical structure of the software
components. Let us see how a single problem can be translated to a
collection of solution domains (refer to Fig. 5)

SR RS

ERFCIN
L, TR
s £ .

st [s S5 ' //R
" o S1

v

" Problem —»

82 s5

83 5S4 86

sa || |sal|

_

] A -
S6 \

Fig. 6 Problems, Solutions and A}chitecture'

1

Architectural design defines organization of program compohents. It
does not provide the details of each components and its implementation.
Figure 6 depicts the architecture of a Financiall Accounting System.

The objective of architectural design is also to control relationship
between modules. One module may control another module or may be
controlled by another module. These characteristics are defined by
the fan-in and fan-out of a part1cular module. The orgamzatlon of module

,can be represented through a tree like structuxf'e
S
S |

Designing Software

Solutions

NOTES

Sélf}lnigtruct_ional Material 61

Software Engineering .

NOTES

62 Self-lnst(’uctional Material

Financial Accounting

Management System |-
A - Fixed Asset
. .cc;;urgs t Management Sundry Debtors
eceivable System System :

Fig. 6 Architecture of a Financial Accounting System

'The number of level of component in the structure is called depth and

the number component across the horizontal section is called width.
The number of components, which controls a said component, is called
fan-in i.e., the number of incoming edges to a component. The number
of components that are controlled by the module is called fan-out i.e.,
the number of outgoing edges.

‘\ -
So |/ N Ss -
: . \/ g Y
Sy Sz Ss ' / S; -

Fig. 7 Fan-in and Fan-out

S, controls three components hence the fan-out is 3. S, is controlled

by two components, namely, S, an'd Sz, hence the fan-in is 2 (refer

to Flg 7.

3.4 LOW-LEVEL DESIGN

Modularization

A system is considered modular if it consists of discrete components

so that each component can be implemented separately, and a change
-._(to one component has minimal impact on other components.

OR _
“A system is modular if it is composed of well defined, conceptually

simple and independent units intera(iting through well defined interfaces”.

There are many definitions of the term “module”. They range from “a

module is a FORTRAN subroutme to\“a module is an ADA package” to

“a module is a work ass1gnment_;” for an individual programmer”. All of

-

these definitions are correct, in the sense that modular systeins incorporate

collections of abstractions in which each functional abstraction, each '

data abstractlon, and each control abstraction handles a local aspect of
the problem be1ng solved. Modular system consists of well-defined,
manageable units with well-defined interfaces among the units. Desirable
properties of a modular system include:

1. Each function in'each abstraction has a single, well-defined purpose.
2. Each function manipulates no more than one major data structure.

3. Functions share global data selectively. It is easy to identify all
_routines that share a major data structure.

4. Functions that manipulate instances of abstract data types are
encapsulated with the data structure being manipulated.

Modularity enhances design clarity, which in turn eases implementation,
debugging, testing, documenting, and maintenance of the software product.

OR

“Modularlty is probability of the single most 1mportant characterlstlcs
of a well designed software system”. ‘.

Modules may be created during program modularlzatlons are:

. Process support modules: In it all the functlons and data items
' that are required ‘to support a particular busmess process are
grouped together.

* Data abstraction: These are abstract types th}at are created by
assoc1atmg data- with processing components

. Functional modules: In it all the function that carries out similar
or closely related tasks is grouped together."

s Hardware modules. In it all the functions, whlch controls onv

partlcular hardware- are grouped together.
Classiﬁcation of Modules

A module can be classified into three types depending on activatic
mechanism. |

1. An incremental module is activated by an interruption and can

be interrupted by another interrupt during tl}e executlon prior
to completion.

2. A sequential module is a module that is referen,eed by another
module and without interruption of any external software.

3. Parallel modules are executed in parallel with another'lmodﬁles; ‘

The main purpose of modularity is that it allows the principle of separation |,

Designing Software
Solutions

NOTES

y ‘ { R 1 \ 1
IO Xa
Self-Instructional ’Matérml

~

_ Software Engineering

NOTES

v

\ ; '//, N
64 Self-Instructional Material ~

of concefns to be applied in two phases: when dealing with the details"

of each module in isolation (and ignoring details of other modules) and

when dealing with the overall charactetistics of all modules and their:

Arelationships' in order to integrate them into a coherent system. If the’

two phases are temporally executed in the order mentioned, then we
say that the system is designed bottom-up; the converse denotes fop-
down design. ' :

Adv’ant;tges of Modular Systems

1. Modular systems are easier to understand and explain because
their parts make are functionally independent. f

2. Modular systems are easier to document because each’ part can

be documented as an mdependent unit.
. ! 4
3.. Programming individual modules is easier because the programmer,

can focus on just one small 81mple problem rather than a large
complex problem. S

‘4. Testing and debugging individual modules is easier because they
can be dealt within isolation from the rest of the program

5. . Bugs are easier to isolate and understand, and they can be fixed
without fear of introducing problems- outside the module.

6. Well-composed modules are more reusable because they are more
likely to comprise part of a solution to many problems. Also a
good module should be easy to extract from one program and

_insert into another. Example.

Modularity is an important property of most engineering processes
and products. For example, in the automobile industry, the construction
of cars proceeds by assembling bui'lding.blocks that are designed and
built separately. Furthermore, parts are often reused from model to
model, perhaps after minor changes. Most industrial processes are essentially
inodu“lar, made out of work packages that are combined in sirhple ways

‘(sequentially or overlapping) to achieve the desired result.

3.5 STRUCTURED DESIGN METHODOLOGY

Structured Desjgn Methodology (SDM)' views every-software system as'
having some inputs that are converted into the desired outputs by the

.software system. The software is \V1ewed as a transformation function

that transforms the given mputs 'into the des1red outputs, and the
central problem of demgnmg software systems is con51dered to be properly

lesigning this transformation-tunction. Ulie w wuu8 vi8W ui Suivhiu.,
he structured design methodology is primarily functxon oriented and
-eliés heavily -on functional abstractlon and functional: decompos1tmn

Che concept of the structure of a program‘ lies at the heart of the -

structured design method.

Juring design, Structured Design Methodology aims {to control and
nfluence the structure of the final program. The aim is to design a
system so that programs implementing the design would haye a hierarchical
structure, with functionally cohesive modules and as few interconnections
yetween modules as possible.

3.6 AIM OF STRUCTURED DESIGN

The aim of structured design is to specify modules that c an be developed,

wwritten, tested, modified, and reused independently, and comb'inedvto

iform the final program. Good modularization is thus ja primary goal.

Module quality depends mainly on two factors: '
¢ Coupling, and

¢ Cohesion

Coupling

“Coupling is a measure of interconnection among modules in a software

structure

The coupling between two modules zndwates the degree of
interdependence between them. If two modules interchange large
amount of data, then they are highly interdependenlt. The degree of
coupling between two modules depends on their intferface complexity.
The interface complexity is-basically determined by the number of
types of parameters that are interchanged while invoking the functions
of .the module. ' :

Highly coupled When the modules are h:ghly dependent on each
other then they are called highly coupled.

Loosely coupled: When the modules are dependent on each other
but the interconnection among them is weak then they are called
loosely coupled. '

Uncoupled Modules:
~ No Dependencies

—— e ———

‘Solutions

NOTES

Self-Instructional Material 65

Xy

w3

-

Software Engineering

NOTES

65 Self-Instructional Material -

’

F N

»

” .
< ”

Loosely Coupled:) Highly Coupled: .
Some Dependencies Many Dependencies

- Fig. 8 Coupling

Uncoupled: When the different modules have no interconnection among
them then it is called uncoupled module.

Factors Aﬁ'ecting Coupling‘ between Modules

The various factors which affect the coupling between the modules are
deplcted in ‘the tabular form below:

Table 1 Factors Affecting Coupling

Intérface Type of Type of
Complexity ~ Connection Communication
Low Simple - To module - Data
o Obvious by name
High Complicated To internal - Control
Obscure : elements Hybrid

Types of Couplin.gr

Different types of coupling 'are.content, 'common, external, control,
stamp and data. The strength’ of coupling from lowest couphng (best)
to highest coupling (worst) is given in Fig. 9. .

Data coupling Best

Stamp coupling A

Control coupling

External coupling

Common coupling

Content coupling _ Worst

Fig. 9 The Types of Module Coupling

: 1. Data Coupling

’I‘wo modules are data coupled if they commumcate usmg an elementary
data item that is passed as a parameter between the two for example,

. l
an integer, a float, a character, etc. ThlS data item should be problem

related and not used for the control purpose

A o
Data .) |
" variables !

B ’ C

Fig. 10 Data Coupling

When non-global variable is passed to a modﬁle, modules are called
data coupled. It is.the leweSt- form of coupling. For example, passing
int variable from one module in C and receiving the variable by value
(i.e., call by value). |

2. Stamp Coupling |

Two modules are stamp coupled, if they communicatie using a composite
data item such as a record, structure, object etc. When module passes
‘non-global data structure or entire structure to another module, they
 are said to be stamp coupled. For example, passing [a record in PASCAL

" or structure variable in C or object in C++ language to a module.

3. Control Coupling

Control coupling exists between two modules, if dJita from one module
is used to direct the order of instruction execution inl another. An example
of control coupling is a flag set in one module and tested in another module.

A

\ Control -
o .. flag '

B Cc

Fig. 11 Control Coupling

The sending module must know a great deal abouf the inner working
of the receiving module. A variable that controls decisions in subordinate
module C is set in super ordinate module A and then passed to C.

4. External Coupling

. It occurs when modules are tried to an environment external to software.
External couphng is essential but should be limited to a small number
of modules with structure.

Deszgnmg Software
Solutions

'NOTES

Self-Instructional Material 67

Software E ngineering

NOTES

" 68 Self-Instructional Material

5. Common Coupling

Two modules are common coupled, if they share some global data items

e.g., Global variables. Diagnosing problems in structures with :consideréble
common coupling is time-consuming and difficult. However, this does
not mean that the use of global data is necessarily “bad”. It does mean

that a software designer must be aware of potential consequences of -

common coupling and take special care to guard against them.
6. Content Cdupling

Content coupling exists between two modules, if their code is shared,

' for example, a branch from one moduie into another module. It means
~ when one module directly refer to the inner workings of another module.

Modules are -highly interdependent to each other. It is the highest

. form of coupling. It is least desirable coupling as one component actually
' modifies another and thereby the modified .component is completely

dependent on the modifying one.

No direct coupling Stamp coupling External Content.coupling
Data coupling . Controi coupling ‘Common coupling :
- Low Coupling spectrum . High

Fig. 12 Coupling

High coupling among modules not only makes a design difficult to undérstand':
and maintain, but it also increases development effort as the modules ‘
having high coupling canhqt be developed indepeﬁdqntly by different.
team members. Modules having high coupling are difﬁcuit to implement
and debug. |

Cohesion

“Cohesion is a natural extension of information hiding concept.”

" Cohesion is a measure of the relative functional strength of a module.

The cohesion of a component is a measure of the closeness of the
relationships between its components. A cohesive module performs a
single task within a software procedure, requiring little interaction
with procedures being performed in other parts of a program. |

A strongly cohesive module implements funétionality that is related to

‘one feature of the- solution and requires little or no interaction with

D'esignit.z‘g‘ ‘Softwdre _

other ‘modules. This is shown in Fig. 13. Cohesion may be viewed as :
SR Solutions

glue that keeps the module together. It is a measure of the mutual
officity of the components of a module.

’

. NOTES

Module
strength -

Fig. 13 Cohesion=Strength of Relation Within Modules

Thus, we waht to maximize the interaction within al module. Hence, an
important design objective is to maximize the module cohesion and
minimize the module coupling, ‘

TZypes of Cohesion

There are seven levels of cohesion in decreasing order to desirability

which are as follows:

Functional Cohesion ‘ Best (high)

Sequential Cohesion t

Communicational Cohesion

Procedural Cohesion

. Temporal Cohesion

Logical Cohesion

Coincidental Cohesion) ‘ Worst (Ilo W)

Fig. 14 The Types of Module Cohesion
1. Functional Cohesion

Functional cohesion is said to exist-if different elements of a module
cooperate to achieve a single function, e.g., managing an employee’s

payroll. When a module displays functional cohesion, and if we are
asked to describe what the module does we can|describe it using a
single sentence. ' ‘ '

Self-Instructional Material 69

-

I

Software Engineering

FUNCTION A Part 1

7

FUNCTION A Part 2

FUNCTION A Part 3

* NOTES

Fig. 15 Functional Cohesion: Sequential with Complete, Related Functions
2, Sequential Cohesion K ' .

A module is sald to possess sequential cohesion, if the elements of a
Co module form the parts of a sequence, where the output from one element
of the sequence is input to the next.

FUNCTION A

’L FUNGTION B
-
FUNCTIONC t

Fig. 16 Sequential Cohesion: Output of one Part is Input to Next
3. Communicational Cohesion

A module ié said to have communicational cohesion, if all the functions.
of the module refer to or update the same data structure, for example,
the ‘set of functions defined on an array or a stack. All the modules in’
communicational cohesion are bound tightly because they operate on
same input or output data For example the set of functions defined on
an array or a stack. ’

Data

v. | | FuncTiona
FUNCTION B

/.

¥ ¥ FUNCTIONC

Fié. 17 Communicational Cohesion: Access Same Data
4. ProceduralI Cohesion

A module is said to possess procedural cohesion, if the set of functions
of the module are all part of a procedure (algorithm) in which’ certain
sequence of steps has to be, carried out for achieving an obJectlve, for
example, the algorithm for decoding a message.

70 Self-Instructional Material

FUNCTION A

FUNCTIONB -

_.FUNCTIONC

Fig. 18 Procedural Cohesion Related by Order of Function

5. Terhporal Cohesion

_ When a module contains functions that are relate

d by the fact that all

- the functions must be executed in the same time span, the module is
said to exhibit temporal cohesion. The set of functions responsible for

initialization, start-up, shutdown of some process,
cohesion.

TIMETO

TIMETO+A .

TIME TO+2A

etc., exhibit temporal

Fig. 19 Tbmporal Cohesion Related by |Time

6. Logical Cohesion

A module is said to be logically cohesibve,'.if ‘all elements of the module

perform similar operations, for example,. error |handling, data inpuf,

‘data output, etc. An example of logical cohesion is the case where a set

of print functions generating different output reports are arranged

into a. single module.

T . FUNCTION A

i‘ logic. FUNCTION A’

l FUNCTION A”

7. Coincidental Cohesion

-Fig. 20 Logicczl Cohesion Similar Functions

A module is said to have coincidental cohesion, if it performs a set of

tasks that relate to each other very loosely. In this case, the module

‘contains a random collection of functions It means that the functions

have been put in the module out of pure coincidence without ,any
thought or design. It is the worst type of cohesion.

Designing Software
Solutions

NOTES

Self-Instructional Material . 71

Software Engineerin:g

NOTES

72 Self-Instructional Material

FUNCTION |

FUNCTION | FUNCTION
I 0

FUNCTION

FUNCTION
v

A%

Fig. 21 Coincidental Cohesion Parts Unrelated

Coincidental ‘ Communicational :
Logical Temporal Procedural Sequential Functional
Low Cohesion spectrum =~ - .) High
Scattered-brained _ Single-minded

"Fig. 22 Cohesion

3.7 RELATIONSHIP BETWEEN COUPLING AND

COHESION

A software enginéer must design the modules with goal of high cohesion
and low coupling.

A good example of a system that has high cohes1on and low coupling is
the ‘plug and play’ feature of the computer system. Various slots in the
mother board of the system simply facilitate to add or remove the various
services/functionalities without affecting the entire system. This is because
the add on components provide the services in hlghly cohesive /manner

- Fig. 23 provides a graphical review of cohesmn and couphng

Ja\

|é—%] ¥

- oo - Lot

High coupling - " Low cohpling

Fig. 23 View of Cohesion and Coupling
Module design with high cohesion and low coupling chéracterizes a
module as black box when the entire structure of the system is described.

Each module can be dealt separately when the module functiondlity
is described.

3.8 TOOLS FOR STRUCTURED DESIGN

The following are the key tools used for ‘t_he structured desigh:

e Structure charts

‘o Modules identification and specification [techniques.

These key tools are discussed below.

Structure chart

The- Structure chart is one of the most commeonly used methods for
system design. Structure charts are used during architectural design
to document hierarchical structure, parameters, and intérconnections

- in a system.

It partitions a system into black boxes. A black box means that functionality

is known to the user without the knowledge of internal design. Inputs

are given to black box and appropriate outputs are generated by the |

black box. This concept reduces the complexity because details are

hidden from those who Kave no need or desire L;o know. Thus systems

are easy to construct and easy to maintain. Here, black boxes are

arranged in hielfarchical format as s_hown in Fig. 24 (a) & b)

Rectangular

—

Boxes

B

E

F

ndicates ‘
Repetition \
8

. Indicates Selection .

®~4 — Control-flow -
Arrows

: - 4) |
e AR

G

- Fig. 24 (a) Hierarchical Format of a Structure Chart -

Data

In Out
4
2
3
41 . Input Qutput
5| "Data
6
7
"8

Fig. 24 (b) Format of a ~Str'ucture

Chart

Designing Software
Solutions

" NOTES

Se?ﬁ]nstructiaﬁal Material 73

Software Engineer.‘ing

NOTES

74 Self-Instructional Material-

Modules at the top-level call the modules at the lower level. The connections
between modules are represented by lines between the rectangular
boxes. The components are generally read from top to bottom, left to
right. Modules are numbered in hierarchical numbering scheme. -In
any structure chart there is one and only one module at the top éalled
the root. .

Basic Building Blocks of Structure Chart
The basic building blocks of structure chart are the foilowin’g: ‘
1. Rectangular Boxes

A rectangular box represents a module. Usually a rectangular box is

"annotated with the name of the module it represents.

t
/

A

2. Arrows

An arrow connecting two modules implies that during program execution, |
control is passed from one module to-the other in the direction of the

/\ o

Data flow arrow represents that the named data passes from one module
to the other in the direction of the arrow.

2N

Library comprises the frequently called modules and is usually represented
by a rectangle with double edges. Usually when a module is invoked
by many other modules, it is made into a library module.

connectmg arrow..

" 3. Data Flow Arrows

4. Library Modules

A

5 Seléction) _ : , Designing Software ‘

i , Solutions
The diamond symbol represents that one module out of several modules
connected with the diamond symbol are invoked depending on the A |
condition satisfied, which is written in the diamond symbol. NOTES -

6. Repetitions

" A loop around the control, flow arrows denotes 'th-at the respective
.modules are invoked repeatedly. ’

‘ AN A - |
Example. A software system called RMS calculating software reads '
three integral numbers from the user in the range|between —1000 and

+1000 and determines the root mean square (rms) of the three input
numbers and then displays it. ‘

, " Main
Valid-data . T
~ l ms N
. Valid-data T~
Get—good—data | ~ Compute-rms Write—result
Data-items 7 -~ % J Valid-data
' Data-items :
| Reag-nput | - [Validate-input

Fig. 25 Structure Chart for Example
Difference between Flowchart and Structure Chart

- A structure chart differs from a flow chart in following ways:

1. It is usually difficult to identify different modules of the software
from its flow chart representation.

2. Data interchange among different modules is not fepresented'

e
.

in a flow chart.

} . " . _Selﬁlnstructional Material 15 »v

Software Engineering

NOTES

76 Self-Instructional Material

= Sequentlal ordermg of tasks mherent ina ﬂowchart is- suppressed
in a structure chart.

- 4. A structure chart has no decision boxes.

Unhke flow charts, structure charts show how different modules w1thm
program interact and data that is passed between them

™~

3.9 MODULES. IDENTIFICATION-AND
SPECIFICATION TECHNIQUES

When developing the implementation model, and speciﬁcal-ly' the structure
charts, arguably the largest task is the identification and specification
of the modules within the system. As with most methodologies and-
techniques there are a few guidelines to be used when developing
individual modules as well as when considering the relationships between

‘modules.

y
-

3.10 MQDULE SPECIFICATION METHOD

There are several methods that can be used to speclfy a module. Two
possfble methods are: '

A , yd
. Interface/Functmnal ’

. Pseudocode

~

Interface/Funetional

Interface/functlonal speclﬁcatwn provides a good balance of specification’

- detail; and is in line with ‘the “black box” sp1r1t of SASD (System

Analysis and System Design).

The inferface, or ratber, the input and output of the module, provides

" ‘the detail of what the module needs and produces, while the functional -

specification provides good documentation as to what, exactly, the module
is supposed to do. '

Pseudocode

“Pseudo” means imitation or false and “Code” refers to the instructions
written in a programming language. Pseudocode notation can be used

in both the preliminary and detailed design phases. {Jsing pseudocode,
the designer describes system characteristics using short, concise, English
language phrases that are structured by keywordsi such as If-Then-
Else, While-Do, and End. Keywords and indentation describe the flow
of control, while the E’nglish\nhrases describe processing F’:Ictjons. Pseudocode

is also known as program design language or structured English. A |

program design language should have the following characteristics:

1.

2.
3.
4.

Advantages of Pseudocodes

A fixed syntax of keywords that provide for all structured constructs,
data declarations and modularity characteristics.

A free syntax of natural language that describes processing feature.

A data declaration facility.

Subprogram deﬁmtlon and calhng techniques.

The various, advantages of pseudo-codes are as follows:

1.

Disadvantages of Pseudocodes

Converting a pseudo-code to a programming language is much

easier as compared to converting a flowchart or decision table. | -

_ As'compared to a flow chart, it is easier to [modi'fy the pseudo- |

code of program logic whenever program modifications are necessary.

Writing of pseudocode involves much less time and effort than
equivalent flow chart. '

 Pseudocode is easier to write- than writing a program in a

programming language because pseudocode method has only a
few rules to follow.

The various disadvantages of pseudocodes are ‘as ~fo]lows:

1.

In case of pseudocode, a graphic representatlon of program logic
is not available as in flow charts. . '

There are no standard rules to follow in using pseudocode. Different
programmers use their own style of writing pseudocode and
hence communication problems occur due to lack of standardization.

For a beginner, it is more difficult to follow the logic or erte

the pseudocode, as' compared to flowcharting.

Example. Pseudocode consists of Enghsh-hke statements describing an

_ algorithm. It is written using simple phrasés and avoids cryptic symbols.

Designing Software
"~ Solutions

NOTES

Self-Instruc\tior_zal Material 77

- P

Softwdre Engineering

NOTES'

78 Self-Instructional Material

-

It is independent of high-level l»ahguages and is a very goods means of
expressing an algorithm. It is written in structured manner and indentation

© is used to increase clarity. As an example, the use of pseudocode for

detailed design specification is illustrated in fig 26:

INITIALIZE tables and counters; OPEN files
" READ the first text record
'WHILE there are more text records DO
WHILE there are more words in the text record DO
EXTRACT the next word
SEARCH word_table for the extracted word
IF the extracted-word is found THEN ,
INCREMENT the extracted word's occurrence cdunt
ELSE
~INSERT the extracted word into the word_table 4 t
ENDIF ' '
INCREMENT the words_processed counter
ENDWHILE at the end of the text record
ENDWHILE when .all text records have been processed .
* PRINT the wbrd_table and the words_processed counter
CLOSE files

TERMINATE the program

.Fig. 26 An Example of a Pseudocode Design Speczf cation

Pseudocode con's.ists of English~like statements describing an algorithm.
It is written using simple phrases and avoids cryptic syinbols. It is
written in structured manner and identification is used to increase
clarity. . , : - y

3.11 OBJECT-ORIENTED DESIGN METHODS

ijecf-driented,Atechnology is one of the latest approaches to S/W
development, and it shows much promise in solving the problems associated

with building modern software systems (Shlaer 1988, Meyers 1988

Rambaugh et.al 1991, Rubin 1992, Agha 1990).

Object Oriented Desxgn (OOD) is the result of focusing attention not
on the function performed by the program, but instead on the data .

that are to be manipulated by the program..Thus, object oriented des1gn

is orthogonal to function-oriented design.

True object-oriented desxgn occurs then ADTs are designed for flexibility
and reuse, are encapsulated by excluding all implementation detail

from the pubhcly visible interface, and are .carefully organlzed in an
architecture that is glven shape by the relationsh1p of V131b111ty Visibility

exists between two‘objec'ts when one can request services of another
by invoking an operation that is part of the second object’s interface.

Object-oriented technology contains these three ‘key‘ aspects:

Objects. Software packages designed and developed to correspon'd
with real-world entities and containing all the data and services required
to function as the1r associated entities.

: Messages. Commu_mcatlon mechamsms are established that prdvide
the means by which objects work together. -

Methods. Methods are services that objects perform to éatisfy the

functional requirements of the problem domain. Objects request services

of other objects through messages.

Classes. Templates . for d_efinirig families of objects and all the data |

and services that are commbn to them and providing for the concept
of inheritance that makes 0-O software easier to modlfy and malntam

.than conventional software.

Benefits of OOD

The benefits of object-oriented development as claimed by its proponents
are many: '

. Objects are inherently reusable. |

i The concept of objects performmg services is a more natural
way of thmkmg

* Emphasis is on understanding the problem domain.

* Internal consistency of systems is improved because attributes
and services can be viewed as an intrinsic whole.

e The characteristic of inheritance capitalizes on the commeonalty |

of attributes and services.

* The object-oriented development process is consistent from analysis,
through design to coding. ' ' '

’

Types of OOD Methods

14

The followmg are popular ob_]ect-orlented design methods:
~* Booch’s Object Oriented De51gn
* Yourdon and Coad’s Object-Orien_i;led Design

'The above methods are discussed below.'"i\ ‘ S

Designing Software
- Solutions

NOTES

\\'
‘\I.'ﬂ '

Self Ins{ructzong‘l Matenal 79
\\‘..

Software Engineering

NOTES-

80 Self-Instructiom.lf Material

Booch's Object-Qrientéd Design

" Grady Booch’s Objeét-Oriented Design (OOD), also known as Object-

Oriented Analysis and Désign (OOAD), is a precursor to the Unified
Modeling Language (UML). The Bo_och method (Booch 1994) includes
6 types of diagrams: ,

e C(Class,

. _ Object,

* State tran"sition,‘
. Ivnteractién,

* Module, and

* Process.

Booch’s Static Diagrams : A

Booch’s class and object diagrams differentiate this methodology (at
least in notation) from similar object oriented systems. '

T T
P Name > has - Name SN
{_ attributes - i, attributes ./
=s..v.l . .'" :" . '\...., . "_-_."a
I - Seea e
i .
i
/
Inst tiates
nstantia .
N Uses . Inherits
; .
4
U
’
'x‘t\ """"" L
Y attributes e Name 1. L
..... '.’\“'{_....‘ . ‘,:-’ attrlbutes '-‘,-' .) ‘{ ~.'_- g \.----..
. L D) Name /£,

"

. S)

‘ - w- b

. ' . P
L] TRl

{ “attributes

Fig. .27 A Booch Class Diagram

. Booch’s Class and Object Diagram Notation's

* Classes. Illustrate classes using a cloud shape with a dashed borde;:

.....
- ,
A,

‘‘‘‘‘‘
.,
v

¢ "Object name ; .
¢ Aftributes
» operations

o, .-_'\ }
Fig. 27 (a) Class

Object. {Draw' objects' using a cloud shape with a solid border.

Ob}ect name
Attributes
operations

Fig. 27 (b) Object

Class Adornments. Use adornments to provide additional information .

about a class. Adornment can be created using the basic triangle shape.

,¢-~ / \\“ N
—

L Cilass name i
~Aftributes >

‘~~\7 operat:ons <

-——

4

7/
pr—
~ I,_”

Fig. 27 (¢) Class Adornment

A letter is placed inside the triangle to represent the following:

e A-Abstract. An abstract clasé cannot be inst:antiated because it |

represents a wide variety of object classes and does not represent
any one of them fully. For example, mammal ;coﬁld be thought of
as an abstract class. - _ |

e F-Friend. A friend class allows access to the non-public functions
of other classes. ' ' '

o S-Static. A static class provides data.

e V-Virtual. A virtual class is a shared base class, the most generahzed ,

class in a system. .

Metaclass. A metaclass is a class whose instance‘s are also classes.

Fig. 27 (d) Metaclass {

Class Categories. A class category represents ’a cluster of similar
classes. Illustrate a class category by drawing a rectangle with two
compartments. : |

I
1
'

Class Category Name

Classes

Fig; 27 (e) Class Category

Class Templates. Draw a template using the standard class symbol
attached to a box with a dashed outline. List template parameters or
formal arguments in this box. When yoﬁ draw a class created from a
template, replace the dashed border with a solid one. |

Designing Software
Solutions

NOTES

Self-Instructional Material 81

Software Engineering * 7
i & , Formal . Formal
] Arguments . e Arguments
" J -
. \"'I ’ . ‘\\\ ' . \\\
.., Jemplate Men Class]
N \ -, . /’ . 1 = —— [l
NOTES . A N A N
’ Template Class actualized

from a template
Fig. 27 () Class Template

Class Utilities. Class utilities describe a group of non-member functions
or subprograms. Illustrate a class utility with a shadowed cloud.

 Class Utility

Attributes
operations ¢

Fig. 27 (g) Class Utility

. Class Visibility. Visibility markers signify who can access the information
contained within a class. Public visibility allows an attribute or an operation
to be viewed by any other class. Private visibility means that the attribute
or the operation is only accessible by the class itself and its friends.
Protected Visibility makes an attribute or operation visible only to friend
classes and classes that inherit it. Implementation restricts the accessibility
of an attribute to the class only (not even friends have access to these
attributes). '

Place visibility markers next to the attribute thejr refer to.
- | private |
|| protected
||| implementation
Fig. 9.20(h) Class Visibility Markers
Object Visibility. Draw a visibility °
marker on a link to signify the

relationship between the connected
objects. These markers can be:.

¢ . G - Global

¢ P - Parameter
* F - Field

¢ L - Local.

» Relationships. Relationships between:
objects are indicated using lines and
~arrows. The meaning and the
relationships are outlined in Table 2.

82 Self-Instructional Material

Table 2 Relationship Symbols : ' DéSiggi;‘ftifzfstw“’ €
Meaning . , Relationship '
Aggregation (has) ~ | e——— Label - : -
Aggregatioﬁ by value - e Label S . NOTES
Aggregatibn by reference e———— Label a .
Uses . ' . Label
Instantiates—compatible type | -------- Label -4----»
| Instantiates—New type el Y Y [e
- Inherits-Compatible type - ~————— Label ——»
Inherits—New type i +——— Label —>
Metaclass ' —— Label —[——>
Undefined e e Label 4--&--—~

| | . |
Booch’s Dynamic Diagrams ' R !
| | i

State transition and interaction diagrams are used to illustrate the
dynamic nature of an application (Booch 1991). Below is a table-that
lists what each of the dynamic Booch diagrams corresponds-to in UML.

Booch (O0D) Unified Modeling Language (UML)
State transition diagram ~ State chart diagram
Interaction diagram | Sequence Diagram

Booch’s Dynamic. Diagram Notations

States represe'nt situations during the life of an object. A Booch state g
symbol is drawn using a rectangle with rounded corners and two
compartments. The oval-shaped H symbol is used to indicate the most
recently visited state. It is illustrated in Fig. 28.

State History
i ‘ Adornment
a N

Name -

Actions

\- o ‘/
Fig. 28 Booch’s Dynamic Diagram !

Self-Instructional Material 83

Software Engineering ‘

NOTES

84 Self-Instructional Material

" Yourdon and Coad’s Object-Oriented Design

Yourdon and ‘Coad’s design 'method (Coad 1991) is an object-oriented
design method. There are mainly five steps for developing Yourdon
and Coad dlagrams :

* Find classes and objects
¢ Identify the structures
¢ Define subjects

e Define attributes

* Define services

The notations used by Yourdon and Coad are described below in Fig.
29 (a) to 29 (d). :

Class and Object

Objects and classes are abstractions of entities with exclusive services
and attributes.

(Name)
Aftributes -

Services

Fig. 29 (@)

Whole-part Relatlonshlps

Whole-part relationship refer to obJects that contaln one or more objects
There are several types of whole-part relat10nsh1ps including: assembly-

parts (alrplane-wmgs) container-contents (cabinet-files), and collectlon- '
members (orgamzatmn members)

Name

Attributes

Services

ame
Attributes ' - Attributes
Services | Services
N/
Fig. 29 (b)

Generahzatlon-Speclallzatlon (Gen-spec) Relationships. -

Generalization-specialization relationships refer to classes that inherit .
. attributes and services from other classes. One class can inherit from

) . Designing Software
es. .
multiple superclasses | . Solutions
[Name
Attributes '
. Services . : ' _ NOTES
_ [Name mam .
Attributes A ‘ . Attributes.
Services : : rSeljvices

Fig. 29 (¢)
Connections

Connections illustrate the dependency of one 'object on the services or
~ processing of another object. ‘

Instance Connection

Message Connection
Fig. 20 (@

Yourdon and Coad diagram is illustrated in Fig. 30

“{ Name Name })
Attributes Attributes
Services) "Services

Name ‘ : Name

_ Attributes ‘ Alttributes Attlributes
Services Services : Sénrioes
R ;ﬁ T
.) * Name)
Attributes

Setvices]
Name Name

Attributes Attributes |
Services - | Services | ‘

Fig. 30 Yourdon and Coad Class Diagram ;

| } " Self Instructional Material 85
| . .
|

Software Engineering

NOTES

868 Self-Instructional Material

- 3.12 REUSE-BASED DESIGN METHOD

~around the actionis taken by the program,

Reuse-based design accepts an existing partition of reusable modules,
functions, or designs, but crafts an interface that ties them together in
order to provide the specified software function.

For a module to be reusable, howe'éer, we must require that it should
be used by several other modules as in des1gn -reusable-structure as

D

shown in Flg 31.

Fig. 31 Design—-Reusable structure

It is of course, not necessary to create a program top-down, even though

its structure is function-oriented. However, if we want to delay the

decision of what the system is supposed to do as long as possible, a

‘better choice is to structure the program around the data rather than -

The Unix filter prov1des a good example of reuse-based design by means
of a toolkit. Unix filters represent highly encapsulated functions, or
tools, which-accept input and provide output in a standard format.

~ Each such function is designed to be both useful and primitive: The

individual functions can then be assembled by gluing them together
with pipes, using a shell language. If these tools are sufficiently varied
and general, most of the tasks can be rapidly implemented. In case
performance isn’t as hlgh any individual tool can be rewritten for
optimization, ‘without modlfymg anything else.

- Toolkit reuse generally.depends on heavy encapsulation, a standard
interface between tools, and a late-binding, interpretive language to

tie the tools together. -Encapsulation “allows for re-implementation to
achieve optimization, fault-tolerance, customisation etc.

3.13 DESIGN SPECIFICATION

The Design Specification addresses different aspects of i;he design
mo_del and is completed as the designer refines his representation of

| o |

the software First, the overall scope of the des1gn effort is descrlbed '
which is derlved from system specification and the analysis model
(Software Requirements Specification)

Then, Data Design is specified, which mcludes data structures, any
external file structures, internal data structures; and a cross reference
that connects data objects to specific files are all defined.

Then Architectural Design indicates how the éro ‘am architecture
has been derived from the analysis model. Structure|charts are used
to represent the module hierarchy ‘

Interface Design indicates the design of external and internal program
interfaces along with a detailed design of the human/m'achine interface
is described. A detailed prototype of a GUI may be represented. ‘

Procedural Design speclﬁes components-separately addressable elements
of software such as subroutines, functions or procedures in form of
English language processmg narratives. This narratllve explains the
procedural function of a component (module).

Design specification contains a requirements cross-reference. The
purpose of this cross-reference is:

@ To estabhsh that all requlrements are satisfied by the software
design. ‘

(iz’) To.indicate which components are critical to the implementatfon

" of specific requirements? ' | -
The final section of the Design specification contains |supplementary
data like algorithm descriptions, alternative procedures, tabular data,
excerpts from other documents and other relevant information presented
as a special note or a. separate appendix.

Design specification format is as under.

System objective | Human-machine interface speclﬁcatmn
and design.
Major Software requirements External interface deslxgn
" Design constraints, limitations ‘ Interfaces to external/systems
. Data Design Internal design rules.}
Data Objects and resultant data Processing narrative.
structure) , . e
File and database structures Interface description. l’
.)]
External file structure Design language description.
Logical structure Modules used. 'u

Designing Software
Solutions

NOTES

Self-Instructional Material 87

Software Engineering .

NOTES

88 Self-Instructional Maten'al

Access method Data structures used]
Global data Comments. |
File and data cros_s—referenée Requirements cross-reference
Architectural Design ' { Test provisions ‘
Review of data and control flow Test guidelines
Derived prografn structure Integration strategy
o ' Special considerations
Appendices. Y,

'3.14 VERIFICATION FOR DESIGN

s

The output of the system design phase, like the output of other phases
in the development process, should be verified before proceeding with
the activities of the next phase. If the design is éxpressed in some
formal notation for which analysis tools are available; then through
tools it can be checked for internal consistency (e.g., those modules
used by another are defined, the interface Qf' a module is consistent
with the way others use it, data usage is consistent with declaration,
etc.) If the design is not specified in a formal, executable language, 1t

| cannot be processed through tools, and other means for verification

(

have to be used.

There are two fundamentlal approdche.’s to verification. The first
consists of experimenting with the behaviour of a product to see
whether the product performs as expected (i.e., testing the product.)

The other consists of analyzing the product-or any design
.documentation related to it-to deduce its correct operation as a logical.

consequénce of the design decisions. The two categories of verification
techniques are also classified as dynamic or static, since the former .
requires-by definition exeéuting the system to be \éeriﬁed, while the
latter does not. Not surprisingly, the two techniques turn out to be
nicely complementary. | |

Designing Software

STUDENT ACTIVITY . | Solutions

1. Define software design.

2. Write short notes on the following:

(a) Horizontal partitioning (b) Ve’

rtical partitioning.

SUMMARY

~» Simplicity is perhaps the most important quality criteria for software systems.

e Horizontal partitioning defines separate branc
program function.

hes of modular hierarchy for each fnajor

e Vertical partitioning, often called factoring, suggésts that control and work should be

distributed from top -down in the programme

structure.

* An abstraction of a component describes the external behaviour of that component without
bothering with the internal details that produlce the behaviour.

* Architectural design represents the structure of data and program components that are

required to build a computer-based system.

* The objective of architectural des1gn is to develop a model of '\softv;/are aréhitect;ure,

Whlch gives a overall organization of program

!module in the software product.

‘e Structured Design Methodology (SDM) views every software system as havmg some mputs .
that are converted into the desn'ed outputs by the software system. '

¢ Control coupling exmts between two modules, if data from one module is used to direct the‘ :

order of instruction execution in another.

i
! Self-Instructional Material 88
; .

|

Software Engineering

NOTES

90 Self-Instructional Mater'iql,

SE

- .ﬁ_-

© ®» 2 e o

10.

- 11.

12.

-13.

" External coupling is essent1a1 but should be 11m1ted to a small

number of modules with structure.
Content coupling exists between two modules, if their code is

 shared, for example, a branch from one module into another

module.

The Structure chart is one of the most commonly used methods
for system design. t

Relationships between objects are indicated using lines and arrows. -
Whole- -part relationship refer to obJects that contain one or more
objects.

Generalization-specialization relationships refer to classes that
inherit attributes and services from other classes.
Connections illustrate the dependency of one object on the services
or processiﬁg of another object.

The Design Specification addresses different aspects of the design

" model and is completed as the designer refines his representation

of the software.

REVIEW QUESTIONS

What are the various design objectives of software design?
What do you mean by problem partitioning? ;

Write a short note.on abstraction. . -
What do you mean by architectural de51gn‘7 Discuss its obJectlves)
What are the desuable properties of a modular system?

What are the advantages of a modular systems?

‘What are the different types of coupling? Explain.
'-Explain the different types of cohesion.

Describe the various building blocks of structure chart.

'What is the difference between flow chart and structure chart?

What do you mean by pégudo- code? Discuss advantages and
disadvantages of pseudo code.

What are thé various benefits of object-oriented development?
Define the -following:
(a) Abstract class

() Friend class ‘ '\ o _ Designing Software
: Solutions -

(¢) Virtual class

(d) Metaclass

-

(e) Whole-port relationship NOTES

(f) Generalization-specialization relationship

14. What are the two fundamental approaches |of vefiﬁcatjon for
design? ' T '

FURTHER READINGS

1. Software Engineering, Bharat Bhushan Agarwal, Suinii: Prakash-
' Tayal, Firewall Media. ' ‘

2. Software Enginéering, D. Sunder, University Sciehce Press.

Self-Instructional Material 91

Software Engineering

NOTES

92 Self-Instructional Material

‘be trained on the use of the new system focusmg on its requlrements

vnir IV SOFTWARE IMPLEMENTATION

% STRUCTURE *]

4.0 Learriing Objectives

- 41 introduction ‘
42 Software Implementation Guidelines
4.3 Relation Between Design and Impie’mentation
44 Coding
45 Coding Standards and Guidelines
46 Code Review
4.7 Clean Room festing
4.8 Software Documentation
* Summary a

+ Review Questions

+ Further Readings

‘4.0 LEARNING OBJECTIVES

After studying the unit, you will be able to:
* explain guidelines for sb/i:tware implgxhentation
. describe” relation between design and implementation
* describe coding and code review | |

4.1 INTRODUCTION

Implementation is the process of first ensuring that the information
system is operational and then allowing users to take over its operation -~
for use and evaluation. This involves training the users to handle the
system. The analyst needs to plan for a smooth conversion from the

- old system to the new one. This includes converting files old formats

to new ones or building new databases etc.

Once the Information System has been developed and accep’bance'
testing is completed the 1mpleme1f1tat10n process starts. Users must: u

i

and its capabilities. Many organisations combine testing and training .

in the same stage. This works well because users can become familiar
with the new IS as well as ensure that it can handle errors at the

 same time. Training, like testlng and. documentatlon, is ultimately a

management respon51b1hty

4.2 SOFTWARE IMPLEMENTATION
GUIDELINES :

Software implementation should be done with proper planning, hasty
decisions lead to problems and delays. The process of implementation
of software should be consistent with least amount of disturbance.

Following are the some of the basic coqsiderations that should be kept
in mind for smooth implementation of software.

Proj)er Equipment

The hardware and software requirements should be ﬁrst re- exammed.

with the software supplier. The equipments for general-purpose apphcatlons
should be delivered several weeks before the installation of an application.
Thes helps to have a basic idea about.the hardware before major
implementation of the applications, Sufficient time for networkmg should

be given, if the system uses the network resources. Good quality wiring
and the fastest hubs should be used to gain best perfoqmance from the
system. Proper connectivity devices such as wiring, hubs and routers
should be used to reduce bottleneck arising in system performance.
Conversion l
Conversion methodology ensures a 'profes'sic;nal result in line with
expectations and within budgeted time period and cost.| The conversion

methodology clearly improves communication between the project team’
and management by providing a readily understandable, structured

approach

H -

Training
‘Formal training about the functioning of software should be provideci
to the employees for the successful use of the application software.

Hardly ever, one reads a manua} and 1mplements the apphcatwn in a

- smooth manner. Application tralmhg should be des1gned to teach users e

- . -

how to use the software. . _ -

‘Software Implementation .

NOTES -

" Self-Instructional Material 93

Software Engineering

NOTES

94 Self-Instructional Material -

_ Implementing Applications

Follow a deﬁmte sequence to install all the inter-related apphcatlons
For example, an application consists of general accounting, payroll
and utility bllhng In the apphcatmn accounting w111 come first because
“the other systems require 1ts availability. :

Backups.

Regular system backups should be taken so that the users can revert
to an older copy of the data files when they commit any mistake. The
backup procedure can be performed during the free hours of ‘at the |
end of the day. You can take the take the backup of only the critical
points in an application. Backups are stored in the removable disk or
in high capacity tapes. You can-also store backups in another folder of
the hard disk drive of your system) : Ty

4.3 RELATION BETWEEN DESIGN AND
IMPLEMENTATION

System De31gn

Design is the most creative and challenging phase of the system development
life cycle. The term design describes the final system and process by
which it is developed. Different stages of design phase are shown in
Figl. This phase is very important phase of life cycie. This is a’creative
as well as a technical activity including the following'.tasks:

_.* Appraising the terms of reference

e Appraising the ‘analy'sis of the existing system, particularly
regarding problem areas -

e Defining preci‘s"ely the required system output
¢ Determining data required to produce the 'output
. Dec1d1ng the medium and open the files

. Dev1smg processmg methods and use of software to handlel
files and to produce output

. Determining methods of data capture and data input
- Designing the output forms '_ '

. .Di'ﬁning detailed critical procedures

. Calculatmg tlmmgs of processing and data movements

. Documentling all aspects of design

- [

From analysis

?

v

Detailed system
documentation

L

Cost justification

Design submitted .
Output design to management end candidate
l . for approval system design
Input design
l) { Abandon
File design project ,
Processing design
o Test programs T
4 . .
é go to implementation

+ Fig. 1. Cycle of Design Phase

|
- |
Implementation.phasé is less creative than system design. It is mainly
concerned with user training, site selection preparation and file conversion.
Once the system has been designed, it is ready for implementation.
Implemention is concerned with those tasks leading |immediately to a

Implementation

fully operational system. It involves programmers, users and operations
management, but it's planning and timing is a prime function of system's
analyst. It includes the final testing of complete system to user satisfaction,
and supervision of initial operation of the system. Implementation of
the system includes providing security to the system, also so that
some person may not misuse it.

Types of Implementation -

There are three types of 1mp1ementat1on

¢ Implementation of a computer system to replace a manual)

system. _
e Implementation of a hew computer system to replace an existin g
one. '

. Implementation of a modified application (software) to replace

|
44 CODING . N
. ‘ : B B ,
Good software development organizations normally require their
- programmers to adhere to some well-defined and standard style of

an existing one using the same computer. ™

Software Iniplementation

NOTES

o .
Selﬁlnstrz\ﬁ:tional Material 85 |

Software Engineering

NOTES

/

96 Self-Instructional Material

coding called coding standards. Most software development organizations ‘
formulate their own coding standards that suit them most, and require
their engineers to follow these standards rigorously. The purpose of
requiring all engineers of an organization to adhere to a standard
style of coding is the following:

e A coding standard gives a uniform appearance to the codes
written by different engineers.

* It enhances code understanding.
* It encourages good programming practices.

A coding standard lists several rules to.be followed during coding,
such as the way variables are to be named, the way the code is to be
laid out, error return conventions, etc.

4.5 CODING STANDARDS AND GUIDELINES

Good software development erganizations‘usually develop their own
coding standards and guidelines depending on what best suits their -
organization and the type of products théy develop.

The following are some representative coding standards.

" Rules for limiting the use of global: These rules list what types of
_data can be declared global and what cannot.

Contents of the headers preceding codes for different modules:
The information contained in the headers of different modules-should
be standard for an organization. The exact ferinat in which the header
information is organized in the header can also be specified. The followmg
are some standard header data:

¢ Name of the module.

e Date on which the module was created.

\ * ' Author’s name

° Modlficatlon history.
* Synopsis of the module '

* Different functions supported, along w1th their 1nput/output
parameters.

o Global variables accessed/mod1ﬁed by the ‘module.

Naming conventmns for global varxables, local variables, and
constant identifiers: A possible naming convention can be that global
variable names always start with a capital letter, local variable names
are made of small letters,.and constant names are always cap1ta1 letters.

Error return conventions and - exception handling mechamsms. ,

The way error condltlons are reported by dlfferent functions 1nl a program
5

h

are handled should be standard within an organization. For example,
different functions while encountering an error condition should either
return a 0 or 1 consistently.

The following are some representative coding guldehnés recommended
by many software development organizations.

Do not use a coding style that is too clever or too dlfflcult to
understand: Code should be easy to understand. Many inexperienced
engineers actually take pride in writing cryptic and il!ncompre}iensible
code. Clever coding can obscure meanmg of the code and hamper
understanding. It also makes maintenance difficult.

Avoid obscure side effects: The side effects of a function call include
modification of parameters passed by reference, modification of global
variables, and I/O operations. An obscure side effect is| one that is not
obvious from a casual examination of the code. Obscure side effects make
it difficult to understand a piece of code. For example, if a global variable
is changed obscurely in a called module or some file I/O is performed
which is difficult to infer from the function’s name and header information,
it becomes difficult for anybody trying to understand the code.

Do not use an identifier for multiple purposes: Pro,[grammers often
use the same identifier to denote several temporary entities. For example,
some programmers use.a temporary loop variable for computing and
a storing the final result. The rationale that is usually given by these
programmers for such multiple uses of variables is memory efficiency,
e.g., three variables use up three memory locations, whereas the same
variable used in three different ways uses just one mlemory location.
However, there are several things wrong with this approach and hence
should be avoided. Some of the problems caused by use’ of variables for
multiple purposes as follows:

* Each variable should be given a descriptive name indicating
its purpose. This is not possible if an identifier is used for
multiple purposes. Use of a variable for multiple purposes can
lead to confusion and make it difficult for somebody trying to
read and understand the code. |

® Use of variables for multiple purposes usually makes future
enhancements more difficult.

The code should be well-documented: As a rule (Jf thumb there
‘mhust be at least one comment line on the average for every three-
source line.

The length of any function should not exceed 10 source lines: A
function that is very lengthy is usually very difficult to understand as
it probably carries out many different functions. For the same reason,
lengthy functions are likely to have disproportionately. larger number
of bugs.

Software Implementation

NOTES

Self-Instructional Material 97

Software Engineering

NOTES

98 Selﬁinstructional Material-

14.6 CODE REVIEW

Db not use go to statements: Use of go to statements makes a program
unstructured and makes it very difficult to understand. '

~

Code review for a model is carried out after the module is successfully
compiled and the all the syntax errors have been eliminated. Code reviews

1 are extremely cost-effective strategies for reduction in coding errors

and to produce high quality code. Normally, two types of reviews are
carried out on the code of a module. '

These two types code review. techniques are code inspection and code
walk through. ' i "

Code Walk Through

»

| Code walk through is an informal code analysis technique. In this technique,

after a module has been coded, successfully compiled and all syntax

-errors eliminated. A few members of the development team are given

the code few days before the walk through meeting to read and understand
code. Each member selects some test cases and simulates execution of
the ¢ode by hand (i.e., trace execution through each statement and function
execution). The main objectives of the walk through are to discover the
algorithmic and logical errors in the code. The members dote down
their findings to discuss these in a walk through meeting where the
coder of the module 1is present. ‘

Even though a code walk through is an 1nforma1 analysis techmque

| several guidelines have evolved over the years for making this naive but

useful analysis ‘technique ‘more effective. Of course, these guidelines are

.| based on personal experience, common sense, and several subjective factors.

Therefore, these guidelines should be considered as examples rather
than accepted as rules to be apphed dogmatlcally Some of these guldehnes- ’
are the following.

¢ The team performing code walk through' should not be either
too big or too small. Ideally, 1t should consist of between three
to seven members. '

* Discussion should focus on dlscovery of errors and not on how

to fix the discovered errors. .

e In order to foster cooperatio;i and to avoid the feeliﬁg' among: -
engineers that they are being ev:_iluate_d in the code walk through
meeting, managers should not attend the walk through meetings.

Code Inspection

In contrast to code walk through, the aim of code]inspection is to

discover some common types of errors caused due to oversight and.

improper programming. In other words, during code inspection the
code is examined for the presence of certain kinds of errors, in contrast
to the hand simulation of code execution done in code walk throughs.
For instance, consider the classical error of writing a procedure that
modifies a formal parameter while the calling routine calls that procedure
with a constant actudl parameter. It is more Iik_ely.'thét such an error
will be discovered by looking for these kinds of mistakes in the code,
rather than by simply hand simulating execution of the procedure. In

addition to the commonly made errors, adherence to coding standards

is also checked during code inspection. Good software development
companies collect statistics regarding different types of errors commonly
committed by their engineers and identify the type of errors most
frequently committed. Such a list ‘'of commonly committed errors can
be used during code inspection to look out for possible errors.

Following is a list of some classical programming errors which can be
checked during code inspection:

1. Use of uninitialized variables.

Jumps into loops.. : _
Nonterminating loops. |
Incompatible assignments.
Array indices out of bounds.

Improper storage allocation and deallocation.

N e N

Mismatches between actual and formal parameter in procedure
calls.

8. Use of incorrect logical operators or incorrect precedence among
operators.

9. . Improper modification of loop variables.

10. Comparison of equally of floating point variables, ete.

4.7 CLEAN ROOM TESTING :

Clean room testing was pioneered by IBM. This type of testing relies

heavily on walk throughs, inspection, and formal verification. The ,

programmers are not allowed to test any of their code by executing
the code other than doing some syntax testing usingla compiler. The
software development philosophy is based on avoiding software defects
by using a rigorous inspection process. The objective of this software
is zero-defect software. :

Software Implementation

NOTES

Self-instructional Material 99

Software Engineering

NOTES

100 Self-Instructional Material

The name ‘clean room’ was derived from the analogy with semiconductor

fabrication units. In these units (clean rooms), defects are avoided by"
manufacturing in ultra-clean atmosphere. In this kind of development,

inspections to check the consistency of the components with their
specifications has replaced unit-testing.

This technique reportedly produces documéntation and code that is
more reliable and maintainable than other development methods relying
heavily on code execution-based testing.

The clean room approach to software development is based on ﬁve.

characteristics:

¢ Formal specification: The software to be developed is formally
- specified. A state-transition model which shows system responses
to stimuli is used to express the specification.

e Incremental development: The software is partitioned into
increments which are developed and validated separately using
the clean room process. These increments are spec1ﬁed with
customer input, at an early stage in' the process.

e. Structured programming: Only a limited number of control
and data abstraction constructs are used. The program development
process is process of stepwise refinement of the specification

* Static verification: The developed software is statically verified
using rigorous software inspections. There is no unit or module
‘testing process for code components ’

e Statistical testing of the. system: The integrated softwaro'
increment is tested statistically to determine its reliability.
These statistical tests are based on the operational profile
which is developed in parallel with the system specification.

'The main problem with this approaeh is that testing effort is increased

as walk through, inspection, and. verification are time-consuming.

4.8 SOFTWARE DOCUMENTATION

When various kinds of software products are developed then not only
the executable files and the source code are developed but also various
kinds of documents such as users’ manual, Software Requirements

' Speoiﬁcation (SRS) documents, design documents, test documents,

installation manual, etc., are also developed as part of any software
engineering process. All these documents are a vital part of good software

-development practice. Good documents are very useful and server the

following purposes:

* Good documents enhance understandability and maintainability

of a software product. They reduce the effort and time required.

" for maintenance. . |
¢ Use documents help the users in effectively using the system.

* Good documents help in effectively handling the manpower
turnover problem. Even when an engineer leaves the organization,
and a new engineer comes in, he can build up the required
knowledge easily. - .

* Production of good documents helps the manager in effectively
tracking the progress of the project. The project manager knows

-that measurablé progress is achieved if a piece of work is done |,

and the required documents have been produced and rev1eWed.

Different types of software documents can broadly be classified into
the following:

{
{
!
¢ Internal documentation .

» External documentation

Internal documentation: is the code comprehension features provided

as part of the source code itself. Internal documentation is provided |

through appropriate module headers and. comments embedded in the
source code. Internal documentation is also prov1ded through the useful
variable names, module and function headers, code indentation, code
structuring, use of enumerated types and constant identifiers, use of
user-defined data types, etc. Careful experiments.

Suggest that out of all types of internal documentation meaningful variable

names is most useful m understanding the ‘code. This is of course in
contrast to the common expectation that code commentlng would be the
most useful. The research finding is obviously true vyhen comments are
written without thought. For example, the following style of code commenting
does not in any way help in understanding the cod '

a = 10;/* a made 10%/

P

" But even when code is carefully commented, meanmgful variablé names |

still are more helpful in understanding a piece of code. Good software

development organizations usually ensure good internal documentation
by appropriately formulating their coding standards 'and coding guidelines.

External documentation: is provided through various types of supporting
documents such as userS’ manual, software requirements specification

document, design document, test documents, etc. A systematic software |
development style ensures that all these documents are produced in.

an orderly fashion.

. Software Implementation

NOTES

.Se!f-Instructipnal Material 101

°

‘ Software Engineering

STUDENT ACTIVITY

1. What is meant by Implementation? =~

2. Describe the relation bétween system design and Implementation.

" SUMMARY

* Implementation is the process of first ensuring that the information system is operational
and then allowing users to take over its operation for use and evaluation.

o Software implementation should be done with proper planmng, hsty decisions lead to
"~ problems and delays.

* Design is the most créati_ve and challenging pléase of the system developnient life-
cycle. The term design describe the final system and process by which it is developed.

* Implementation phase is less creative than system design. It is mainly concerned with
user training, site selection and prep-aration and file conversion.

* Generally almost all Software Engineers will used to formulate their own coding standards -
and expect their tea should implement-it. The c¢oding standard will give guidelines for
the good programming style, but the 1mplementat10n of the guidelines is left to the -
discretion of the individual engineers.

* Code reviewing is a more efficient way of removmg errors compared to testlng because
~ code review 1dent1ﬁes errors whereas testing identifies failures. Therefore, after 1dentlfy1ng
_the failures efforts _may be taken to locate and fix the errors.’

102 Seler;structiona_l Material

REVIEW QUESTIONS

1. Explain the software Implementation Guidelines.

2. What are -the good coding guidelines? -
3. Define code review.
4. What is a code analysis technique?

5. With help walk through and inspection explain- code analysis |

technique.
6. How the code can inspect? ,

7. What are the different approaches avallable for clean.room

testing?

" 8. Describe the relation between system de51gn and Impiementatlon ‘

9. What are the dlﬁ'erent approaches available for clean room

testmg”

FURTHER READIN GS

1. Software Englneermg, Bharat Bhushan Agar wal, Sumlt Prakash

Tayal, TFirewall Media.

2. Software Engineering, D. Sunder, Univer

sity Science Press,

s
—_———— e e .

NOTES

Self-Instructional Material

- Software Implementation

103

. Software Engin.eering UNIT V S OFTWARE MAINTEN AN CE

50 Learning ijective»s
5.1 Introduction

5.2 Necessity of software Maintenancé
5.3 Types of software Maintenance
54 Problems Associated With Software Maintenance
55 Software Reverse Engineering
56 Legacy software Products ‘
5.7. Factors on whtch Software Mainteniance Actwmes Depend
58 Software Malntenace Process Models
o 5.9 Software-Re-Engineering
510 Estimation of Approximate Maintenance Cost
5.11 Documentation ‘ '
512 Case and its scope
5.13 Leveis of CASE ,
5.14 Architecture of CASE Enwronment
5.15 'Building Blocks for CASE
5.16 CASE Support in Software Life Cycle
517 Objective of CASE
- 5.18 CASE Repository
'5.19 Characteristics of CASE Tools
520 CASE Classification
5.21 Categories of CASE Tools
522 Advantages of CASE Tools
5.23 Dis:advantages of CASE Tools
5.24 Limitations of CASE Tools
525 CASE for Future
| * Summary ’
* Review Questions

* Further Readings

104 Self-Instructional Material

’

5.0 LEARNING OBJECTIVES

Software Maintenance

After studying the unit, you will be able to:
' . ekplain necessity and types of software maintenance " A NOTES
o describe software reverse engineering. = | |

. illustrate architecture of CASE environment and documentafion

¢ explain characteristics, classification, categorles, advantage,
disadvantages and hmltatlons of CASE tools

* give a presentatlon on CASE for future. :
|-

5.1 INTRODUCTION

It is a task that every development team has to face when the software
is delivered to the customer’s site, installed and is operational. In general,
it means fixing things that breaks out or wear out. In software, nothing
wears out it 'is' either wrong from the beginning or we decide later that
we want to do something different. -

It is a very broad activity that includes error corrections, enhancements
of capabilities, deletion of obsolete capabilities and optlmlzatlon Because
change is inevitable, mechanisms, must be developed for evaluatmg, controlling
and making modifications. So any work done to change the software
.after it is in operation is considered to be maintenance ‘work.

5.2 NECESSITY OF SOFTWARE MAINTENANCE

Software maintenance is becoming an important activi}:y of a large number
"of software organizations. This is no surprise, glven the rate of hardware
lobsolescence, the 1mmortahty of a software product and the demand of

the user community to see the existing software products run on newer |

platforms, run in newer environments, and/or with enhanced features.

When the hardware platform is changed, and a software product performs

some low-level functions, maintenance is necessary. Also, whenever the

support environment of a software product changes, theisoftware product

requires rework to cope up with the newer interface. For instance, a

software product may need to be maintained when the operatin‘g system

changes. Thus, every software product continues to evolve after its development
through maintenance efforts. Therefore, it can be stated that software
maintenance is needed to correct errors, enhance features, port the software

to new platforms, etc. ‘ o

Self-lnstructional Material 105

Software Engineering

NOTES

108 Self-Instructional Material

5.3 TYPES OF SOFTWARE MAINTENANCE

There are basically three types of software maintenance. These are: .

* Corrective: Corrective maintenance of a s',oftware‘ product is .
necessary to rectify the bugs observed while the system is in

use. '

¢ Adaptive: A software product might need maintenance when
the customers need the product to run on new platforms, on
new operating systems, or when they need the product to interface
with new hardware or software.’ :

* Perfective: A software product needs maintenance to support
the new features that users want it to support, to change different
functionalities of the system according to customer demands,
or to enhance the performance of the system.

5.4 - PROBLEMS ASSOCIATED WITH SOFTWARE
'MAINTENANCE

Software mamtenance work typically is. much more expensive than

. what it should be and takes more time than required. In software

organizations, maintenance work is mostly carried out using ad hoc’
techmques The primary reason being that software maintenance is
one of the most neglected areas of software engineering. Even though
software maintenance is fast becoming an important area of work for
many companies as the software products of yester years age, still
software maintenance is mostly being carried out as fire-fighting operations,
rather than through systematic and planned activities. Software maintenance
has . ‘@, very poor image in industry. Therefore, an organization often

cannot employ, bright engineers to carry out maintenance work. Even - .

though maintenance suffers from a poor image, the work involved is
often more challenging than development work. During maintenance
it is necessary to thoroughly understand someone else’s work and then
carry out the required modifications and extensions. '
Another problem associated with maintenance work is that the majority
of software products needing maintenance are legaéy products.

5.5 SOFTWARE REVERSE ENGINEERING

Software reverse engineering is the process of recovering the design
and the requirements specification of a product from an analysis of its
code. The-purpose of reverse engineering is to facilitate maintenance
work by improving the understandability of a system and to produce

the necessary documents for a legacy system. Reverse engineering is
becoming important, since, legacy software products lack proper
~ documentation, and are hlghly unstructured. Even well-designed, products
become legacy software as their structure degrades through a series of
maintenance éfforts. o, '

The first stage of reverse engineering usually focuses on carrylng out
cosmetic changes to the code to improve its readability, structure, and
understandability, without changing of its functionalities. A process model
for reverse engineering has been shown in Fig. = 1(a). A program can be

reformatted using any of the several available pretty printer programs |

which layout the program neatly. Many Iegacy software products with
complex control structure and un thoughtful variable names are difficult
-to comprehend. Assigning meaningful variable names i!is important because
meaningful variable names are the most helpful thing in code documentation.
All variables, data structures, and functions should bejassigned meaningful
names wherever possible. Complex "nested conditionals in the program
can be replaced by simpler conditional statements or whenever appropriate
by case statements. = e

Module
Specification

A

Code _ - L

Fig .1 (a) A process model for reverse engineering

Underst-\

anding

) Fig. 1 (b) New software development (¢) Re-engineering

Software Maintenance

NOTES

Self-Instructional Material 107 -

Software Engineering

NOTES

108 Self-Instructional Material

After thé cosmetic changes have been carried out on a legacy software,
the process of e)‘(tracting the code, design, and the requirements speciﬁcation
can begin. These activities are schematically shown in Fig.2. In order
to extract the design, a full understanding of the code is needed. Some"
automatic tools can be used to derive the data flow and control flow
diagram from the code. The structure chart (module invocation sequence
and ‘data interchange among modules) should also be extracted. The
SRS document can be written once the full code has been thoroughly
understood and the design extracted.“

Assign "
Reformat h o Simptify
Program Milan'”gfm Conditions -
. ames)
Simplify . Remove
/ Processing . GOTOs

Fig. 2 Cosmetic changes carried out before reverse engineering

5.6 LEGACY SOFTWARE PRODUCTS

It is prudent to define a legacy system as any software s&étem that is
hard to maintain. The typical probléms associated with legacy systéms
are poor documentation, unstructured (spaghetti code with ugly control
structure), and lack of personnel knowledgeable in the product. Many
of the legacy systems were developed long time back. But, it is possible
that a recently developed system having poor design and documentation
can be considered to be a legacy system.

5.7 FACTORS ON WHICH SOFTWARE

MAINTENANCE ACTIVITIES DEPEND

- The activities involved in a software maintenance project are not unique

and depend on several factors such as:
* the extent of modification to the product required
¢ the resources available to the maintenance team

¢ the conditions of the existing product (e.g., how structured it
is, how well documented it is, etc.)

* the expected project risks, ete.

When the changes needed to a software pfoduct are minor l‘and straightforward,

the code can be directly modified and the changes appropriately reflected
in all the documents. But more elaborate activities are required when

' ~ the required changes are not so trivial. Usually, for complex maintenance

projects for.legacy systems, the software process can be represented by
a reverse engineering cycle followed by a forward engineering cycle with
an emphasis on as much reuse as possible from the|existing code and
other documents. ' :

’
L4

5.8 SOFTWARE MAINTENANCE PROCESS
MODELS = |]

Two broad categories of process models for software maintenance can be

proposed. The first model is preferred for projects involving small reworks
“where the code is.changed directly and the changes are reflected in the
‘relevant documents later. This maintenance process is graphically presented
in Fig.3. ‘ ~ '

-~

In this approach, the project starts by gathering the requirements for

~changes. The requirements are next analyzed to formulI te the strategies
to be adopted for code change. At this stage, the association of at least
a few members of the original development team goes a long way in

rédﬁcing the cycle team, especially for projects involving unstructured:

and inadequately documented code. The availability of a working old
system to the maintenance engineers at the maintenance site greatly
facilitates the task of the maintenance team as they, get a good insight
into the working of the old system and also can compare the working of

their modified system with the old system. Also, debu‘g_ging'of the re- |
. engineered system becomes easier as the program traces of both the '

systems can be compared to localize the bugs.

Gather Change Requirements

A

Analyze Change Requirements .

Devise Code Change Strategies

Apply Code Change Strategies |
to the Old Code !

Update Documents Integrate and Test C -‘.i[3!
. - R SR
", Fig. 8 Maintenance process model 1 - T

/

o
[T X

Software Maintenance

NOTES

-~ Self-lnstruétfonal Material 109

Software Engineering ' The second ‘pro'cess model for software maintenance is preferred for
' | projects where the amount of rework required is significant. This approach
can be represented by a reverse engineering oycle followed by a forward
_ engineering cycle. Such an approach is also known as software re-
NOTES " engineering. This process model is depicted in Fig. 4. The reverse
engineering cycle is required for legacy products. During the reverse
engineering, the old code is analyzed (abstracted) to extract the module
specifications. The module specifications are then analyzed to produce
“the design. The design is analyzed (abstracted) to produce the original
' requi'reinents specification. The change requests are then applied to
this requirements specification to arrive at the new requirements
- | specification. At the design, module specification, and coding a substantial
‘reuse is made from the reverse engineered products. An important
advantage of this approach is that it produces a more structured design
compared to what the original product had, produces good documentation,
and very often results in increased efficiency. The efficiency improvements
are brought about by a moré efficient design. However, this approach
- is more costly than the first approach.

An empirical study indicates that process 1 is preferable when the
~ amount of rework is no more than 15% (as shown in Fig.5). Besides the
amount of rework, several other factors might affect the decision regardmg

using process model 1 over process model 2:
* Re-engineering might be preferable for. products Wthh exhibit

a high failure rate. ‘ :

¢ Re-engineering might also l?e preferable for legacy products

having poor design and code structure.
|

'Change Requirements

1 |
‘I Requirements e Requirements . !
| ' Specification ' ,‘ Specification : :
1 N [-
I Reverse 0" Forward -I
| Engineering . 'I : Engineering = !
t . > A I :
] 1 1
JI . Design 1 : Design 1
1 1
N 1 - 1 '
St / ’ " \ N
1 " =)
1 - n’ '
! Module n Module E
: Specification : : " Specification - :
' S 1" ' 1
| 1 ~ \ 1
! [i
1 1 1
X X Code " Code '
1 i]
e e e - == - . - - hm e e o™ ™ - - - - -——— e —-as wa-d

W \\

110 Self-Instructional Material -!

" Process 1

Cost

Process 2

v

. r» L 1 {
10 20 30 40
Percentage of Rework = -

.

Fig. 8 Empirical estimation of maintenance cost versus percentage rework

5.9 SOFTWARE RE-ENGINEERING

_ Software re-engineering is a combination of two consecutive processes

i.e., Software reverse engineering and software forward engineering as
shown in the Fig. 4. :

5.10 ESTIMATION OF APPROXIMATE

MAINTENANCE COST

. It is well known that maintenance efforts require about 60% of the total
" life. cycle cost for a typical software product. However, maintenance costs

vary widely from one application domain to another. For embedded systems,

the maintenance cost can be as much as 2 to 4 times the -development

" cost. Boehm [1981] proposed a formula for estimating r aintenance costs
- as part of his COCOMO cost. estimation model. Boer’s maintenance '
.cost estimation is made in .terms of a quantity called the Annual Change

Traffic (ACT).

Boehm defined ACT as the fraction of a software product’s source instructions

which undergo change during a typlcal year either through addition or
deletlon

KLOCadded + KLOCdeletéd

ACT =
KLO(’total

t

‘ Where, KLOC added is the total kilo lines of source ‘code added durmg
- maintenance. KLOC deleted is the total KLOC deleted during maintenance.
Thus, the code that is changed, should be counted in b(Lth the code added

and the code deleted. The Annual Change Traffic (A’CT) is multiplied
with the total development cost to arrive at the mamtenance cost malntenance
cost = ACT x development cost. e

Most maintenance cost estimation models, however, yield only approximate

" results because they do not take 1nto account several factors such as

N ' [

Software Maintenance

NOTES -

Self-Instructional I:{&:ér‘!:bl. 111

Software Engineering

NOTES -

112 Self-Instructional Material

experience level of the engineers, and familiarity. of the erigineers
with the product, hardware requirements, software complexity, etc.

5.11 DOCUMENTATION

Software documentation is the written of facts about a software system
recorded with the intent to convey purpose, content and clarity. The
recording process usually begins when the need for the system is conceived
‘and continues until the system is no longer in use. '

User Documentation

It refers to those documents, containing descriptions of the functions:
of a system without reference to how these functions are implemented.
A list of user documentation is given in the following table:

Table 1
S.No. - Document : Function
1 System overview - " . About general description of system’s
functions. .

2 Beginners guide . It explains how to start 'tl_1"e ‘system.
3 Reference gui(ie Provides depth description of each
‘ ' system facility and how it can be used.
4 " Enhancement ‘ Summary of features.

5 Quick reference Servers as a- factual lookup. | .
6 System administration It provides system informations like

networking, security and upgrading.

System Documentation

It refers to those documentation containing all facets of syStém including
analy81s specifications, de51gn, 1mp1ementat10n testing, securlty, error
‘d1agn031s and recovery.

5.12 CASE AND ITS SCOPE

'CASE stands for Computer Aided Software Engineering.

" “CASE is a tool which aids a software engineer to maintain and develop

- software”. The work§hop for software engmeermg is called an
Integrated Project Support Environment (IPSE) and the tool set
\that fills the workshop is called CASE.

. ’~_\
v V-

CASE is a computer aided software engineering’ technology CASE is
an automated support tool for the software engineers in any software

englneermg process.

Software engineering mainly includes t‘he following prooesses: I

(@)
(it)

| (iii)
(iv)
(v)

Translation of user needs into software requirements

Transaction of software requirements into design specification

Implementation of design into code
Testirig of the code '

Documentation.

CASE technology provides software process support by automating some

srocess activities and by providing information about the

software, which

's being developed. Examples of activities, Wthh can be automated using

CASE, include:

1.

The development of graphical sy,sberfl models as part of t

specification or the software design.

he requirements

Understanding a design using a data dlctlonary, wh1ch holds information

about the entities and relations in a design.

which is created interactively by the user.

Program debugging through the prov1s1on,of information about an

xecutlng program.

* The generation of user interfaces from a graphical interface description,

The automated translation of programs from an old version of a programming
-anguage such as COBOL to a mare recent version. The dse of Computer

aided Software Engineering (CASE) tool reduce the effort

of development

f achieving quality goals and managing change and con 1gurat10n throughout
he product life cycle, it also help the project m nager the software

.eveloper and other key personnel to improve thelr pro,
evelopment team.

ductivity in the

.13 LEVELS OF CASE

‘here are three different levels of CASE teohnology:
1.

Production process support technology

This includes suppoft for process activities such las specification, .

design, iinplementation testing and so on.

Process management and technology

" This include tool to support process modehng and process management.
These tools are used for specific support activities.

" Software Maintenance.

NOTES

Self-Instructionol Material 113

Software Engineering

NOTES

-

114 Self-Instructional Material

3. Meta-CASE technology

Meta—CASE tools are generators, which are used to create
production process management support tools. '

5.14 ARCHITECTURE OF CASE ENVIRONMENT

The architécture of CASE environment is illustrated in the Fig'6.

User Interface
Tools layer

Tool Management Services
(Tool Set)

CASE

tool Tools

Layer|

~ Object Management System
(OMS)

Fig. 6 Architecture of CASE Environment

The important components of a modern CASE environment are the
user interface, the Tools Management System (Tools set), the Object.
Management Systern (OMS) and the repository. These various components
are discussed as under:

1. User Interface

It provides a consistent framework for accessing different tools; thus

- making it easier for the user to interact with different tools and reduces

learning t1me of how the different tools are used.

2. Tools Manageme_nt Services (Tools Set)

The tools set section holds the different types of improved quality
tools. The tools layer incorporates a set of tools management services
with the CASE tool themselves. Tools Management Service (TMS) control
the behaviour of tools within the environment. If multitasking is used

.duri'ng the execution” of one or more tools, TMS performs multitask

|

synchronization and ¢ommunication, coordinates the flow of information
from the repository and object management system into the tools, accomplishes
security and auditing functions, and collécts metrics on tool usage.

3. Object Management System (OMS)

The object management system maps these (spec1ﬁcat10n des1gn text
data, project plan etc.) loglcal entities into the underlying storage management
system i.e., repository.

Working in conjunction with the CASE ‘repository, the OML prowdes
integration services a set of standard modules that couple tools w;th the
repository. In addition, the OML. provides configuratilon management
services by enabling the identification of all configuration objects performing
version control, and providing support for change control, audits and
status accounting. :

4. Repos1tory

It is the CASE database and the access control functlonis that enable the
OMS tb interact with the database. The word CASE repository is referred

in different ways such as project database IPSE database, data dictionary, |

' CASE database and so on.

5.15 BUILDING BLOCKS FOR CASE

-J

The building blocks for CASE are illustrated in Fig.

CASE tools -

" thtegration framework

Portability services

“ Operating System

Hardware platform

Environment architecture

Fig. 7 CASE Building Blocks

1. Envirdnment Architecture

The environment axjchitecture; cdmposed -of the hardware platform and
operating system support including networking and database management
software, lays the groundwork for CASE but the CASE envu'onment
itself demands other building blocks.

Software Maintenance

 NOTES

Self-Instructional Material 115

Software Engineering

NOTES

116 Self-Instructional Material

2. Portability Services

A set of portability service provides a bridge between CASE tools and
their integration framework and the environment architecture. These
portability services allow the CASE tools and their integration framework.
to migrate across different hardware platforms and operating systems
without sxgnlﬁcant adaptive ma1ntenance

3. Integration Frame_work

It is a collection of specialized programs that enables individual CASE ,
tools to communicate with one another, to create a project database.

4. CASE Tools

‘CASE Tools are used to assist software engineering activities (like analysis

modeling, code generation etc.) either communicating with other tools,
project database (integrated CASE environment) or as point solutions.

5.16 CASE SUPPORT IN SOFTWARE LIFE CYCLE

There are various types of support that CASE provides during the
dlfferent phases of a software life cycle.

1. Prototypihg Support

The prototyping is useful to understand the requiréments of complex
software products, to market new ideas and so on. The prototyping
CASE tools requirements are as follows

({) Define user interaction
(ii) Define the system control flow
(i2i) Store and retrieve data required by the system

(iv) Incorporate some processing logic.

_ Few features, which are supported by prototyping tools, are:

* Main use of prototypmg CASE tool is developing Graphical User
Interface (GUI) development. The user should be allowed to
- define all data entry forms, menus'and control.

* Integrate well with the data dictionary of a CASE environment.

e ‘It should be able to integrate with the exterrial user-defined
modules written in high-level languages.

* The user should be able to define the sequence of States through
which a created prototype can run.

* The prototype should support mock up run of the actual system
and management of the input and output data.

2. Structured Analysis and Design ‘

AI CASE tool should support one or more of the structured analysis and
design techniques. It should also support making of the fairly complex
diagrams and preferably through a hierarchy of levels. The tool must
also check the incompleteness, inconsistencies and anomalies across the
design and analysis through all levels -of analysis hierarchy. |

Analysis and design tools enable a software engineer to treate models of
the system to be built. The models contain a representation of data,
function, and behaviour (at the analysis level) and characterizations of
data, architectural, component level, and interface design. By performing
cons1stency and validity checking on the models, analysis and design

tools provide a software engineer with some degree of [insight into the |

analysis representation and help to éliminate errors before they propagate
into the design, or worse, into implementation itself. ’

3. Code Generation |

A support expected from a CASE tool during the code generatlon phase
comprises the following:

e The CASE tool should support generatlon of module skeletons or
templates in one or more popular programming|languages.

* The tool should generate records, structures, class definitions
automatically from the contents of the data dictionary in one or
more popular programming languages. ' _

e It should be able to generate database tables for relational database

management system

¢ The tools should generate code for user 1nterface from prototype‘
definitions for X-Windows and MS Window based appl1cat10ns

4. Test CASE Generator

The CASE tool for test case generator should have fellowing features:

-

e It ~sh0uld support both design and re’qnirement testing“

s It should generate test set reports in ASCII format, which can be
directly, imported into the test plan document.

Under testing phase, test management tools are used to control and
coordinate software testing for each of the major testlng steps. Testmg
tools _manage and coordinate regression testing, perform comparisons
that ascertain differences between actual and expected output and conduct
batch testing of programs with interactive human/computer interfaces.
In addition to the functions noted, many test manaéement tools also
serve as generlc test drivers. A test driver reads one or more test cases

i
I

P

Software Maintenance

NOTES

_ Self-Instructional Matérl'al 117

Software Engineering

'NOTES

118 Self-Instrucf.ional Material

from a tésting file, formats the test data to conform to the needs of the .
software under test, and then invokes the software to be tested.

5.17 OBJECTIVE OF CASE

1. Improve Productivity

Most organizat_idns use CASE to increase the speeds with which systems

‘are designed and developed. Imagine the difficulties; the carpenters
‘would face without hammers and saws. Tools increase the analysts’

productivity by reducing the time needed to document, analyze, and

construct information system.

2. Improve Information Syétem Quality

.When tools improve pro.cesses, they usually improve the results as

well.

¢ Ease andi 1mprove the testing process through the use of automated' '
checking.

¢ Improve the integration of developniept activities via common
methodologies. |

* Improve the quality and completeness of documentation.
" Help standardize the development process.

¢ Improve the managemént of the pi‘oject.

* Simplify program maintenance.

* Promote reversibility of modules and documentation.

' Shortens the overall construction process. -

* Improve software portability across environments.

* Through reverse engineering and re-engmeermg, CASE products

extend the file of existing systems.

Despite the various driving forces (obJectlves) for the adoption of CASE,
there are many resisting forces also that preclude many orgamzatmns
from makmg 1nvestment in CASE

3. Improve Effectiveness

Effectiveness means doing the right task (i.e., deciding the best task
to perform to achieve the desired result). Tools can suggest procedures.
(the right way) to approach a task. Identifying us$er requirements,
stating them in @n understandable form, and communicating them to
all interested parties can be an effective development process compared -
to moving quickly into coding.

4. Organizations Reject CASE

e The start-up cost of purchasing and using CASE
* The high cost of training personnel '
e The big benefits of using CASE come ‘in the late stages of the
- SDLC o ,
» CASE often lengthens the duration of early stage of the project
¢ CASE tools cannot easily share information between tools
* Lack of methodology standards within organizafiops, CASE products
forces analysts to follow a specific methodology for system development
* Lack of confidence in CASE ﬁroducts ‘ ’ '
» IS personnel view CASE as a threat to their job security.
Despite these issues, in long-term, CASE is very good| The functionality
of CASE tools is increasing and- the costs are coming]down. ‘During the
next several years, CASE technologies and the market for CASE will
begin. to mature. | ’ !'

5.18 CASE REPOSITORY |
- |

A CASE repository is a system developer database. |Syno_nyms include

dictionary and encyclopedia. It is a place where developers can store

system models, detailed descriptions and specifications, and other products

of system development. '

Analysts use CASE repositories for five important reasons:
¢ To manage the details in large systems J
o To communicate a common meaning.for all s /stem elements
-+ To document the features of the s&stem

e o facilitate analysis of the details in order to evaluate characteristics’|

and determine where system changes should |be made.

¢ To locate errors and omissions in the system, .
*To limit the amount of narrative needed to describe relationships between
data items and at the same time to show the structural relationship
clearly, analysts often use formal notation in data dictionary, a component
of CASE repository. . '

Data dictionary can be developéd manually or using automated systems.
Automated systems offer the advantage of automatically producing data
element, data structure, and process listings; they also perform cross-reference
- checking and error detection. The data dictionary is a|repository of all data
definitions for all organizational applications and is used to manage and

" control access to the information. repository, another component of CASE

repository. Information repository provides automated tools used to manage
and control access to business information and appllication portfolio.

Software Maintenance.

NOTES

. Self-Instructional Mé;erial 119

Software Engineering

NOTES

"0 Self-Instructional Materiol

CASE

Workstation
and Software

1)
mmmmlmmm@

Dingramming f§ Dyseription veoQuality - parpentation Besipn end Code
Tools - - Tools § : ,.,Mmff:{;’m - Tools, +. B Gonerator Tools

[y

: ject and design model
system System system quality PTAV
descriptions prototypes system and program
4'models and sgeciﬁ- prototyp rgport; documentation code

cations

CASE repositories are
usually stored on servers
1{so that they may be shared
{ by multiple projects and

| participants o 5

Repository Server

Fig. 8 CASE Repository

CASE repository is an idea central to I-CASE. Intfegrated-CASE tools
rely on common terminology, notations and methods for systems development
across all tools. Within an I-CASE environment, all diagrams, forms,
reports and programs can.-be automatically updated by the single change
to the data-dictionary definition. Besides specific tool integration, there
are two additional advantages of using a comprehensive CASE repository
that relate to project management and reusability. The CASE repository
provides a wealth of information to the project manager and allows
the manager to exert an appropriate amount of control on the project. -
If all organizational systems were created using CASE technology with
a common repository, it would be possible to reuse significant portions
of prior systems in the development of new ones. ‘

5.19 CHARACTERISTICS OF CASE TOOLS

All CASE tools have the following characterisfics:

1. A graphic interface to draw diagrams, charts, models ‘(upper
case, middle case, lower case) ‘

2. Aninformation repository, a data dictionary for efficient information
management selection, usage, application and storage

3. Common user interface for integration of multiple tools used in
various phase ' ' E

4. Automatic code generators
5. Automatic testing tools. -

5.20 CASE CLASSIFICATION

CASE claséiﬁc'ations help us understand the different types of CASE

I

tools and their role in supporting software process activities. There are
various different. ways of class1fy1ng CASE tools, each of which gives us
a different perspective on these tools. In this section, I discuss CASE

tools from three of these perspectives, namely:

-

- 1. A functional perspective where CASE tools are|classified according

to their specific function.

2. A process perspective where tools are classified according to the

process activities which they support.

"3. An integration perspective where CASE tools areja classified according
to how they are organized into integrated units which provide

support for one or more process activities.

List of CASE Tools

Case Tool

. Re- engmeermg
tools

. Program
analysis tool

. |
Application Ij’urpose of Tool
1. 'Pianning Excel spreadsheet, MS- | Functional Application:’
' : Project, PERT/CPM Planning, scheduling,
Network, Estimation control
tools
. Editing Diagram editors, Text Speed and Efficiency
: editors, Word Processors : .
. Testing .Test Data Generators, Speed and Efficiency
. File Comparators
. Protqtyping_ High level Modeling Conﬁrmatlon and
language, User Interface' Certxﬁcatlon of RDD and
Generators SRS
. Documentation | Report Ge'neraﬁors, Publishing Faster structural documen-
imaging, PPT presentation ta_tilon with quality of
presentation
. Programming Program Geﬁerétzors, Code Programming of high quality
and Language Generators, Compilers, with no errors, System
Processing Interpreters Interface, Intclgratlon
Integration connectivity
. Teniplétes Guided Systematic

Cross reference systems,
program re- structurmg
systems

Cross reference generators
Static analyzers, dynamlc
analyzers

dew)elopment

Reverse-engineering to find
structure, design and design
information .

Analyses risks, functions,
features .
/

Software Maintenance

NOTES

S_elf-lnstructional Material 121

Software Engineering,

NOTES

122 Self-Instructional Material

5.21 CATEGORIES OF CASE TOOLS

The schematic diagram of CASE tools is drawn bglow in Fig. 9.

Phase in development

A
y

Horizontal Tools

Fig. 9 Categories of CASE Tools

.Srﬁith and Oman have defined CASE tools which are divided into ‘the

following two categories.

1. Vertical CASE tools R 2. Horizontal CASE tools

1. Verticai CASE Tools ‘

Vertical CASE tools provide support for certain activities within a
single phase of the software life cycle.

There are two subcategories of vertical CASE tools:

(@) First Category. It is the set of tools that are within one phase
of life-cycle. These tools are important so that development in
each phase can be as quick as possible.

(ii) Second Category. It is a t\ool that is used in more than one
phase, but does not support moving from one phase to the next.
These tools ensure that the developer does move on the next
phase as appropriate.

2. Horizontal CASE Tobls

These tools support automated transfer of information between the
phases of a life cycle. These tools include project management configuration

- management tools and integration services.

The above two categories of CASE tools can further be broken down
into the following:

1. Upper CASE Tools/Front-End CASE Tools

CASE tools are designed to support the analysis and désign phases of

SDLC: All the analysis, design and specification tools Lre front-end tools.
‘These tools also include computer-aided diagramming tools oriented towards
a particular programming design methodology, more i‘ecently ipcluding
object-oriented design. "

The general types of upper CASE tools are listed below:

¢ Diagramming Tools: Diagramming tools ehal?le system process,

data and control structures to be represented graphically. They
strongly support analysis and documentation of application
requirements.

e Form and Report Generator Tools: .They support the creation

" of system forms and reports in order to show how systems will
. “look and feel” to users.

* Analysis Tools: Analysis tools enable automatic checking for

incomplete, inconsistent, or incorrect specificdtions in diagrams,
forms and' reports. ‘

2. Lower CASE or Back-End Tools

CASE tools designed to 'supp~ort the implementation and maintenance
phases of 'SDLC. All the generator, translation and testing tools are
back-end tools. o . , ‘ ‘
The general types of Lower CASE tools are:

» Code Generators: Code generators automate! the preparation of
computer software. Code generation is. not yet perfect. Thus, the
best generator will produce approximately 75 percent of the source
code for an application. Hand coding is still necessary. ’

3. Cross Life Cycle CASE or Integrated Tools

CASE tools used to support activities that occur acr'oss multiple phaseé
of the SDLC. While such tools include both front-end and back-end capabilities,
they also facilitate design, management, and maintenance of code. In
- addition, they provide an efficient environment for the creation, storage,
manipulation, and documentation of systems..

4. Reverse Engineering Tools

These tools build bridges from lower CASE tools to upper CASE tools.
They help in the process of analyzing existing applications, performa
and database code to create higher level representations of the code.

Software Maintenance

s

NOTES

. Self-Instructional Material 123"

Software Engineering

NOTES

124 Se{f-lnstructional Material

5.22

ADVANTAGES OF CASE TOOLS

The major benefits of using CASE tools include-the following:.

1. Improved productivity

‘2. Better documentation

3. Improved accuracy

4. Intaﬁgible bepefits

5. Improved quality ‘

6. Reduced lifetime maintenance

7. . Opportunity to nbn-programmers

~ 8. Reduced cost of' software

9. Produce high quaiity and consistent documents -

10. Impact on the style of a working of company

11.. Reduce the drudgery in a SOftWére engineer’s work -

12. Incredse xspeed of 'pi'ocessin_g |

13. Easy’l t0 progralr; software

14. Improved coordination among staff members who are ‘working'

~ on a large software project

15. An inc'reasé in project control ﬁhrough better planning, monitoring
and communication. '

5.23 DISADVANTAGES OF CASE TOOLS

1. Purchasing of~ CASE tools is not an easy task.: Its cost is
very high. Due to this reason small software development firm
do not invest in case tools.

2. Learning Curve: In general cases programmer prodﬁctivity
may fall in initial phase of implementation as user need time to
learn this technology. _

3. Tool Mix: It is important to make proper selection of case tools

to get maximum benefit from the case tools, so wrong selection
may lead to wrohg result. i

5.24 LIMITATIONS OF CASE TOOLS
The ‘major limitations of using CASE: toolé 'include: _
* Cost .
* Learning Curve .
* Tool Mix_ | Coa -

- _, . '//— T
Cost '. T " - . T

Usmg CASE tools is a very costly affalr In fact, most ﬁrms engaged in
software development on a small scale do not, invest in CASE tools because
~ they think that the beneﬁts of CASE are Just1fiable only in the development
of large systems. ; e

The cost of outfitting every system developer with a preferred CASE
tool kit can be quite high. Hardware and systems, software, l:ralmng and

consultmg are all factors in the total cost equatlon of using CASE tools. |-

Learning Curve - | O “ S
In most CASES, programmer productivity may fall in the 1n1t1al phase
-of implementation, because users need time to learn the technology

In fact, a CASE. consultmg industry has evolved to support uses of y

CASE tools.. L ' . “’ [~

The consultants offer training and on-lsite servi'ces that can be crucial 'to
accelerate the learning curve and to the development and use of the tools.

Tool Mlx \

-—

It is most 1mportant to make an appropriate selectlon of tool mix to get
cost advantage. CASE 1ntegrat1on and data integration lacross all platforms
is also very important. The ability to share the results of work done on
one CASE tool with another CASE tool is perhaps tlhe most important
type of CASE integratio.

5.25 CASE FOR FUTURE /AN

\‘i

CASE is not the only new technology that promises to eliminate problems
of software development productivity. ObJect-orlented languages artificial
intelligence tools, and gther newly popular development tools can also |
help achieve this goal. ' '

Software Maintenance

. '] N
Self-Instruf:tional Material 125

Software Engineering

NOTES

126 Self-Instructional Material

- CASE tools can potentially automate any kmd of software development. |

In fact, CASE might soon become the pivot around all, which all these -
technologies turn. CASE is promised to be'the.foundatio\n technology
for development approaches '

CASE transcends programming languages ie., it is a tool framework
while languages are the materlal the tools operate on. Here is a-good
example:

CASE is the tool bench, holding saws and drills\ and hammers; .
programming languages are the wood from which you carve «
the model. '

*

They can be tailored to fit almost any existing development environment.

~However only a few environments are popular enough to ensure substantial’ _'

sales of CASE products e

For the next few years, until it is fully coupled to methodologles, |
CASE will target fairly standard system types and development platforms. .-

"~ Software Maintena/nce

STUDENT ACTIVITY =

1. What are the different levels of CASE? /

2. -Explain the components-of CASE architecture.

- SUMMARY |

. Software maintenance is becoming an 1mport ant activity of a large number of software
organizations. This is no surprise, given the rate of hardware obsolescence, the immortality
of a software product and the demand of the user community to see the existing software
products run on newer platforms, run in newer envn'onments, and/or with enhanced features..

T. Software reverse englneermg is the process of recovermg the ‘design and the requirements
specification of a product from an analysis of its code.

. » -Software re-engineering is a combination of twl) consecutive processes i.e., Software reverse
engineering and software forward engineering!)

. CASE is a computer aided software éngineering technology. - \

. A set of portab111ty service provides a br1dge between CASE tools and their Afhtegra_tion
framework and the _environment archltecture S -

* Analysis and de31gn ‘tools enable a software engineér to create models of the system to be
built. : oy L : :
e A CASE repos1tory is asystem deveIoper database.

J ACASE classifications help us understand the different t'y\pesvof CASE tools and their role in
‘supporting software process activities. ’ '

R o s . ‘ C " Selfinstructional Material 127

-

Sof?@a’e Engineering * Code generators automate the preparation of computer software.

| .’ The cost of outﬁtting every system developer wi‘th‘ a preferred-

NOTES

128 -Self-Instructional Material

CASE tool kit can be quite high.

5.

6.

9.

10.

11

12.
13
14.
15.
16.
17.
18.

REVIEW QUESTIONS

What for software products are required to mamtam" :

What are the different types of maintenance that a softwarel
product might need? Why are these maintenance required?

What 'are the disadvantages associated with software maintenance? -
What do you mean by the term software reverse engineering?

‘Why is it required? Explain the dlfferent activities undertaken :

durmg reverse engineering.

What is legacy, software product? Explain the “problems one
would encounter--while maintaining a legacy product.

What are the different factors upon whlch software maintenance
activities depend? -

What do you mean by the term software re- englneermg‘? Why
is it required?

If the development cost of a software product is Rs. 10,000,000/,
compute the annual maintenance cost given that every year
approximately 5% of the code needs modification. Identify the
factors which render the maintenance cost estimation inaccurate. .

Legacy software products are very difficult to maintain,

Legacy products are those products whlch have been developed
long time back. .

In the process of reverse engineering; we change ithe functmnahtxes

of .an ex1st1ng code.

List’ put documentatlon and \also explains their purpose. -
Dlscuss Building blocks. for CASE o

What do you understand by OMS" _. '

Explam some charactenstlcs of CASE Tools.

Name the different Categones of CASE Tools Also show it
diagrammatically.

Why analysts use CASE repositories? Give some reasons.

‘What are the advantages and disa‘d'vafrtages of CASE Tools?

FURTHER READINGS

N

* Software Engineering, Bharat Bhushan Agarwal Sum1t Prakash
Tayal, Firewall Media.

2. Sottv_@re_ Engineering, D. 'Su_uder, University Science Press.'

. y
l ‘

